eeprom_9287.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  20. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  21. {
  22. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  23. }
  24. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  25. {
  26. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  27. }
  28. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  29. {
  30. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  31. struct ath_common *common = ath9k_hw_common(ah);
  32. u16 *eep_data;
  33. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  34. eep_data = (u16 *)eep;
  35. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  36. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  37. eep_data)) {
  38. ath_dbg(common, ATH_DBG_EEPROM,
  39. "Unable to read eeprom region\n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. }
  46. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  47. {
  48. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  49. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  50. AR9287_HTC_EEP_START_LOC,
  51. SIZE_EEPROM_AR9287);
  52. return true;
  53. }
  54. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  55. {
  56. struct ath_common *common = ath9k_hw_common(ah);
  57. if (!ath9k_hw_use_flash(ah)) {
  58. ath_dbg(common, ATH_DBG_EEPROM,
  59. "Reading from EEPROM, not flash\n");
  60. }
  61. if (common->bus_ops->ath_bus_type == ATH_USB)
  62. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  63. else
  64. return __ath9k_hw_ar9287_fill_eeprom(ah);
  65. }
  66. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  67. {
  68. u32 sum = 0, el, integer;
  69. u16 temp, word, magic, magic2, *eepdata;
  70. int i, addr;
  71. bool need_swap = false;
  72. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  73. struct ath_common *common = ath9k_hw_common(ah);
  74. if (!ath9k_hw_use_flash(ah)) {
  75. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  76. &magic)) {
  77. ath_err(common, "Reading Magic # failed\n");
  78. return false;
  79. }
  80. ath_dbg(common, ATH_DBG_EEPROM,
  81. "Read Magic = 0x%04X\n", magic);
  82. if (magic != AR5416_EEPROM_MAGIC) {
  83. magic2 = swab16(magic);
  84. if (magic2 == AR5416_EEPROM_MAGIC) {
  85. need_swap = true;
  86. eepdata = (u16 *)(&ah->eeprom);
  87. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  88. temp = swab16(*eepdata);
  89. *eepdata = temp;
  90. eepdata++;
  91. }
  92. } else {
  93. ath_err(common,
  94. "Invalid EEPROM Magic. Endianness mismatch.\n");
  95. return -EINVAL;
  96. }
  97. }
  98. }
  99. ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  100. need_swap ? "True" : "False");
  101. if (need_swap)
  102. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  103. else
  104. el = ah->eeprom.map9287.baseEepHeader.length;
  105. if (el > sizeof(struct ar9287_eeprom))
  106. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  107. else
  108. el = el / sizeof(u16);
  109. eepdata = (u16 *)(&ah->eeprom);
  110. for (i = 0; i < el; i++)
  111. sum ^= *eepdata++;
  112. if (need_swap) {
  113. word = swab16(eep->baseEepHeader.length);
  114. eep->baseEepHeader.length = word;
  115. word = swab16(eep->baseEepHeader.checksum);
  116. eep->baseEepHeader.checksum = word;
  117. word = swab16(eep->baseEepHeader.version);
  118. eep->baseEepHeader.version = word;
  119. word = swab16(eep->baseEepHeader.regDmn[0]);
  120. eep->baseEepHeader.regDmn[0] = word;
  121. word = swab16(eep->baseEepHeader.regDmn[1]);
  122. eep->baseEepHeader.regDmn[1] = word;
  123. word = swab16(eep->baseEepHeader.rfSilent);
  124. eep->baseEepHeader.rfSilent = word;
  125. word = swab16(eep->baseEepHeader.blueToothOptions);
  126. eep->baseEepHeader.blueToothOptions = word;
  127. word = swab16(eep->baseEepHeader.deviceCap);
  128. eep->baseEepHeader.deviceCap = word;
  129. integer = swab32(eep->modalHeader.antCtrlCommon);
  130. eep->modalHeader.antCtrlCommon = integer;
  131. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  132. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  133. eep->modalHeader.antCtrlChain[i] = integer;
  134. }
  135. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  136. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  137. eep->modalHeader.spurChans[i].spurChan = word;
  138. }
  139. }
  140. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  141. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  142. ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  143. sum, ah->eep_ops->get_eeprom_ver(ah));
  144. return -EINVAL;
  145. }
  146. return 0;
  147. }
  148. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  149. enum eeprom_param param)
  150. {
  151. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  152. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  153. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  154. u16 ver_minor;
  155. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  156. switch (param) {
  157. case EEP_NFTHRESH_2:
  158. return pModal->noiseFloorThreshCh[0];
  159. case EEP_MAC_LSW:
  160. return get_unaligned_be16(pBase->macAddr);
  161. case EEP_MAC_MID:
  162. return get_unaligned_be16(pBase->macAddr + 2);
  163. case EEP_MAC_MSW:
  164. return get_unaligned_be16(pBase->macAddr + 4);
  165. case EEP_REG_0:
  166. return pBase->regDmn[0];
  167. case EEP_REG_1:
  168. return pBase->regDmn[1];
  169. case EEP_OP_CAP:
  170. return pBase->deviceCap;
  171. case EEP_OP_MODE:
  172. return pBase->opCapFlags;
  173. case EEP_RF_SILENT:
  174. return pBase->rfSilent;
  175. case EEP_MINOR_REV:
  176. return ver_minor;
  177. case EEP_TX_MASK:
  178. return pBase->txMask;
  179. case EEP_RX_MASK:
  180. return pBase->rxMask;
  181. case EEP_DEV_TYPE:
  182. return pBase->deviceType;
  183. case EEP_OL_PWRCTRL:
  184. return pBase->openLoopPwrCntl;
  185. case EEP_TEMPSENSE_SLOPE:
  186. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  187. return pBase->tempSensSlope;
  188. else
  189. return 0;
  190. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  191. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  192. return pBase->tempSensSlopePalOn;
  193. else
  194. return 0;
  195. default:
  196. return 0;
  197. }
  198. }
  199. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  200. struct ath9k_channel *chan,
  201. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  202. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  203. {
  204. u16 idxL = 0, idxR = 0, numPiers;
  205. bool match;
  206. struct chan_centers centers;
  207. ath9k_hw_get_channel_centers(ah, chan, &centers);
  208. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  209. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  210. break;
  211. }
  212. match = ath9k_hw_get_lower_upper_index(
  213. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  214. pCalChans, numPiers, &idxL, &idxR);
  215. if (match) {
  216. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  217. } else {
  218. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  219. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  220. }
  221. }
  222. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  223. int32_t txPower, u16 chain)
  224. {
  225. u32 tmpVal;
  226. u32 a;
  227. /* Enable OLPC for chain 0 */
  228. tmpVal = REG_READ(ah, 0xa270);
  229. tmpVal = tmpVal & 0xFCFFFFFF;
  230. tmpVal = tmpVal | (0x3 << 24);
  231. REG_WRITE(ah, 0xa270, tmpVal);
  232. /* Enable OLPC for chain 1 */
  233. tmpVal = REG_READ(ah, 0xb270);
  234. tmpVal = tmpVal & 0xFCFFFFFF;
  235. tmpVal = tmpVal | (0x3 << 24);
  236. REG_WRITE(ah, 0xb270, tmpVal);
  237. /* Write the OLPC ref power for chain 0 */
  238. if (chain == 0) {
  239. tmpVal = REG_READ(ah, 0xa398);
  240. tmpVal = tmpVal & 0xff00ffff;
  241. a = (txPower)&0xff;
  242. tmpVal = tmpVal | (a << 16);
  243. REG_WRITE(ah, 0xa398, tmpVal);
  244. }
  245. /* Write the OLPC ref power for chain 1 */
  246. if (chain == 1) {
  247. tmpVal = REG_READ(ah, 0xb398);
  248. tmpVal = tmpVal & 0xff00ffff;
  249. a = (txPower)&0xff;
  250. tmpVal = tmpVal | (a << 16);
  251. REG_WRITE(ah, 0xb398, tmpVal);
  252. }
  253. }
  254. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  255. struct ath9k_channel *chan,
  256. int16_t *pTxPowerIndexOffset)
  257. {
  258. struct cal_data_per_freq_ar9287 *pRawDataset;
  259. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  260. u8 *pCalBChans = NULL;
  261. u16 pdGainOverlap_t2;
  262. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  263. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  264. u16 numPiers = 0, i, j;
  265. u16 numXpdGain, xpdMask;
  266. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  267. u32 reg32, regOffset, regChainOffset, regval;
  268. int16_t diff = 0;
  269. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  270. xpdMask = pEepData->modalHeader.xpdGain;
  271. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  272. AR9287_EEP_MINOR_VER_2)
  273. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  274. else
  275. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  276. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  277. if (IS_CHAN_2GHZ(chan)) {
  278. pCalBChans = pEepData->calFreqPier2G;
  279. numPiers = AR9287_NUM_2G_CAL_PIERS;
  280. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  281. pRawDatasetOpenLoop =
  282. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  283. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  284. }
  285. }
  286. numXpdGain = 0;
  287. /* Calculate the value of xpdgains from the xpdGain Mask */
  288. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  289. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  290. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  291. break;
  292. xpdGainValues[numXpdGain] =
  293. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  294. numXpdGain++;
  295. }
  296. }
  297. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  298. (numXpdGain - 1) & 0x3);
  299. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  300. xpdGainValues[0]);
  301. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  302. xpdGainValues[1]);
  303. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  304. xpdGainValues[2]);
  305. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  306. regChainOffset = i * 0x1000;
  307. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  308. pRawDatasetOpenLoop =
  309. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  310. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  311. int8_t txPower;
  312. ar9287_eeprom_get_tx_gain_index(ah, chan,
  313. pRawDatasetOpenLoop,
  314. pCalBChans, numPiers,
  315. &txPower);
  316. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  317. } else {
  318. pRawDataset =
  319. (struct cal_data_per_freq_ar9287 *)
  320. pEepData->calPierData2G[i];
  321. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  322. pRawDataset,
  323. pCalBChans, numPiers,
  324. pdGainOverlap_t2,
  325. gainBoundaries,
  326. pdadcValues,
  327. numXpdGain);
  328. }
  329. ENABLE_REGWRITE_BUFFER(ah);
  330. if (i == 0) {
  331. if (!ath9k_hw_ar9287_get_eeprom(ah,
  332. EEP_OL_PWRCTRL)) {
  333. regval = SM(pdGainOverlap_t2,
  334. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  335. | SM(gainBoundaries[0],
  336. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  337. | SM(gainBoundaries[1],
  338. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  339. | SM(gainBoundaries[2],
  340. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  341. | SM(gainBoundaries[3],
  342. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  343. REG_WRITE(ah,
  344. AR_PHY_TPCRG5 + regChainOffset,
  345. regval);
  346. }
  347. }
  348. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  349. pEepData->baseEepHeader.pwrTableOffset) {
  350. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  351. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  352. diff *= 2;
  353. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  354. pdadcValues[j] = pdadcValues[j+diff];
  355. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  356. j < AR5416_NUM_PDADC_VALUES; j++)
  357. pdadcValues[j] =
  358. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  359. }
  360. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  361. regOffset = AR_PHY_BASE +
  362. (672 << 2) + regChainOffset;
  363. for (j = 0; j < 32; j++) {
  364. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  365. REG_WRITE(ah, regOffset, reg32);
  366. regOffset += 4;
  367. }
  368. }
  369. REGWRITE_BUFFER_FLUSH(ah);
  370. }
  371. }
  372. *pTxPowerIndexOffset = 0;
  373. }
  374. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  375. struct ath9k_channel *chan,
  376. int16_t *ratesArray,
  377. u16 cfgCtl,
  378. u16 AntennaReduction,
  379. u16 twiceMaxRegulatoryPower,
  380. u16 powerLimit)
  381. {
  382. #define CMP_CTL \
  383. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  384. pEepData->ctlIndex[i])
  385. #define CMP_NO_CTL \
  386. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  387. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  388. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
  389. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
  390. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  391. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  392. static const u16 tpScaleReductionTable[5] =
  393. { 0, 3, 6, 9, MAX_RATE_POWER };
  394. int i;
  395. int16_t twiceLargestAntenna;
  396. struct cal_ctl_data_ar9287 *rep;
  397. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  398. targetPowerCck = {0, {0, 0, 0, 0} };
  399. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  400. targetPowerCckExt = {0, {0, 0, 0, 0} };
  401. struct cal_target_power_ht targetPowerHt20,
  402. targetPowerHt40 = {0, {0, 0, 0, 0} };
  403. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  404. static const u16 ctlModesFor11g[] = {
  405. CTL_11B, CTL_11G, CTL_2GHT20,
  406. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  407. };
  408. u16 numCtlModes = 0;
  409. const u16 *pCtlMode = NULL;
  410. u16 ctlMode, freq;
  411. struct chan_centers centers;
  412. int tx_chainmask;
  413. u16 twiceMinEdgePower;
  414. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  415. tx_chainmask = ah->txchainmask;
  416. ath9k_hw_get_channel_centers(ah, chan, &centers);
  417. /* Compute TxPower reduction due to Antenna Gain */
  418. twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
  419. pEepData->modalHeader.antennaGainCh[1]);
  420. twiceLargestAntenna = (int16_t)min((AntennaReduction) -
  421. twiceLargestAntenna, 0);
  422. /*
  423. * scaledPower is the minimum of the user input power level
  424. * and the regulatory allowed power level.
  425. */
  426. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  427. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
  428. maxRegAllowedPower -=
  429. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  430. scaledPower = min(powerLimit, maxRegAllowedPower);
  431. /*
  432. * Reduce scaled Power by number of chains active
  433. * to get the per chain tx power level.
  434. */
  435. switch (ar5416_get_ntxchains(tx_chainmask)) {
  436. case 1:
  437. break;
  438. case 2:
  439. if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
  440. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  441. else
  442. scaledPower = 0;
  443. break;
  444. case 3:
  445. if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
  446. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  447. else
  448. scaledPower = 0;
  449. break;
  450. }
  451. scaledPower = max((u16)0, scaledPower);
  452. /*
  453. * Get TX power from EEPROM.
  454. */
  455. if (IS_CHAN_2GHZ(chan)) {
  456. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  457. numCtlModes =
  458. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  459. pCtlMode = ctlModesFor11g;
  460. ath9k_hw_get_legacy_target_powers(ah, chan,
  461. pEepData->calTargetPowerCck,
  462. AR9287_NUM_2G_CCK_TARGET_POWERS,
  463. &targetPowerCck, 4, false);
  464. ath9k_hw_get_legacy_target_powers(ah, chan,
  465. pEepData->calTargetPower2G,
  466. AR9287_NUM_2G_20_TARGET_POWERS,
  467. &targetPowerOfdm, 4, false);
  468. ath9k_hw_get_target_powers(ah, chan,
  469. pEepData->calTargetPower2GHT20,
  470. AR9287_NUM_2G_20_TARGET_POWERS,
  471. &targetPowerHt20, 8, false);
  472. if (IS_CHAN_HT40(chan)) {
  473. /* All 2G CTLs */
  474. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  475. ath9k_hw_get_target_powers(ah, chan,
  476. pEepData->calTargetPower2GHT40,
  477. AR9287_NUM_2G_40_TARGET_POWERS,
  478. &targetPowerHt40, 8, true);
  479. ath9k_hw_get_legacy_target_powers(ah, chan,
  480. pEepData->calTargetPowerCck,
  481. AR9287_NUM_2G_CCK_TARGET_POWERS,
  482. &targetPowerCckExt, 4, true);
  483. ath9k_hw_get_legacy_target_powers(ah, chan,
  484. pEepData->calTargetPower2G,
  485. AR9287_NUM_2G_20_TARGET_POWERS,
  486. &targetPowerOfdmExt, 4, true);
  487. }
  488. }
  489. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  490. bool isHt40CtlMode =
  491. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  492. if (isHt40CtlMode)
  493. freq = centers.synth_center;
  494. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  495. freq = centers.ext_center;
  496. else
  497. freq = centers.ctl_center;
  498. /* Walk through the CTL indices stored in EEPROM */
  499. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  500. struct cal_ctl_edges *pRdEdgesPower;
  501. /*
  502. * Compare test group from regulatory channel list
  503. * with test mode from pCtlMode list
  504. */
  505. if (CMP_CTL || CMP_NO_CTL) {
  506. rep = &(pEepData->ctlData[i]);
  507. pRdEdgesPower =
  508. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  509. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  510. pRdEdgesPower,
  511. IS_CHAN_2GHZ(chan),
  512. AR5416_NUM_BAND_EDGES);
  513. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  514. twiceMaxEdgePower = min(twiceMaxEdgePower,
  515. twiceMinEdgePower);
  516. } else {
  517. twiceMaxEdgePower = twiceMinEdgePower;
  518. break;
  519. }
  520. }
  521. }
  522. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  523. /* Apply ctl mode to correct target power set */
  524. switch (pCtlMode[ctlMode]) {
  525. case CTL_11B:
  526. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  527. targetPowerCck.tPow2x[i] =
  528. (u8)min((u16)targetPowerCck.tPow2x[i],
  529. minCtlPower);
  530. }
  531. break;
  532. case CTL_11A:
  533. case CTL_11G:
  534. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  535. targetPowerOfdm.tPow2x[i] =
  536. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  537. minCtlPower);
  538. }
  539. break;
  540. case CTL_5GHT20:
  541. case CTL_2GHT20:
  542. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  543. targetPowerHt20.tPow2x[i] =
  544. (u8)min((u16)targetPowerHt20.tPow2x[i],
  545. minCtlPower);
  546. }
  547. break;
  548. case CTL_11B_EXT:
  549. targetPowerCckExt.tPow2x[0] =
  550. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  551. minCtlPower);
  552. break;
  553. case CTL_11A_EXT:
  554. case CTL_11G_EXT:
  555. targetPowerOfdmExt.tPow2x[0] =
  556. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  557. minCtlPower);
  558. break;
  559. case CTL_5GHT40:
  560. case CTL_2GHT40:
  561. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  562. targetPowerHt40.tPow2x[i] =
  563. (u8)min((u16)targetPowerHt40.tPow2x[i],
  564. minCtlPower);
  565. }
  566. break;
  567. default:
  568. break;
  569. }
  570. }
  571. /* Now set the rates array */
  572. ratesArray[rate6mb] =
  573. ratesArray[rate9mb] =
  574. ratesArray[rate12mb] =
  575. ratesArray[rate18mb] =
  576. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  577. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  578. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  579. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  580. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  581. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  582. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  583. if (IS_CHAN_2GHZ(chan)) {
  584. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  585. ratesArray[rate2s] =
  586. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  587. ratesArray[rate5_5s] =
  588. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  589. ratesArray[rate11s] =
  590. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  591. }
  592. if (IS_CHAN_HT40(chan)) {
  593. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  594. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  595. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  596. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  597. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  598. if (IS_CHAN_2GHZ(chan))
  599. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  600. }
  601. #undef CMP_CTL
  602. #undef CMP_NO_CTL
  603. #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  604. #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
  605. }
  606. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  607. struct ath9k_channel *chan, u16 cfgCtl,
  608. u8 twiceAntennaReduction,
  609. u8 twiceMaxRegulatoryPower,
  610. u8 powerLimit, bool test)
  611. {
  612. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  613. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  614. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  615. int16_t ratesArray[Ar5416RateSize];
  616. int16_t txPowerIndexOffset = 0;
  617. u8 ht40PowerIncForPdadc = 2;
  618. int i;
  619. memset(ratesArray, 0, sizeof(ratesArray));
  620. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  621. AR9287_EEP_MINOR_VER_2)
  622. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  623. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  624. &ratesArray[0], cfgCtl,
  625. twiceAntennaReduction,
  626. twiceMaxRegulatoryPower,
  627. powerLimit);
  628. ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
  629. regulatory->max_power_level = 0;
  630. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  631. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  632. if (ratesArray[i] > MAX_RATE_POWER)
  633. ratesArray[i] = MAX_RATE_POWER;
  634. if (ratesArray[i] > regulatory->max_power_level)
  635. regulatory->max_power_level = ratesArray[i];
  636. }
  637. if (test)
  638. return;
  639. if (IS_CHAN_2GHZ(chan))
  640. i = rate1l;
  641. else
  642. i = rate6mb;
  643. regulatory->max_power_level = ratesArray[i];
  644. if (AR_SREV_9280_20_OR_LATER(ah)) {
  645. for (i = 0; i < Ar5416RateSize; i++)
  646. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  647. }
  648. ENABLE_REGWRITE_BUFFER(ah);
  649. /* OFDM power per rate */
  650. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  651. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  652. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  653. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  654. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  655. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  656. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  657. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  658. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  659. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  660. /* CCK power per rate */
  661. if (IS_CHAN_2GHZ(chan)) {
  662. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  663. ATH9K_POW_SM(ratesArray[rate2s], 24)
  664. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  665. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  666. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  667. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  668. ATH9K_POW_SM(ratesArray[rate11s], 24)
  669. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  670. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  671. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  672. }
  673. /* HT20 power per rate */
  674. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  675. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  676. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  677. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  678. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  679. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  680. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  681. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  682. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  683. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  684. /* HT40 power per rate */
  685. if (IS_CHAN_HT40(chan)) {
  686. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  687. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  688. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  689. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  690. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  691. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  692. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  693. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  694. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  695. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  696. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  697. } else {
  698. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  699. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  700. ht40PowerIncForPdadc, 24)
  701. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  702. ht40PowerIncForPdadc, 16)
  703. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  704. ht40PowerIncForPdadc, 8)
  705. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  706. ht40PowerIncForPdadc, 0));
  707. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  708. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  709. ht40PowerIncForPdadc, 24)
  710. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  711. ht40PowerIncForPdadc, 16)
  712. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  713. ht40PowerIncForPdadc, 8)
  714. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  715. ht40PowerIncForPdadc, 0));
  716. }
  717. /* Dup/Ext power per rate */
  718. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  719. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  720. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  721. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  722. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  723. }
  724. REGWRITE_BUFFER_FLUSH(ah);
  725. }
  726. static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
  727. struct ath9k_channel *chan)
  728. {
  729. }
  730. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  731. struct ath9k_channel *chan)
  732. {
  733. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  734. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  735. u32 regChainOffset, regval;
  736. u8 txRxAttenLocal;
  737. int i;
  738. pModal = &eep->modalHeader;
  739. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  740. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  741. regChainOffset = i * 0x1000;
  742. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  743. pModal->antCtrlChain[i]);
  744. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  745. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  746. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  747. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  748. SM(pModal->iqCalICh[i],
  749. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  750. SM(pModal->iqCalQCh[i],
  751. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  752. txRxAttenLocal = pModal->txRxAttenCh[i];
  753. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  754. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  755. pModal->bswMargin[i]);
  756. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  757. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  758. pModal->bswAtten[i]);
  759. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  760. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  761. txRxAttenLocal);
  762. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  763. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  764. pModal->rxTxMarginCh[i]);
  765. }
  766. if (IS_CHAN_HT40(chan))
  767. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  768. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  769. else
  770. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  771. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  772. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  773. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  774. REG_WRITE(ah, AR_PHY_RF_CTL4,
  775. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  776. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  777. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  778. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  779. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  780. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  781. REG_RMW_FIELD(ah, AR_PHY_CCA,
  782. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  783. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  784. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  785. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  786. regval &= ~(AR9287_AN_RF2G3_DB1 |
  787. AR9287_AN_RF2G3_DB2 |
  788. AR9287_AN_RF2G3_OB_CCK |
  789. AR9287_AN_RF2G3_OB_PSK |
  790. AR9287_AN_RF2G3_OB_QAM |
  791. AR9287_AN_RF2G3_OB_PAL_OFF);
  792. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  793. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  794. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  795. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  796. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  797. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  798. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  799. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  800. regval &= ~(AR9287_AN_RF2G3_DB1 |
  801. AR9287_AN_RF2G3_DB2 |
  802. AR9287_AN_RF2G3_OB_CCK |
  803. AR9287_AN_RF2G3_OB_PSK |
  804. AR9287_AN_RF2G3_OB_QAM |
  805. AR9287_AN_RF2G3_OB_PAL_OFF);
  806. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  807. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  808. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  809. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  810. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  811. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  812. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  813. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  814. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  815. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  816. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  817. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  818. AR9287_AN_TOP2_XPABIAS_LVL,
  819. AR9287_AN_TOP2_XPABIAS_LVL_S,
  820. pModal->xpaBiasLvl);
  821. }
  822. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  823. u16 i, bool is2GHz)
  824. {
  825. #define EEP_MAP9287_SPURCHAN \
  826. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  827. struct ath_common *common = ath9k_hw_common(ah);
  828. u16 spur_val = AR_NO_SPUR;
  829. ath_dbg(common, ATH_DBG_ANI,
  830. "Getting spur idx:%d is2Ghz:%d val:%x\n",
  831. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  832. switch (ah->config.spurmode) {
  833. case SPUR_DISABLE:
  834. break;
  835. case SPUR_ENABLE_IOCTL:
  836. spur_val = ah->config.spurchans[i][is2GHz];
  837. ath_dbg(common, ATH_DBG_ANI,
  838. "Getting spur val from new loc. %d\n", spur_val);
  839. break;
  840. case SPUR_ENABLE_EEPROM:
  841. spur_val = EEP_MAP9287_SPURCHAN;
  842. break;
  843. }
  844. return spur_val;
  845. #undef EEP_MAP9287_SPURCHAN
  846. }
  847. const struct eeprom_ops eep_ar9287_ops = {
  848. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  849. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  850. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  851. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  852. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  853. .set_board_values = ath9k_hw_ar9287_set_board_values,
  854. .set_addac = ath9k_hw_ar9287_set_addac,
  855. .set_txpower = ath9k_hw_ar9287_set_txpower,
  856. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  857. };