sh_eth.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/slab.h>
  34. #include <linux/ethtool.h>
  35. #include "sh_eth.h"
  36. #define SH_ETH_DEF_MSG_ENABLE \
  37. (NETIF_MSG_LINK | \
  38. NETIF_MSG_TIMER | \
  39. NETIF_MSG_RX_ERR| \
  40. NETIF_MSG_TX_ERR)
  41. /* There is CPU dependent code */
  42. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  43. #define SH_ETH_RESET_DEFAULT 1
  44. static void sh_eth_set_duplex(struct net_device *ndev)
  45. {
  46. struct sh_eth_private *mdp = netdev_priv(ndev);
  47. if (mdp->duplex) /* Full */
  48. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  49. else /* Half */
  50. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  51. }
  52. static void sh_eth_set_rate(struct net_device *ndev)
  53. {
  54. struct sh_eth_private *mdp = netdev_priv(ndev);
  55. switch (mdp->speed) {
  56. case 10: /* 10BASE */
  57. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  58. break;
  59. case 100:/* 100BASE */
  60. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  61. break;
  62. default:
  63. break;
  64. }
  65. }
  66. /* SH7724 */
  67. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  68. .set_duplex = sh_eth_set_duplex,
  69. .set_rate = sh_eth_set_rate,
  70. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  71. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  72. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  73. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  74. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  75. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  76. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  77. .apr = 1,
  78. .mpr = 1,
  79. .tpauser = 1,
  80. .hw_swap = 1,
  81. .rpadir = 1,
  82. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  83. };
  84. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  85. #define SH_ETH_HAS_BOTH_MODULES 1
  86. #define SH_ETH_HAS_TSU 1
  87. static void sh_eth_set_duplex(struct net_device *ndev)
  88. {
  89. struct sh_eth_private *mdp = netdev_priv(ndev);
  90. if (mdp->duplex) /* Full */
  91. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  92. else /* Half */
  93. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  94. }
  95. static void sh_eth_set_rate(struct net_device *ndev)
  96. {
  97. struct sh_eth_private *mdp = netdev_priv(ndev);
  98. switch (mdp->speed) {
  99. case 10: /* 10BASE */
  100. sh_eth_write(ndev, 0, RTRATE);
  101. break;
  102. case 100:/* 100BASE */
  103. sh_eth_write(ndev, 1, RTRATE);
  104. break;
  105. default:
  106. break;
  107. }
  108. }
  109. /* SH7757 */
  110. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  111. .set_duplex = sh_eth_set_duplex,
  112. .set_rate = sh_eth_set_rate,
  113. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  114. .rmcr_value = 0x00000001,
  115. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  116. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  117. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  118. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  119. .apr = 1,
  120. .mpr = 1,
  121. .tpauser = 1,
  122. .hw_swap = 1,
  123. .no_ade = 1,
  124. .rpadir = 1,
  125. .rpadir_value = 2 << 16,
  126. };
  127. #define SH_GIGA_ETH_BASE 0xfee00000
  128. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  129. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  130. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  131. {
  132. int i;
  133. unsigned long mahr[2], malr[2];
  134. /* save MAHR and MALR */
  135. for (i = 0; i < 2; i++) {
  136. malr[i] = readl(GIGA_MALR(i));
  137. mahr[i] = readl(GIGA_MAHR(i));
  138. }
  139. /* reset device */
  140. writel(ARSTR_ARSTR, SH_GIGA_ETH_BASE + 0x1800);
  141. mdelay(1);
  142. /* restore MAHR and MALR */
  143. for (i = 0; i < 2; i++) {
  144. writel(malr[i], GIGA_MALR(i));
  145. writel(mahr[i], GIGA_MAHR(i));
  146. }
  147. }
  148. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  149. static void sh_eth_reset(struct net_device *ndev)
  150. {
  151. struct sh_eth_private *mdp = netdev_priv(ndev);
  152. int cnt = 100;
  153. if (sh_eth_is_gether(mdp)) {
  154. sh_eth_write(ndev, 0x03, EDSR);
  155. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  156. EDMR);
  157. while (cnt > 0) {
  158. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  159. break;
  160. mdelay(1);
  161. cnt--;
  162. }
  163. if (cnt < 0)
  164. printk(KERN_ERR "Device reset fail\n");
  165. /* Table Init */
  166. sh_eth_write(ndev, 0x0, TDLAR);
  167. sh_eth_write(ndev, 0x0, TDFAR);
  168. sh_eth_write(ndev, 0x0, TDFXR);
  169. sh_eth_write(ndev, 0x0, TDFFR);
  170. sh_eth_write(ndev, 0x0, RDLAR);
  171. sh_eth_write(ndev, 0x0, RDFAR);
  172. sh_eth_write(ndev, 0x0, RDFXR);
  173. sh_eth_write(ndev, 0x0, RDFFR);
  174. } else {
  175. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  176. EDMR);
  177. mdelay(3);
  178. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  179. EDMR);
  180. }
  181. }
  182. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  183. {
  184. struct sh_eth_private *mdp = netdev_priv(ndev);
  185. if (mdp->duplex) /* Full */
  186. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  187. else /* Half */
  188. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  189. }
  190. static void sh_eth_set_rate_giga(struct net_device *ndev)
  191. {
  192. struct sh_eth_private *mdp = netdev_priv(ndev);
  193. switch (mdp->speed) {
  194. case 10: /* 10BASE */
  195. sh_eth_write(ndev, 0x00000000, GECMR);
  196. break;
  197. case 100:/* 100BASE */
  198. sh_eth_write(ndev, 0x00000010, GECMR);
  199. break;
  200. case 1000: /* 1000BASE */
  201. sh_eth_write(ndev, 0x00000020, GECMR);
  202. break;
  203. default:
  204. break;
  205. }
  206. }
  207. /* SH7757(GETHERC) */
  208. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  209. .chip_reset = sh_eth_chip_reset_giga,
  210. .set_duplex = sh_eth_set_duplex_giga,
  211. .set_rate = sh_eth_set_rate_giga,
  212. .ecsr_value = ECSR_ICD | ECSR_MPD,
  213. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  214. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  215. .tx_check = EESR_TC1 | EESR_FTC,
  216. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  217. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  218. EESR_ECI,
  219. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  220. EESR_TFE,
  221. .fdr_value = 0x0000072f,
  222. .rmcr_value = 0x00000001,
  223. .apr = 1,
  224. .mpr = 1,
  225. .tpauser = 1,
  226. .bculr = 1,
  227. .hw_swap = 1,
  228. .rpadir = 1,
  229. .rpadir_value = 2 << 16,
  230. .no_trimd = 1,
  231. .no_ade = 1,
  232. };
  233. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  234. {
  235. if (sh_eth_is_gether(mdp))
  236. return &sh_eth_my_cpu_data_giga;
  237. else
  238. return &sh_eth_my_cpu_data;
  239. }
  240. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  241. #define SH_ETH_HAS_TSU 1
  242. static void sh_eth_chip_reset(struct net_device *ndev)
  243. {
  244. struct sh_eth_private *mdp = netdev_priv(ndev);
  245. /* reset device */
  246. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  247. mdelay(1);
  248. }
  249. static void sh_eth_reset(struct net_device *ndev)
  250. {
  251. int cnt = 100;
  252. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  253. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  254. while (cnt > 0) {
  255. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  256. break;
  257. mdelay(1);
  258. cnt--;
  259. }
  260. if (cnt == 0)
  261. printk(KERN_ERR "Device reset fail\n");
  262. /* Table Init */
  263. sh_eth_write(ndev, 0x0, TDLAR);
  264. sh_eth_write(ndev, 0x0, TDFAR);
  265. sh_eth_write(ndev, 0x0, TDFXR);
  266. sh_eth_write(ndev, 0x0, TDFFR);
  267. sh_eth_write(ndev, 0x0, RDLAR);
  268. sh_eth_write(ndev, 0x0, RDFAR);
  269. sh_eth_write(ndev, 0x0, RDFXR);
  270. sh_eth_write(ndev, 0x0, RDFFR);
  271. }
  272. static void sh_eth_set_duplex(struct net_device *ndev)
  273. {
  274. struct sh_eth_private *mdp = netdev_priv(ndev);
  275. if (mdp->duplex) /* Full */
  276. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  277. else /* Half */
  278. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  279. }
  280. static void sh_eth_set_rate(struct net_device *ndev)
  281. {
  282. struct sh_eth_private *mdp = netdev_priv(ndev);
  283. switch (mdp->speed) {
  284. case 10: /* 10BASE */
  285. sh_eth_write(ndev, GECMR_10, GECMR);
  286. break;
  287. case 100:/* 100BASE */
  288. sh_eth_write(ndev, GECMR_100, GECMR);
  289. break;
  290. case 1000: /* 1000BASE */
  291. sh_eth_write(ndev, GECMR_1000, GECMR);
  292. break;
  293. default:
  294. break;
  295. }
  296. }
  297. /* sh7763 */
  298. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  299. .chip_reset = sh_eth_chip_reset,
  300. .set_duplex = sh_eth_set_duplex,
  301. .set_rate = sh_eth_set_rate,
  302. .ecsr_value = ECSR_ICD | ECSR_MPD,
  303. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  304. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  305. .tx_check = EESR_TC1 | EESR_FTC,
  306. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  307. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  308. EESR_ECI,
  309. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  310. EESR_TFE,
  311. .apr = 1,
  312. .mpr = 1,
  313. .tpauser = 1,
  314. .bculr = 1,
  315. .hw_swap = 1,
  316. .no_trimd = 1,
  317. .no_ade = 1,
  318. .tsu = 1,
  319. };
  320. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  321. #define SH_ETH_RESET_DEFAULT 1
  322. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  323. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  324. .apr = 1,
  325. .mpr = 1,
  326. .tpauser = 1,
  327. .hw_swap = 1,
  328. };
  329. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  330. #define SH_ETH_RESET_DEFAULT 1
  331. #define SH_ETH_HAS_TSU 1
  332. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  333. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  334. .tsu = 1,
  335. };
  336. #endif
  337. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  338. {
  339. if (!cd->ecsr_value)
  340. cd->ecsr_value = DEFAULT_ECSR_INIT;
  341. if (!cd->ecsipr_value)
  342. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  343. if (!cd->fcftr_value)
  344. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  345. DEFAULT_FIFO_F_D_RFD;
  346. if (!cd->fdr_value)
  347. cd->fdr_value = DEFAULT_FDR_INIT;
  348. if (!cd->rmcr_value)
  349. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  350. if (!cd->tx_check)
  351. cd->tx_check = DEFAULT_TX_CHECK;
  352. if (!cd->eesr_err_check)
  353. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  354. if (!cd->tx_error_check)
  355. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  356. }
  357. #if defined(SH_ETH_RESET_DEFAULT)
  358. /* Chip Reset */
  359. static void sh_eth_reset(struct net_device *ndev)
  360. {
  361. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  362. mdelay(3);
  363. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  364. }
  365. #endif
  366. #if defined(CONFIG_CPU_SH4)
  367. static void sh_eth_set_receive_align(struct sk_buff *skb)
  368. {
  369. int reserve;
  370. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  371. if (reserve)
  372. skb_reserve(skb, reserve);
  373. }
  374. #else
  375. static void sh_eth_set_receive_align(struct sk_buff *skb)
  376. {
  377. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  378. }
  379. #endif
  380. /* CPU <-> EDMAC endian convert */
  381. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  382. {
  383. switch (mdp->edmac_endian) {
  384. case EDMAC_LITTLE_ENDIAN:
  385. return cpu_to_le32(x);
  386. case EDMAC_BIG_ENDIAN:
  387. return cpu_to_be32(x);
  388. }
  389. return x;
  390. }
  391. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  392. {
  393. switch (mdp->edmac_endian) {
  394. case EDMAC_LITTLE_ENDIAN:
  395. return le32_to_cpu(x);
  396. case EDMAC_BIG_ENDIAN:
  397. return be32_to_cpu(x);
  398. }
  399. return x;
  400. }
  401. /*
  402. * Program the hardware MAC address from dev->dev_addr.
  403. */
  404. static void update_mac_address(struct net_device *ndev)
  405. {
  406. sh_eth_write(ndev,
  407. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  408. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  409. sh_eth_write(ndev,
  410. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  411. }
  412. /*
  413. * Get MAC address from SuperH MAC address register
  414. *
  415. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  416. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  417. * When you want use this device, you must set MAC address in bootloader.
  418. *
  419. */
  420. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  421. {
  422. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  423. memcpy(ndev->dev_addr, mac, 6);
  424. } else {
  425. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  426. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  427. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  428. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  429. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  430. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  431. }
  432. }
  433. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  434. {
  435. if (mdp->reg_offset == sh_eth_offset_gigabit)
  436. return 1;
  437. else
  438. return 0;
  439. }
  440. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  441. {
  442. if (sh_eth_is_gether(mdp))
  443. return EDTRR_TRNS_GETHER;
  444. else
  445. return EDTRR_TRNS_ETHER;
  446. }
  447. struct bb_info {
  448. void (*set_gate)(unsigned long addr);
  449. struct mdiobb_ctrl ctrl;
  450. u32 addr;
  451. u32 mmd_msk;/* MMD */
  452. u32 mdo_msk;
  453. u32 mdi_msk;
  454. u32 mdc_msk;
  455. };
  456. /* PHY bit set */
  457. static void bb_set(u32 addr, u32 msk)
  458. {
  459. writel(readl(addr) | msk, addr);
  460. }
  461. /* PHY bit clear */
  462. static void bb_clr(u32 addr, u32 msk)
  463. {
  464. writel((readl(addr) & ~msk), addr);
  465. }
  466. /* PHY bit read */
  467. static int bb_read(u32 addr, u32 msk)
  468. {
  469. return (readl(addr) & msk) != 0;
  470. }
  471. /* Data I/O pin control */
  472. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  473. {
  474. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  475. if (bitbang->set_gate)
  476. bitbang->set_gate(bitbang->addr);
  477. if (bit)
  478. bb_set(bitbang->addr, bitbang->mmd_msk);
  479. else
  480. bb_clr(bitbang->addr, bitbang->mmd_msk);
  481. }
  482. /* Set bit data*/
  483. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  484. {
  485. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  486. if (bitbang->set_gate)
  487. bitbang->set_gate(bitbang->addr);
  488. if (bit)
  489. bb_set(bitbang->addr, bitbang->mdo_msk);
  490. else
  491. bb_clr(bitbang->addr, bitbang->mdo_msk);
  492. }
  493. /* Get bit data*/
  494. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  495. {
  496. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  497. if (bitbang->set_gate)
  498. bitbang->set_gate(bitbang->addr);
  499. return bb_read(bitbang->addr, bitbang->mdi_msk);
  500. }
  501. /* MDC pin control */
  502. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  503. {
  504. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  505. if (bitbang->set_gate)
  506. bitbang->set_gate(bitbang->addr);
  507. if (bit)
  508. bb_set(bitbang->addr, bitbang->mdc_msk);
  509. else
  510. bb_clr(bitbang->addr, bitbang->mdc_msk);
  511. }
  512. /* mdio bus control struct */
  513. static struct mdiobb_ops bb_ops = {
  514. .owner = THIS_MODULE,
  515. .set_mdc = sh_mdc_ctrl,
  516. .set_mdio_dir = sh_mmd_ctrl,
  517. .set_mdio_data = sh_set_mdio,
  518. .get_mdio_data = sh_get_mdio,
  519. };
  520. /* free skb and descriptor buffer */
  521. static void sh_eth_ring_free(struct net_device *ndev)
  522. {
  523. struct sh_eth_private *mdp = netdev_priv(ndev);
  524. int i;
  525. /* Free Rx skb ringbuffer */
  526. if (mdp->rx_skbuff) {
  527. for (i = 0; i < RX_RING_SIZE; i++) {
  528. if (mdp->rx_skbuff[i])
  529. dev_kfree_skb(mdp->rx_skbuff[i]);
  530. }
  531. }
  532. kfree(mdp->rx_skbuff);
  533. /* Free Tx skb ringbuffer */
  534. if (mdp->tx_skbuff) {
  535. for (i = 0; i < TX_RING_SIZE; i++) {
  536. if (mdp->tx_skbuff[i])
  537. dev_kfree_skb(mdp->tx_skbuff[i]);
  538. }
  539. }
  540. kfree(mdp->tx_skbuff);
  541. }
  542. /* format skb and descriptor buffer */
  543. static void sh_eth_ring_format(struct net_device *ndev)
  544. {
  545. struct sh_eth_private *mdp = netdev_priv(ndev);
  546. int i;
  547. struct sk_buff *skb;
  548. struct sh_eth_rxdesc *rxdesc = NULL;
  549. struct sh_eth_txdesc *txdesc = NULL;
  550. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  551. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  552. mdp->cur_rx = mdp->cur_tx = 0;
  553. mdp->dirty_rx = mdp->dirty_tx = 0;
  554. memset(mdp->rx_ring, 0, rx_ringsize);
  555. /* build Rx ring buffer */
  556. for (i = 0; i < RX_RING_SIZE; i++) {
  557. /* skb */
  558. mdp->rx_skbuff[i] = NULL;
  559. skb = dev_alloc_skb(mdp->rx_buf_sz);
  560. mdp->rx_skbuff[i] = skb;
  561. if (skb == NULL)
  562. break;
  563. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  564. DMA_FROM_DEVICE);
  565. skb->dev = ndev; /* Mark as being used by this device. */
  566. sh_eth_set_receive_align(skb);
  567. /* RX descriptor */
  568. rxdesc = &mdp->rx_ring[i];
  569. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  570. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  571. /* The size of the buffer is 16 byte boundary. */
  572. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  573. /* Rx descriptor address set */
  574. if (i == 0) {
  575. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  576. if (sh_eth_is_gether(mdp))
  577. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  578. }
  579. }
  580. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  581. /* Mark the last entry as wrapping the ring. */
  582. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  583. memset(mdp->tx_ring, 0, tx_ringsize);
  584. /* build Tx ring buffer */
  585. for (i = 0; i < TX_RING_SIZE; i++) {
  586. mdp->tx_skbuff[i] = NULL;
  587. txdesc = &mdp->tx_ring[i];
  588. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  589. txdesc->buffer_length = 0;
  590. if (i == 0) {
  591. /* Tx descriptor address set */
  592. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  593. if (sh_eth_is_gether(mdp))
  594. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  595. }
  596. }
  597. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  598. }
  599. /* Get skb and descriptor buffer */
  600. static int sh_eth_ring_init(struct net_device *ndev)
  601. {
  602. struct sh_eth_private *mdp = netdev_priv(ndev);
  603. int rx_ringsize, tx_ringsize, ret = 0;
  604. /*
  605. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  606. * card needs room to do 8 byte alignment, +2 so we can reserve
  607. * the first 2 bytes, and +16 gets room for the status word from the
  608. * card.
  609. */
  610. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  611. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  612. if (mdp->cd->rpadir)
  613. mdp->rx_buf_sz += NET_IP_ALIGN;
  614. /* Allocate RX and TX skb rings */
  615. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  616. GFP_KERNEL);
  617. if (!mdp->rx_skbuff) {
  618. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  619. ret = -ENOMEM;
  620. return ret;
  621. }
  622. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  623. GFP_KERNEL);
  624. if (!mdp->tx_skbuff) {
  625. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  626. ret = -ENOMEM;
  627. goto skb_ring_free;
  628. }
  629. /* Allocate all Rx descriptors. */
  630. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  631. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  632. GFP_KERNEL);
  633. if (!mdp->rx_ring) {
  634. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  635. rx_ringsize);
  636. ret = -ENOMEM;
  637. goto desc_ring_free;
  638. }
  639. mdp->dirty_rx = 0;
  640. /* Allocate all Tx descriptors. */
  641. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  642. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  643. GFP_KERNEL);
  644. if (!mdp->tx_ring) {
  645. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  646. tx_ringsize);
  647. ret = -ENOMEM;
  648. goto desc_ring_free;
  649. }
  650. return ret;
  651. desc_ring_free:
  652. /* free DMA buffer */
  653. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  654. skb_ring_free:
  655. /* Free Rx and Tx skb ring buffer */
  656. sh_eth_ring_free(ndev);
  657. return ret;
  658. }
  659. static int sh_eth_dev_init(struct net_device *ndev)
  660. {
  661. int ret = 0;
  662. struct sh_eth_private *mdp = netdev_priv(ndev);
  663. u_int32_t rx_int_var, tx_int_var;
  664. u32 val;
  665. /* Soft Reset */
  666. sh_eth_reset(ndev);
  667. /* Descriptor format */
  668. sh_eth_ring_format(ndev);
  669. if (mdp->cd->rpadir)
  670. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  671. /* all sh_eth int mask */
  672. sh_eth_write(ndev, 0, EESIPR);
  673. #if defined(__LITTLE_ENDIAN__)
  674. if (mdp->cd->hw_swap)
  675. sh_eth_write(ndev, EDMR_EL, EDMR);
  676. else
  677. #endif
  678. sh_eth_write(ndev, 0, EDMR);
  679. /* FIFO size set */
  680. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  681. sh_eth_write(ndev, 0, TFTR);
  682. /* Frame recv control */
  683. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  684. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  685. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  686. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  687. if (mdp->cd->bculr)
  688. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  689. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  690. if (!mdp->cd->no_trimd)
  691. sh_eth_write(ndev, 0, TRIMD);
  692. /* Recv frame limit set register */
  693. sh_eth_write(ndev, RFLR_VALUE, RFLR);
  694. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  695. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  696. /* PAUSE Prohibition */
  697. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  698. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  699. sh_eth_write(ndev, val, ECMR);
  700. if (mdp->cd->set_rate)
  701. mdp->cd->set_rate(ndev);
  702. /* E-MAC Status Register clear */
  703. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  704. /* E-MAC Interrupt Enable register */
  705. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  706. /* Set MAC address */
  707. update_mac_address(ndev);
  708. /* mask reset */
  709. if (mdp->cd->apr)
  710. sh_eth_write(ndev, APR_AP, APR);
  711. if (mdp->cd->mpr)
  712. sh_eth_write(ndev, MPR_MP, MPR);
  713. if (mdp->cd->tpauser)
  714. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  715. /* Setting the Rx mode will start the Rx process. */
  716. sh_eth_write(ndev, EDRRR_R, EDRRR);
  717. netif_start_queue(ndev);
  718. return ret;
  719. }
  720. /* free Tx skb function */
  721. static int sh_eth_txfree(struct net_device *ndev)
  722. {
  723. struct sh_eth_private *mdp = netdev_priv(ndev);
  724. struct sh_eth_txdesc *txdesc;
  725. int freeNum = 0;
  726. int entry = 0;
  727. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  728. entry = mdp->dirty_tx % TX_RING_SIZE;
  729. txdesc = &mdp->tx_ring[entry];
  730. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  731. break;
  732. /* Free the original skb. */
  733. if (mdp->tx_skbuff[entry]) {
  734. dma_unmap_single(&ndev->dev, txdesc->addr,
  735. txdesc->buffer_length, DMA_TO_DEVICE);
  736. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  737. mdp->tx_skbuff[entry] = NULL;
  738. freeNum++;
  739. }
  740. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  741. if (entry >= TX_RING_SIZE - 1)
  742. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  743. mdp->stats.tx_packets++;
  744. mdp->stats.tx_bytes += txdesc->buffer_length;
  745. }
  746. return freeNum;
  747. }
  748. /* Packet receive function */
  749. static int sh_eth_rx(struct net_device *ndev)
  750. {
  751. struct sh_eth_private *mdp = netdev_priv(ndev);
  752. struct sh_eth_rxdesc *rxdesc;
  753. int entry = mdp->cur_rx % RX_RING_SIZE;
  754. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  755. struct sk_buff *skb;
  756. u16 pkt_len = 0;
  757. u32 desc_status;
  758. rxdesc = &mdp->rx_ring[entry];
  759. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  760. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  761. pkt_len = rxdesc->frame_length;
  762. if (--boguscnt < 0)
  763. break;
  764. if (!(desc_status & RDFEND))
  765. mdp->stats.rx_length_errors++;
  766. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  767. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  768. mdp->stats.rx_errors++;
  769. if (desc_status & RD_RFS1)
  770. mdp->stats.rx_crc_errors++;
  771. if (desc_status & RD_RFS2)
  772. mdp->stats.rx_frame_errors++;
  773. if (desc_status & RD_RFS3)
  774. mdp->stats.rx_length_errors++;
  775. if (desc_status & RD_RFS4)
  776. mdp->stats.rx_length_errors++;
  777. if (desc_status & RD_RFS6)
  778. mdp->stats.rx_missed_errors++;
  779. if (desc_status & RD_RFS10)
  780. mdp->stats.rx_over_errors++;
  781. } else {
  782. if (!mdp->cd->hw_swap)
  783. sh_eth_soft_swap(
  784. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  785. pkt_len + 2);
  786. skb = mdp->rx_skbuff[entry];
  787. mdp->rx_skbuff[entry] = NULL;
  788. if (mdp->cd->rpadir)
  789. skb_reserve(skb, NET_IP_ALIGN);
  790. skb_put(skb, pkt_len);
  791. skb->protocol = eth_type_trans(skb, ndev);
  792. netif_rx(skb);
  793. mdp->stats.rx_packets++;
  794. mdp->stats.rx_bytes += pkt_len;
  795. }
  796. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  797. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  798. rxdesc = &mdp->rx_ring[entry];
  799. }
  800. /* Refill the Rx ring buffers. */
  801. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  802. entry = mdp->dirty_rx % RX_RING_SIZE;
  803. rxdesc = &mdp->rx_ring[entry];
  804. /* The size of the buffer is 16 byte boundary. */
  805. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  806. if (mdp->rx_skbuff[entry] == NULL) {
  807. skb = dev_alloc_skb(mdp->rx_buf_sz);
  808. mdp->rx_skbuff[entry] = skb;
  809. if (skb == NULL)
  810. break; /* Better luck next round. */
  811. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  812. DMA_FROM_DEVICE);
  813. skb->dev = ndev;
  814. sh_eth_set_receive_align(skb);
  815. skb_checksum_none_assert(skb);
  816. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  817. }
  818. if (entry >= RX_RING_SIZE - 1)
  819. rxdesc->status |=
  820. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  821. else
  822. rxdesc->status |=
  823. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  824. }
  825. /* Restart Rx engine if stopped. */
  826. /* If we don't need to check status, don't. -KDU */
  827. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  828. sh_eth_write(ndev, EDRRR_R, EDRRR);
  829. return 0;
  830. }
  831. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  832. {
  833. /* disable tx and rx */
  834. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  835. ~(ECMR_RE | ECMR_TE), ECMR);
  836. }
  837. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  838. {
  839. /* enable tx and rx */
  840. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  841. (ECMR_RE | ECMR_TE), ECMR);
  842. }
  843. /* error control function */
  844. static void sh_eth_error(struct net_device *ndev, int intr_status)
  845. {
  846. struct sh_eth_private *mdp = netdev_priv(ndev);
  847. u32 felic_stat;
  848. u32 link_stat;
  849. u32 mask;
  850. if (intr_status & EESR_ECI) {
  851. felic_stat = sh_eth_read(ndev, ECSR);
  852. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  853. if (felic_stat & ECSR_ICD)
  854. mdp->stats.tx_carrier_errors++;
  855. if (felic_stat & ECSR_LCHNG) {
  856. /* Link Changed */
  857. if (mdp->cd->no_psr || mdp->no_ether_link) {
  858. if (mdp->link == PHY_DOWN)
  859. link_stat = 0;
  860. else
  861. link_stat = PHY_ST_LINK;
  862. } else {
  863. link_stat = (sh_eth_read(ndev, PSR));
  864. if (mdp->ether_link_active_low)
  865. link_stat = ~link_stat;
  866. }
  867. if (!(link_stat & PHY_ST_LINK))
  868. sh_eth_rcv_snd_disable(ndev);
  869. else {
  870. /* Link Up */
  871. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  872. ~DMAC_M_ECI, EESIPR);
  873. /*clear int */
  874. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  875. ECSR);
  876. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  877. DMAC_M_ECI, EESIPR);
  878. /* enable tx and rx */
  879. sh_eth_rcv_snd_enable(ndev);
  880. }
  881. }
  882. }
  883. if (intr_status & EESR_TWB) {
  884. /* Write buck end. unused write back interrupt */
  885. if (intr_status & EESR_TABT) /* Transmit Abort int */
  886. mdp->stats.tx_aborted_errors++;
  887. if (netif_msg_tx_err(mdp))
  888. dev_err(&ndev->dev, "Transmit Abort\n");
  889. }
  890. if (intr_status & EESR_RABT) {
  891. /* Receive Abort int */
  892. if (intr_status & EESR_RFRMER) {
  893. /* Receive Frame Overflow int */
  894. mdp->stats.rx_frame_errors++;
  895. if (netif_msg_rx_err(mdp))
  896. dev_err(&ndev->dev, "Receive Abort\n");
  897. }
  898. }
  899. if (intr_status & EESR_TDE) {
  900. /* Transmit Descriptor Empty int */
  901. mdp->stats.tx_fifo_errors++;
  902. if (netif_msg_tx_err(mdp))
  903. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  904. }
  905. if (intr_status & EESR_TFE) {
  906. /* FIFO under flow */
  907. mdp->stats.tx_fifo_errors++;
  908. if (netif_msg_tx_err(mdp))
  909. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  910. }
  911. if (intr_status & EESR_RDE) {
  912. /* Receive Descriptor Empty int */
  913. mdp->stats.rx_over_errors++;
  914. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  915. sh_eth_write(ndev, EDRRR_R, EDRRR);
  916. if (netif_msg_rx_err(mdp))
  917. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  918. }
  919. if (intr_status & EESR_RFE) {
  920. /* Receive FIFO Overflow int */
  921. mdp->stats.rx_fifo_errors++;
  922. if (netif_msg_rx_err(mdp))
  923. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  924. }
  925. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  926. /* Address Error */
  927. mdp->stats.tx_fifo_errors++;
  928. if (netif_msg_tx_err(mdp))
  929. dev_err(&ndev->dev, "Address Error\n");
  930. }
  931. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  932. if (mdp->cd->no_ade)
  933. mask &= ~EESR_ADE;
  934. if (intr_status & mask) {
  935. /* Tx error */
  936. u32 edtrr = sh_eth_read(ndev, EDTRR);
  937. /* dmesg */
  938. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  939. intr_status, mdp->cur_tx);
  940. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  941. mdp->dirty_tx, (u32) ndev->state, edtrr);
  942. /* dirty buffer free */
  943. sh_eth_txfree(ndev);
  944. /* SH7712 BUG */
  945. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  946. /* tx dma start */
  947. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  948. }
  949. /* wakeup */
  950. netif_wake_queue(ndev);
  951. }
  952. }
  953. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  954. {
  955. struct net_device *ndev = netdev;
  956. struct sh_eth_private *mdp = netdev_priv(ndev);
  957. struct sh_eth_cpu_data *cd = mdp->cd;
  958. irqreturn_t ret = IRQ_NONE;
  959. u32 intr_status = 0;
  960. spin_lock(&mdp->lock);
  961. /* Get interrpt stat */
  962. intr_status = sh_eth_read(ndev, EESR);
  963. /* Clear interrupt */
  964. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  965. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  966. cd->tx_check | cd->eesr_err_check)) {
  967. sh_eth_write(ndev, intr_status, EESR);
  968. ret = IRQ_HANDLED;
  969. } else
  970. goto other_irq;
  971. if (intr_status & (EESR_FRC | /* Frame recv*/
  972. EESR_RMAF | /* Multi cast address recv*/
  973. EESR_RRF | /* Bit frame recv */
  974. EESR_RTLF | /* Long frame recv*/
  975. EESR_RTSF | /* short frame recv */
  976. EESR_PRE | /* PHY-LSI recv error */
  977. EESR_CERF)){ /* recv frame CRC error */
  978. sh_eth_rx(ndev);
  979. }
  980. /* Tx Check */
  981. if (intr_status & cd->tx_check) {
  982. sh_eth_txfree(ndev);
  983. netif_wake_queue(ndev);
  984. }
  985. if (intr_status & cd->eesr_err_check)
  986. sh_eth_error(ndev, intr_status);
  987. other_irq:
  988. spin_unlock(&mdp->lock);
  989. return ret;
  990. }
  991. static void sh_eth_timer(unsigned long data)
  992. {
  993. struct net_device *ndev = (struct net_device *)data;
  994. struct sh_eth_private *mdp = netdev_priv(ndev);
  995. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  996. }
  997. /* PHY state control function */
  998. static void sh_eth_adjust_link(struct net_device *ndev)
  999. {
  1000. struct sh_eth_private *mdp = netdev_priv(ndev);
  1001. struct phy_device *phydev = mdp->phydev;
  1002. int new_state = 0;
  1003. if (phydev->link != PHY_DOWN) {
  1004. if (phydev->duplex != mdp->duplex) {
  1005. new_state = 1;
  1006. mdp->duplex = phydev->duplex;
  1007. if (mdp->cd->set_duplex)
  1008. mdp->cd->set_duplex(ndev);
  1009. }
  1010. if (phydev->speed != mdp->speed) {
  1011. new_state = 1;
  1012. mdp->speed = phydev->speed;
  1013. if (mdp->cd->set_rate)
  1014. mdp->cd->set_rate(ndev);
  1015. }
  1016. if (mdp->link == PHY_DOWN) {
  1017. sh_eth_write(ndev,
  1018. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1019. new_state = 1;
  1020. mdp->link = phydev->link;
  1021. }
  1022. } else if (mdp->link) {
  1023. new_state = 1;
  1024. mdp->link = PHY_DOWN;
  1025. mdp->speed = 0;
  1026. mdp->duplex = -1;
  1027. }
  1028. if (new_state && netif_msg_link(mdp))
  1029. phy_print_status(phydev);
  1030. }
  1031. /* PHY init function */
  1032. static int sh_eth_phy_init(struct net_device *ndev)
  1033. {
  1034. struct sh_eth_private *mdp = netdev_priv(ndev);
  1035. char phy_id[MII_BUS_ID_SIZE + 3];
  1036. struct phy_device *phydev = NULL;
  1037. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1038. mdp->mii_bus->id , mdp->phy_id);
  1039. mdp->link = PHY_DOWN;
  1040. mdp->speed = 0;
  1041. mdp->duplex = -1;
  1042. /* Try connect to PHY */
  1043. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1044. 0, mdp->phy_interface);
  1045. if (IS_ERR(phydev)) {
  1046. dev_err(&ndev->dev, "phy_connect failed\n");
  1047. return PTR_ERR(phydev);
  1048. }
  1049. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1050. phydev->addr, phydev->drv->name);
  1051. mdp->phydev = phydev;
  1052. return 0;
  1053. }
  1054. /* PHY control start function */
  1055. static int sh_eth_phy_start(struct net_device *ndev)
  1056. {
  1057. struct sh_eth_private *mdp = netdev_priv(ndev);
  1058. int ret;
  1059. ret = sh_eth_phy_init(ndev);
  1060. if (ret)
  1061. return ret;
  1062. /* reset phy - this also wakes it from PDOWN */
  1063. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1064. phy_start(mdp->phydev);
  1065. return 0;
  1066. }
  1067. static int sh_eth_get_settings(struct net_device *ndev,
  1068. struct ethtool_cmd *ecmd)
  1069. {
  1070. struct sh_eth_private *mdp = netdev_priv(ndev);
  1071. unsigned long flags;
  1072. int ret;
  1073. spin_lock_irqsave(&mdp->lock, flags);
  1074. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1075. spin_unlock_irqrestore(&mdp->lock, flags);
  1076. return ret;
  1077. }
  1078. static int sh_eth_set_settings(struct net_device *ndev,
  1079. struct ethtool_cmd *ecmd)
  1080. {
  1081. struct sh_eth_private *mdp = netdev_priv(ndev);
  1082. unsigned long flags;
  1083. int ret;
  1084. spin_lock_irqsave(&mdp->lock, flags);
  1085. /* disable tx and rx */
  1086. sh_eth_rcv_snd_disable(ndev);
  1087. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1088. if (ret)
  1089. goto error_exit;
  1090. if (ecmd->duplex == DUPLEX_FULL)
  1091. mdp->duplex = 1;
  1092. else
  1093. mdp->duplex = 0;
  1094. if (mdp->cd->set_duplex)
  1095. mdp->cd->set_duplex(ndev);
  1096. error_exit:
  1097. mdelay(1);
  1098. /* enable tx and rx */
  1099. sh_eth_rcv_snd_enable(ndev);
  1100. spin_unlock_irqrestore(&mdp->lock, flags);
  1101. return ret;
  1102. }
  1103. static int sh_eth_nway_reset(struct net_device *ndev)
  1104. {
  1105. struct sh_eth_private *mdp = netdev_priv(ndev);
  1106. unsigned long flags;
  1107. int ret;
  1108. spin_lock_irqsave(&mdp->lock, flags);
  1109. ret = phy_start_aneg(mdp->phydev);
  1110. spin_unlock_irqrestore(&mdp->lock, flags);
  1111. return ret;
  1112. }
  1113. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1114. {
  1115. struct sh_eth_private *mdp = netdev_priv(ndev);
  1116. return mdp->msg_enable;
  1117. }
  1118. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1119. {
  1120. struct sh_eth_private *mdp = netdev_priv(ndev);
  1121. mdp->msg_enable = value;
  1122. }
  1123. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1124. "rx_current", "tx_current",
  1125. "rx_dirty", "tx_dirty",
  1126. };
  1127. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1128. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1129. {
  1130. switch (sset) {
  1131. case ETH_SS_STATS:
  1132. return SH_ETH_STATS_LEN;
  1133. default:
  1134. return -EOPNOTSUPP;
  1135. }
  1136. }
  1137. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1138. struct ethtool_stats *stats, u64 *data)
  1139. {
  1140. struct sh_eth_private *mdp = netdev_priv(ndev);
  1141. int i = 0;
  1142. /* device-specific stats */
  1143. data[i++] = mdp->cur_rx;
  1144. data[i++] = mdp->cur_tx;
  1145. data[i++] = mdp->dirty_rx;
  1146. data[i++] = mdp->dirty_tx;
  1147. }
  1148. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1149. {
  1150. switch (stringset) {
  1151. case ETH_SS_STATS:
  1152. memcpy(data, *sh_eth_gstrings_stats,
  1153. sizeof(sh_eth_gstrings_stats));
  1154. break;
  1155. }
  1156. }
  1157. static struct ethtool_ops sh_eth_ethtool_ops = {
  1158. .get_settings = sh_eth_get_settings,
  1159. .set_settings = sh_eth_set_settings,
  1160. .nway_reset = sh_eth_nway_reset,
  1161. .get_msglevel = sh_eth_get_msglevel,
  1162. .set_msglevel = sh_eth_set_msglevel,
  1163. .get_link = ethtool_op_get_link,
  1164. .get_strings = sh_eth_get_strings,
  1165. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1166. .get_sset_count = sh_eth_get_sset_count,
  1167. };
  1168. /* network device open function */
  1169. static int sh_eth_open(struct net_device *ndev)
  1170. {
  1171. int ret = 0;
  1172. struct sh_eth_private *mdp = netdev_priv(ndev);
  1173. pm_runtime_get_sync(&mdp->pdev->dev);
  1174. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1175. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1176. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1177. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1178. IRQF_SHARED,
  1179. #else
  1180. 0,
  1181. #endif
  1182. ndev->name, ndev);
  1183. if (ret) {
  1184. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1185. return ret;
  1186. }
  1187. /* Descriptor set */
  1188. ret = sh_eth_ring_init(ndev);
  1189. if (ret)
  1190. goto out_free_irq;
  1191. /* device init */
  1192. ret = sh_eth_dev_init(ndev);
  1193. if (ret)
  1194. goto out_free_irq;
  1195. /* PHY control start*/
  1196. ret = sh_eth_phy_start(ndev);
  1197. if (ret)
  1198. goto out_free_irq;
  1199. /* Set the timer to check for link beat. */
  1200. init_timer(&mdp->timer);
  1201. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1202. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1203. return ret;
  1204. out_free_irq:
  1205. free_irq(ndev->irq, ndev);
  1206. pm_runtime_put_sync(&mdp->pdev->dev);
  1207. return ret;
  1208. }
  1209. /* Timeout function */
  1210. static void sh_eth_tx_timeout(struct net_device *ndev)
  1211. {
  1212. struct sh_eth_private *mdp = netdev_priv(ndev);
  1213. struct sh_eth_rxdesc *rxdesc;
  1214. int i;
  1215. netif_stop_queue(ndev);
  1216. if (netif_msg_timer(mdp))
  1217. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1218. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1219. /* tx_errors count up */
  1220. mdp->stats.tx_errors++;
  1221. /* timer off */
  1222. del_timer_sync(&mdp->timer);
  1223. /* Free all the skbuffs in the Rx queue. */
  1224. for (i = 0; i < RX_RING_SIZE; i++) {
  1225. rxdesc = &mdp->rx_ring[i];
  1226. rxdesc->status = 0;
  1227. rxdesc->addr = 0xBADF00D0;
  1228. if (mdp->rx_skbuff[i])
  1229. dev_kfree_skb(mdp->rx_skbuff[i]);
  1230. mdp->rx_skbuff[i] = NULL;
  1231. }
  1232. for (i = 0; i < TX_RING_SIZE; i++) {
  1233. if (mdp->tx_skbuff[i])
  1234. dev_kfree_skb(mdp->tx_skbuff[i]);
  1235. mdp->tx_skbuff[i] = NULL;
  1236. }
  1237. /* device init */
  1238. sh_eth_dev_init(ndev);
  1239. /* timer on */
  1240. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1241. add_timer(&mdp->timer);
  1242. }
  1243. /* Packet transmit function */
  1244. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1245. {
  1246. struct sh_eth_private *mdp = netdev_priv(ndev);
  1247. struct sh_eth_txdesc *txdesc;
  1248. u32 entry;
  1249. unsigned long flags;
  1250. spin_lock_irqsave(&mdp->lock, flags);
  1251. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1252. if (!sh_eth_txfree(ndev)) {
  1253. if (netif_msg_tx_queued(mdp))
  1254. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1255. netif_stop_queue(ndev);
  1256. spin_unlock_irqrestore(&mdp->lock, flags);
  1257. return NETDEV_TX_BUSY;
  1258. }
  1259. }
  1260. spin_unlock_irqrestore(&mdp->lock, flags);
  1261. entry = mdp->cur_tx % TX_RING_SIZE;
  1262. mdp->tx_skbuff[entry] = skb;
  1263. txdesc = &mdp->tx_ring[entry];
  1264. /* soft swap. */
  1265. if (!mdp->cd->hw_swap)
  1266. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1267. skb->len + 2);
  1268. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1269. DMA_TO_DEVICE);
  1270. if (skb->len < ETHERSMALL)
  1271. txdesc->buffer_length = ETHERSMALL;
  1272. else
  1273. txdesc->buffer_length = skb->len;
  1274. if (entry >= TX_RING_SIZE - 1)
  1275. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1276. else
  1277. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1278. mdp->cur_tx++;
  1279. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1280. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1281. return NETDEV_TX_OK;
  1282. }
  1283. /* device close function */
  1284. static int sh_eth_close(struct net_device *ndev)
  1285. {
  1286. struct sh_eth_private *mdp = netdev_priv(ndev);
  1287. int ringsize;
  1288. netif_stop_queue(ndev);
  1289. /* Disable interrupts by clearing the interrupt mask. */
  1290. sh_eth_write(ndev, 0x0000, EESIPR);
  1291. /* Stop the chip's Tx and Rx processes. */
  1292. sh_eth_write(ndev, 0, EDTRR);
  1293. sh_eth_write(ndev, 0, EDRRR);
  1294. /* PHY Disconnect */
  1295. if (mdp->phydev) {
  1296. phy_stop(mdp->phydev);
  1297. phy_disconnect(mdp->phydev);
  1298. }
  1299. free_irq(ndev->irq, ndev);
  1300. del_timer_sync(&mdp->timer);
  1301. /* Free all the skbuffs in the Rx queue. */
  1302. sh_eth_ring_free(ndev);
  1303. /* free DMA buffer */
  1304. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1305. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1306. /* free DMA buffer */
  1307. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1308. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1309. pm_runtime_put_sync(&mdp->pdev->dev);
  1310. return 0;
  1311. }
  1312. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1313. {
  1314. struct sh_eth_private *mdp = netdev_priv(ndev);
  1315. pm_runtime_get_sync(&mdp->pdev->dev);
  1316. mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1317. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1318. mdp->stats.collisions += sh_eth_read(ndev, CDCR);
  1319. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1320. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1321. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1322. if (sh_eth_is_gether(mdp)) {
  1323. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1324. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1325. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1326. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1327. } else {
  1328. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1329. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1330. }
  1331. pm_runtime_put_sync(&mdp->pdev->dev);
  1332. return &mdp->stats;
  1333. }
  1334. /* ioctl to device funciotn*/
  1335. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1336. int cmd)
  1337. {
  1338. struct sh_eth_private *mdp = netdev_priv(ndev);
  1339. struct phy_device *phydev = mdp->phydev;
  1340. if (!netif_running(ndev))
  1341. return -EINVAL;
  1342. if (!phydev)
  1343. return -ENODEV;
  1344. return phy_mii_ioctl(phydev, rq, cmd);
  1345. }
  1346. #if defined(SH_ETH_HAS_TSU)
  1347. /* Multicast reception directions set */
  1348. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1349. {
  1350. if (ndev->flags & IFF_PROMISC) {
  1351. /* Set promiscuous. */
  1352. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
  1353. ECMR_PRM, ECMR);
  1354. } else {
  1355. /* Normal, unicast/broadcast-only mode. */
  1356. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
  1357. ECMR_MCT, ECMR);
  1358. }
  1359. }
  1360. #endif /* SH_ETH_HAS_TSU */
  1361. /* SuperH's TSU register init function */
  1362. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1363. {
  1364. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1365. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1366. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1367. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1368. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1369. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1370. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1371. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1372. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1373. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1374. if (sh_eth_is_gether(mdp)) {
  1375. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1376. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1377. } else {
  1378. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1379. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1380. }
  1381. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1382. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1383. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1384. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1385. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1386. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1387. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1388. }
  1389. /* MDIO bus release function */
  1390. static int sh_mdio_release(struct net_device *ndev)
  1391. {
  1392. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1393. /* unregister mdio bus */
  1394. mdiobus_unregister(bus);
  1395. /* remove mdio bus info from net_device */
  1396. dev_set_drvdata(&ndev->dev, NULL);
  1397. /* free interrupts memory */
  1398. kfree(bus->irq);
  1399. /* free bitbang info */
  1400. free_mdio_bitbang(bus);
  1401. return 0;
  1402. }
  1403. /* MDIO bus init function */
  1404. static int sh_mdio_init(struct net_device *ndev, int id,
  1405. struct sh_eth_plat_data *pd)
  1406. {
  1407. int ret, i;
  1408. struct bb_info *bitbang;
  1409. struct sh_eth_private *mdp = netdev_priv(ndev);
  1410. /* create bit control struct for PHY */
  1411. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1412. if (!bitbang) {
  1413. ret = -ENOMEM;
  1414. goto out;
  1415. }
  1416. /* bitbang init */
  1417. bitbang->addr = ndev->base_addr + mdp->reg_offset[PIR];
  1418. bitbang->set_gate = pd->set_mdio_gate;
  1419. bitbang->mdi_msk = 0x08;
  1420. bitbang->mdo_msk = 0x04;
  1421. bitbang->mmd_msk = 0x02;/* MMD */
  1422. bitbang->mdc_msk = 0x01;
  1423. bitbang->ctrl.ops = &bb_ops;
  1424. /* MII controller setting */
  1425. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1426. if (!mdp->mii_bus) {
  1427. ret = -ENOMEM;
  1428. goto out_free_bitbang;
  1429. }
  1430. /* Hook up MII support for ethtool */
  1431. mdp->mii_bus->name = "sh_mii";
  1432. mdp->mii_bus->parent = &ndev->dev;
  1433. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1434. /* PHY IRQ */
  1435. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1436. if (!mdp->mii_bus->irq) {
  1437. ret = -ENOMEM;
  1438. goto out_free_bus;
  1439. }
  1440. for (i = 0; i < PHY_MAX_ADDR; i++)
  1441. mdp->mii_bus->irq[i] = PHY_POLL;
  1442. /* regist mdio bus */
  1443. ret = mdiobus_register(mdp->mii_bus);
  1444. if (ret)
  1445. goto out_free_irq;
  1446. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1447. return 0;
  1448. out_free_irq:
  1449. kfree(mdp->mii_bus->irq);
  1450. out_free_bus:
  1451. free_mdio_bitbang(mdp->mii_bus);
  1452. out_free_bitbang:
  1453. kfree(bitbang);
  1454. out:
  1455. return ret;
  1456. }
  1457. static const u16 *sh_eth_get_register_offset(int register_type)
  1458. {
  1459. const u16 *reg_offset = NULL;
  1460. switch (register_type) {
  1461. case SH_ETH_REG_GIGABIT:
  1462. reg_offset = sh_eth_offset_gigabit;
  1463. break;
  1464. case SH_ETH_REG_FAST_SH4:
  1465. reg_offset = sh_eth_offset_fast_sh4;
  1466. break;
  1467. case SH_ETH_REG_FAST_SH3_SH2:
  1468. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1469. break;
  1470. default:
  1471. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1472. break;
  1473. }
  1474. return reg_offset;
  1475. }
  1476. static const struct net_device_ops sh_eth_netdev_ops = {
  1477. .ndo_open = sh_eth_open,
  1478. .ndo_stop = sh_eth_close,
  1479. .ndo_start_xmit = sh_eth_start_xmit,
  1480. .ndo_get_stats = sh_eth_get_stats,
  1481. #if defined(SH_ETH_HAS_TSU)
  1482. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1483. #endif
  1484. .ndo_tx_timeout = sh_eth_tx_timeout,
  1485. .ndo_do_ioctl = sh_eth_do_ioctl,
  1486. .ndo_validate_addr = eth_validate_addr,
  1487. .ndo_set_mac_address = eth_mac_addr,
  1488. .ndo_change_mtu = eth_change_mtu,
  1489. };
  1490. static int sh_eth_drv_probe(struct platform_device *pdev)
  1491. {
  1492. int ret, devno = 0;
  1493. struct resource *res;
  1494. struct net_device *ndev = NULL;
  1495. struct sh_eth_private *mdp = NULL;
  1496. struct sh_eth_plat_data *pd;
  1497. /* get base addr */
  1498. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1499. if (unlikely(res == NULL)) {
  1500. dev_err(&pdev->dev, "invalid resource\n");
  1501. ret = -EINVAL;
  1502. goto out;
  1503. }
  1504. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1505. if (!ndev) {
  1506. dev_err(&pdev->dev, "Could not allocate device.\n");
  1507. ret = -ENOMEM;
  1508. goto out;
  1509. }
  1510. /* The sh Ether-specific entries in the device structure. */
  1511. ndev->base_addr = res->start;
  1512. devno = pdev->id;
  1513. if (devno < 0)
  1514. devno = 0;
  1515. ndev->dma = -1;
  1516. ret = platform_get_irq(pdev, 0);
  1517. if (ret < 0) {
  1518. ret = -ENODEV;
  1519. goto out_release;
  1520. }
  1521. ndev->irq = ret;
  1522. SET_NETDEV_DEV(ndev, &pdev->dev);
  1523. /* Fill in the fields of the device structure with ethernet values. */
  1524. ether_setup(ndev);
  1525. mdp = netdev_priv(ndev);
  1526. spin_lock_init(&mdp->lock);
  1527. mdp->pdev = pdev;
  1528. pm_runtime_enable(&pdev->dev);
  1529. pm_runtime_resume(&pdev->dev);
  1530. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1531. /* get PHY ID */
  1532. mdp->phy_id = pd->phy;
  1533. mdp->phy_interface = pd->phy_interface;
  1534. /* EDMAC endian */
  1535. mdp->edmac_endian = pd->edmac_endian;
  1536. mdp->no_ether_link = pd->no_ether_link;
  1537. mdp->ether_link_active_low = pd->ether_link_active_low;
  1538. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1539. /* set cpu data */
  1540. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1541. mdp->cd = sh_eth_get_cpu_data(mdp);
  1542. #else
  1543. mdp->cd = &sh_eth_my_cpu_data;
  1544. #endif
  1545. sh_eth_set_default_cpu_data(mdp->cd);
  1546. /* set function */
  1547. ndev->netdev_ops = &sh_eth_netdev_ops;
  1548. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1549. ndev->watchdog_timeo = TX_TIMEOUT;
  1550. /* debug message level */
  1551. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1552. mdp->post_rx = POST_RX >> (devno << 1);
  1553. mdp->post_fw = POST_FW >> (devno << 1);
  1554. /* read and set MAC address */
  1555. read_mac_address(ndev, pd->mac_addr);
  1556. /* First device only init */
  1557. if (!devno) {
  1558. if (mdp->cd->tsu) {
  1559. struct resource *rtsu;
  1560. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1561. if (!rtsu) {
  1562. dev_err(&pdev->dev, "Not found TSU resource\n");
  1563. goto out_release;
  1564. }
  1565. mdp->tsu_addr = ioremap(rtsu->start,
  1566. resource_size(rtsu));
  1567. }
  1568. if (mdp->cd->chip_reset)
  1569. mdp->cd->chip_reset(ndev);
  1570. if (mdp->cd->tsu) {
  1571. /* TSU init (Init only)*/
  1572. sh_eth_tsu_init(mdp);
  1573. }
  1574. }
  1575. /* network device register */
  1576. ret = register_netdev(ndev);
  1577. if (ret)
  1578. goto out_release;
  1579. /* mdio bus init */
  1580. ret = sh_mdio_init(ndev, pdev->id, pd);
  1581. if (ret)
  1582. goto out_unregister;
  1583. /* print device information */
  1584. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1585. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1586. platform_set_drvdata(pdev, ndev);
  1587. return ret;
  1588. out_unregister:
  1589. unregister_netdev(ndev);
  1590. out_release:
  1591. /* net_dev free */
  1592. if (mdp && mdp->tsu_addr)
  1593. iounmap(mdp->tsu_addr);
  1594. if (ndev)
  1595. free_netdev(ndev);
  1596. out:
  1597. return ret;
  1598. }
  1599. static int sh_eth_drv_remove(struct platform_device *pdev)
  1600. {
  1601. struct net_device *ndev = platform_get_drvdata(pdev);
  1602. struct sh_eth_private *mdp = netdev_priv(ndev);
  1603. iounmap(mdp->tsu_addr);
  1604. sh_mdio_release(ndev);
  1605. unregister_netdev(ndev);
  1606. pm_runtime_disable(&pdev->dev);
  1607. free_netdev(ndev);
  1608. platform_set_drvdata(pdev, NULL);
  1609. return 0;
  1610. }
  1611. static int sh_eth_runtime_nop(struct device *dev)
  1612. {
  1613. /*
  1614. * Runtime PM callback shared between ->runtime_suspend()
  1615. * and ->runtime_resume(). Simply returns success.
  1616. *
  1617. * This driver re-initializes all registers after
  1618. * pm_runtime_get_sync() anyway so there is no need
  1619. * to save and restore registers here.
  1620. */
  1621. return 0;
  1622. }
  1623. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1624. .runtime_suspend = sh_eth_runtime_nop,
  1625. .runtime_resume = sh_eth_runtime_nop,
  1626. };
  1627. static struct platform_driver sh_eth_driver = {
  1628. .probe = sh_eth_drv_probe,
  1629. .remove = sh_eth_drv_remove,
  1630. .driver = {
  1631. .name = CARDNAME,
  1632. .pm = &sh_eth_dev_pm_ops,
  1633. },
  1634. };
  1635. static int __init sh_eth_init(void)
  1636. {
  1637. return platform_driver_register(&sh_eth_driver);
  1638. }
  1639. static void __exit sh_eth_cleanup(void)
  1640. {
  1641. platform_driver_unregister(&sh_eth_driver);
  1642. }
  1643. module_init(sh_eth_init);
  1644. module_exit(sh_eth_cleanup);
  1645. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1646. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1647. MODULE_LICENSE("GPL v2");