eeprom_4k.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  20. {
  21. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  22. }
  23. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  24. {
  25. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  26. }
  27. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  28. static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  29. {
  30. struct ath_common *common = ath9k_hw_common(ah);
  31. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  32. int addr, eep_start_loc = 64;
  33. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  34. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  35. ath_dbg(common, ATH_DBG_EEPROM,
  36. "Unable to read eeprom region\n");
  37. return false;
  38. }
  39. eep_data++;
  40. }
  41. return true;
  42. }
  43. static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
  44. {
  45. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  46. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
  47. return true;
  48. }
  49. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  50. {
  51. struct ath_common *common = ath9k_hw_common(ah);
  52. if (!ath9k_hw_use_flash(ah)) {
  53. ath_dbg(common, ATH_DBG_EEPROM,
  54. "Reading from EEPROM, not flash\n");
  55. }
  56. if (common->bus_ops->ath_bus_type == ATH_USB)
  57. return __ath9k_hw_usb_4k_fill_eeprom(ah);
  58. else
  59. return __ath9k_hw_4k_fill_eeprom(ah);
  60. }
  61. #undef SIZE_EEPROM_4K
  62. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  63. {
  64. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  65. struct ath_common *common = ath9k_hw_common(ah);
  66. struct ar5416_eeprom_4k *eep =
  67. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  68. u16 *eepdata, temp, magic, magic2;
  69. u32 sum = 0, el;
  70. bool need_swap = false;
  71. int i, addr;
  72. if (!ath9k_hw_use_flash(ah)) {
  73. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  74. &magic)) {
  75. ath_err(common, "Reading Magic # failed\n");
  76. return false;
  77. }
  78. ath_dbg(common, ATH_DBG_EEPROM,
  79. "Read Magic = 0x%04X\n", magic);
  80. if (magic != AR5416_EEPROM_MAGIC) {
  81. magic2 = swab16(magic);
  82. if (magic2 == AR5416_EEPROM_MAGIC) {
  83. need_swap = true;
  84. eepdata = (u16 *) (&ah->eeprom);
  85. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  86. temp = swab16(*eepdata);
  87. *eepdata = temp;
  88. eepdata++;
  89. }
  90. } else {
  91. ath_err(common,
  92. "Invalid EEPROM Magic. Endianness mismatch.\n");
  93. return -EINVAL;
  94. }
  95. }
  96. }
  97. ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  98. need_swap ? "True" : "False");
  99. if (need_swap)
  100. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  101. else
  102. el = ah->eeprom.map4k.baseEepHeader.length;
  103. if (el > sizeof(struct ar5416_eeprom_4k))
  104. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  105. else
  106. el = el / sizeof(u16);
  107. eepdata = (u16 *)(&ah->eeprom);
  108. for (i = 0; i < el; i++)
  109. sum ^= *eepdata++;
  110. if (need_swap) {
  111. u32 integer;
  112. u16 word;
  113. ath_dbg(common, ATH_DBG_EEPROM,
  114. "EEPROM Endianness is not native.. Changing\n");
  115. word = swab16(eep->baseEepHeader.length);
  116. eep->baseEepHeader.length = word;
  117. word = swab16(eep->baseEepHeader.checksum);
  118. eep->baseEepHeader.checksum = word;
  119. word = swab16(eep->baseEepHeader.version);
  120. eep->baseEepHeader.version = word;
  121. word = swab16(eep->baseEepHeader.regDmn[0]);
  122. eep->baseEepHeader.regDmn[0] = word;
  123. word = swab16(eep->baseEepHeader.regDmn[1]);
  124. eep->baseEepHeader.regDmn[1] = word;
  125. word = swab16(eep->baseEepHeader.rfSilent);
  126. eep->baseEepHeader.rfSilent = word;
  127. word = swab16(eep->baseEepHeader.blueToothOptions);
  128. eep->baseEepHeader.blueToothOptions = word;
  129. word = swab16(eep->baseEepHeader.deviceCap);
  130. eep->baseEepHeader.deviceCap = word;
  131. integer = swab32(eep->modalHeader.antCtrlCommon);
  132. eep->modalHeader.antCtrlCommon = integer;
  133. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  134. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  135. eep->modalHeader.antCtrlChain[i] = integer;
  136. }
  137. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  138. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  139. eep->modalHeader.spurChans[i].spurChan = word;
  140. }
  141. }
  142. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  143. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  144. ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  145. sum, ah->eep_ops->get_eeprom_ver(ah));
  146. return -EINVAL;
  147. }
  148. return 0;
  149. #undef EEPROM_4K_SIZE
  150. }
  151. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  152. enum eeprom_param param)
  153. {
  154. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  155. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  156. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  157. u16 ver_minor;
  158. ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
  159. switch (param) {
  160. case EEP_NFTHRESH_2:
  161. return pModal->noiseFloorThreshCh[0];
  162. case EEP_MAC_LSW:
  163. return get_unaligned_be16(pBase->macAddr);
  164. case EEP_MAC_MID:
  165. return get_unaligned_be16(pBase->macAddr + 2);
  166. case EEP_MAC_MSW:
  167. return get_unaligned_be16(pBase->macAddr + 4);
  168. case EEP_REG_0:
  169. return pBase->regDmn[0];
  170. case EEP_REG_1:
  171. return pBase->regDmn[1];
  172. case EEP_OP_CAP:
  173. return pBase->deviceCap;
  174. case EEP_OP_MODE:
  175. return pBase->opCapFlags;
  176. case EEP_RF_SILENT:
  177. return pBase->rfSilent;
  178. case EEP_OB_2:
  179. return pModal->ob_0;
  180. case EEP_DB_2:
  181. return pModal->db1_1;
  182. case EEP_MINOR_REV:
  183. return ver_minor;
  184. case EEP_TX_MASK:
  185. return pBase->txMask;
  186. case EEP_RX_MASK:
  187. return pBase->rxMask;
  188. case EEP_FRAC_N_5G:
  189. return 0;
  190. case EEP_PWR_TABLE_OFFSET:
  191. return AR5416_PWR_TABLE_OFFSET_DB;
  192. case EEP_MODAL_VER:
  193. return pModal->version;
  194. case EEP_ANT_DIV_CTL1:
  195. return pModal->antdiv_ctl1;
  196. case EEP_TXGAIN_TYPE:
  197. if (ver_minor >= AR5416_EEP_MINOR_VER_19)
  198. return pBase->txGainType;
  199. else
  200. return AR5416_EEP_TXGAIN_ORIGINAL;
  201. default:
  202. return 0;
  203. }
  204. }
  205. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  206. struct ath9k_channel *chan,
  207. int16_t *pTxPowerIndexOffset)
  208. {
  209. struct ath_common *common = ath9k_hw_common(ah);
  210. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  211. struct cal_data_per_freq_4k *pRawDataset;
  212. u8 *pCalBChans = NULL;
  213. u16 pdGainOverlap_t2;
  214. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  215. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  216. u16 numPiers, i, j;
  217. u16 numXpdGain, xpdMask;
  218. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  219. u32 reg32, regOffset, regChainOffset;
  220. xpdMask = pEepData->modalHeader.xpdGain;
  221. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  222. AR5416_EEP_MINOR_VER_2) {
  223. pdGainOverlap_t2 =
  224. pEepData->modalHeader.pdGainOverlap;
  225. } else {
  226. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  227. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  228. }
  229. pCalBChans = pEepData->calFreqPier2G;
  230. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  231. numXpdGain = 0;
  232. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  233. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  234. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  235. break;
  236. xpdGainValues[numXpdGain] =
  237. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  238. numXpdGain++;
  239. }
  240. }
  241. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  242. (numXpdGain - 1) & 0x3);
  243. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  244. xpdGainValues[0]);
  245. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  246. xpdGainValues[1]);
  247. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  248. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  249. if (AR_SREV_5416_20_OR_LATER(ah) &&
  250. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  251. (i != 0)) {
  252. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  253. } else
  254. regChainOffset = i * 0x1000;
  255. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  256. pRawDataset = pEepData->calPierData2G[i];
  257. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  258. pRawDataset, pCalBChans,
  259. numPiers, pdGainOverlap_t2,
  260. gainBoundaries,
  261. pdadcValues, numXpdGain);
  262. ENABLE_REGWRITE_BUFFER(ah);
  263. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  264. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  265. SM(pdGainOverlap_t2,
  266. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  267. | SM(gainBoundaries[0],
  268. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  269. | SM(gainBoundaries[1],
  270. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  271. | SM(gainBoundaries[2],
  272. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  273. | SM(gainBoundaries[3],
  274. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  275. }
  276. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  277. for (j = 0; j < 32; j++) {
  278. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  279. REG_WRITE(ah, regOffset, reg32);
  280. ath_dbg(common, ATH_DBG_EEPROM,
  281. "PDADC (%d,%4x): %4.4x %8.8x\n",
  282. i, regChainOffset, regOffset,
  283. reg32);
  284. ath_dbg(common, ATH_DBG_EEPROM,
  285. "PDADC: Chain %d | "
  286. "PDADC %3d Value %3d | "
  287. "PDADC %3d Value %3d | "
  288. "PDADC %3d Value %3d | "
  289. "PDADC %3d Value %3d |\n",
  290. i, 4 * j, pdadcValues[4 * j],
  291. 4 * j + 1, pdadcValues[4 * j + 1],
  292. 4 * j + 2, pdadcValues[4 * j + 2],
  293. 4 * j + 3, pdadcValues[4 * j + 3]);
  294. regOffset += 4;
  295. }
  296. REGWRITE_BUFFER_FLUSH(ah);
  297. }
  298. }
  299. *pTxPowerIndexOffset = 0;
  300. }
  301. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  302. struct ath9k_channel *chan,
  303. int16_t *ratesArray,
  304. u16 cfgCtl,
  305. u16 AntennaReduction,
  306. u16 twiceMaxRegulatoryPower,
  307. u16 powerLimit)
  308. {
  309. #define CMP_TEST_GRP \
  310. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  311. pEepData->ctlIndex[i]) \
  312. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  313. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  314. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  315. int i;
  316. int16_t twiceLargestAntenna;
  317. u16 twiceMinEdgePower;
  318. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  319. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  320. u16 numCtlModes;
  321. const u16 *pCtlMode;
  322. u16 ctlMode, freq;
  323. struct chan_centers centers;
  324. struct cal_ctl_data_4k *rep;
  325. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  326. static const u16 tpScaleReductionTable[5] =
  327. { 0, 3, 6, 9, MAX_RATE_POWER };
  328. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  329. 0, { 0, 0, 0, 0}
  330. };
  331. struct cal_target_power_leg targetPowerOfdmExt = {
  332. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  333. 0, { 0, 0, 0, 0 }
  334. };
  335. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  336. 0, {0, 0, 0, 0}
  337. };
  338. static const u16 ctlModesFor11g[] = {
  339. CTL_11B, CTL_11G, CTL_2GHT20,
  340. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  341. };
  342. ath9k_hw_get_channel_centers(ah, chan, &centers);
  343. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  344. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  345. twiceLargestAntenna, 0);
  346. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  347. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  348. maxRegAllowedPower -=
  349. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  350. }
  351. scaledPower = min(powerLimit, maxRegAllowedPower);
  352. scaledPower = max((u16)0, scaledPower);
  353. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  354. pCtlMode = ctlModesFor11g;
  355. ath9k_hw_get_legacy_target_powers(ah, chan,
  356. pEepData->calTargetPowerCck,
  357. AR5416_NUM_2G_CCK_TARGET_POWERS,
  358. &targetPowerCck, 4, false);
  359. ath9k_hw_get_legacy_target_powers(ah, chan,
  360. pEepData->calTargetPower2G,
  361. AR5416_NUM_2G_20_TARGET_POWERS,
  362. &targetPowerOfdm, 4, false);
  363. ath9k_hw_get_target_powers(ah, chan,
  364. pEepData->calTargetPower2GHT20,
  365. AR5416_NUM_2G_20_TARGET_POWERS,
  366. &targetPowerHt20, 8, false);
  367. if (IS_CHAN_HT40(chan)) {
  368. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  369. ath9k_hw_get_target_powers(ah, chan,
  370. pEepData->calTargetPower2GHT40,
  371. AR5416_NUM_2G_40_TARGET_POWERS,
  372. &targetPowerHt40, 8, true);
  373. ath9k_hw_get_legacy_target_powers(ah, chan,
  374. pEepData->calTargetPowerCck,
  375. AR5416_NUM_2G_CCK_TARGET_POWERS,
  376. &targetPowerCckExt, 4, true);
  377. ath9k_hw_get_legacy_target_powers(ah, chan,
  378. pEepData->calTargetPower2G,
  379. AR5416_NUM_2G_20_TARGET_POWERS,
  380. &targetPowerOfdmExt, 4, true);
  381. }
  382. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  383. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  384. (pCtlMode[ctlMode] == CTL_2GHT40);
  385. if (isHt40CtlMode)
  386. freq = centers.synth_center;
  387. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  388. freq = centers.ext_center;
  389. else
  390. freq = centers.ctl_center;
  391. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  392. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  393. twiceMaxEdgePower = MAX_RATE_POWER;
  394. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  395. pEepData->ctlIndex[i]; i++) {
  396. if (CMP_TEST_GRP) {
  397. rep = &(pEepData->ctlData[i]);
  398. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  399. freq,
  400. rep->ctlEdges[
  401. ar5416_get_ntxchains(ah->txchainmask) - 1],
  402. IS_CHAN_2GHZ(chan),
  403. AR5416_EEP4K_NUM_BAND_EDGES);
  404. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  405. twiceMaxEdgePower =
  406. min(twiceMaxEdgePower,
  407. twiceMinEdgePower);
  408. } else {
  409. twiceMaxEdgePower = twiceMinEdgePower;
  410. break;
  411. }
  412. }
  413. }
  414. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  415. switch (pCtlMode[ctlMode]) {
  416. case CTL_11B:
  417. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  418. targetPowerCck.tPow2x[i] =
  419. min((u16)targetPowerCck.tPow2x[i],
  420. minCtlPower);
  421. }
  422. break;
  423. case CTL_11G:
  424. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  425. targetPowerOfdm.tPow2x[i] =
  426. min((u16)targetPowerOfdm.tPow2x[i],
  427. minCtlPower);
  428. }
  429. break;
  430. case CTL_2GHT20:
  431. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  432. targetPowerHt20.tPow2x[i] =
  433. min((u16)targetPowerHt20.tPow2x[i],
  434. minCtlPower);
  435. }
  436. break;
  437. case CTL_11B_EXT:
  438. targetPowerCckExt.tPow2x[0] =
  439. min((u16)targetPowerCckExt.tPow2x[0],
  440. minCtlPower);
  441. break;
  442. case CTL_11G_EXT:
  443. targetPowerOfdmExt.tPow2x[0] =
  444. min((u16)targetPowerOfdmExt.tPow2x[0],
  445. minCtlPower);
  446. break;
  447. case CTL_2GHT40:
  448. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  449. targetPowerHt40.tPow2x[i] =
  450. min((u16)targetPowerHt40.tPow2x[i],
  451. minCtlPower);
  452. }
  453. break;
  454. default:
  455. break;
  456. }
  457. }
  458. ratesArray[rate6mb] =
  459. ratesArray[rate9mb] =
  460. ratesArray[rate12mb] =
  461. ratesArray[rate18mb] =
  462. ratesArray[rate24mb] =
  463. targetPowerOfdm.tPow2x[0];
  464. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  465. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  466. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  467. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  468. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  469. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  470. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  471. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  472. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  473. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  474. if (IS_CHAN_HT40(chan)) {
  475. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  476. ratesArray[rateHt40_0 + i] =
  477. targetPowerHt40.tPow2x[i];
  478. }
  479. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  480. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  481. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  482. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  483. }
  484. #undef CMP_TEST_GRP
  485. }
  486. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  487. struct ath9k_channel *chan,
  488. u16 cfgCtl,
  489. u8 twiceAntennaReduction,
  490. u8 twiceMaxRegulatoryPower,
  491. u8 powerLimit, bool test)
  492. {
  493. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  494. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  495. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  496. int16_t ratesArray[Ar5416RateSize];
  497. int16_t txPowerIndexOffset = 0;
  498. u8 ht40PowerIncForPdadc = 2;
  499. int i;
  500. memset(ratesArray, 0, sizeof(ratesArray));
  501. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  502. AR5416_EEP_MINOR_VER_2) {
  503. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  504. }
  505. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  506. &ratesArray[0], cfgCtl,
  507. twiceAntennaReduction,
  508. twiceMaxRegulatoryPower,
  509. powerLimit);
  510. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  511. regulatory->max_power_level = 0;
  512. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  513. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  514. if (ratesArray[i] > MAX_RATE_POWER)
  515. ratesArray[i] = MAX_RATE_POWER;
  516. if (ratesArray[i] > regulatory->max_power_level)
  517. regulatory->max_power_level = ratesArray[i];
  518. }
  519. if (test)
  520. return;
  521. /* Update regulatory */
  522. i = rate6mb;
  523. if (IS_CHAN_HT40(chan))
  524. i = rateHt40_0;
  525. else if (IS_CHAN_HT20(chan))
  526. i = rateHt20_0;
  527. regulatory->max_power_level = ratesArray[i];
  528. if (AR_SREV_9280_20_OR_LATER(ah)) {
  529. for (i = 0; i < Ar5416RateSize; i++)
  530. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  531. }
  532. ENABLE_REGWRITE_BUFFER(ah);
  533. /* OFDM power per rate */
  534. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  535. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  536. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  537. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  538. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  539. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  540. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  541. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  542. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  543. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  544. /* CCK power per rate */
  545. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  546. ATH9K_POW_SM(ratesArray[rate2s], 24)
  547. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  548. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  549. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  550. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  551. ATH9K_POW_SM(ratesArray[rate11s], 24)
  552. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  553. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  554. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  555. /* HT20 power per rate */
  556. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  557. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  558. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  559. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  560. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  561. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  562. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  563. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  564. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  565. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  566. /* HT40 power per rate */
  567. if (IS_CHAN_HT40(chan)) {
  568. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  569. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  570. ht40PowerIncForPdadc, 24)
  571. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  572. ht40PowerIncForPdadc, 16)
  573. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  574. ht40PowerIncForPdadc, 8)
  575. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  576. ht40PowerIncForPdadc, 0));
  577. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  578. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  579. ht40PowerIncForPdadc, 24)
  580. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  581. ht40PowerIncForPdadc, 16)
  582. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  583. ht40PowerIncForPdadc, 8)
  584. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  585. ht40PowerIncForPdadc, 0));
  586. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  587. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  588. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  589. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  590. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  591. }
  592. REGWRITE_BUFFER_FLUSH(ah);
  593. }
  594. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  595. struct ath9k_channel *chan)
  596. {
  597. struct modal_eep_4k_header *pModal;
  598. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  599. u8 biaslevel;
  600. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  601. return;
  602. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  603. return;
  604. pModal = &eep->modalHeader;
  605. if (pModal->xpaBiasLvl != 0xff) {
  606. biaslevel = pModal->xpaBiasLvl;
  607. INI_RA(&ah->iniAddac, 7, 1) =
  608. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  609. }
  610. }
  611. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  612. struct modal_eep_4k_header *pModal,
  613. struct ar5416_eeprom_4k *eep,
  614. u8 txRxAttenLocal)
  615. {
  616. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  617. pModal->antCtrlChain[0]);
  618. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  619. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  620. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  621. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  622. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  623. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  624. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  625. AR5416_EEP_MINOR_VER_3) {
  626. txRxAttenLocal = pModal->txRxAttenCh[0];
  627. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  628. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  629. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  630. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  631. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  632. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  633. pModal->xatten2Margin[0]);
  634. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  635. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  636. /* Set the block 1 value to block 0 value */
  637. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  638. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  639. pModal->bswMargin[0]);
  640. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  641. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  642. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  643. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  644. pModal->xatten2Margin[0]);
  645. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  646. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  647. pModal->xatten2Db[0]);
  648. }
  649. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  650. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  651. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  652. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  653. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  654. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  655. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  656. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  657. }
  658. /*
  659. * Read EEPROM header info and program the device for correct operation
  660. * given the channel value.
  661. */
  662. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  663. struct ath9k_channel *chan)
  664. {
  665. struct modal_eep_4k_header *pModal;
  666. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  667. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  668. u8 txRxAttenLocal;
  669. u8 ob[5], db1[5], db2[5];
  670. u8 ant_div_control1, ant_div_control2;
  671. u32 regVal;
  672. pModal = &eep->modalHeader;
  673. txRxAttenLocal = 23;
  674. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  675. /* Single chain for 4K EEPROM*/
  676. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  677. /* Initialize Ant Diversity settings from EEPROM */
  678. if (pModal->version >= 3) {
  679. ant_div_control1 = pModal->antdiv_ctl1;
  680. ant_div_control2 = pModal->antdiv_ctl2;
  681. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  682. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  683. regVal |= SM(ant_div_control1,
  684. AR_PHY_9285_ANT_DIV_CTL);
  685. regVal |= SM(ant_div_control2,
  686. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  687. regVal |= SM((ant_div_control2 >> 2),
  688. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  689. regVal |= SM((ant_div_control1 >> 1),
  690. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  691. regVal |= SM((ant_div_control1 >> 2),
  692. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  693. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  694. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  695. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  696. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  697. regVal |= SM((ant_div_control1 >> 3),
  698. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  699. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  700. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  701. }
  702. if (pModal->version >= 2) {
  703. ob[0] = pModal->ob_0;
  704. ob[1] = pModal->ob_1;
  705. ob[2] = pModal->ob_2;
  706. ob[3] = pModal->ob_3;
  707. ob[4] = pModal->ob_4;
  708. db1[0] = pModal->db1_0;
  709. db1[1] = pModal->db1_1;
  710. db1[2] = pModal->db1_2;
  711. db1[3] = pModal->db1_3;
  712. db1[4] = pModal->db1_4;
  713. db2[0] = pModal->db2_0;
  714. db2[1] = pModal->db2_1;
  715. db2[2] = pModal->db2_2;
  716. db2[3] = pModal->db2_3;
  717. db2[4] = pModal->db2_4;
  718. } else if (pModal->version == 1) {
  719. ob[0] = pModal->ob_0;
  720. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  721. db1[0] = pModal->db1_0;
  722. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  723. db2[0] = pModal->db2_0;
  724. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  725. } else {
  726. int i;
  727. for (i = 0; i < 5; i++) {
  728. ob[i] = pModal->ob_0;
  729. db1[i] = pModal->db1_0;
  730. db2[i] = pModal->db1_0;
  731. }
  732. }
  733. if (AR_SREV_9271(ah)) {
  734. ath9k_hw_analog_shift_rmw(ah,
  735. AR9285_AN_RF2G3,
  736. AR9271_AN_RF2G3_OB_cck,
  737. AR9271_AN_RF2G3_OB_cck_S,
  738. ob[0]);
  739. ath9k_hw_analog_shift_rmw(ah,
  740. AR9285_AN_RF2G3,
  741. AR9271_AN_RF2G3_OB_psk,
  742. AR9271_AN_RF2G3_OB_psk_S,
  743. ob[1]);
  744. ath9k_hw_analog_shift_rmw(ah,
  745. AR9285_AN_RF2G3,
  746. AR9271_AN_RF2G3_OB_qam,
  747. AR9271_AN_RF2G3_OB_qam_S,
  748. ob[2]);
  749. ath9k_hw_analog_shift_rmw(ah,
  750. AR9285_AN_RF2G3,
  751. AR9271_AN_RF2G3_DB_1,
  752. AR9271_AN_RF2G3_DB_1_S,
  753. db1[0]);
  754. ath9k_hw_analog_shift_rmw(ah,
  755. AR9285_AN_RF2G4,
  756. AR9271_AN_RF2G4_DB_2,
  757. AR9271_AN_RF2G4_DB_2_S,
  758. db2[0]);
  759. } else {
  760. ath9k_hw_analog_shift_rmw(ah,
  761. AR9285_AN_RF2G3,
  762. AR9285_AN_RF2G3_OB_0,
  763. AR9285_AN_RF2G3_OB_0_S,
  764. ob[0]);
  765. ath9k_hw_analog_shift_rmw(ah,
  766. AR9285_AN_RF2G3,
  767. AR9285_AN_RF2G3_OB_1,
  768. AR9285_AN_RF2G3_OB_1_S,
  769. ob[1]);
  770. ath9k_hw_analog_shift_rmw(ah,
  771. AR9285_AN_RF2G3,
  772. AR9285_AN_RF2G3_OB_2,
  773. AR9285_AN_RF2G3_OB_2_S,
  774. ob[2]);
  775. ath9k_hw_analog_shift_rmw(ah,
  776. AR9285_AN_RF2G3,
  777. AR9285_AN_RF2G3_OB_3,
  778. AR9285_AN_RF2G3_OB_3_S,
  779. ob[3]);
  780. ath9k_hw_analog_shift_rmw(ah,
  781. AR9285_AN_RF2G3,
  782. AR9285_AN_RF2G3_OB_4,
  783. AR9285_AN_RF2G3_OB_4_S,
  784. ob[4]);
  785. ath9k_hw_analog_shift_rmw(ah,
  786. AR9285_AN_RF2G3,
  787. AR9285_AN_RF2G3_DB1_0,
  788. AR9285_AN_RF2G3_DB1_0_S,
  789. db1[0]);
  790. ath9k_hw_analog_shift_rmw(ah,
  791. AR9285_AN_RF2G3,
  792. AR9285_AN_RF2G3_DB1_1,
  793. AR9285_AN_RF2G3_DB1_1_S,
  794. db1[1]);
  795. ath9k_hw_analog_shift_rmw(ah,
  796. AR9285_AN_RF2G3,
  797. AR9285_AN_RF2G3_DB1_2,
  798. AR9285_AN_RF2G3_DB1_2_S,
  799. db1[2]);
  800. ath9k_hw_analog_shift_rmw(ah,
  801. AR9285_AN_RF2G4,
  802. AR9285_AN_RF2G4_DB1_3,
  803. AR9285_AN_RF2G4_DB1_3_S,
  804. db1[3]);
  805. ath9k_hw_analog_shift_rmw(ah,
  806. AR9285_AN_RF2G4,
  807. AR9285_AN_RF2G4_DB1_4,
  808. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  809. ath9k_hw_analog_shift_rmw(ah,
  810. AR9285_AN_RF2G4,
  811. AR9285_AN_RF2G4_DB2_0,
  812. AR9285_AN_RF2G4_DB2_0_S,
  813. db2[0]);
  814. ath9k_hw_analog_shift_rmw(ah,
  815. AR9285_AN_RF2G4,
  816. AR9285_AN_RF2G4_DB2_1,
  817. AR9285_AN_RF2G4_DB2_1_S,
  818. db2[1]);
  819. ath9k_hw_analog_shift_rmw(ah,
  820. AR9285_AN_RF2G4,
  821. AR9285_AN_RF2G4_DB2_2,
  822. AR9285_AN_RF2G4_DB2_2_S,
  823. db2[2]);
  824. ath9k_hw_analog_shift_rmw(ah,
  825. AR9285_AN_RF2G4,
  826. AR9285_AN_RF2G4_DB2_3,
  827. AR9285_AN_RF2G4_DB2_3_S,
  828. db2[3]);
  829. ath9k_hw_analog_shift_rmw(ah,
  830. AR9285_AN_RF2G4,
  831. AR9285_AN_RF2G4_DB2_4,
  832. AR9285_AN_RF2G4_DB2_4_S,
  833. db2[4]);
  834. }
  835. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  836. pModal->switchSettling);
  837. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  838. pModal->adcDesiredSize);
  839. REG_WRITE(ah, AR_PHY_RF_CTL4,
  840. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  841. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  842. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  843. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  844. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  845. pModal->txEndToRxOn);
  846. if (AR_SREV_9271_10(ah))
  847. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  848. pModal->txEndToRxOn);
  849. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  850. pModal->thresh62);
  851. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  852. pModal->thresh62);
  853. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  854. AR5416_EEP_MINOR_VER_2) {
  855. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  856. pModal->txFrameToDataStart);
  857. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  858. pModal->txFrameToPaOn);
  859. }
  860. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  861. AR5416_EEP_MINOR_VER_3) {
  862. if (IS_CHAN_HT40(chan))
  863. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  864. AR_PHY_SETTLING_SWITCH,
  865. pModal->swSettleHt40);
  866. }
  867. if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
  868. u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
  869. EEP_4K_BB_DESIRED_SCALE_MASK);
  870. if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
  871. u32 pwrctrl, mask, clr;
  872. mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
  873. pwrctrl = mask * bb_desired_scale;
  874. clr = mask * 0x1f;
  875. REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
  876. REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
  877. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
  878. mask = BIT(0)|BIT(5)|BIT(15);
  879. pwrctrl = mask * bb_desired_scale;
  880. clr = mask * 0x1f;
  881. REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
  882. mask = BIT(0)|BIT(5);
  883. pwrctrl = mask * bb_desired_scale;
  884. clr = mask * 0x1f;
  885. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
  886. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
  887. }
  888. }
  889. }
  890. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  891. {
  892. #define EEP_MAP4K_SPURCHAN \
  893. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  894. struct ath_common *common = ath9k_hw_common(ah);
  895. u16 spur_val = AR_NO_SPUR;
  896. ath_dbg(common, ATH_DBG_ANI,
  897. "Getting spur idx:%d is2Ghz:%d val:%x\n",
  898. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  899. switch (ah->config.spurmode) {
  900. case SPUR_DISABLE:
  901. break;
  902. case SPUR_ENABLE_IOCTL:
  903. spur_val = ah->config.spurchans[i][is2GHz];
  904. ath_dbg(common, ATH_DBG_ANI,
  905. "Getting spur val from new loc. %d\n", spur_val);
  906. break;
  907. case SPUR_ENABLE_EEPROM:
  908. spur_val = EEP_MAP4K_SPURCHAN;
  909. break;
  910. }
  911. return spur_val;
  912. #undef EEP_MAP4K_SPURCHAN
  913. }
  914. const struct eeprom_ops eep_4k_ops = {
  915. .check_eeprom = ath9k_hw_4k_check_eeprom,
  916. .get_eeprom = ath9k_hw_4k_get_eeprom,
  917. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  918. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  919. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  920. .set_board_values = ath9k_hw_4k_set_board_values,
  921. .set_addac = ath9k_hw_4k_set_addac,
  922. .set_txpower = ath9k_hw_4k_set_txpower,
  923. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  924. };