iwl-power.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2007 - 2011 Intel Corporation. All rights reserved.
  4. *
  5. * Portions of this file are derived from the ipw3945 project, as well
  6. * as portions of the ieee80211 subsystem header files.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of version 2 of the GNU General Public License as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  20. *
  21. * The full GNU General Public License is included in this distribution in the
  22. * file called LICENSE.
  23. *
  24. * Contact Information:
  25. * Intel Linux Wireless <ilw@linux.intel.com>
  26. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  27. *****************************************************************************/
  28. #include <linux/kernel.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <net/mac80211.h>
  33. #include "iwl-eeprom.h"
  34. #include "iwl-dev.h"
  35. #include "iwl-agn.h"
  36. #include "iwl-core.h"
  37. #include "iwl-io.h"
  38. #include "iwl-commands.h"
  39. #include "iwl-debug.h"
  40. #include "iwl-power.h"
  41. #include "iwl-trans.h"
  42. /*
  43. * Setting power level allows the card to go to sleep when not busy.
  44. *
  45. * We calculate a sleep command based on the required latency, which
  46. * we get from mac80211. In order to handle thermal throttling, we can
  47. * also use pre-defined power levels.
  48. */
  49. /*
  50. * This defines the old power levels. They are still used by default
  51. * (level 1) and for thermal throttle (levels 3 through 5)
  52. */
  53. struct iwl_power_vec_entry {
  54. struct iwl_powertable_cmd cmd;
  55. u8 no_dtim; /* number of skip dtim */
  56. };
  57. #define IWL_DTIM_RANGE_0_MAX 2
  58. #define IWL_DTIM_RANGE_1_MAX 10
  59. #define NOSLP cpu_to_le16(0), 0, 0
  60. #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0
  61. #define ASLP (IWL_POWER_POWER_SAVE_ENA_MSK | \
  62. IWL_POWER_POWER_MANAGEMENT_ENA_MSK | \
  63. IWL_POWER_ADVANCE_PM_ENA_MSK)
  64. #define ASLP_TOUT(T) cpu_to_le32(T)
  65. #define TU_TO_USEC 1024
  66. #define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC)
  67. #define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \
  68. cpu_to_le32(X1), \
  69. cpu_to_le32(X2), \
  70. cpu_to_le32(X3), \
  71. cpu_to_le32(X4)}
  72. /* default power management (not Tx power) table values */
  73. /* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */
  74. /* DTIM 0 - 2 */
  75. static const struct iwl_power_vec_entry range_0[IWL_POWER_NUM] = {
  76. {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 1, 2, 2, 0xFF)}, 0},
  77. {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0},
  78. {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0},
  79. {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1},
  80. {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2}
  81. };
  82. /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */
  83. /* DTIM 3 - 10 */
  84. static const struct iwl_power_vec_entry range_1[IWL_POWER_NUM] = {
  85. {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0},
  86. {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0},
  87. {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0},
  88. {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1},
  89. {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 6, 10, 10)}, 2}
  90. };
  91. /* for DTIM period > IWL_DTIM_RANGE_1_MAX */
  92. /* DTIM 11 - */
  93. static const struct iwl_power_vec_entry range_2[IWL_POWER_NUM] = {
  94. {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0},
  95. {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0},
  96. {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
  97. {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
  98. {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0}
  99. };
  100. /* advance power management */
  101. /* DTIM 0 - 2 */
  102. static const struct iwl_power_vec_entry apm_range_0[IWL_POWER_NUM] = {
  103. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  104. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  105. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  106. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  107. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  108. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  109. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  110. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  111. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  112. SLP_VEC(1, 2, 6, 8, 0xFF), ASLP_TOUT(2)}, 2}
  113. };
  114. /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */
  115. /* DTIM 3 - 10 */
  116. static const struct iwl_power_vec_entry apm_range_1[IWL_POWER_NUM] = {
  117. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  118. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  119. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  120. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  121. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  122. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  123. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  124. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  125. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  126. SLP_VEC(1, 2, 6, 8, 0xFF), 0}, 2}
  127. };
  128. /* for DTIM period > IWL_DTIM_RANGE_1_MAX */
  129. /* DTIM 11 - */
  130. static const struct iwl_power_vec_entry apm_range_2[IWL_POWER_NUM] = {
  131. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  132. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  133. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  134. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  135. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  136. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  137. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  138. SLP_VEC(1, 2, 4, 6, 0xFF), 0}, 0},
  139. {{ASLP, 0, 0, ASLP_TOUT(50), ASLP_TOUT(50),
  140. SLP_VEC(1, 2, 6, 8, 0xFF), ASLP_TOUT(2)}, 2}
  141. };
  142. static void iwl_static_sleep_cmd(struct iwl_priv *priv,
  143. struct iwl_powertable_cmd *cmd,
  144. enum iwl_power_level lvl, int period)
  145. {
  146. const struct iwl_power_vec_entry *table;
  147. int max_sleep[IWL_POWER_VEC_SIZE] = { 0 };
  148. int i;
  149. u8 skip;
  150. u32 slp_itrvl;
  151. if (priv->cfg->adv_pm) {
  152. table = apm_range_2;
  153. if (period <= IWL_DTIM_RANGE_1_MAX)
  154. table = apm_range_1;
  155. if (period <= IWL_DTIM_RANGE_0_MAX)
  156. table = apm_range_0;
  157. } else {
  158. table = range_2;
  159. if (period <= IWL_DTIM_RANGE_1_MAX)
  160. table = range_1;
  161. if (period <= IWL_DTIM_RANGE_0_MAX)
  162. table = range_0;
  163. }
  164. if (WARN_ON(lvl < 0 || lvl >= IWL_POWER_NUM))
  165. memset(cmd, 0, sizeof(*cmd));
  166. else
  167. *cmd = table[lvl].cmd;
  168. if (period == 0) {
  169. skip = 0;
  170. period = 1;
  171. for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
  172. max_sleep[i] = 1;
  173. } else {
  174. skip = table[lvl].no_dtim;
  175. for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
  176. max_sleep[i] = le32_to_cpu(cmd->sleep_interval[i]);
  177. max_sleep[IWL_POWER_VEC_SIZE - 1] = skip + 1;
  178. }
  179. slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
  180. /* figure out the listen interval based on dtim period and skip */
  181. if (slp_itrvl == 0xFF)
  182. cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
  183. cpu_to_le32(period * (skip + 1));
  184. slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
  185. if (slp_itrvl > period)
  186. cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
  187. cpu_to_le32((slp_itrvl / period) * period);
  188. if (skip)
  189. cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK;
  190. else
  191. cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK;
  192. if (priv->cfg->base_params->shadow_reg_enable)
  193. cmd->flags |= IWL_POWER_SHADOW_REG_ENA;
  194. else
  195. cmd->flags &= ~IWL_POWER_SHADOW_REG_ENA;
  196. if (iwl_advanced_bt_coexist(priv)) {
  197. if (!priv->cfg->bt_params->bt_sco_disable)
  198. cmd->flags |= IWL_POWER_BT_SCO_ENA;
  199. else
  200. cmd->flags &= ~IWL_POWER_BT_SCO_ENA;
  201. }
  202. slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
  203. if (slp_itrvl > IWL_CONN_MAX_LISTEN_INTERVAL)
  204. cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
  205. cpu_to_le32(IWL_CONN_MAX_LISTEN_INTERVAL);
  206. /* enforce max sleep interval */
  207. for (i = IWL_POWER_VEC_SIZE - 1; i >= 0 ; i--) {
  208. if (le32_to_cpu(cmd->sleep_interval[i]) >
  209. (max_sleep[i] * period))
  210. cmd->sleep_interval[i] =
  211. cpu_to_le32(max_sleep[i] * period);
  212. if (i != (IWL_POWER_VEC_SIZE - 1)) {
  213. if (le32_to_cpu(cmd->sleep_interval[i]) >
  214. le32_to_cpu(cmd->sleep_interval[i+1]))
  215. cmd->sleep_interval[i] =
  216. cmd->sleep_interval[i+1];
  217. }
  218. }
  219. if (priv->power_data.bus_pm)
  220. cmd->flags |= IWL_POWER_PCI_PM_MSK;
  221. else
  222. cmd->flags &= ~IWL_POWER_PCI_PM_MSK;
  223. IWL_DEBUG_POWER(priv, "numSkipDtim = %u, dtimPeriod = %d\n",
  224. skip, period);
  225. IWL_DEBUG_POWER(priv, "Sleep command for index %d\n", lvl + 1);
  226. }
  227. static void iwl_power_sleep_cam_cmd(struct iwl_priv *priv,
  228. struct iwl_powertable_cmd *cmd)
  229. {
  230. memset(cmd, 0, sizeof(*cmd));
  231. if (priv->power_data.bus_pm)
  232. cmd->flags |= IWL_POWER_PCI_PM_MSK;
  233. IWL_DEBUG_POWER(priv, "Sleep command for CAM\n");
  234. }
  235. static void iwl_power_fill_sleep_cmd(struct iwl_priv *priv,
  236. struct iwl_powertable_cmd *cmd,
  237. int dynps_ms, int wakeup_period)
  238. {
  239. /*
  240. * These are the original power level 3 sleep successions. The
  241. * device may behave better with such succession and was also
  242. * only tested with that. Just like the original sleep commands,
  243. * also adjust the succession here to the wakeup_period below.
  244. * The ranges are the same as for the sleep commands, 0-2, 3-9
  245. * and >10, which is selected based on the DTIM interval for
  246. * the sleep index but here we use the wakeup period since that
  247. * is what we need to do for the latency requirements.
  248. */
  249. static const u8 slp_succ_r0[IWL_POWER_VEC_SIZE] = { 2, 2, 2, 2, 2 };
  250. static const u8 slp_succ_r1[IWL_POWER_VEC_SIZE] = { 2, 4, 6, 7, 9 };
  251. static const u8 slp_succ_r2[IWL_POWER_VEC_SIZE] = { 2, 7, 9, 9, 0xFF };
  252. const u8 *slp_succ = slp_succ_r0;
  253. int i;
  254. if (wakeup_period > IWL_DTIM_RANGE_0_MAX)
  255. slp_succ = slp_succ_r1;
  256. if (wakeup_period > IWL_DTIM_RANGE_1_MAX)
  257. slp_succ = slp_succ_r2;
  258. memset(cmd, 0, sizeof(*cmd));
  259. cmd->flags = IWL_POWER_DRIVER_ALLOW_SLEEP_MSK |
  260. IWL_POWER_FAST_PD; /* no use seeing frames for others */
  261. if (priv->power_data.bus_pm)
  262. cmd->flags |= IWL_POWER_PCI_PM_MSK;
  263. if (priv->cfg->base_params->shadow_reg_enable)
  264. cmd->flags |= IWL_POWER_SHADOW_REG_ENA;
  265. else
  266. cmd->flags &= ~IWL_POWER_SHADOW_REG_ENA;
  267. if (iwl_advanced_bt_coexist(priv)) {
  268. if (!priv->cfg->bt_params->bt_sco_disable)
  269. cmd->flags |= IWL_POWER_BT_SCO_ENA;
  270. else
  271. cmd->flags &= ~IWL_POWER_BT_SCO_ENA;
  272. }
  273. cmd->rx_data_timeout = cpu_to_le32(1000 * dynps_ms);
  274. cmd->tx_data_timeout = cpu_to_le32(1000 * dynps_ms);
  275. for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
  276. cmd->sleep_interval[i] =
  277. cpu_to_le32(min_t(int, slp_succ[i], wakeup_period));
  278. IWL_DEBUG_POWER(priv, "Automatic sleep command\n");
  279. }
  280. static int iwl_set_power(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd)
  281. {
  282. IWL_DEBUG_POWER(priv, "Sending power/sleep command\n");
  283. IWL_DEBUG_POWER(priv, "Flags value = 0x%08X\n", cmd->flags);
  284. IWL_DEBUG_POWER(priv, "Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
  285. IWL_DEBUG_POWER(priv, "Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
  286. IWL_DEBUG_POWER(priv, "Sleep interval vector = { %d , %d , %d , %d , %d }\n",
  287. le32_to_cpu(cmd->sleep_interval[0]),
  288. le32_to_cpu(cmd->sleep_interval[1]),
  289. le32_to_cpu(cmd->sleep_interval[2]),
  290. le32_to_cpu(cmd->sleep_interval[3]),
  291. le32_to_cpu(cmd->sleep_interval[4]));
  292. return trans_send_cmd_pdu(&priv->trans, POWER_TABLE_CMD, CMD_SYNC,
  293. sizeof(struct iwl_powertable_cmd), cmd);
  294. }
  295. static void iwl_power_build_cmd(struct iwl_priv *priv,
  296. struct iwl_powertable_cmd *cmd)
  297. {
  298. bool enabled = priv->hw->conf.flags & IEEE80211_CONF_PS;
  299. int dtimper;
  300. dtimper = priv->hw->conf.ps_dtim_period ?: 1;
  301. if (priv->wowlan)
  302. iwl_static_sleep_cmd(priv, cmd, IWL_POWER_INDEX_5, dtimper);
  303. else if (!priv->cfg->base_params->no_idle_support &&
  304. priv->hw->conf.flags & IEEE80211_CONF_IDLE)
  305. iwl_static_sleep_cmd(priv, cmd, IWL_POWER_INDEX_5, 20);
  306. else if (iwl_tt_is_low_power_state(priv)) {
  307. /* in thermal throttling low power state */
  308. iwl_static_sleep_cmd(priv, cmd,
  309. iwl_tt_current_power_mode(priv), dtimper);
  310. } else if (!enabled)
  311. iwl_power_sleep_cam_cmd(priv, cmd);
  312. else if (priv->power_data.debug_sleep_level_override >= 0)
  313. iwl_static_sleep_cmd(priv, cmd,
  314. priv->power_data.debug_sleep_level_override,
  315. dtimper);
  316. else if (iwlagn_mod_params.no_sleep_autoadjust) {
  317. if (iwlagn_mod_params.power_level > IWL_POWER_INDEX_1 &&
  318. iwlagn_mod_params.power_level <= IWL_POWER_INDEX_5)
  319. iwl_static_sleep_cmd(priv, cmd,
  320. iwlagn_mod_params.power_level, dtimper);
  321. else
  322. iwl_static_sleep_cmd(priv, cmd,
  323. IWL_POWER_INDEX_1, dtimper);
  324. } else
  325. iwl_power_fill_sleep_cmd(priv, cmd,
  326. priv->hw->conf.dynamic_ps_timeout,
  327. priv->hw->conf.max_sleep_period);
  328. }
  329. int iwl_power_set_mode(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd,
  330. bool force)
  331. {
  332. int ret;
  333. bool update_chains;
  334. lockdep_assert_held(&priv->mutex);
  335. /* Don't update the RX chain when chain noise calibration is running */
  336. update_chains = priv->chain_noise_data.state == IWL_CHAIN_NOISE_DONE ||
  337. priv->chain_noise_data.state == IWL_CHAIN_NOISE_ALIVE;
  338. if (!memcmp(&priv->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
  339. return 0;
  340. if (!iwl_is_ready_rf(priv))
  341. return -EIO;
  342. /* scan complete use sleep_power_next, need to be updated */
  343. memcpy(&priv->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
  344. if (test_bit(STATUS_SCANNING, &priv->status) && !force) {
  345. IWL_DEBUG_INFO(priv, "Defer power set mode while scanning\n");
  346. return 0;
  347. }
  348. if (cmd->flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK)
  349. set_bit(STATUS_POWER_PMI, &priv->status);
  350. ret = iwl_set_power(priv, cmd);
  351. if (!ret) {
  352. if (!(cmd->flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK))
  353. clear_bit(STATUS_POWER_PMI, &priv->status);
  354. if (update_chains)
  355. iwl_update_chain_flags(priv);
  356. else
  357. IWL_DEBUG_POWER(priv,
  358. "Cannot update the power, chain noise "
  359. "calibration running: %d\n",
  360. priv->chain_noise_data.state);
  361. memcpy(&priv->power_data.sleep_cmd, cmd, sizeof(*cmd));
  362. } else
  363. IWL_ERR(priv, "set power fail, ret = %d", ret);
  364. return ret;
  365. }
  366. int iwl_power_update_mode(struct iwl_priv *priv, bool force)
  367. {
  368. struct iwl_powertable_cmd cmd;
  369. iwl_power_build_cmd(priv, &cmd);
  370. return iwl_power_set_mode(priv, &cmd, force);
  371. }
  372. /* initialize to default */
  373. void iwl_power_initialize(struct iwl_priv *priv)
  374. {
  375. priv->power_data.bus_pm = bus_get_pm_support(priv->bus);
  376. priv->power_data.debug_sleep_level_override = -1;
  377. memset(&priv->power_data.sleep_cmd, 0,
  378. sizeof(priv->power_data.sleep_cmd));
  379. }