spi-s3c64xx.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245
  1. /*
  2. * Copyright (C) 2009 Samsung Electronics Ltd.
  3. * Jaswinder Singh <jassi.brar@samsung.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/delay.h>
  23. #include <linux/clk.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/spi/spi.h>
  27. #include <mach/dma.h>
  28. #include <plat/s3c64xx-spi.h>
  29. /* Registers and bit-fields */
  30. #define S3C64XX_SPI_CH_CFG 0x00
  31. #define S3C64XX_SPI_CLK_CFG 0x04
  32. #define S3C64XX_SPI_MODE_CFG 0x08
  33. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  34. #define S3C64XX_SPI_INT_EN 0x10
  35. #define S3C64XX_SPI_STATUS 0x14
  36. #define S3C64XX_SPI_TX_DATA 0x18
  37. #define S3C64XX_SPI_RX_DATA 0x1C
  38. #define S3C64XX_SPI_PACKET_CNT 0x20
  39. #define S3C64XX_SPI_PENDING_CLR 0x24
  40. #define S3C64XX_SPI_SWAP_CFG 0x28
  41. #define S3C64XX_SPI_FB_CLK 0x2C
  42. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  43. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  44. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  45. #define S3C64XX_SPI_CPOL_L (1<<3)
  46. #define S3C64XX_SPI_CPHA_B (1<<2)
  47. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  48. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  49. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  50. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  51. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  52. #define S3C64XX_SPI_PSR_MASK 0xff
  53. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  54. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  55. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  57. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  58. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  61. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  62. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  63. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  64. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  65. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  66. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  67. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  68. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  69. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  70. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  71. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  72. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  73. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  74. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  75. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  76. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  77. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  78. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  79. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  80. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  81. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  82. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  83. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  84. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  85. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  86. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  87. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  88. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  89. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  90. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  91. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  92. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  93. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  94. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  95. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  96. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  97. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  98. (((i)->fifo_lvl_mask + 1))) \
  99. ? 1 : 0)
  100. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & (1 << (i)->tx_st_done)) ? 1 : 0)
  101. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  102. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  103. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  104. #define S3C64XX_SPI_TRAILCNT_OFF 19
  105. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  106. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  107. #define SUSPND (1<<0)
  108. #define SPIBUSY (1<<1)
  109. #define RXBUSY (1<<2)
  110. #define TXBUSY (1<<3)
  111. /**
  112. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  113. * @clk: Pointer to the spi clock.
  114. * @src_clk: Pointer to the clock used to generate SPI signals.
  115. * @master: Pointer to the SPI Protocol master.
  116. * @workqueue: Work queue for the SPI xfer requests.
  117. * @cntrlr_info: Platform specific data for the controller this driver manages.
  118. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  119. * @work: Work
  120. * @queue: To log SPI xfer requests.
  121. * @lock: Controller specific lock.
  122. * @state: Set of FLAGS to indicate status.
  123. * @rx_dmach: Controller's DMA channel for Rx.
  124. * @tx_dmach: Controller's DMA channel for Tx.
  125. * @sfr_start: BUS address of SPI controller regs.
  126. * @regs: Pointer to ioremap'ed controller registers.
  127. * @xfer_completion: To indicate completion of xfer task.
  128. * @cur_mode: Stores the active configuration of the controller.
  129. * @cur_bpw: Stores the active bits per word settings.
  130. * @cur_speed: Stores the active xfer clock speed.
  131. */
  132. struct s3c64xx_spi_driver_data {
  133. void __iomem *regs;
  134. struct clk *clk;
  135. struct clk *src_clk;
  136. struct platform_device *pdev;
  137. struct spi_master *master;
  138. struct workqueue_struct *workqueue;
  139. struct s3c64xx_spi_info *cntrlr_info;
  140. struct spi_device *tgl_spi;
  141. struct work_struct work;
  142. struct list_head queue;
  143. spinlock_t lock;
  144. enum dma_ch rx_dmach;
  145. enum dma_ch tx_dmach;
  146. unsigned long sfr_start;
  147. struct completion xfer_completion;
  148. unsigned state;
  149. unsigned cur_mode, cur_bpw;
  150. unsigned cur_speed;
  151. };
  152. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  153. .name = "samsung-spi-dma",
  154. };
  155. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  156. {
  157. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  158. void __iomem *regs = sdd->regs;
  159. unsigned long loops;
  160. u32 val;
  161. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  162. val = readl(regs + S3C64XX_SPI_CH_CFG);
  163. val |= S3C64XX_SPI_CH_SW_RST;
  164. val &= ~S3C64XX_SPI_CH_HS_EN;
  165. writel(val, regs + S3C64XX_SPI_CH_CFG);
  166. /* Flush TxFIFO*/
  167. loops = msecs_to_loops(1);
  168. do {
  169. val = readl(regs + S3C64XX_SPI_STATUS);
  170. } while (TX_FIFO_LVL(val, sci) && loops--);
  171. if (loops == 0)
  172. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  173. /* Flush RxFIFO*/
  174. loops = msecs_to_loops(1);
  175. do {
  176. val = readl(regs + S3C64XX_SPI_STATUS);
  177. if (RX_FIFO_LVL(val, sci))
  178. readl(regs + S3C64XX_SPI_RX_DATA);
  179. else
  180. break;
  181. } while (loops--);
  182. if (loops == 0)
  183. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  184. val = readl(regs + S3C64XX_SPI_CH_CFG);
  185. val &= ~S3C64XX_SPI_CH_SW_RST;
  186. writel(val, regs + S3C64XX_SPI_CH_CFG);
  187. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  188. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  189. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  190. val = readl(regs + S3C64XX_SPI_CH_CFG);
  191. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  192. writel(val, regs + S3C64XX_SPI_CH_CFG);
  193. }
  194. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  195. struct spi_device *spi,
  196. struct spi_transfer *xfer, int dma_mode)
  197. {
  198. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  199. void __iomem *regs = sdd->regs;
  200. u32 modecfg, chcfg;
  201. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  202. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  203. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  204. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  205. if (dma_mode) {
  206. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  207. } else {
  208. /* Always shift in data in FIFO, even if xfer is Tx only,
  209. * this helps setting PCKT_CNT value for generating clocks
  210. * as exactly needed.
  211. */
  212. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  213. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  214. | S3C64XX_SPI_PACKET_CNT_EN,
  215. regs + S3C64XX_SPI_PACKET_CNT);
  216. }
  217. if (xfer->tx_buf != NULL) {
  218. sdd->state |= TXBUSY;
  219. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  220. if (dma_mode) {
  221. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  222. s3c2410_dma_config(sdd->tx_dmach, sdd->cur_bpw / 8);
  223. s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd,
  224. xfer->tx_dma, xfer->len);
  225. s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START);
  226. } else {
  227. switch (sdd->cur_bpw) {
  228. case 32:
  229. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  230. xfer->tx_buf, xfer->len / 4);
  231. break;
  232. case 16:
  233. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  234. xfer->tx_buf, xfer->len / 2);
  235. break;
  236. default:
  237. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  238. xfer->tx_buf, xfer->len);
  239. break;
  240. }
  241. }
  242. }
  243. if (xfer->rx_buf != NULL) {
  244. sdd->state |= RXBUSY;
  245. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  246. && !(sdd->cur_mode & SPI_CPHA))
  247. chcfg |= S3C64XX_SPI_CH_HS_EN;
  248. if (dma_mode) {
  249. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  250. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  251. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  252. | S3C64XX_SPI_PACKET_CNT_EN,
  253. regs + S3C64XX_SPI_PACKET_CNT);
  254. s3c2410_dma_config(sdd->rx_dmach, sdd->cur_bpw / 8);
  255. s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd,
  256. xfer->rx_dma, xfer->len);
  257. s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START);
  258. }
  259. }
  260. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  261. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  262. }
  263. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  264. struct spi_device *spi)
  265. {
  266. struct s3c64xx_spi_csinfo *cs;
  267. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  268. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  269. /* Deselect the last toggled device */
  270. cs = sdd->tgl_spi->controller_data;
  271. cs->set_level(cs->line,
  272. spi->mode & SPI_CS_HIGH ? 0 : 1);
  273. }
  274. sdd->tgl_spi = NULL;
  275. }
  276. cs = spi->controller_data;
  277. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  278. }
  279. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  280. struct spi_transfer *xfer, int dma_mode)
  281. {
  282. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  283. void __iomem *regs = sdd->regs;
  284. unsigned long val;
  285. int ms;
  286. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  287. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  288. ms += 10; /* some tolerance */
  289. if (dma_mode) {
  290. val = msecs_to_jiffies(ms) + 10;
  291. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  292. } else {
  293. u32 status;
  294. val = msecs_to_loops(ms);
  295. do {
  296. status = readl(regs + S3C64XX_SPI_STATUS);
  297. } while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
  298. }
  299. if (!val)
  300. return -EIO;
  301. if (dma_mode) {
  302. u32 status;
  303. /*
  304. * DmaTx returns after simply writing data in the FIFO,
  305. * w/o waiting for real transmission on the bus to finish.
  306. * DmaRx returns only after Dma read data from FIFO which
  307. * needs bus transmission to finish, so we don't worry if
  308. * Xfer involved Rx(with or without Tx).
  309. */
  310. if (xfer->rx_buf == NULL) {
  311. val = msecs_to_loops(10);
  312. status = readl(regs + S3C64XX_SPI_STATUS);
  313. while ((TX_FIFO_LVL(status, sci)
  314. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  315. && --val) {
  316. cpu_relax();
  317. status = readl(regs + S3C64XX_SPI_STATUS);
  318. }
  319. if (!val)
  320. return -EIO;
  321. }
  322. } else {
  323. /* If it was only Tx */
  324. if (xfer->rx_buf == NULL) {
  325. sdd->state &= ~TXBUSY;
  326. return 0;
  327. }
  328. switch (sdd->cur_bpw) {
  329. case 32:
  330. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  331. xfer->rx_buf, xfer->len / 4);
  332. break;
  333. case 16:
  334. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  335. xfer->rx_buf, xfer->len / 2);
  336. break;
  337. default:
  338. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  339. xfer->rx_buf, xfer->len);
  340. break;
  341. }
  342. sdd->state &= ~RXBUSY;
  343. }
  344. return 0;
  345. }
  346. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  347. struct spi_device *spi)
  348. {
  349. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  350. if (sdd->tgl_spi == spi)
  351. sdd->tgl_spi = NULL;
  352. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  353. }
  354. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  355. {
  356. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  357. void __iomem *regs = sdd->regs;
  358. u32 val;
  359. /* Disable Clock */
  360. if (sci->clk_from_cmu) {
  361. clk_disable(sdd->src_clk);
  362. } else {
  363. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  364. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  365. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  366. }
  367. /* Set Polarity and Phase */
  368. val = readl(regs + S3C64XX_SPI_CH_CFG);
  369. val &= ~(S3C64XX_SPI_CH_SLAVE |
  370. S3C64XX_SPI_CPOL_L |
  371. S3C64XX_SPI_CPHA_B);
  372. if (sdd->cur_mode & SPI_CPOL)
  373. val |= S3C64XX_SPI_CPOL_L;
  374. if (sdd->cur_mode & SPI_CPHA)
  375. val |= S3C64XX_SPI_CPHA_B;
  376. writel(val, regs + S3C64XX_SPI_CH_CFG);
  377. /* Set Channel & DMA Mode */
  378. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  379. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  380. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  381. switch (sdd->cur_bpw) {
  382. case 32:
  383. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  384. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  385. break;
  386. case 16:
  387. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  388. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  389. break;
  390. default:
  391. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  392. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  393. break;
  394. }
  395. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  396. if (sci->clk_from_cmu) {
  397. /* Configure Clock */
  398. /* There is half-multiplier before the SPI */
  399. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  400. /* Enable Clock */
  401. clk_enable(sdd->src_clk);
  402. } else {
  403. /* Configure Clock */
  404. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  405. val &= ~S3C64XX_SPI_PSR_MASK;
  406. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  407. & S3C64XX_SPI_PSR_MASK);
  408. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  409. /* Enable Clock */
  410. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  411. val |= S3C64XX_SPI_ENCLK_ENABLE;
  412. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  413. }
  414. }
  415. static void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id,
  416. int size, enum s3c2410_dma_buffresult res)
  417. {
  418. struct s3c64xx_spi_driver_data *sdd = buf_id;
  419. unsigned long flags;
  420. spin_lock_irqsave(&sdd->lock, flags);
  421. if (res == S3C2410_RES_OK)
  422. sdd->state &= ~RXBUSY;
  423. else
  424. dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size);
  425. /* If the other done */
  426. if (!(sdd->state & TXBUSY))
  427. complete(&sdd->xfer_completion);
  428. spin_unlock_irqrestore(&sdd->lock, flags);
  429. }
  430. static void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id,
  431. int size, enum s3c2410_dma_buffresult res)
  432. {
  433. struct s3c64xx_spi_driver_data *sdd = buf_id;
  434. unsigned long flags;
  435. spin_lock_irqsave(&sdd->lock, flags);
  436. if (res == S3C2410_RES_OK)
  437. sdd->state &= ~TXBUSY;
  438. else
  439. dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size);
  440. /* If the other done */
  441. if (!(sdd->state & RXBUSY))
  442. complete(&sdd->xfer_completion);
  443. spin_unlock_irqrestore(&sdd->lock, flags);
  444. }
  445. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  446. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  447. struct spi_message *msg)
  448. {
  449. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  450. struct device *dev = &sdd->pdev->dev;
  451. struct spi_transfer *xfer;
  452. if (msg->is_dma_mapped)
  453. return 0;
  454. /* First mark all xfer unmapped */
  455. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  456. xfer->rx_dma = XFER_DMAADDR_INVALID;
  457. xfer->tx_dma = XFER_DMAADDR_INVALID;
  458. }
  459. /* Map until end or first fail */
  460. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  461. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  462. continue;
  463. if (xfer->tx_buf != NULL) {
  464. xfer->tx_dma = dma_map_single(dev,
  465. (void *)xfer->tx_buf, xfer->len,
  466. DMA_TO_DEVICE);
  467. if (dma_mapping_error(dev, xfer->tx_dma)) {
  468. dev_err(dev, "dma_map_single Tx failed\n");
  469. xfer->tx_dma = XFER_DMAADDR_INVALID;
  470. return -ENOMEM;
  471. }
  472. }
  473. if (xfer->rx_buf != NULL) {
  474. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  475. xfer->len, DMA_FROM_DEVICE);
  476. if (dma_mapping_error(dev, xfer->rx_dma)) {
  477. dev_err(dev, "dma_map_single Rx failed\n");
  478. dma_unmap_single(dev, xfer->tx_dma,
  479. xfer->len, DMA_TO_DEVICE);
  480. xfer->tx_dma = XFER_DMAADDR_INVALID;
  481. xfer->rx_dma = XFER_DMAADDR_INVALID;
  482. return -ENOMEM;
  483. }
  484. }
  485. }
  486. return 0;
  487. }
  488. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  489. struct spi_message *msg)
  490. {
  491. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  492. struct device *dev = &sdd->pdev->dev;
  493. struct spi_transfer *xfer;
  494. if (msg->is_dma_mapped)
  495. return;
  496. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  497. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  498. continue;
  499. if (xfer->rx_buf != NULL
  500. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  501. dma_unmap_single(dev, xfer->rx_dma,
  502. xfer->len, DMA_FROM_DEVICE);
  503. if (xfer->tx_buf != NULL
  504. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  505. dma_unmap_single(dev, xfer->tx_dma,
  506. xfer->len, DMA_TO_DEVICE);
  507. }
  508. }
  509. static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
  510. struct spi_message *msg)
  511. {
  512. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  513. struct spi_device *spi = msg->spi;
  514. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  515. struct spi_transfer *xfer;
  516. int status = 0, cs_toggle = 0;
  517. u32 speed;
  518. u8 bpw;
  519. /* If Master's(controller) state differs from that needed by Slave */
  520. if (sdd->cur_speed != spi->max_speed_hz
  521. || sdd->cur_mode != spi->mode
  522. || sdd->cur_bpw != spi->bits_per_word) {
  523. sdd->cur_bpw = spi->bits_per_word;
  524. sdd->cur_speed = spi->max_speed_hz;
  525. sdd->cur_mode = spi->mode;
  526. s3c64xx_spi_config(sdd);
  527. }
  528. /* Map all the transfers if needed */
  529. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  530. dev_err(&spi->dev,
  531. "Xfer: Unable to map message buffers!\n");
  532. status = -ENOMEM;
  533. goto out;
  534. }
  535. /* Configure feedback delay */
  536. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  537. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  538. unsigned long flags;
  539. int use_dma;
  540. INIT_COMPLETION(sdd->xfer_completion);
  541. /* Only BPW and Speed may change across transfers */
  542. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  543. speed = xfer->speed_hz ? : spi->max_speed_hz;
  544. if (xfer->len % (bpw / 8)) {
  545. dev_err(&spi->dev,
  546. "Xfer length(%u) not a multiple of word size(%u)\n",
  547. xfer->len, bpw / 8);
  548. status = -EIO;
  549. goto out;
  550. }
  551. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  552. sdd->cur_bpw = bpw;
  553. sdd->cur_speed = speed;
  554. s3c64xx_spi_config(sdd);
  555. }
  556. /* Polling method for xfers not bigger than FIFO capacity */
  557. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  558. use_dma = 0;
  559. else
  560. use_dma = 1;
  561. spin_lock_irqsave(&sdd->lock, flags);
  562. /* Pending only which is to be done */
  563. sdd->state &= ~RXBUSY;
  564. sdd->state &= ~TXBUSY;
  565. enable_datapath(sdd, spi, xfer, use_dma);
  566. /* Slave Select */
  567. enable_cs(sdd, spi);
  568. /* Start the signals */
  569. S3C64XX_SPI_ACT(sdd);
  570. spin_unlock_irqrestore(&sdd->lock, flags);
  571. status = wait_for_xfer(sdd, xfer, use_dma);
  572. /* Quiese the signals */
  573. S3C64XX_SPI_DEACT(sdd);
  574. if (status) {
  575. dev_err(&spi->dev, "I/O Error: "
  576. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  577. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  578. (sdd->state & RXBUSY) ? 'f' : 'p',
  579. (sdd->state & TXBUSY) ? 'f' : 'p',
  580. xfer->len);
  581. if (use_dma) {
  582. if (xfer->tx_buf != NULL
  583. && (sdd->state & TXBUSY))
  584. s3c2410_dma_ctrl(sdd->tx_dmach,
  585. S3C2410_DMAOP_FLUSH);
  586. if (xfer->rx_buf != NULL
  587. && (sdd->state & RXBUSY))
  588. s3c2410_dma_ctrl(sdd->rx_dmach,
  589. S3C2410_DMAOP_FLUSH);
  590. }
  591. goto out;
  592. }
  593. if (xfer->delay_usecs)
  594. udelay(xfer->delay_usecs);
  595. if (xfer->cs_change) {
  596. /* Hint that the next mssg is gonna be
  597. for the same device */
  598. if (list_is_last(&xfer->transfer_list,
  599. &msg->transfers))
  600. cs_toggle = 1;
  601. else
  602. disable_cs(sdd, spi);
  603. }
  604. msg->actual_length += xfer->len;
  605. flush_fifo(sdd);
  606. }
  607. out:
  608. if (!cs_toggle || status)
  609. disable_cs(sdd, spi);
  610. else
  611. sdd->tgl_spi = spi;
  612. s3c64xx_spi_unmap_mssg(sdd, msg);
  613. msg->status = status;
  614. if (msg->complete)
  615. msg->complete(msg->context);
  616. }
  617. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  618. {
  619. if (s3c2410_dma_request(sdd->rx_dmach,
  620. &s3c64xx_spi_dma_client, NULL) < 0) {
  621. dev_err(&sdd->pdev->dev, "cannot get RxDMA\n");
  622. return 0;
  623. }
  624. s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb);
  625. s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW,
  626. sdd->sfr_start + S3C64XX_SPI_RX_DATA);
  627. if (s3c2410_dma_request(sdd->tx_dmach,
  628. &s3c64xx_spi_dma_client, NULL) < 0) {
  629. dev_err(&sdd->pdev->dev, "cannot get TxDMA\n");
  630. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  631. return 0;
  632. }
  633. s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb);
  634. s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM,
  635. sdd->sfr_start + S3C64XX_SPI_TX_DATA);
  636. return 1;
  637. }
  638. static void s3c64xx_spi_work(struct work_struct *work)
  639. {
  640. struct s3c64xx_spi_driver_data *sdd = container_of(work,
  641. struct s3c64xx_spi_driver_data, work);
  642. unsigned long flags;
  643. /* Acquire DMA channels */
  644. while (!acquire_dma(sdd))
  645. msleep(10);
  646. spin_lock_irqsave(&sdd->lock, flags);
  647. while (!list_empty(&sdd->queue)
  648. && !(sdd->state & SUSPND)) {
  649. struct spi_message *msg;
  650. msg = container_of(sdd->queue.next, struct spi_message, queue);
  651. list_del_init(&msg->queue);
  652. /* Set Xfer busy flag */
  653. sdd->state |= SPIBUSY;
  654. spin_unlock_irqrestore(&sdd->lock, flags);
  655. handle_msg(sdd, msg);
  656. spin_lock_irqsave(&sdd->lock, flags);
  657. sdd->state &= ~SPIBUSY;
  658. }
  659. spin_unlock_irqrestore(&sdd->lock, flags);
  660. /* Free DMA channels */
  661. s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client);
  662. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  663. }
  664. static int s3c64xx_spi_transfer(struct spi_device *spi,
  665. struct spi_message *msg)
  666. {
  667. struct s3c64xx_spi_driver_data *sdd;
  668. unsigned long flags;
  669. sdd = spi_master_get_devdata(spi->master);
  670. spin_lock_irqsave(&sdd->lock, flags);
  671. if (sdd->state & SUSPND) {
  672. spin_unlock_irqrestore(&sdd->lock, flags);
  673. return -ESHUTDOWN;
  674. }
  675. msg->status = -EINPROGRESS;
  676. msg->actual_length = 0;
  677. list_add_tail(&msg->queue, &sdd->queue);
  678. queue_work(sdd->workqueue, &sdd->work);
  679. spin_unlock_irqrestore(&sdd->lock, flags);
  680. return 0;
  681. }
  682. /*
  683. * Here we only check the validity of requested configuration
  684. * and save the configuration in a local data-structure.
  685. * The controller is actually configured only just before we
  686. * get a message to transfer.
  687. */
  688. static int s3c64xx_spi_setup(struct spi_device *spi)
  689. {
  690. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  691. struct s3c64xx_spi_driver_data *sdd;
  692. struct s3c64xx_spi_info *sci;
  693. struct spi_message *msg;
  694. unsigned long flags;
  695. int err = 0;
  696. if (cs == NULL || cs->set_level == NULL) {
  697. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  698. return -ENODEV;
  699. }
  700. sdd = spi_master_get_devdata(spi->master);
  701. sci = sdd->cntrlr_info;
  702. spin_lock_irqsave(&sdd->lock, flags);
  703. list_for_each_entry(msg, &sdd->queue, queue) {
  704. /* Is some mssg is already queued for this device */
  705. if (msg->spi == spi) {
  706. dev_err(&spi->dev,
  707. "setup: attempt while mssg in queue!\n");
  708. spin_unlock_irqrestore(&sdd->lock, flags);
  709. return -EBUSY;
  710. }
  711. }
  712. if (sdd->state & SUSPND) {
  713. spin_unlock_irqrestore(&sdd->lock, flags);
  714. dev_err(&spi->dev,
  715. "setup: SPI-%d not active!\n", spi->master->bus_num);
  716. return -ESHUTDOWN;
  717. }
  718. spin_unlock_irqrestore(&sdd->lock, flags);
  719. if (spi->bits_per_word != 8
  720. && spi->bits_per_word != 16
  721. && spi->bits_per_word != 32) {
  722. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  723. spi->bits_per_word);
  724. err = -EINVAL;
  725. goto setup_exit;
  726. }
  727. /* Check if we can provide the requested rate */
  728. if (!sci->clk_from_cmu) {
  729. u32 psr, speed;
  730. /* Max possible */
  731. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  732. if (spi->max_speed_hz > speed)
  733. spi->max_speed_hz = speed;
  734. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  735. psr &= S3C64XX_SPI_PSR_MASK;
  736. if (psr == S3C64XX_SPI_PSR_MASK)
  737. psr--;
  738. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  739. if (spi->max_speed_hz < speed) {
  740. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  741. psr++;
  742. } else {
  743. err = -EINVAL;
  744. goto setup_exit;
  745. }
  746. }
  747. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  748. if (spi->max_speed_hz >= speed)
  749. spi->max_speed_hz = speed;
  750. else
  751. err = -EINVAL;
  752. }
  753. setup_exit:
  754. /* setup() returns with device de-selected */
  755. disable_cs(sdd, spi);
  756. return err;
  757. }
  758. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  759. {
  760. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  761. void __iomem *regs = sdd->regs;
  762. unsigned int val;
  763. sdd->cur_speed = 0;
  764. S3C64XX_SPI_DEACT(sdd);
  765. /* Disable Interrupts - we use Polling if not DMA mode */
  766. writel(0, regs + S3C64XX_SPI_INT_EN);
  767. if (!sci->clk_from_cmu)
  768. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  769. regs + S3C64XX_SPI_CLK_CFG);
  770. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  771. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  772. /* Clear any irq pending bits */
  773. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  774. regs + S3C64XX_SPI_PENDING_CLR);
  775. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  776. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  777. val &= ~S3C64XX_SPI_MODE_4BURST;
  778. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  779. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  780. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  781. flush_fifo(sdd);
  782. }
  783. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  784. {
  785. struct resource *mem_res, *dmatx_res, *dmarx_res;
  786. struct s3c64xx_spi_driver_data *sdd;
  787. struct s3c64xx_spi_info *sci;
  788. struct spi_master *master;
  789. int ret;
  790. if (pdev->id < 0) {
  791. dev_err(&pdev->dev,
  792. "Invalid platform device id-%d\n", pdev->id);
  793. return -ENODEV;
  794. }
  795. if (pdev->dev.platform_data == NULL) {
  796. dev_err(&pdev->dev, "platform_data missing!\n");
  797. return -ENODEV;
  798. }
  799. sci = pdev->dev.platform_data;
  800. if (!sci->src_clk_name) {
  801. dev_err(&pdev->dev,
  802. "Board init must call s3c64xx_spi_set_info()\n");
  803. return -EINVAL;
  804. }
  805. /* Check for availability of necessary resource */
  806. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  807. if (dmatx_res == NULL) {
  808. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  809. return -ENXIO;
  810. }
  811. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  812. if (dmarx_res == NULL) {
  813. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  814. return -ENXIO;
  815. }
  816. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  817. if (mem_res == NULL) {
  818. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  819. return -ENXIO;
  820. }
  821. master = spi_alloc_master(&pdev->dev,
  822. sizeof(struct s3c64xx_spi_driver_data));
  823. if (master == NULL) {
  824. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  825. return -ENOMEM;
  826. }
  827. platform_set_drvdata(pdev, master);
  828. sdd = spi_master_get_devdata(master);
  829. sdd->master = master;
  830. sdd->cntrlr_info = sci;
  831. sdd->pdev = pdev;
  832. sdd->sfr_start = mem_res->start;
  833. sdd->tx_dmach = dmatx_res->start;
  834. sdd->rx_dmach = dmarx_res->start;
  835. sdd->cur_bpw = 8;
  836. master->bus_num = pdev->id;
  837. master->setup = s3c64xx_spi_setup;
  838. master->transfer = s3c64xx_spi_transfer;
  839. master->num_chipselect = sci->num_cs;
  840. master->dma_alignment = 8;
  841. /* the spi->mode bits understood by this driver: */
  842. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  843. if (request_mem_region(mem_res->start,
  844. resource_size(mem_res), pdev->name) == NULL) {
  845. dev_err(&pdev->dev, "Req mem region failed\n");
  846. ret = -ENXIO;
  847. goto err0;
  848. }
  849. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  850. if (sdd->regs == NULL) {
  851. dev_err(&pdev->dev, "Unable to remap IO\n");
  852. ret = -ENXIO;
  853. goto err1;
  854. }
  855. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  856. dev_err(&pdev->dev, "Unable to config gpio\n");
  857. ret = -EBUSY;
  858. goto err2;
  859. }
  860. /* Setup clocks */
  861. sdd->clk = clk_get(&pdev->dev, "spi");
  862. if (IS_ERR(sdd->clk)) {
  863. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  864. ret = PTR_ERR(sdd->clk);
  865. goto err3;
  866. }
  867. if (clk_enable(sdd->clk)) {
  868. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  869. ret = -EBUSY;
  870. goto err4;
  871. }
  872. sdd->src_clk = clk_get(&pdev->dev, sci->src_clk_name);
  873. if (IS_ERR(sdd->src_clk)) {
  874. dev_err(&pdev->dev,
  875. "Unable to acquire clock '%s'\n", sci->src_clk_name);
  876. ret = PTR_ERR(sdd->src_clk);
  877. goto err5;
  878. }
  879. if (clk_enable(sdd->src_clk)) {
  880. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n",
  881. sci->src_clk_name);
  882. ret = -EBUSY;
  883. goto err6;
  884. }
  885. sdd->workqueue = create_singlethread_workqueue(
  886. dev_name(master->dev.parent));
  887. if (sdd->workqueue == NULL) {
  888. dev_err(&pdev->dev, "Unable to create workqueue\n");
  889. ret = -ENOMEM;
  890. goto err7;
  891. }
  892. /* Setup Deufult Mode */
  893. s3c64xx_spi_hwinit(sdd, pdev->id);
  894. spin_lock_init(&sdd->lock);
  895. init_completion(&sdd->xfer_completion);
  896. INIT_WORK(&sdd->work, s3c64xx_spi_work);
  897. INIT_LIST_HEAD(&sdd->queue);
  898. if (spi_register_master(master)) {
  899. dev_err(&pdev->dev, "cannot register SPI master\n");
  900. ret = -EBUSY;
  901. goto err8;
  902. }
  903. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  904. "with %d Slaves attached\n",
  905. pdev->id, master->num_chipselect);
  906. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  907. mem_res->end, mem_res->start,
  908. sdd->rx_dmach, sdd->tx_dmach);
  909. return 0;
  910. err8:
  911. destroy_workqueue(sdd->workqueue);
  912. err7:
  913. clk_disable(sdd->src_clk);
  914. err6:
  915. clk_put(sdd->src_clk);
  916. err5:
  917. clk_disable(sdd->clk);
  918. err4:
  919. clk_put(sdd->clk);
  920. err3:
  921. err2:
  922. iounmap((void *) sdd->regs);
  923. err1:
  924. release_mem_region(mem_res->start, resource_size(mem_res));
  925. err0:
  926. platform_set_drvdata(pdev, NULL);
  927. spi_master_put(master);
  928. return ret;
  929. }
  930. static int s3c64xx_spi_remove(struct platform_device *pdev)
  931. {
  932. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  933. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  934. struct resource *mem_res;
  935. unsigned long flags;
  936. spin_lock_irqsave(&sdd->lock, flags);
  937. sdd->state |= SUSPND;
  938. spin_unlock_irqrestore(&sdd->lock, flags);
  939. while (sdd->state & SPIBUSY)
  940. msleep(10);
  941. spi_unregister_master(master);
  942. destroy_workqueue(sdd->workqueue);
  943. clk_disable(sdd->src_clk);
  944. clk_put(sdd->src_clk);
  945. clk_disable(sdd->clk);
  946. clk_put(sdd->clk);
  947. iounmap((void *) sdd->regs);
  948. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  949. if (mem_res != NULL)
  950. release_mem_region(mem_res->start, resource_size(mem_res));
  951. platform_set_drvdata(pdev, NULL);
  952. spi_master_put(master);
  953. return 0;
  954. }
  955. #ifdef CONFIG_PM
  956. static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  957. {
  958. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  959. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  960. unsigned long flags;
  961. spin_lock_irqsave(&sdd->lock, flags);
  962. sdd->state |= SUSPND;
  963. spin_unlock_irqrestore(&sdd->lock, flags);
  964. while (sdd->state & SPIBUSY)
  965. msleep(10);
  966. /* Disable the clock */
  967. clk_disable(sdd->src_clk);
  968. clk_disable(sdd->clk);
  969. sdd->cur_speed = 0; /* Output Clock is stopped */
  970. return 0;
  971. }
  972. static int s3c64xx_spi_resume(struct platform_device *pdev)
  973. {
  974. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  975. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  976. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  977. unsigned long flags;
  978. sci->cfg_gpio(pdev);
  979. /* Enable the clock */
  980. clk_enable(sdd->src_clk);
  981. clk_enable(sdd->clk);
  982. s3c64xx_spi_hwinit(sdd, pdev->id);
  983. spin_lock_irqsave(&sdd->lock, flags);
  984. sdd->state &= ~SUSPND;
  985. spin_unlock_irqrestore(&sdd->lock, flags);
  986. return 0;
  987. }
  988. #else
  989. #define s3c64xx_spi_suspend NULL
  990. #define s3c64xx_spi_resume NULL
  991. #endif /* CONFIG_PM */
  992. static struct platform_driver s3c64xx_spi_driver = {
  993. .driver = {
  994. .name = "s3c64xx-spi",
  995. .owner = THIS_MODULE,
  996. },
  997. .remove = s3c64xx_spi_remove,
  998. .suspend = s3c64xx_spi_suspend,
  999. .resume = s3c64xx_spi_resume,
  1000. };
  1001. MODULE_ALIAS("platform:s3c64xx-spi");
  1002. static int __init s3c64xx_spi_init(void)
  1003. {
  1004. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  1005. }
  1006. subsys_initcall(s3c64xx_spi_init);
  1007. static void __exit s3c64xx_spi_exit(void)
  1008. {
  1009. platform_driver_unregister(&s3c64xx_spi_driver);
  1010. }
  1011. module_exit(s3c64xx_spi_exit);
  1012. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1013. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1014. MODULE_LICENSE("GPL");