ixgbevf_main.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523
  1. /*******************************************************************************
  2. Intel 82599 Virtual Function driver
  3. Copyright(c) 1999 - 2010 Intel Corporation.
  4. This program is free software; you can redistribute it and/or modify it
  5. under the terms and conditions of the GNU General Public License,
  6. version 2, as published by the Free Software Foundation.
  7. This program is distributed in the hope it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc.,
  13. 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  14. The full GNU General Public License is included in this distribution in
  15. the file called "COPYING".
  16. Contact Information:
  17. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /******************************************************************************
  21. Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
  22. ******************************************************************************/
  23. #include <linux/types.h>
  24. #include <linux/bitops.h>
  25. #include <linux/module.h>
  26. #include <linux/pci.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/string.h>
  30. #include <linux/in.h>
  31. #include <linux/ip.h>
  32. #include <linux/tcp.h>
  33. #include <linux/ipv6.h>
  34. #include <linux/slab.h>
  35. #include <net/checksum.h>
  36. #include <net/ip6_checksum.h>
  37. #include <linux/ethtool.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/prefetch.h>
  40. #include "ixgbevf.h"
  41. char ixgbevf_driver_name[] = "ixgbevf";
  42. static const char ixgbevf_driver_string[] =
  43. "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
  44. #define DRV_VERSION "2.1.0-k"
  45. const char ixgbevf_driver_version[] = DRV_VERSION;
  46. static char ixgbevf_copyright[] =
  47. "Copyright (c) 2009 - 2010 Intel Corporation.";
  48. static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
  49. [board_82599_vf] = &ixgbevf_82599_vf_info,
  50. [board_X540_vf] = &ixgbevf_X540_vf_info,
  51. };
  52. /* ixgbevf_pci_tbl - PCI Device ID Table
  53. *
  54. * Wildcard entries (PCI_ANY_ID) should come last
  55. * Last entry must be all 0s
  56. *
  57. * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  58. * Class, Class Mask, private data (not used) }
  59. */
  60. static struct pci_device_id ixgbevf_pci_tbl[] = {
  61. {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
  62. board_82599_vf},
  63. {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
  64. board_X540_vf},
  65. /* required last entry */
  66. {0, }
  67. };
  68. MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
  69. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  70. MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_VERSION);
  73. #define DEFAULT_DEBUG_LEVEL_SHIFT 3
  74. /* forward decls */
  75. static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
  76. static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
  77. u32 itr_reg);
  78. static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
  79. struct ixgbevf_ring *rx_ring,
  80. u32 val)
  81. {
  82. /*
  83. * Force memory writes to complete before letting h/w
  84. * know there are new descriptors to fetch. (Only
  85. * applicable for weak-ordered memory model archs,
  86. * such as IA-64).
  87. */
  88. wmb();
  89. IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
  90. }
  91. /*
  92. * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
  93. * @adapter: pointer to adapter struct
  94. * @direction: 0 for Rx, 1 for Tx, -1 for other causes
  95. * @queue: queue to map the corresponding interrupt to
  96. * @msix_vector: the vector to map to the corresponding queue
  97. *
  98. */
  99. static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
  100. u8 queue, u8 msix_vector)
  101. {
  102. u32 ivar, index;
  103. struct ixgbe_hw *hw = &adapter->hw;
  104. if (direction == -1) {
  105. /* other causes */
  106. msix_vector |= IXGBE_IVAR_ALLOC_VAL;
  107. ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
  108. ivar &= ~0xFF;
  109. ivar |= msix_vector;
  110. IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
  111. } else {
  112. /* tx or rx causes */
  113. msix_vector |= IXGBE_IVAR_ALLOC_VAL;
  114. index = ((16 * (queue & 1)) + (8 * direction));
  115. ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
  116. ivar &= ~(0xFF << index);
  117. ivar |= (msix_vector << index);
  118. IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
  119. }
  120. }
  121. static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
  122. struct ixgbevf_tx_buffer
  123. *tx_buffer_info)
  124. {
  125. if (tx_buffer_info->dma) {
  126. if (tx_buffer_info->mapped_as_page)
  127. dma_unmap_page(&adapter->pdev->dev,
  128. tx_buffer_info->dma,
  129. tx_buffer_info->length,
  130. DMA_TO_DEVICE);
  131. else
  132. dma_unmap_single(&adapter->pdev->dev,
  133. tx_buffer_info->dma,
  134. tx_buffer_info->length,
  135. DMA_TO_DEVICE);
  136. tx_buffer_info->dma = 0;
  137. }
  138. if (tx_buffer_info->skb) {
  139. dev_kfree_skb_any(tx_buffer_info->skb);
  140. tx_buffer_info->skb = NULL;
  141. }
  142. tx_buffer_info->time_stamp = 0;
  143. /* tx_buffer_info must be completely set up in the transmit path */
  144. }
  145. #define IXGBE_MAX_TXD_PWR 14
  146. #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
  147. /* Tx Descriptors needed, worst case */
  148. #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
  149. (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
  150. #ifdef MAX_SKB_FRAGS
  151. #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
  152. MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
  153. #else
  154. #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
  155. #endif
  156. static void ixgbevf_tx_timeout(struct net_device *netdev);
  157. /**
  158. * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
  159. * @adapter: board private structure
  160. * @tx_ring: tx ring to clean
  161. **/
  162. static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
  163. struct ixgbevf_ring *tx_ring)
  164. {
  165. struct net_device *netdev = adapter->netdev;
  166. struct ixgbe_hw *hw = &adapter->hw;
  167. union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
  168. struct ixgbevf_tx_buffer *tx_buffer_info;
  169. unsigned int i, eop, count = 0;
  170. unsigned int total_bytes = 0, total_packets = 0;
  171. i = tx_ring->next_to_clean;
  172. eop = tx_ring->tx_buffer_info[i].next_to_watch;
  173. eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  174. while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
  175. (count < tx_ring->work_limit)) {
  176. bool cleaned = false;
  177. rmb(); /* read buffer_info after eop_desc */
  178. for ( ; !cleaned; count++) {
  179. struct sk_buff *skb;
  180. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
  181. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  182. cleaned = (i == eop);
  183. skb = tx_buffer_info->skb;
  184. if (cleaned && skb) {
  185. unsigned int segs, bytecount;
  186. /* gso_segs is currently only valid for tcp */
  187. segs = skb_shinfo(skb)->gso_segs ?: 1;
  188. /* multiply data chunks by size of headers */
  189. bytecount = ((segs - 1) * skb_headlen(skb)) +
  190. skb->len;
  191. total_packets += segs;
  192. total_bytes += bytecount;
  193. }
  194. ixgbevf_unmap_and_free_tx_resource(adapter,
  195. tx_buffer_info);
  196. tx_desc->wb.status = 0;
  197. i++;
  198. if (i == tx_ring->count)
  199. i = 0;
  200. }
  201. eop = tx_ring->tx_buffer_info[i].next_to_watch;
  202. eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  203. }
  204. tx_ring->next_to_clean = i;
  205. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  206. if (unlikely(count && netif_carrier_ok(netdev) &&
  207. (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  208. /* Make sure that anybody stopping the queue after this
  209. * sees the new next_to_clean.
  210. */
  211. smp_mb();
  212. #ifdef HAVE_TX_MQ
  213. if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
  214. !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
  215. netif_wake_subqueue(netdev, tx_ring->queue_index);
  216. ++adapter->restart_queue;
  217. }
  218. #else
  219. if (netif_queue_stopped(netdev) &&
  220. !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
  221. netif_wake_queue(netdev);
  222. ++adapter->restart_queue;
  223. }
  224. #endif
  225. }
  226. /* re-arm the interrupt */
  227. if ((count >= tx_ring->work_limit) &&
  228. (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
  229. IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
  230. }
  231. tx_ring->total_bytes += total_bytes;
  232. tx_ring->total_packets += total_packets;
  233. netdev->stats.tx_bytes += total_bytes;
  234. netdev->stats.tx_packets += total_packets;
  235. return count < tx_ring->work_limit;
  236. }
  237. /**
  238. * ixgbevf_receive_skb - Send a completed packet up the stack
  239. * @q_vector: structure containing interrupt and ring information
  240. * @skb: packet to send up
  241. * @status: hardware indication of status of receive
  242. * @rx_ring: rx descriptor ring (for a specific queue) to setup
  243. * @rx_desc: rx descriptor
  244. **/
  245. static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
  246. struct sk_buff *skb, u8 status,
  247. struct ixgbevf_ring *ring,
  248. union ixgbe_adv_rx_desc *rx_desc)
  249. {
  250. struct ixgbevf_adapter *adapter = q_vector->adapter;
  251. bool is_vlan = (status & IXGBE_RXD_STAT_VP);
  252. if (is_vlan) {
  253. u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
  254. __vlan_hwaccel_put_tag(skb, tag);
  255. }
  256. if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
  257. napi_gro_receive(&q_vector->napi, skb);
  258. else
  259. netif_rx(skb);
  260. }
  261. /**
  262. * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
  263. * @adapter: address of board private structure
  264. * @status_err: hardware indication of status of receive
  265. * @skb: skb currently being received and modified
  266. **/
  267. static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
  268. u32 status_err, struct sk_buff *skb)
  269. {
  270. skb_checksum_none_assert(skb);
  271. /* Rx csum disabled */
  272. if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
  273. return;
  274. /* if IP and error */
  275. if ((status_err & IXGBE_RXD_STAT_IPCS) &&
  276. (status_err & IXGBE_RXDADV_ERR_IPE)) {
  277. adapter->hw_csum_rx_error++;
  278. return;
  279. }
  280. if (!(status_err & IXGBE_RXD_STAT_L4CS))
  281. return;
  282. if (status_err & IXGBE_RXDADV_ERR_TCPE) {
  283. adapter->hw_csum_rx_error++;
  284. return;
  285. }
  286. /* It must be a TCP or UDP packet with a valid checksum */
  287. skb->ip_summed = CHECKSUM_UNNECESSARY;
  288. adapter->hw_csum_rx_good++;
  289. }
  290. /**
  291. * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
  292. * @adapter: address of board private structure
  293. **/
  294. static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
  295. struct ixgbevf_ring *rx_ring,
  296. int cleaned_count)
  297. {
  298. struct pci_dev *pdev = adapter->pdev;
  299. union ixgbe_adv_rx_desc *rx_desc;
  300. struct ixgbevf_rx_buffer *bi;
  301. struct sk_buff *skb;
  302. unsigned int i;
  303. unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
  304. i = rx_ring->next_to_use;
  305. bi = &rx_ring->rx_buffer_info[i];
  306. while (cleaned_count--) {
  307. rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
  308. if (!bi->page_dma &&
  309. (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
  310. if (!bi->page) {
  311. bi->page = netdev_alloc_page(adapter->netdev);
  312. if (!bi->page) {
  313. adapter->alloc_rx_page_failed++;
  314. goto no_buffers;
  315. }
  316. bi->page_offset = 0;
  317. } else {
  318. /* use a half page if we're re-using */
  319. bi->page_offset ^= (PAGE_SIZE / 2);
  320. }
  321. bi->page_dma = dma_map_page(&pdev->dev, bi->page,
  322. bi->page_offset,
  323. (PAGE_SIZE / 2),
  324. DMA_FROM_DEVICE);
  325. }
  326. skb = bi->skb;
  327. if (!skb) {
  328. skb = netdev_alloc_skb(adapter->netdev,
  329. bufsz);
  330. if (!skb) {
  331. adapter->alloc_rx_buff_failed++;
  332. goto no_buffers;
  333. }
  334. /*
  335. * Make buffer alignment 2 beyond a 16 byte boundary
  336. * this will result in a 16 byte aligned IP header after
  337. * the 14 byte MAC header is removed
  338. */
  339. skb_reserve(skb, NET_IP_ALIGN);
  340. bi->skb = skb;
  341. }
  342. if (!bi->dma) {
  343. bi->dma = dma_map_single(&pdev->dev, skb->data,
  344. rx_ring->rx_buf_len,
  345. DMA_FROM_DEVICE);
  346. }
  347. /* Refresh the desc even if buffer_addrs didn't change because
  348. * each write-back erases this info. */
  349. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  350. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  351. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  352. } else {
  353. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  354. }
  355. i++;
  356. if (i == rx_ring->count)
  357. i = 0;
  358. bi = &rx_ring->rx_buffer_info[i];
  359. }
  360. no_buffers:
  361. if (rx_ring->next_to_use != i) {
  362. rx_ring->next_to_use = i;
  363. if (i-- == 0)
  364. i = (rx_ring->count - 1);
  365. ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
  366. }
  367. }
  368. static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
  369. u64 qmask)
  370. {
  371. u32 mask;
  372. struct ixgbe_hw *hw = &adapter->hw;
  373. mask = (qmask & 0xFFFFFFFF);
  374. IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
  375. }
  376. static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
  377. {
  378. return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
  379. }
  380. static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
  381. {
  382. return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
  383. }
  384. static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
  385. struct ixgbevf_ring *rx_ring,
  386. int *work_done, int work_to_do)
  387. {
  388. struct ixgbevf_adapter *adapter = q_vector->adapter;
  389. struct pci_dev *pdev = adapter->pdev;
  390. union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
  391. struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
  392. struct sk_buff *skb;
  393. unsigned int i;
  394. u32 len, staterr;
  395. u16 hdr_info;
  396. bool cleaned = false;
  397. int cleaned_count = 0;
  398. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  399. i = rx_ring->next_to_clean;
  400. rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
  401. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  402. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  403. while (staterr & IXGBE_RXD_STAT_DD) {
  404. u32 upper_len = 0;
  405. if (*work_done >= work_to_do)
  406. break;
  407. (*work_done)++;
  408. rmb(); /* read descriptor and rx_buffer_info after status DD */
  409. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  410. hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
  411. len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
  412. IXGBE_RXDADV_HDRBUFLEN_SHIFT;
  413. if (hdr_info & IXGBE_RXDADV_SPH)
  414. adapter->rx_hdr_split++;
  415. if (len > IXGBEVF_RX_HDR_SIZE)
  416. len = IXGBEVF_RX_HDR_SIZE;
  417. upper_len = le16_to_cpu(rx_desc->wb.upper.length);
  418. } else {
  419. len = le16_to_cpu(rx_desc->wb.upper.length);
  420. }
  421. cleaned = true;
  422. skb = rx_buffer_info->skb;
  423. prefetch(skb->data - NET_IP_ALIGN);
  424. rx_buffer_info->skb = NULL;
  425. if (rx_buffer_info->dma) {
  426. dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
  427. rx_ring->rx_buf_len,
  428. DMA_FROM_DEVICE);
  429. rx_buffer_info->dma = 0;
  430. skb_put(skb, len);
  431. }
  432. if (upper_len) {
  433. dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
  434. PAGE_SIZE / 2, DMA_FROM_DEVICE);
  435. rx_buffer_info->page_dma = 0;
  436. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  437. rx_buffer_info->page,
  438. rx_buffer_info->page_offset,
  439. upper_len);
  440. if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
  441. (page_count(rx_buffer_info->page) != 1))
  442. rx_buffer_info->page = NULL;
  443. else
  444. get_page(rx_buffer_info->page);
  445. skb->len += upper_len;
  446. skb->data_len += upper_len;
  447. skb->truesize += upper_len;
  448. }
  449. i++;
  450. if (i == rx_ring->count)
  451. i = 0;
  452. next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
  453. prefetch(next_rxd);
  454. cleaned_count++;
  455. next_buffer = &rx_ring->rx_buffer_info[i];
  456. if (!(staterr & IXGBE_RXD_STAT_EOP)) {
  457. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  458. rx_buffer_info->skb = next_buffer->skb;
  459. rx_buffer_info->dma = next_buffer->dma;
  460. next_buffer->skb = skb;
  461. next_buffer->dma = 0;
  462. } else {
  463. skb->next = next_buffer->skb;
  464. skb->next->prev = skb;
  465. }
  466. adapter->non_eop_descs++;
  467. goto next_desc;
  468. }
  469. /* ERR_MASK will only have valid bits if EOP set */
  470. if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
  471. dev_kfree_skb_irq(skb);
  472. goto next_desc;
  473. }
  474. ixgbevf_rx_checksum(adapter, staterr, skb);
  475. /* probably a little skewed due to removing CRC */
  476. total_rx_bytes += skb->len;
  477. total_rx_packets++;
  478. /*
  479. * Work around issue of some types of VM to VM loop back
  480. * packets not getting split correctly
  481. */
  482. if (staterr & IXGBE_RXD_STAT_LB) {
  483. u32 header_fixup_len = skb_headlen(skb);
  484. if (header_fixup_len < 14)
  485. skb_push(skb, header_fixup_len);
  486. }
  487. skb->protocol = eth_type_trans(skb, adapter->netdev);
  488. ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
  489. next_desc:
  490. rx_desc->wb.upper.status_error = 0;
  491. /* return some buffers to hardware, one at a time is too slow */
  492. if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
  493. ixgbevf_alloc_rx_buffers(adapter, rx_ring,
  494. cleaned_count);
  495. cleaned_count = 0;
  496. }
  497. /* use prefetched values */
  498. rx_desc = next_rxd;
  499. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  500. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  501. }
  502. rx_ring->next_to_clean = i;
  503. cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
  504. if (cleaned_count)
  505. ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
  506. rx_ring->total_packets += total_rx_packets;
  507. rx_ring->total_bytes += total_rx_bytes;
  508. adapter->netdev->stats.rx_bytes += total_rx_bytes;
  509. adapter->netdev->stats.rx_packets += total_rx_packets;
  510. return cleaned;
  511. }
  512. /**
  513. * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
  514. * @napi: napi struct with our devices info in it
  515. * @budget: amount of work driver is allowed to do this pass, in packets
  516. *
  517. * This function is optimized for cleaning one queue only on a single
  518. * q_vector!!!
  519. **/
  520. static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
  521. {
  522. struct ixgbevf_q_vector *q_vector =
  523. container_of(napi, struct ixgbevf_q_vector, napi);
  524. struct ixgbevf_adapter *adapter = q_vector->adapter;
  525. struct ixgbevf_ring *rx_ring = NULL;
  526. int work_done = 0;
  527. long r_idx;
  528. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  529. rx_ring = &(adapter->rx_ring[r_idx]);
  530. ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
  531. /* If all Rx work done, exit the polling mode */
  532. if (work_done < budget) {
  533. napi_complete(napi);
  534. if (adapter->itr_setting & 1)
  535. ixgbevf_set_itr_msix(q_vector);
  536. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  537. ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
  538. }
  539. return work_done;
  540. }
  541. /**
  542. * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
  543. * @napi: napi struct with our devices info in it
  544. * @budget: amount of work driver is allowed to do this pass, in packets
  545. *
  546. * This function will clean more than one rx queue associated with a
  547. * q_vector.
  548. **/
  549. static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
  550. {
  551. struct ixgbevf_q_vector *q_vector =
  552. container_of(napi, struct ixgbevf_q_vector, napi);
  553. struct ixgbevf_adapter *adapter = q_vector->adapter;
  554. struct ixgbevf_ring *rx_ring = NULL;
  555. int work_done = 0, i;
  556. long r_idx;
  557. u64 enable_mask = 0;
  558. /* attempt to distribute budget to each queue fairly, but don't allow
  559. * the budget to go below 1 because we'll exit polling */
  560. budget /= (q_vector->rxr_count ?: 1);
  561. budget = max(budget, 1);
  562. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  563. for (i = 0; i < q_vector->rxr_count; i++) {
  564. rx_ring = &(adapter->rx_ring[r_idx]);
  565. ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
  566. enable_mask |= rx_ring->v_idx;
  567. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  568. r_idx + 1);
  569. }
  570. #ifndef HAVE_NETDEV_NAPI_LIST
  571. if (!netif_running(adapter->netdev))
  572. work_done = 0;
  573. #endif
  574. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  575. rx_ring = &(adapter->rx_ring[r_idx]);
  576. /* If all Rx work done, exit the polling mode */
  577. if (work_done < budget) {
  578. napi_complete(napi);
  579. if (adapter->itr_setting & 1)
  580. ixgbevf_set_itr_msix(q_vector);
  581. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  582. ixgbevf_irq_enable_queues(adapter, enable_mask);
  583. }
  584. return work_done;
  585. }
  586. /**
  587. * ixgbevf_configure_msix - Configure MSI-X hardware
  588. * @adapter: board private structure
  589. *
  590. * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
  591. * interrupts.
  592. **/
  593. static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
  594. {
  595. struct ixgbevf_q_vector *q_vector;
  596. struct ixgbe_hw *hw = &adapter->hw;
  597. int i, j, q_vectors, v_idx, r_idx;
  598. u32 mask;
  599. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  600. /*
  601. * Populate the IVAR table and set the ITR values to the
  602. * corresponding register.
  603. */
  604. for (v_idx = 0; v_idx < q_vectors; v_idx++) {
  605. q_vector = adapter->q_vector[v_idx];
  606. /* XXX for_each_set_bit(...) */
  607. r_idx = find_first_bit(q_vector->rxr_idx,
  608. adapter->num_rx_queues);
  609. for (i = 0; i < q_vector->rxr_count; i++) {
  610. j = adapter->rx_ring[r_idx].reg_idx;
  611. ixgbevf_set_ivar(adapter, 0, j, v_idx);
  612. r_idx = find_next_bit(q_vector->rxr_idx,
  613. adapter->num_rx_queues,
  614. r_idx + 1);
  615. }
  616. r_idx = find_first_bit(q_vector->txr_idx,
  617. adapter->num_tx_queues);
  618. for (i = 0; i < q_vector->txr_count; i++) {
  619. j = adapter->tx_ring[r_idx].reg_idx;
  620. ixgbevf_set_ivar(adapter, 1, j, v_idx);
  621. r_idx = find_next_bit(q_vector->txr_idx,
  622. adapter->num_tx_queues,
  623. r_idx + 1);
  624. }
  625. /* if this is a tx only vector halve the interrupt rate */
  626. if (q_vector->txr_count && !q_vector->rxr_count)
  627. q_vector->eitr = (adapter->eitr_param >> 1);
  628. else if (q_vector->rxr_count)
  629. /* rx only */
  630. q_vector->eitr = adapter->eitr_param;
  631. ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
  632. }
  633. ixgbevf_set_ivar(adapter, -1, 1, v_idx);
  634. /* set up to autoclear timer, and the vectors */
  635. mask = IXGBE_EIMS_ENABLE_MASK;
  636. mask &= ~IXGBE_EIMS_OTHER;
  637. IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
  638. }
  639. enum latency_range {
  640. lowest_latency = 0,
  641. low_latency = 1,
  642. bulk_latency = 2,
  643. latency_invalid = 255
  644. };
  645. /**
  646. * ixgbevf_update_itr - update the dynamic ITR value based on statistics
  647. * @adapter: pointer to adapter
  648. * @eitr: eitr setting (ints per sec) to give last timeslice
  649. * @itr_setting: current throttle rate in ints/second
  650. * @packets: the number of packets during this measurement interval
  651. * @bytes: the number of bytes during this measurement interval
  652. *
  653. * Stores a new ITR value based on packets and byte
  654. * counts during the last interrupt. The advantage of per interrupt
  655. * computation is faster updates and more accurate ITR for the current
  656. * traffic pattern. Constants in this function were computed
  657. * based on theoretical maximum wire speed and thresholds were set based
  658. * on testing data as well as attempting to minimize response time
  659. * while increasing bulk throughput.
  660. **/
  661. static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
  662. u32 eitr, u8 itr_setting,
  663. int packets, int bytes)
  664. {
  665. unsigned int retval = itr_setting;
  666. u32 timepassed_us;
  667. u64 bytes_perint;
  668. if (packets == 0)
  669. goto update_itr_done;
  670. /* simple throttlerate management
  671. * 0-20MB/s lowest (100000 ints/s)
  672. * 20-100MB/s low (20000 ints/s)
  673. * 100-1249MB/s bulk (8000 ints/s)
  674. */
  675. /* what was last interrupt timeslice? */
  676. timepassed_us = 1000000/eitr;
  677. bytes_perint = bytes / timepassed_us; /* bytes/usec */
  678. switch (itr_setting) {
  679. case lowest_latency:
  680. if (bytes_perint > adapter->eitr_low)
  681. retval = low_latency;
  682. break;
  683. case low_latency:
  684. if (bytes_perint > adapter->eitr_high)
  685. retval = bulk_latency;
  686. else if (bytes_perint <= adapter->eitr_low)
  687. retval = lowest_latency;
  688. break;
  689. case bulk_latency:
  690. if (bytes_perint <= adapter->eitr_high)
  691. retval = low_latency;
  692. break;
  693. }
  694. update_itr_done:
  695. return retval;
  696. }
  697. /**
  698. * ixgbevf_write_eitr - write VTEITR register in hardware specific way
  699. * @adapter: pointer to adapter struct
  700. * @v_idx: vector index into q_vector array
  701. * @itr_reg: new value to be written in *register* format, not ints/s
  702. *
  703. * This function is made to be called by ethtool and by the driver
  704. * when it needs to update VTEITR registers at runtime. Hardware
  705. * specific quirks/differences are taken care of here.
  706. */
  707. static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
  708. u32 itr_reg)
  709. {
  710. struct ixgbe_hw *hw = &adapter->hw;
  711. itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
  712. /*
  713. * set the WDIS bit to not clear the timer bits and cause an
  714. * immediate assertion of the interrupt
  715. */
  716. itr_reg |= IXGBE_EITR_CNT_WDIS;
  717. IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
  718. }
  719. static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
  720. {
  721. struct ixgbevf_adapter *adapter = q_vector->adapter;
  722. u32 new_itr;
  723. u8 current_itr, ret_itr;
  724. int i, r_idx, v_idx = q_vector->v_idx;
  725. struct ixgbevf_ring *rx_ring, *tx_ring;
  726. r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
  727. for (i = 0; i < q_vector->txr_count; i++) {
  728. tx_ring = &(adapter->tx_ring[r_idx]);
  729. ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
  730. q_vector->tx_itr,
  731. tx_ring->total_packets,
  732. tx_ring->total_bytes);
  733. /* if the result for this queue would decrease interrupt
  734. * rate for this vector then use that result */
  735. q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
  736. q_vector->tx_itr - 1 : ret_itr);
  737. r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
  738. r_idx + 1);
  739. }
  740. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  741. for (i = 0; i < q_vector->rxr_count; i++) {
  742. rx_ring = &(adapter->rx_ring[r_idx]);
  743. ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
  744. q_vector->rx_itr,
  745. rx_ring->total_packets,
  746. rx_ring->total_bytes);
  747. /* if the result for this queue would decrease interrupt
  748. * rate for this vector then use that result */
  749. q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
  750. q_vector->rx_itr - 1 : ret_itr);
  751. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  752. r_idx + 1);
  753. }
  754. current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
  755. switch (current_itr) {
  756. /* counts and packets in update_itr are dependent on these numbers */
  757. case lowest_latency:
  758. new_itr = 100000;
  759. break;
  760. case low_latency:
  761. new_itr = 20000; /* aka hwitr = ~200 */
  762. break;
  763. case bulk_latency:
  764. default:
  765. new_itr = 8000;
  766. break;
  767. }
  768. if (new_itr != q_vector->eitr) {
  769. u32 itr_reg;
  770. /* save the algorithm value here, not the smoothed one */
  771. q_vector->eitr = new_itr;
  772. /* do an exponential smoothing */
  773. new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
  774. itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
  775. ixgbevf_write_eitr(adapter, v_idx, itr_reg);
  776. }
  777. }
  778. static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
  779. {
  780. struct net_device *netdev = data;
  781. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  782. struct ixgbe_hw *hw = &adapter->hw;
  783. u32 eicr;
  784. u32 msg;
  785. eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
  786. IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
  787. if (!hw->mbx.ops.check_for_ack(hw)) {
  788. /*
  789. * checking for the ack clears the PFACK bit. Place
  790. * it back in the v2p_mailbox cache so that anyone
  791. * polling for an ack will not miss it. Also
  792. * avoid the read below because the code to read
  793. * the mailbox will also clear the ack bit. This was
  794. * causing lost acks. Just cache the bit and exit
  795. * the IRQ handler.
  796. */
  797. hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
  798. goto out;
  799. }
  800. /* Not an ack interrupt, go ahead and read the message */
  801. hw->mbx.ops.read(hw, &msg, 1);
  802. if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
  803. mod_timer(&adapter->watchdog_timer,
  804. round_jiffies(jiffies + 1));
  805. out:
  806. return IRQ_HANDLED;
  807. }
  808. static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
  809. {
  810. struct ixgbevf_q_vector *q_vector = data;
  811. struct ixgbevf_adapter *adapter = q_vector->adapter;
  812. struct ixgbevf_ring *tx_ring;
  813. int i, r_idx;
  814. if (!q_vector->txr_count)
  815. return IRQ_HANDLED;
  816. r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
  817. for (i = 0; i < q_vector->txr_count; i++) {
  818. tx_ring = &(adapter->tx_ring[r_idx]);
  819. tx_ring->total_bytes = 0;
  820. tx_ring->total_packets = 0;
  821. ixgbevf_clean_tx_irq(adapter, tx_ring);
  822. r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
  823. r_idx + 1);
  824. }
  825. if (adapter->itr_setting & 1)
  826. ixgbevf_set_itr_msix(q_vector);
  827. return IRQ_HANDLED;
  828. }
  829. /**
  830. * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
  831. * @irq: unused
  832. * @data: pointer to our q_vector struct for this interrupt vector
  833. **/
  834. static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
  835. {
  836. struct ixgbevf_q_vector *q_vector = data;
  837. struct ixgbevf_adapter *adapter = q_vector->adapter;
  838. struct ixgbe_hw *hw = &adapter->hw;
  839. struct ixgbevf_ring *rx_ring;
  840. int r_idx;
  841. int i;
  842. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  843. for (i = 0; i < q_vector->rxr_count; i++) {
  844. rx_ring = &(adapter->rx_ring[r_idx]);
  845. rx_ring->total_bytes = 0;
  846. rx_ring->total_packets = 0;
  847. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  848. r_idx + 1);
  849. }
  850. if (!q_vector->rxr_count)
  851. return IRQ_HANDLED;
  852. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  853. rx_ring = &(adapter->rx_ring[r_idx]);
  854. /* disable interrupts on this vector only */
  855. IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
  856. napi_schedule(&q_vector->napi);
  857. return IRQ_HANDLED;
  858. }
  859. static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
  860. {
  861. ixgbevf_msix_clean_rx(irq, data);
  862. ixgbevf_msix_clean_tx(irq, data);
  863. return IRQ_HANDLED;
  864. }
  865. static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
  866. int r_idx)
  867. {
  868. struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
  869. set_bit(r_idx, q_vector->rxr_idx);
  870. q_vector->rxr_count++;
  871. a->rx_ring[r_idx].v_idx = 1 << v_idx;
  872. }
  873. static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
  874. int t_idx)
  875. {
  876. struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
  877. set_bit(t_idx, q_vector->txr_idx);
  878. q_vector->txr_count++;
  879. a->tx_ring[t_idx].v_idx = 1 << v_idx;
  880. }
  881. /**
  882. * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
  883. * @adapter: board private structure to initialize
  884. *
  885. * This function maps descriptor rings to the queue-specific vectors
  886. * we were allotted through the MSI-X enabling code. Ideally, we'd have
  887. * one vector per ring/queue, but on a constrained vector budget, we
  888. * group the rings as "efficiently" as possible. You would add new
  889. * mapping configurations in here.
  890. **/
  891. static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
  892. {
  893. int q_vectors;
  894. int v_start = 0;
  895. int rxr_idx = 0, txr_idx = 0;
  896. int rxr_remaining = adapter->num_rx_queues;
  897. int txr_remaining = adapter->num_tx_queues;
  898. int i, j;
  899. int rqpv, tqpv;
  900. int err = 0;
  901. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  902. /*
  903. * The ideal configuration...
  904. * We have enough vectors to map one per queue.
  905. */
  906. if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
  907. for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
  908. map_vector_to_rxq(adapter, v_start, rxr_idx);
  909. for (; txr_idx < txr_remaining; v_start++, txr_idx++)
  910. map_vector_to_txq(adapter, v_start, txr_idx);
  911. goto out;
  912. }
  913. /*
  914. * If we don't have enough vectors for a 1-to-1
  915. * mapping, we'll have to group them so there are
  916. * multiple queues per vector.
  917. */
  918. /* Re-adjusting *qpv takes care of the remainder. */
  919. for (i = v_start; i < q_vectors; i++) {
  920. rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
  921. for (j = 0; j < rqpv; j++) {
  922. map_vector_to_rxq(adapter, i, rxr_idx);
  923. rxr_idx++;
  924. rxr_remaining--;
  925. }
  926. }
  927. for (i = v_start; i < q_vectors; i++) {
  928. tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
  929. for (j = 0; j < tqpv; j++) {
  930. map_vector_to_txq(adapter, i, txr_idx);
  931. txr_idx++;
  932. txr_remaining--;
  933. }
  934. }
  935. out:
  936. return err;
  937. }
  938. /**
  939. * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
  940. * @adapter: board private structure
  941. *
  942. * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
  943. * interrupts from the kernel.
  944. **/
  945. static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
  946. {
  947. struct net_device *netdev = adapter->netdev;
  948. irqreturn_t (*handler)(int, void *);
  949. int i, vector, q_vectors, err;
  950. int ri = 0, ti = 0;
  951. /* Decrement for Other and TCP Timer vectors */
  952. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  953. #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
  954. ? &ixgbevf_msix_clean_many : \
  955. (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
  956. (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
  957. NULL)
  958. for (vector = 0; vector < q_vectors; vector++) {
  959. handler = SET_HANDLER(adapter->q_vector[vector]);
  960. if (handler == &ixgbevf_msix_clean_rx) {
  961. sprintf(adapter->name[vector], "%s-%s-%d",
  962. netdev->name, "rx", ri++);
  963. } else if (handler == &ixgbevf_msix_clean_tx) {
  964. sprintf(adapter->name[vector], "%s-%s-%d",
  965. netdev->name, "tx", ti++);
  966. } else if (handler == &ixgbevf_msix_clean_many) {
  967. sprintf(adapter->name[vector], "%s-%s-%d",
  968. netdev->name, "TxRx", vector);
  969. } else {
  970. /* skip this unused q_vector */
  971. continue;
  972. }
  973. err = request_irq(adapter->msix_entries[vector].vector,
  974. handler, 0, adapter->name[vector],
  975. adapter->q_vector[vector]);
  976. if (err) {
  977. hw_dbg(&adapter->hw,
  978. "request_irq failed for MSIX interrupt "
  979. "Error: %d\n", err);
  980. goto free_queue_irqs;
  981. }
  982. }
  983. sprintf(adapter->name[vector], "%s:mbx", netdev->name);
  984. err = request_irq(adapter->msix_entries[vector].vector,
  985. &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
  986. if (err) {
  987. hw_dbg(&adapter->hw,
  988. "request_irq for msix_mbx failed: %d\n", err);
  989. goto free_queue_irqs;
  990. }
  991. return 0;
  992. free_queue_irqs:
  993. for (i = vector - 1; i >= 0; i--)
  994. free_irq(adapter->msix_entries[--vector].vector,
  995. &(adapter->q_vector[i]));
  996. pci_disable_msix(adapter->pdev);
  997. kfree(adapter->msix_entries);
  998. adapter->msix_entries = NULL;
  999. return err;
  1000. }
  1001. static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
  1002. {
  1003. int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1004. for (i = 0; i < q_vectors; i++) {
  1005. struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
  1006. bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
  1007. bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
  1008. q_vector->rxr_count = 0;
  1009. q_vector->txr_count = 0;
  1010. q_vector->eitr = adapter->eitr_param;
  1011. }
  1012. }
  1013. /**
  1014. * ixgbevf_request_irq - initialize interrupts
  1015. * @adapter: board private structure
  1016. *
  1017. * Attempts to configure interrupts using the best available
  1018. * capabilities of the hardware and kernel.
  1019. **/
  1020. static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
  1021. {
  1022. int err = 0;
  1023. err = ixgbevf_request_msix_irqs(adapter);
  1024. if (err)
  1025. hw_dbg(&adapter->hw,
  1026. "request_irq failed, Error %d\n", err);
  1027. return err;
  1028. }
  1029. static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
  1030. {
  1031. struct net_device *netdev = adapter->netdev;
  1032. int i, q_vectors;
  1033. q_vectors = adapter->num_msix_vectors;
  1034. i = q_vectors - 1;
  1035. free_irq(adapter->msix_entries[i].vector, netdev);
  1036. i--;
  1037. for (; i >= 0; i--) {
  1038. free_irq(adapter->msix_entries[i].vector,
  1039. adapter->q_vector[i]);
  1040. }
  1041. ixgbevf_reset_q_vectors(adapter);
  1042. }
  1043. /**
  1044. * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
  1045. * @adapter: board private structure
  1046. **/
  1047. static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
  1048. {
  1049. int i;
  1050. struct ixgbe_hw *hw = &adapter->hw;
  1051. IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
  1052. IXGBE_WRITE_FLUSH(hw);
  1053. for (i = 0; i < adapter->num_msix_vectors; i++)
  1054. synchronize_irq(adapter->msix_entries[i].vector);
  1055. }
  1056. /**
  1057. * ixgbevf_irq_enable - Enable default interrupt generation settings
  1058. * @adapter: board private structure
  1059. **/
  1060. static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
  1061. bool queues, bool flush)
  1062. {
  1063. struct ixgbe_hw *hw = &adapter->hw;
  1064. u32 mask;
  1065. u64 qmask;
  1066. mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
  1067. qmask = ~0;
  1068. IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
  1069. if (queues)
  1070. ixgbevf_irq_enable_queues(adapter, qmask);
  1071. if (flush)
  1072. IXGBE_WRITE_FLUSH(hw);
  1073. }
  1074. /**
  1075. * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
  1076. * @adapter: board private structure
  1077. *
  1078. * Configure the Tx unit of the MAC after a reset.
  1079. **/
  1080. static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
  1081. {
  1082. u64 tdba;
  1083. struct ixgbe_hw *hw = &adapter->hw;
  1084. u32 i, j, tdlen, txctrl;
  1085. /* Setup the HW Tx Head and Tail descriptor pointers */
  1086. for (i = 0; i < adapter->num_tx_queues; i++) {
  1087. struct ixgbevf_ring *ring = &adapter->tx_ring[i];
  1088. j = ring->reg_idx;
  1089. tdba = ring->dma;
  1090. tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
  1091. IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
  1092. (tdba & DMA_BIT_MASK(32)));
  1093. IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
  1094. IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
  1095. IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
  1096. IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
  1097. adapter->tx_ring[i].head = IXGBE_VFTDH(j);
  1098. adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
  1099. /* Disable Tx Head Writeback RO bit, since this hoses
  1100. * bookkeeping if things aren't delivered in order.
  1101. */
  1102. txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
  1103. txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
  1104. IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
  1105. }
  1106. }
  1107. #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
  1108. static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
  1109. {
  1110. struct ixgbevf_ring *rx_ring;
  1111. struct ixgbe_hw *hw = &adapter->hw;
  1112. u32 srrctl;
  1113. rx_ring = &adapter->rx_ring[index];
  1114. srrctl = IXGBE_SRRCTL_DROP_EN;
  1115. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  1116. u16 bufsz = IXGBEVF_RXBUFFER_2048;
  1117. /* grow the amount we can receive on large page machines */
  1118. if (bufsz < (PAGE_SIZE / 2))
  1119. bufsz = (PAGE_SIZE / 2);
  1120. /* cap the bufsz at our largest descriptor size */
  1121. bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
  1122. srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1123. srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
  1124. srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
  1125. IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
  1126. IXGBE_SRRCTL_BSIZEHDR_MASK);
  1127. } else {
  1128. srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
  1129. if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
  1130. srrctl |= IXGBEVF_RXBUFFER_2048 >>
  1131. IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1132. else
  1133. srrctl |= rx_ring->rx_buf_len >>
  1134. IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1135. }
  1136. IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
  1137. }
  1138. /**
  1139. * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
  1140. * @adapter: board private structure
  1141. *
  1142. * Configure the Rx unit of the MAC after a reset.
  1143. **/
  1144. static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
  1145. {
  1146. u64 rdba;
  1147. struct ixgbe_hw *hw = &adapter->hw;
  1148. struct net_device *netdev = adapter->netdev;
  1149. int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
  1150. int i, j;
  1151. u32 rdlen;
  1152. int rx_buf_len;
  1153. /* Decide whether to use packet split mode or not */
  1154. if (netdev->mtu > ETH_DATA_LEN) {
  1155. if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
  1156. adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
  1157. else
  1158. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  1159. } else {
  1160. if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
  1161. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  1162. else
  1163. adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
  1164. }
  1165. /* Set the RX buffer length according to the mode */
  1166. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  1167. /* PSRTYPE must be initialized in 82599 */
  1168. u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
  1169. IXGBE_PSRTYPE_UDPHDR |
  1170. IXGBE_PSRTYPE_IPV4HDR |
  1171. IXGBE_PSRTYPE_IPV6HDR |
  1172. IXGBE_PSRTYPE_L2HDR;
  1173. IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
  1174. rx_buf_len = IXGBEVF_RX_HDR_SIZE;
  1175. } else {
  1176. IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
  1177. if (netdev->mtu <= ETH_DATA_LEN)
  1178. rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
  1179. else
  1180. rx_buf_len = ALIGN(max_frame, 1024);
  1181. }
  1182. rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
  1183. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1184. * the Base and Length of the Rx Descriptor Ring */
  1185. for (i = 0; i < adapter->num_rx_queues; i++) {
  1186. rdba = adapter->rx_ring[i].dma;
  1187. j = adapter->rx_ring[i].reg_idx;
  1188. IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
  1189. (rdba & DMA_BIT_MASK(32)));
  1190. IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
  1191. IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
  1192. IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
  1193. IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
  1194. adapter->rx_ring[i].head = IXGBE_VFRDH(j);
  1195. adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
  1196. adapter->rx_ring[i].rx_buf_len = rx_buf_len;
  1197. ixgbevf_configure_srrctl(adapter, j);
  1198. }
  1199. }
  1200. static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
  1201. {
  1202. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1203. struct ixgbe_hw *hw = &adapter->hw;
  1204. /* add VID to filter table */
  1205. if (hw->mac.ops.set_vfta)
  1206. hw->mac.ops.set_vfta(hw, vid, 0, true);
  1207. set_bit(vid, adapter->active_vlans);
  1208. }
  1209. static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
  1210. {
  1211. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1212. struct ixgbe_hw *hw = &adapter->hw;
  1213. /* remove VID from filter table */
  1214. if (hw->mac.ops.set_vfta)
  1215. hw->mac.ops.set_vfta(hw, vid, 0, false);
  1216. clear_bit(vid, adapter->active_vlans);
  1217. }
  1218. static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
  1219. {
  1220. u16 vid;
  1221. for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
  1222. ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
  1223. }
  1224. static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
  1225. {
  1226. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1227. struct ixgbe_hw *hw = &adapter->hw;
  1228. int count = 0;
  1229. if ((netdev_uc_count(netdev)) > 10) {
  1230. printk(KERN_ERR "Too many unicast filters - No Space\n");
  1231. return -ENOSPC;
  1232. }
  1233. if (!netdev_uc_empty(netdev)) {
  1234. struct netdev_hw_addr *ha;
  1235. netdev_for_each_uc_addr(ha, netdev) {
  1236. hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
  1237. udelay(200);
  1238. }
  1239. } else {
  1240. /*
  1241. * If the list is empty then send message to PF driver to
  1242. * clear all macvlans on this VF.
  1243. */
  1244. hw->mac.ops.set_uc_addr(hw, 0, NULL);
  1245. }
  1246. return count;
  1247. }
  1248. /**
  1249. * ixgbevf_set_rx_mode - Multicast set
  1250. * @netdev: network interface device structure
  1251. *
  1252. * The set_rx_method entry point is called whenever the multicast address
  1253. * list or the network interface flags are updated. This routine is
  1254. * responsible for configuring the hardware for proper multicast mode.
  1255. **/
  1256. static void ixgbevf_set_rx_mode(struct net_device *netdev)
  1257. {
  1258. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1259. struct ixgbe_hw *hw = &adapter->hw;
  1260. /* reprogram multicast list */
  1261. if (hw->mac.ops.update_mc_addr_list)
  1262. hw->mac.ops.update_mc_addr_list(hw, netdev);
  1263. ixgbevf_write_uc_addr_list(netdev);
  1264. }
  1265. static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
  1266. {
  1267. int q_idx;
  1268. struct ixgbevf_q_vector *q_vector;
  1269. int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1270. for (q_idx = 0; q_idx < q_vectors; q_idx++) {
  1271. struct napi_struct *napi;
  1272. q_vector = adapter->q_vector[q_idx];
  1273. if (!q_vector->rxr_count)
  1274. continue;
  1275. napi = &q_vector->napi;
  1276. if (q_vector->rxr_count > 1)
  1277. napi->poll = &ixgbevf_clean_rxonly_many;
  1278. napi_enable(napi);
  1279. }
  1280. }
  1281. static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
  1282. {
  1283. int q_idx;
  1284. struct ixgbevf_q_vector *q_vector;
  1285. int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1286. for (q_idx = 0; q_idx < q_vectors; q_idx++) {
  1287. q_vector = adapter->q_vector[q_idx];
  1288. if (!q_vector->rxr_count)
  1289. continue;
  1290. napi_disable(&q_vector->napi);
  1291. }
  1292. }
  1293. static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
  1294. {
  1295. struct net_device *netdev = adapter->netdev;
  1296. int i;
  1297. ixgbevf_set_rx_mode(netdev);
  1298. ixgbevf_restore_vlan(adapter);
  1299. ixgbevf_configure_tx(adapter);
  1300. ixgbevf_configure_rx(adapter);
  1301. for (i = 0; i < adapter->num_rx_queues; i++) {
  1302. struct ixgbevf_ring *ring = &adapter->rx_ring[i];
  1303. ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
  1304. ring->next_to_use = ring->count - 1;
  1305. writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
  1306. }
  1307. }
  1308. #define IXGBE_MAX_RX_DESC_POLL 10
  1309. static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
  1310. int rxr)
  1311. {
  1312. struct ixgbe_hw *hw = &adapter->hw;
  1313. int j = adapter->rx_ring[rxr].reg_idx;
  1314. int k;
  1315. for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
  1316. if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
  1317. break;
  1318. else
  1319. msleep(1);
  1320. }
  1321. if (k >= IXGBE_MAX_RX_DESC_POLL) {
  1322. hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
  1323. "not set within the polling period\n", rxr);
  1324. }
  1325. ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
  1326. (adapter->rx_ring[rxr].count - 1));
  1327. }
  1328. static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
  1329. {
  1330. /* Only save pre-reset stats if there are some */
  1331. if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
  1332. adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
  1333. adapter->stats.base_vfgprc;
  1334. adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
  1335. adapter->stats.base_vfgptc;
  1336. adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
  1337. adapter->stats.base_vfgorc;
  1338. adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
  1339. adapter->stats.base_vfgotc;
  1340. adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
  1341. adapter->stats.base_vfmprc;
  1342. }
  1343. }
  1344. static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
  1345. {
  1346. struct ixgbe_hw *hw = &adapter->hw;
  1347. adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
  1348. adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
  1349. adapter->stats.last_vfgorc |=
  1350. (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
  1351. adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
  1352. adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
  1353. adapter->stats.last_vfgotc |=
  1354. (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
  1355. adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
  1356. adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
  1357. adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
  1358. adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
  1359. adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
  1360. adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
  1361. }
  1362. static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
  1363. {
  1364. struct net_device *netdev = adapter->netdev;
  1365. struct ixgbe_hw *hw = &adapter->hw;
  1366. int i, j = 0;
  1367. int num_rx_rings = adapter->num_rx_queues;
  1368. u32 txdctl, rxdctl;
  1369. for (i = 0; i < adapter->num_tx_queues; i++) {
  1370. j = adapter->tx_ring[i].reg_idx;
  1371. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1372. /* enable WTHRESH=8 descriptors, to encourage burst writeback */
  1373. txdctl |= (8 << 16);
  1374. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
  1375. }
  1376. for (i = 0; i < adapter->num_tx_queues; i++) {
  1377. j = adapter->tx_ring[i].reg_idx;
  1378. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1379. txdctl |= IXGBE_TXDCTL_ENABLE;
  1380. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
  1381. }
  1382. for (i = 0; i < num_rx_rings; i++) {
  1383. j = adapter->rx_ring[i].reg_idx;
  1384. rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
  1385. rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
  1386. if (hw->mac.type == ixgbe_mac_X540_vf) {
  1387. rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
  1388. rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
  1389. IXGBE_RXDCTL_RLPML_EN);
  1390. }
  1391. IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
  1392. ixgbevf_rx_desc_queue_enable(adapter, i);
  1393. }
  1394. ixgbevf_configure_msix(adapter);
  1395. if (hw->mac.ops.set_rar) {
  1396. if (is_valid_ether_addr(hw->mac.addr))
  1397. hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
  1398. else
  1399. hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
  1400. }
  1401. clear_bit(__IXGBEVF_DOWN, &adapter->state);
  1402. ixgbevf_napi_enable_all(adapter);
  1403. /* enable transmits */
  1404. netif_tx_start_all_queues(netdev);
  1405. ixgbevf_save_reset_stats(adapter);
  1406. ixgbevf_init_last_counter_stats(adapter);
  1407. /* bring the link up in the watchdog, this could race with our first
  1408. * link up interrupt but shouldn't be a problem */
  1409. adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
  1410. adapter->link_check_timeout = jiffies;
  1411. mod_timer(&adapter->watchdog_timer, jiffies);
  1412. return 0;
  1413. }
  1414. int ixgbevf_up(struct ixgbevf_adapter *adapter)
  1415. {
  1416. int err;
  1417. struct ixgbe_hw *hw = &adapter->hw;
  1418. ixgbevf_configure(adapter);
  1419. err = ixgbevf_up_complete(adapter);
  1420. /* clear any pending interrupts, may auto mask */
  1421. IXGBE_READ_REG(hw, IXGBE_VTEICR);
  1422. ixgbevf_irq_enable(adapter, true, true);
  1423. return err;
  1424. }
  1425. /**
  1426. * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
  1427. * @adapter: board private structure
  1428. * @rx_ring: ring to free buffers from
  1429. **/
  1430. static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
  1431. struct ixgbevf_ring *rx_ring)
  1432. {
  1433. struct pci_dev *pdev = adapter->pdev;
  1434. unsigned long size;
  1435. unsigned int i;
  1436. if (!rx_ring->rx_buffer_info)
  1437. return;
  1438. /* Free all the Rx ring sk_buffs */
  1439. for (i = 0; i < rx_ring->count; i++) {
  1440. struct ixgbevf_rx_buffer *rx_buffer_info;
  1441. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  1442. if (rx_buffer_info->dma) {
  1443. dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
  1444. rx_ring->rx_buf_len,
  1445. DMA_FROM_DEVICE);
  1446. rx_buffer_info->dma = 0;
  1447. }
  1448. if (rx_buffer_info->skb) {
  1449. struct sk_buff *skb = rx_buffer_info->skb;
  1450. rx_buffer_info->skb = NULL;
  1451. do {
  1452. struct sk_buff *this = skb;
  1453. skb = skb->prev;
  1454. dev_kfree_skb(this);
  1455. } while (skb);
  1456. }
  1457. if (!rx_buffer_info->page)
  1458. continue;
  1459. dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
  1460. PAGE_SIZE / 2, DMA_FROM_DEVICE);
  1461. rx_buffer_info->page_dma = 0;
  1462. put_page(rx_buffer_info->page);
  1463. rx_buffer_info->page = NULL;
  1464. rx_buffer_info->page_offset = 0;
  1465. }
  1466. size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
  1467. memset(rx_ring->rx_buffer_info, 0, size);
  1468. /* Zero out the descriptor ring */
  1469. memset(rx_ring->desc, 0, rx_ring->size);
  1470. rx_ring->next_to_clean = 0;
  1471. rx_ring->next_to_use = 0;
  1472. if (rx_ring->head)
  1473. writel(0, adapter->hw.hw_addr + rx_ring->head);
  1474. if (rx_ring->tail)
  1475. writel(0, adapter->hw.hw_addr + rx_ring->tail);
  1476. }
  1477. /**
  1478. * ixgbevf_clean_tx_ring - Free Tx Buffers
  1479. * @adapter: board private structure
  1480. * @tx_ring: ring to be cleaned
  1481. **/
  1482. static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
  1483. struct ixgbevf_ring *tx_ring)
  1484. {
  1485. struct ixgbevf_tx_buffer *tx_buffer_info;
  1486. unsigned long size;
  1487. unsigned int i;
  1488. if (!tx_ring->tx_buffer_info)
  1489. return;
  1490. /* Free all the Tx ring sk_buffs */
  1491. for (i = 0; i < tx_ring->count; i++) {
  1492. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  1493. ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
  1494. }
  1495. size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
  1496. memset(tx_ring->tx_buffer_info, 0, size);
  1497. memset(tx_ring->desc, 0, tx_ring->size);
  1498. tx_ring->next_to_use = 0;
  1499. tx_ring->next_to_clean = 0;
  1500. if (tx_ring->head)
  1501. writel(0, adapter->hw.hw_addr + tx_ring->head);
  1502. if (tx_ring->tail)
  1503. writel(0, adapter->hw.hw_addr + tx_ring->tail);
  1504. }
  1505. /**
  1506. * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
  1507. * @adapter: board private structure
  1508. **/
  1509. static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
  1510. {
  1511. int i;
  1512. for (i = 0; i < adapter->num_rx_queues; i++)
  1513. ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1514. }
  1515. /**
  1516. * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
  1517. * @adapter: board private structure
  1518. **/
  1519. static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
  1520. {
  1521. int i;
  1522. for (i = 0; i < adapter->num_tx_queues; i++)
  1523. ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1524. }
  1525. void ixgbevf_down(struct ixgbevf_adapter *adapter)
  1526. {
  1527. struct net_device *netdev = adapter->netdev;
  1528. struct ixgbe_hw *hw = &adapter->hw;
  1529. u32 txdctl;
  1530. int i, j;
  1531. /* signal that we are down to the interrupt handler */
  1532. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1533. /* disable receives */
  1534. netif_tx_disable(netdev);
  1535. msleep(10);
  1536. netif_tx_stop_all_queues(netdev);
  1537. ixgbevf_irq_disable(adapter);
  1538. ixgbevf_napi_disable_all(adapter);
  1539. del_timer_sync(&adapter->watchdog_timer);
  1540. /* can't call flush scheduled work here because it can deadlock
  1541. * if linkwatch_event tries to acquire the rtnl_lock which we are
  1542. * holding */
  1543. while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
  1544. msleep(1);
  1545. /* disable transmits in the hardware now that interrupts are off */
  1546. for (i = 0; i < adapter->num_tx_queues; i++) {
  1547. j = adapter->tx_ring[i].reg_idx;
  1548. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1549. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
  1550. (txdctl & ~IXGBE_TXDCTL_ENABLE));
  1551. }
  1552. netif_carrier_off(netdev);
  1553. if (!pci_channel_offline(adapter->pdev))
  1554. ixgbevf_reset(adapter);
  1555. ixgbevf_clean_all_tx_rings(adapter);
  1556. ixgbevf_clean_all_rx_rings(adapter);
  1557. }
  1558. void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
  1559. {
  1560. struct ixgbe_hw *hw = &adapter->hw;
  1561. WARN_ON(in_interrupt());
  1562. while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
  1563. msleep(1);
  1564. /*
  1565. * Check if PF is up before re-init. If not then skip until
  1566. * later when the PF is up and ready to service requests from
  1567. * the VF via mailbox. If the VF is up and running then the
  1568. * watchdog task will continue to schedule reset tasks until
  1569. * the PF is up and running.
  1570. */
  1571. if (!hw->mac.ops.reset_hw(hw)) {
  1572. ixgbevf_down(adapter);
  1573. ixgbevf_up(adapter);
  1574. }
  1575. clear_bit(__IXGBEVF_RESETTING, &adapter->state);
  1576. }
  1577. void ixgbevf_reset(struct ixgbevf_adapter *adapter)
  1578. {
  1579. struct ixgbe_hw *hw = &adapter->hw;
  1580. struct net_device *netdev = adapter->netdev;
  1581. if (hw->mac.ops.reset_hw(hw))
  1582. hw_dbg(hw, "PF still resetting\n");
  1583. else
  1584. hw->mac.ops.init_hw(hw);
  1585. if (is_valid_ether_addr(adapter->hw.mac.addr)) {
  1586. memcpy(netdev->dev_addr, adapter->hw.mac.addr,
  1587. netdev->addr_len);
  1588. memcpy(netdev->perm_addr, adapter->hw.mac.addr,
  1589. netdev->addr_len);
  1590. }
  1591. }
  1592. static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
  1593. int vectors)
  1594. {
  1595. int err, vector_threshold;
  1596. /* We'll want at least 3 (vector_threshold):
  1597. * 1) TxQ[0] Cleanup
  1598. * 2) RxQ[0] Cleanup
  1599. * 3) Other (Link Status Change, etc.)
  1600. */
  1601. vector_threshold = MIN_MSIX_COUNT;
  1602. /* The more we get, the more we will assign to Tx/Rx Cleanup
  1603. * for the separate queues...where Rx Cleanup >= Tx Cleanup.
  1604. * Right now, we simply care about how many we'll get; we'll
  1605. * set them up later while requesting irq's.
  1606. */
  1607. while (vectors >= vector_threshold) {
  1608. err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
  1609. vectors);
  1610. if (!err) /* Success in acquiring all requested vectors. */
  1611. break;
  1612. else if (err < 0)
  1613. vectors = 0; /* Nasty failure, quit now */
  1614. else /* err == number of vectors we should try again with */
  1615. vectors = err;
  1616. }
  1617. if (vectors < vector_threshold) {
  1618. /* Can't allocate enough MSI-X interrupts? Oh well.
  1619. * This just means we'll go with either a single MSI
  1620. * vector or fall back to legacy interrupts.
  1621. */
  1622. hw_dbg(&adapter->hw,
  1623. "Unable to allocate MSI-X interrupts\n");
  1624. kfree(adapter->msix_entries);
  1625. adapter->msix_entries = NULL;
  1626. } else {
  1627. /*
  1628. * Adjust for only the vectors we'll use, which is minimum
  1629. * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
  1630. * vectors we were allocated.
  1631. */
  1632. adapter->num_msix_vectors = vectors;
  1633. }
  1634. }
  1635. /*
  1636. * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
  1637. * @adapter: board private structure to initialize
  1638. *
  1639. * This is the top level queue allocation routine. The order here is very
  1640. * important, starting with the "most" number of features turned on at once,
  1641. * and ending with the smallest set of features. This way large combinations
  1642. * can be allocated if they're turned on, and smaller combinations are the
  1643. * fallthrough conditions.
  1644. *
  1645. **/
  1646. static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
  1647. {
  1648. /* Start with base case */
  1649. adapter->num_rx_queues = 1;
  1650. adapter->num_tx_queues = 1;
  1651. adapter->num_rx_pools = adapter->num_rx_queues;
  1652. adapter->num_rx_queues_per_pool = 1;
  1653. }
  1654. /**
  1655. * ixgbevf_alloc_queues - Allocate memory for all rings
  1656. * @adapter: board private structure to initialize
  1657. *
  1658. * We allocate one ring per queue at run-time since we don't know the
  1659. * number of queues at compile-time. The polling_netdev array is
  1660. * intended for Multiqueue, but should work fine with a single queue.
  1661. **/
  1662. static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
  1663. {
  1664. int i;
  1665. adapter->tx_ring = kcalloc(adapter->num_tx_queues,
  1666. sizeof(struct ixgbevf_ring), GFP_KERNEL);
  1667. if (!adapter->tx_ring)
  1668. goto err_tx_ring_allocation;
  1669. adapter->rx_ring = kcalloc(adapter->num_rx_queues,
  1670. sizeof(struct ixgbevf_ring), GFP_KERNEL);
  1671. if (!adapter->rx_ring)
  1672. goto err_rx_ring_allocation;
  1673. for (i = 0; i < adapter->num_tx_queues; i++) {
  1674. adapter->tx_ring[i].count = adapter->tx_ring_count;
  1675. adapter->tx_ring[i].queue_index = i;
  1676. adapter->tx_ring[i].reg_idx = i;
  1677. }
  1678. for (i = 0; i < adapter->num_rx_queues; i++) {
  1679. adapter->rx_ring[i].count = adapter->rx_ring_count;
  1680. adapter->rx_ring[i].queue_index = i;
  1681. adapter->rx_ring[i].reg_idx = i;
  1682. }
  1683. return 0;
  1684. err_rx_ring_allocation:
  1685. kfree(adapter->tx_ring);
  1686. err_tx_ring_allocation:
  1687. return -ENOMEM;
  1688. }
  1689. /**
  1690. * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
  1691. * @adapter: board private structure to initialize
  1692. *
  1693. * Attempt to configure the interrupts using the best available
  1694. * capabilities of the hardware and the kernel.
  1695. **/
  1696. static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
  1697. {
  1698. int err = 0;
  1699. int vector, v_budget;
  1700. /*
  1701. * It's easy to be greedy for MSI-X vectors, but it really
  1702. * doesn't do us much good if we have a lot more vectors
  1703. * than CPU's. So let's be conservative and only ask for
  1704. * (roughly) twice the number of vectors as there are CPU's.
  1705. */
  1706. v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
  1707. (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
  1708. /* A failure in MSI-X entry allocation isn't fatal, but it does
  1709. * mean we disable MSI-X capabilities of the adapter. */
  1710. adapter->msix_entries = kcalloc(v_budget,
  1711. sizeof(struct msix_entry), GFP_KERNEL);
  1712. if (!adapter->msix_entries) {
  1713. err = -ENOMEM;
  1714. goto out;
  1715. }
  1716. for (vector = 0; vector < v_budget; vector++)
  1717. adapter->msix_entries[vector].entry = vector;
  1718. ixgbevf_acquire_msix_vectors(adapter, v_budget);
  1719. out:
  1720. return err;
  1721. }
  1722. /**
  1723. * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
  1724. * @adapter: board private structure to initialize
  1725. *
  1726. * We allocate one q_vector per queue interrupt. If allocation fails we
  1727. * return -ENOMEM.
  1728. **/
  1729. static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
  1730. {
  1731. int q_idx, num_q_vectors;
  1732. struct ixgbevf_q_vector *q_vector;
  1733. int napi_vectors;
  1734. int (*poll)(struct napi_struct *, int);
  1735. num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1736. napi_vectors = adapter->num_rx_queues;
  1737. poll = &ixgbevf_clean_rxonly;
  1738. for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
  1739. q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
  1740. if (!q_vector)
  1741. goto err_out;
  1742. q_vector->adapter = adapter;
  1743. q_vector->v_idx = q_idx;
  1744. q_vector->eitr = adapter->eitr_param;
  1745. if (q_idx < napi_vectors)
  1746. netif_napi_add(adapter->netdev, &q_vector->napi,
  1747. (*poll), 64);
  1748. adapter->q_vector[q_idx] = q_vector;
  1749. }
  1750. return 0;
  1751. err_out:
  1752. while (q_idx) {
  1753. q_idx--;
  1754. q_vector = adapter->q_vector[q_idx];
  1755. netif_napi_del(&q_vector->napi);
  1756. kfree(q_vector);
  1757. adapter->q_vector[q_idx] = NULL;
  1758. }
  1759. return -ENOMEM;
  1760. }
  1761. /**
  1762. * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
  1763. * @adapter: board private structure to initialize
  1764. *
  1765. * This function frees the memory allocated to the q_vectors. In addition if
  1766. * NAPI is enabled it will delete any references to the NAPI struct prior
  1767. * to freeing the q_vector.
  1768. **/
  1769. static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
  1770. {
  1771. int q_idx, num_q_vectors;
  1772. int napi_vectors;
  1773. num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1774. napi_vectors = adapter->num_rx_queues;
  1775. for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
  1776. struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
  1777. adapter->q_vector[q_idx] = NULL;
  1778. if (q_idx < napi_vectors)
  1779. netif_napi_del(&q_vector->napi);
  1780. kfree(q_vector);
  1781. }
  1782. }
  1783. /**
  1784. * ixgbevf_reset_interrupt_capability - Reset MSIX setup
  1785. * @adapter: board private structure
  1786. *
  1787. **/
  1788. static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
  1789. {
  1790. pci_disable_msix(adapter->pdev);
  1791. kfree(adapter->msix_entries);
  1792. adapter->msix_entries = NULL;
  1793. }
  1794. /**
  1795. * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
  1796. * @adapter: board private structure to initialize
  1797. *
  1798. **/
  1799. static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
  1800. {
  1801. int err;
  1802. /* Number of supported queues */
  1803. ixgbevf_set_num_queues(adapter);
  1804. err = ixgbevf_set_interrupt_capability(adapter);
  1805. if (err) {
  1806. hw_dbg(&adapter->hw,
  1807. "Unable to setup interrupt capabilities\n");
  1808. goto err_set_interrupt;
  1809. }
  1810. err = ixgbevf_alloc_q_vectors(adapter);
  1811. if (err) {
  1812. hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
  1813. "vectors\n");
  1814. goto err_alloc_q_vectors;
  1815. }
  1816. err = ixgbevf_alloc_queues(adapter);
  1817. if (err) {
  1818. printk(KERN_ERR "Unable to allocate memory for queues\n");
  1819. goto err_alloc_queues;
  1820. }
  1821. hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
  1822. "Tx Queue count = %u\n",
  1823. (adapter->num_rx_queues > 1) ? "Enabled" :
  1824. "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
  1825. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1826. return 0;
  1827. err_alloc_queues:
  1828. ixgbevf_free_q_vectors(adapter);
  1829. err_alloc_q_vectors:
  1830. ixgbevf_reset_interrupt_capability(adapter);
  1831. err_set_interrupt:
  1832. return err;
  1833. }
  1834. /**
  1835. * ixgbevf_sw_init - Initialize general software structures
  1836. * (struct ixgbevf_adapter)
  1837. * @adapter: board private structure to initialize
  1838. *
  1839. * ixgbevf_sw_init initializes the Adapter private data structure.
  1840. * Fields are initialized based on PCI device information and
  1841. * OS network device settings (MTU size).
  1842. **/
  1843. static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
  1844. {
  1845. struct ixgbe_hw *hw = &adapter->hw;
  1846. struct pci_dev *pdev = adapter->pdev;
  1847. int err;
  1848. /* PCI config space info */
  1849. hw->vendor_id = pdev->vendor;
  1850. hw->device_id = pdev->device;
  1851. hw->revision_id = pdev->revision;
  1852. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  1853. hw->subsystem_device_id = pdev->subsystem_device;
  1854. hw->mbx.ops.init_params(hw);
  1855. hw->mac.max_tx_queues = MAX_TX_QUEUES;
  1856. hw->mac.max_rx_queues = MAX_RX_QUEUES;
  1857. err = hw->mac.ops.reset_hw(hw);
  1858. if (err) {
  1859. dev_info(&pdev->dev,
  1860. "PF still in reset state, assigning new address\n");
  1861. dev_hw_addr_random(adapter->netdev, hw->mac.addr);
  1862. } else {
  1863. err = hw->mac.ops.init_hw(hw);
  1864. if (err) {
  1865. printk(KERN_ERR "init_shared_code failed: %d\n", err);
  1866. goto out;
  1867. }
  1868. }
  1869. /* Enable dynamic interrupt throttling rates */
  1870. adapter->eitr_param = 20000;
  1871. adapter->itr_setting = 1;
  1872. /* set defaults for eitr in MegaBytes */
  1873. adapter->eitr_low = 10;
  1874. adapter->eitr_high = 20;
  1875. /* set default ring sizes */
  1876. adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
  1877. adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
  1878. /* enable rx csum by default */
  1879. adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
  1880. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1881. out:
  1882. return err;
  1883. }
  1884. #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
  1885. { \
  1886. u32 current_counter = IXGBE_READ_REG(hw, reg); \
  1887. if (current_counter < last_counter) \
  1888. counter += 0x100000000LL; \
  1889. last_counter = current_counter; \
  1890. counter &= 0xFFFFFFFF00000000LL; \
  1891. counter |= current_counter; \
  1892. }
  1893. #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
  1894. { \
  1895. u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
  1896. u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
  1897. u64 current_counter = (current_counter_msb << 32) | \
  1898. current_counter_lsb; \
  1899. if (current_counter < last_counter) \
  1900. counter += 0x1000000000LL; \
  1901. last_counter = current_counter; \
  1902. counter &= 0xFFFFFFF000000000LL; \
  1903. counter |= current_counter; \
  1904. }
  1905. /**
  1906. * ixgbevf_update_stats - Update the board statistics counters.
  1907. * @adapter: board private structure
  1908. **/
  1909. void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
  1910. {
  1911. struct ixgbe_hw *hw = &adapter->hw;
  1912. UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
  1913. adapter->stats.vfgprc);
  1914. UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
  1915. adapter->stats.vfgptc);
  1916. UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
  1917. adapter->stats.last_vfgorc,
  1918. adapter->stats.vfgorc);
  1919. UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
  1920. adapter->stats.last_vfgotc,
  1921. adapter->stats.vfgotc);
  1922. UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
  1923. adapter->stats.vfmprc);
  1924. /* Fill out the OS statistics structure */
  1925. adapter->netdev->stats.multicast = adapter->stats.vfmprc -
  1926. adapter->stats.base_vfmprc;
  1927. }
  1928. /**
  1929. * ixgbevf_watchdog - Timer Call-back
  1930. * @data: pointer to adapter cast into an unsigned long
  1931. **/
  1932. static void ixgbevf_watchdog(unsigned long data)
  1933. {
  1934. struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
  1935. struct ixgbe_hw *hw = &adapter->hw;
  1936. u64 eics = 0;
  1937. int i;
  1938. /*
  1939. * Do the watchdog outside of interrupt context due to the lovely
  1940. * delays that some of the newer hardware requires
  1941. */
  1942. if (test_bit(__IXGBEVF_DOWN, &adapter->state))
  1943. goto watchdog_short_circuit;
  1944. /* get one bit for every active tx/rx interrupt vector */
  1945. for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
  1946. struct ixgbevf_q_vector *qv = adapter->q_vector[i];
  1947. if (qv->rxr_count || qv->txr_count)
  1948. eics |= (1 << i);
  1949. }
  1950. IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
  1951. watchdog_short_circuit:
  1952. schedule_work(&adapter->watchdog_task);
  1953. }
  1954. /**
  1955. * ixgbevf_tx_timeout - Respond to a Tx Hang
  1956. * @netdev: network interface device structure
  1957. **/
  1958. static void ixgbevf_tx_timeout(struct net_device *netdev)
  1959. {
  1960. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1961. /* Do the reset outside of interrupt context */
  1962. schedule_work(&adapter->reset_task);
  1963. }
  1964. static void ixgbevf_reset_task(struct work_struct *work)
  1965. {
  1966. struct ixgbevf_adapter *adapter;
  1967. adapter = container_of(work, struct ixgbevf_adapter, reset_task);
  1968. /* If we're already down or resetting, just bail */
  1969. if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
  1970. test_bit(__IXGBEVF_RESETTING, &adapter->state))
  1971. return;
  1972. adapter->tx_timeout_count++;
  1973. ixgbevf_reinit_locked(adapter);
  1974. }
  1975. /**
  1976. * ixgbevf_watchdog_task - worker thread to bring link up
  1977. * @work: pointer to work_struct containing our data
  1978. **/
  1979. static void ixgbevf_watchdog_task(struct work_struct *work)
  1980. {
  1981. struct ixgbevf_adapter *adapter = container_of(work,
  1982. struct ixgbevf_adapter,
  1983. watchdog_task);
  1984. struct net_device *netdev = adapter->netdev;
  1985. struct ixgbe_hw *hw = &adapter->hw;
  1986. u32 link_speed = adapter->link_speed;
  1987. bool link_up = adapter->link_up;
  1988. adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
  1989. /*
  1990. * Always check the link on the watchdog because we have
  1991. * no LSC interrupt
  1992. */
  1993. if (hw->mac.ops.check_link) {
  1994. if ((hw->mac.ops.check_link(hw, &link_speed,
  1995. &link_up, false)) != 0) {
  1996. adapter->link_up = link_up;
  1997. adapter->link_speed = link_speed;
  1998. netif_carrier_off(netdev);
  1999. netif_tx_stop_all_queues(netdev);
  2000. schedule_work(&adapter->reset_task);
  2001. goto pf_has_reset;
  2002. }
  2003. } else {
  2004. /* always assume link is up, if no check link
  2005. * function */
  2006. link_speed = IXGBE_LINK_SPEED_10GB_FULL;
  2007. link_up = true;
  2008. }
  2009. adapter->link_up = link_up;
  2010. adapter->link_speed = link_speed;
  2011. if (link_up) {
  2012. if (!netif_carrier_ok(netdev)) {
  2013. hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
  2014. (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
  2015. 10 : 1);
  2016. netif_carrier_on(netdev);
  2017. netif_tx_wake_all_queues(netdev);
  2018. }
  2019. } else {
  2020. adapter->link_up = false;
  2021. adapter->link_speed = 0;
  2022. if (netif_carrier_ok(netdev)) {
  2023. hw_dbg(&adapter->hw, "NIC Link is Down\n");
  2024. netif_carrier_off(netdev);
  2025. netif_tx_stop_all_queues(netdev);
  2026. }
  2027. }
  2028. ixgbevf_update_stats(adapter);
  2029. pf_has_reset:
  2030. /* Reset the timer */
  2031. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  2032. mod_timer(&adapter->watchdog_timer,
  2033. round_jiffies(jiffies + (2 * HZ)));
  2034. adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
  2035. }
  2036. /**
  2037. * ixgbevf_free_tx_resources - Free Tx Resources per Queue
  2038. * @adapter: board private structure
  2039. * @tx_ring: Tx descriptor ring for a specific queue
  2040. *
  2041. * Free all transmit software resources
  2042. **/
  2043. void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
  2044. struct ixgbevf_ring *tx_ring)
  2045. {
  2046. struct pci_dev *pdev = adapter->pdev;
  2047. ixgbevf_clean_tx_ring(adapter, tx_ring);
  2048. vfree(tx_ring->tx_buffer_info);
  2049. tx_ring->tx_buffer_info = NULL;
  2050. dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
  2051. tx_ring->dma);
  2052. tx_ring->desc = NULL;
  2053. }
  2054. /**
  2055. * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
  2056. * @adapter: board private structure
  2057. *
  2058. * Free all transmit software resources
  2059. **/
  2060. static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
  2061. {
  2062. int i;
  2063. for (i = 0; i < adapter->num_tx_queues; i++)
  2064. if (adapter->tx_ring[i].desc)
  2065. ixgbevf_free_tx_resources(adapter,
  2066. &adapter->tx_ring[i]);
  2067. }
  2068. /**
  2069. * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
  2070. * @adapter: board private structure
  2071. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2072. *
  2073. * Return 0 on success, negative on failure
  2074. **/
  2075. int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
  2076. struct ixgbevf_ring *tx_ring)
  2077. {
  2078. struct pci_dev *pdev = adapter->pdev;
  2079. int size;
  2080. size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
  2081. tx_ring->tx_buffer_info = vzalloc(size);
  2082. if (!tx_ring->tx_buffer_info)
  2083. goto err;
  2084. /* round up to nearest 4K */
  2085. tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
  2086. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2087. tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
  2088. &tx_ring->dma, GFP_KERNEL);
  2089. if (!tx_ring->desc)
  2090. goto err;
  2091. tx_ring->next_to_use = 0;
  2092. tx_ring->next_to_clean = 0;
  2093. tx_ring->work_limit = tx_ring->count;
  2094. return 0;
  2095. err:
  2096. vfree(tx_ring->tx_buffer_info);
  2097. tx_ring->tx_buffer_info = NULL;
  2098. hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
  2099. "descriptor ring\n");
  2100. return -ENOMEM;
  2101. }
  2102. /**
  2103. * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
  2104. * @adapter: board private structure
  2105. *
  2106. * If this function returns with an error, then it's possible one or
  2107. * more of the rings is populated (while the rest are not). It is the
  2108. * callers duty to clean those orphaned rings.
  2109. *
  2110. * Return 0 on success, negative on failure
  2111. **/
  2112. static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
  2113. {
  2114. int i, err = 0;
  2115. for (i = 0; i < adapter->num_tx_queues; i++) {
  2116. err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  2117. if (!err)
  2118. continue;
  2119. hw_dbg(&adapter->hw,
  2120. "Allocation for Tx Queue %u failed\n", i);
  2121. break;
  2122. }
  2123. return err;
  2124. }
  2125. /**
  2126. * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
  2127. * @adapter: board private structure
  2128. * @rx_ring: rx descriptor ring (for a specific queue) to setup
  2129. *
  2130. * Returns 0 on success, negative on failure
  2131. **/
  2132. int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
  2133. struct ixgbevf_ring *rx_ring)
  2134. {
  2135. struct pci_dev *pdev = adapter->pdev;
  2136. int size;
  2137. size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
  2138. rx_ring->rx_buffer_info = vzalloc(size);
  2139. if (!rx_ring->rx_buffer_info) {
  2140. hw_dbg(&adapter->hw,
  2141. "Unable to vmalloc buffer memory for "
  2142. "the receive descriptor ring\n");
  2143. goto alloc_failed;
  2144. }
  2145. /* Round up to nearest 4K */
  2146. rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
  2147. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2148. rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
  2149. &rx_ring->dma, GFP_KERNEL);
  2150. if (!rx_ring->desc) {
  2151. hw_dbg(&adapter->hw,
  2152. "Unable to allocate memory for "
  2153. "the receive descriptor ring\n");
  2154. vfree(rx_ring->rx_buffer_info);
  2155. rx_ring->rx_buffer_info = NULL;
  2156. goto alloc_failed;
  2157. }
  2158. rx_ring->next_to_clean = 0;
  2159. rx_ring->next_to_use = 0;
  2160. return 0;
  2161. alloc_failed:
  2162. return -ENOMEM;
  2163. }
  2164. /**
  2165. * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
  2166. * @adapter: board private structure
  2167. *
  2168. * If this function returns with an error, then it's possible one or
  2169. * more of the rings is populated (while the rest are not). It is the
  2170. * callers duty to clean those orphaned rings.
  2171. *
  2172. * Return 0 on success, negative on failure
  2173. **/
  2174. static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
  2175. {
  2176. int i, err = 0;
  2177. for (i = 0; i < adapter->num_rx_queues; i++) {
  2178. err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  2179. if (!err)
  2180. continue;
  2181. hw_dbg(&adapter->hw,
  2182. "Allocation for Rx Queue %u failed\n", i);
  2183. break;
  2184. }
  2185. return err;
  2186. }
  2187. /**
  2188. * ixgbevf_free_rx_resources - Free Rx Resources
  2189. * @adapter: board private structure
  2190. * @rx_ring: ring to clean the resources from
  2191. *
  2192. * Free all receive software resources
  2193. **/
  2194. void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
  2195. struct ixgbevf_ring *rx_ring)
  2196. {
  2197. struct pci_dev *pdev = adapter->pdev;
  2198. ixgbevf_clean_rx_ring(adapter, rx_ring);
  2199. vfree(rx_ring->rx_buffer_info);
  2200. rx_ring->rx_buffer_info = NULL;
  2201. dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
  2202. rx_ring->dma);
  2203. rx_ring->desc = NULL;
  2204. }
  2205. /**
  2206. * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
  2207. * @adapter: board private structure
  2208. *
  2209. * Free all receive software resources
  2210. **/
  2211. static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
  2212. {
  2213. int i;
  2214. for (i = 0; i < adapter->num_rx_queues; i++)
  2215. if (adapter->rx_ring[i].desc)
  2216. ixgbevf_free_rx_resources(adapter,
  2217. &adapter->rx_ring[i]);
  2218. }
  2219. /**
  2220. * ixgbevf_open - Called when a network interface is made active
  2221. * @netdev: network interface device structure
  2222. *
  2223. * Returns 0 on success, negative value on failure
  2224. *
  2225. * The open entry point is called when a network interface is made
  2226. * active by the system (IFF_UP). At this point all resources needed
  2227. * for transmit and receive operations are allocated, the interrupt
  2228. * handler is registered with the OS, the watchdog timer is started,
  2229. * and the stack is notified that the interface is ready.
  2230. **/
  2231. static int ixgbevf_open(struct net_device *netdev)
  2232. {
  2233. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2234. struct ixgbe_hw *hw = &adapter->hw;
  2235. int err;
  2236. /* disallow open during test */
  2237. if (test_bit(__IXGBEVF_TESTING, &adapter->state))
  2238. return -EBUSY;
  2239. if (hw->adapter_stopped) {
  2240. ixgbevf_reset(adapter);
  2241. /* if adapter is still stopped then PF isn't up and
  2242. * the vf can't start. */
  2243. if (hw->adapter_stopped) {
  2244. err = IXGBE_ERR_MBX;
  2245. printk(KERN_ERR "Unable to start - perhaps the PF"
  2246. " Driver isn't up yet\n");
  2247. goto err_setup_reset;
  2248. }
  2249. }
  2250. /* allocate transmit descriptors */
  2251. err = ixgbevf_setup_all_tx_resources(adapter);
  2252. if (err)
  2253. goto err_setup_tx;
  2254. /* allocate receive descriptors */
  2255. err = ixgbevf_setup_all_rx_resources(adapter);
  2256. if (err)
  2257. goto err_setup_rx;
  2258. ixgbevf_configure(adapter);
  2259. /*
  2260. * Map the Tx/Rx rings to the vectors we were allotted.
  2261. * if request_irq will be called in this function map_rings
  2262. * must be called *before* up_complete
  2263. */
  2264. ixgbevf_map_rings_to_vectors(adapter);
  2265. err = ixgbevf_up_complete(adapter);
  2266. if (err)
  2267. goto err_up;
  2268. /* clear any pending interrupts, may auto mask */
  2269. IXGBE_READ_REG(hw, IXGBE_VTEICR);
  2270. err = ixgbevf_request_irq(adapter);
  2271. if (err)
  2272. goto err_req_irq;
  2273. ixgbevf_irq_enable(adapter, true, true);
  2274. return 0;
  2275. err_req_irq:
  2276. ixgbevf_down(adapter);
  2277. err_up:
  2278. ixgbevf_free_irq(adapter);
  2279. err_setup_rx:
  2280. ixgbevf_free_all_rx_resources(adapter);
  2281. err_setup_tx:
  2282. ixgbevf_free_all_tx_resources(adapter);
  2283. ixgbevf_reset(adapter);
  2284. err_setup_reset:
  2285. return err;
  2286. }
  2287. /**
  2288. * ixgbevf_close - Disables a network interface
  2289. * @netdev: network interface device structure
  2290. *
  2291. * Returns 0, this is not allowed to fail
  2292. *
  2293. * The close entry point is called when an interface is de-activated
  2294. * by the OS. The hardware is still under the drivers control, but
  2295. * needs to be disabled. A global MAC reset is issued to stop the
  2296. * hardware, and all transmit and receive resources are freed.
  2297. **/
  2298. static int ixgbevf_close(struct net_device *netdev)
  2299. {
  2300. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2301. ixgbevf_down(adapter);
  2302. ixgbevf_free_irq(adapter);
  2303. ixgbevf_free_all_tx_resources(adapter);
  2304. ixgbevf_free_all_rx_resources(adapter);
  2305. return 0;
  2306. }
  2307. static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
  2308. struct ixgbevf_ring *tx_ring,
  2309. struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
  2310. {
  2311. struct ixgbe_adv_tx_context_desc *context_desc;
  2312. unsigned int i;
  2313. int err;
  2314. struct ixgbevf_tx_buffer *tx_buffer_info;
  2315. u32 vlan_macip_lens = 0, type_tucmd_mlhl;
  2316. u32 mss_l4len_idx, l4len;
  2317. if (skb_is_gso(skb)) {
  2318. if (skb_header_cloned(skb)) {
  2319. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2320. if (err)
  2321. return err;
  2322. }
  2323. l4len = tcp_hdrlen(skb);
  2324. *hdr_len += l4len;
  2325. if (skb->protocol == htons(ETH_P_IP)) {
  2326. struct iphdr *iph = ip_hdr(skb);
  2327. iph->tot_len = 0;
  2328. iph->check = 0;
  2329. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2330. iph->daddr, 0,
  2331. IPPROTO_TCP,
  2332. 0);
  2333. adapter->hw_tso_ctxt++;
  2334. } else if (skb_is_gso_v6(skb)) {
  2335. ipv6_hdr(skb)->payload_len = 0;
  2336. tcp_hdr(skb)->check =
  2337. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2338. &ipv6_hdr(skb)->daddr,
  2339. 0, IPPROTO_TCP, 0);
  2340. adapter->hw_tso6_ctxt++;
  2341. }
  2342. i = tx_ring->next_to_use;
  2343. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2344. context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
  2345. /* VLAN MACLEN IPLEN */
  2346. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2347. vlan_macip_lens |=
  2348. (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
  2349. vlan_macip_lens |= ((skb_network_offset(skb)) <<
  2350. IXGBE_ADVTXD_MACLEN_SHIFT);
  2351. *hdr_len += skb_network_offset(skb);
  2352. vlan_macip_lens |=
  2353. (skb_transport_header(skb) - skb_network_header(skb));
  2354. *hdr_len +=
  2355. (skb_transport_header(skb) - skb_network_header(skb));
  2356. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  2357. context_desc->seqnum_seed = 0;
  2358. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  2359. type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
  2360. IXGBE_ADVTXD_DTYP_CTXT);
  2361. if (skb->protocol == htons(ETH_P_IP))
  2362. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
  2363. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2364. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
  2365. /* MSS L4LEN IDX */
  2366. mss_l4len_idx =
  2367. (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
  2368. mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
  2369. /* use index 1 for TSO */
  2370. mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
  2371. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  2372. tx_buffer_info->time_stamp = jiffies;
  2373. tx_buffer_info->next_to_watch = i;
  2374. i++;
  2375. if (i == tx_ring->count)
  2376. i = 0;
  2377. tx_ring->next_to_use = i;
  2378. return true;
  2379. }
  2380. return false;
  2381. }
  2382. static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
  2383. struct ixgbevf_ring *tx_ring,
  2384. struct sk_buff *skb, u32 tx_flags)
  2385. {
  2386. struct ixgbe_adv_tx_context_desc *context_desc;
  2387. unsigned int i;
  2388. struct ixgbevf_tx_buffer *tx_buffer_info;
  2389. u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
  2390. if (skb->ip_summed == CHECKSUM_PARTIAL ||
  2391. (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
  2392. i = tx_ring->next_to_use;
  2393. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2394. context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
  2395. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2396. vlan_macip_lens |= (tx_flags &
  2397. IXGBE_TX_FLAGS_VLAN_MASK);
  2398. vlan_macip_lens |= (skb_network_offset(skb) <<
  2399. IXGBE_ADVTXD_MACLEN_SHIFT);
  2400. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2401. vlan_macip_lens |= (skb_transport_header(skb) -
  2402. skb_network_header(skb));
  2403. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  2404. context_desc->seqnum_seed = 0;
  2405. type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
  2406. IXGBE_ADVTXD_DTYP_CTXT);
  2407. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2408. switch (skb->protocol) {
  2409. case __constant_htons(ETH_P_IP):
  2410. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
  2411. if (ip_hdr(skb)->protocol == IPPROTO_TCP)
  2412. type_tucmd_mlhl |=
  2413. IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2414. break;
  2415. case __constant_htons(ETH_P_IPV6):
  2416. /* XXX what about other V6 headers?? */
  2417. if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
  2418. type_tucmd_mlhl |=
  2419. IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2420. break;
  2421. default:
  2422. if (unlikely(net_ratelimit())) {
  2423. printk(KERN_WARNING
  2424. "partial checksum but "
  2425. "proto=%x!\n",
  2426. skb->protocol);
  2427. }
  2428. break;
  2429. }
  2430. }
  2431. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
  2432. /* use index zero for tx checksum offload */
  2433. context_desc->mss_l4len_idx = 0;
  2434. tx_buffer_info->time_stamp = jiffies;
  2435. tx_buffer_info->next_to_watch = i;
  2436. adapter->hw_csum_tx_good++;
  2437. i++;
  2438. if (i == tx_ring->count)
  2439. i = 0;
  2440. tx_ring->next_to_use = i;
  2441. return true;
  2442. }
  2443. return false;
  2444. }
  2445. static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
  2446. struct ixgbevf_ring *tx_ring,
  2447. struct sk_buff *skb, u32 tx_flags,
  2448. unsigned int first)
  2449. {
  2450. struct pci_dev *pdev = adapter->pdev;
  2451. struct ixgbevf_tx_buffer *tx_buffer_info;
  2452. unsigned int len;
  2453. unsigned int total = skb->len;
  2454. unsigned int offset = 0, size;
  2455. int count = 0;
  2456. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  2457. unsigned int f;
  2458. int i;
  2459. i = tx_ring->next_to_use;
  2460. len = min(skb_headlen(skb), total);
  2461. while (len) {
  2462. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2463. size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
  2464. tx_buffer_info->length = size;
  2465. tx_buffer_info->mapped_as_page = false;
  2466. tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
  2467. skb->data + offset,
  2468. size, DMA_TO_DEVICE);
  2469. if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
  2470. goto dma_error;
  2471. tx_buffer_info->time_stamp = jiffies;
  2472. tx_buffer_info->next_to_watch = i;
  2473. len -= size;
  2474. total -= size;
  2475. offset += size;
  2476. count++;
  2477. i++;
  2478. if (i == tx_ring->count)
  2479. i = 0;
  2480. }
  2481. for (f = 0; f < nr_frags; f++) {
  2482. struct skb_frag_struct *frag;
  2483. frag = &skb_shinfo(skb)->frags[f];
  2484. len = min((unsigned int)frag->size, total);
  2485. offset = frag->page_offset;
  2486. while (len) {
  2487. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2488. size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
  2489. tx_buffer_info->length = size;
  2490. tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
  2491. frag->page,
  2492. offset,
  2493. size,
  2494. DMA_TO_DEVICE);
  2495. tx_buffer_info->mapped_as_page = true;
  2496. if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
  2497. goto dma_error;
  2498. tx_buffer_info->time_stamp = jiffies;
  2499. tx_buffer_info->next_to_watch = i;
  2500. len -= size;
  2501. total -= size;
  2502. offset += size;
  2503. count++;
  2504. i++;
  2505. if (i == tx_ring->count)
  2506. i = 0;
  2507. }
  2508. if (total == 0)
  2509. break;
  2510. }
  2511. if (i == 0)
  2512. i = tx_ring->count - 1;
  2513. else
  2514. i = i - 1;
  2515. tx_ring->tx_buffer_info[i].skb = skb;
  2516. tx_ring->tx_buffer_info[first].next_to_watch = i;
  2517. return count;
  2518. dma_error:
  2519. dev_err(&pdev->dev, "TX DMA map failed\n");
  2520. /* clear timestamp and dma mappings for failed tx_buffer_info map */
  2521. tx_buffer_info->dma = 0;
  2522. tx_buffer_info->time_stamp = 0;
  2523. tx_buffer_info->next_to_watch = 0;
  2524. count--;
  2525. /* clear timestamp and dma mappings for remaining portion of packet */
  2526. while (count >= 0) {
  2527. count--;
  2528. i--;
  2529. if (i < 0)
  2530. i += tx_ring->count;
  2531. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2532. ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
  2533. }
  2534. return count;
  2535. }
  2536. static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
  2537. struct ixgbevf_ring *tx_ring, int tx_flags,
  2538. int count, u32 paylen, u8 hdr_len)
  2539. {
  2540. union ixgbe_adv_tx_desc *tx_desc = NULL;
  2541. struct ixgbevf_tx_buffer *tx_buffer_info;
  2542. u32 olinfo_status = 0, cmd_type_len = 0;
  2543. unsigned int i;
  2544. u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
  2545. cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
  2546. cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
  2547. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2548. cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
  2549. if (tx_flags & IXGBE_TX_FLAGS_TSO) {
  2550. cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
  2551. olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
  2552. IXGBE_ADVTXD_POPTS_SHIFT;
  2553. /* use index 1 context for tso */
  2554. olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
  2555. if (tx_flags & IXGBE_TX_FLAGS_IPV4)
  2556. olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
  2557. IXGBE_ADVTXD_POPTS_SHIFT;
  2558. } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
  2559. olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
  2560. IXGBE_ADVTXD_POPTS_SHIFT;
  2561. olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
  2562. i = tx_ring->next_to_use;
  2563. while (count--) {
  2564. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2565. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
  2566. tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
  2567. tx_desc->read.cmd_type_len =
  2568. cpu_to_le32(cmd_type_len | tx_buffer_info->length);
  2569. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  2570. i++;
  2571. if (i == tx_ring->count)
  2572. i = 0;
  2573. }
  2574. tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
  2575. /*
  2576. * Force memory writes to complete before letting h/w
  2577. * know there are new descriptors to fetch. (Only
  2578. * applicable for weak-ordered memory model archs,
  2579. * such as IA-64).
  2580. */
  2581. wmb();
  2582. tx_ring->next_to_use = i;
  2583. writel(i, adapter->hw.hw_addr + tx_ring->tail);
  2584. }
  2585. static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
  2586. struct ixgbevf_ring *tx_ring, int size)
  2587. {
  2588. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2589. netif_stop_subqueue(netdev, tx_ring->queue_index);
  2590. /* Herbert's original patch had:
  2591. * smp_mb__after_netif_stop_queue();
  2592. * but since that doesn't exist yet, just open code it. */
  2593. smp_mb();
  2594. /* We need to check again in a case another CPU has just
  2595. * made room available. */
  2596. if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
  2597. return -EBUSY;
  2598. /* A reprieve! - use start_queue because it doesn't call schedule */
  2599. netif_start_subqueue(netdev, tx_ring->queue_index);
  2600. ++adapter->restart_queue;
  2601. return 0;
  2602. }
  2603. static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
  2604. struct ixgbevf_ring *tx_ring, int size)
  2605. {
  2606. if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
  2607. return 0;
  2608. return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
  2609. }
  2610. static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2611. {
  2612. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2613. struct ixgbevf_ring *tx_ring;
  2614. unsigned int first;
  2615. unsigned int tx_flags = 0;
  2616. u8 hdr_len = 0;
  2617. int r_idx = 0, tso;
  2618. int count = 0;
  2619. unsigned int f;
  2620. tx_ring = &adapter->tx_ring[r_idx];
  2621. if (vlan_tx_tag_present(skb)) {
  2622. tx_flags |= vlan_tx_tag_get(skb);
  2623. tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
  2624. tx_flags |= IXGBE_TX_FLAGS_VLAN;
  2625. }
  2626. /* four things can cause us to need a context descriptor */
  2627. if (skb_is_gso(skb) ||
  2628. (skb->ip_summed == CHECKSUM_PARTIAL) ||
  2629. (tx_flags & IXGBE_TX_FLAGS_VLAN))
  2630. count++;
  2631. count += TXD_USE_COUNT(skb_headlen(skb));
  2632. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  2633. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  2634. if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
  2635. adapter->tx_busy++;
  2636. return NETDEV_TX_BUSY;
  2637. }
  2638. first = tx_ring->next_to_use;
  2639. if (skb->protocol == htons(ETH_P_IP))
  2640. tx_flags |= IXGBE_TX_FLAGS_IPV4;
  2641. tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
  2642. if (tso < 0) {
  2643. dev_kfree_skb_any(skb);
  2644. return NETDEV_TX_OK;
  2645. }
  2646. if (tso)
  2647. tx_flags |= IXGBE_TX_FLAGS_TSO;
  2648. else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
  2649. (skb->ip_summed == CHECKSUM_PARTIAL))
  2650. tx_flags |= IXGBE_TX_FLAGS_CSUM;
  2651. ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
  2652. ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
  2653. skb->len, hdr_len);
  2654. ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
  2655. return NETDEV_TX_OK;
  2656. }
  2657. /**
  2658. * ixgbevf_set_mac - Change the Ethernet Address of the NIC
  2659. * @netdev: network interface device structure
  2660. * @p: pointer to an address structure
  2661. *
  2662. * Returns 0 on success, negative on failure
  2663. **/
  2664. static int ixgbevf_set_mac(struct net_device *netdev, void *p)
  2665. {
  2666. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2667. struct ixgbe_hw *hw = &adapter->hw;
  2668. struct sockaddr *addr = p;
  2669. if (!is_valid_ether_addr(addr->sa_data))
  2670. return -EADDRNOTAVAIL;
  2671. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  2672. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  2673. if (hw->mac.ops.set_rar)
  2674. hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
  2675. return 0;
  2676. }
  2677. /**
  2678. * ixgbevf_change_mtu - Change the Maximum Transfer Unit
  2679. * @netdev: network interface device structure
  2680. * @new_mtu: new value for maximum frame size
  2681. *
  2682. * Returns 0 on success, negative on failure
  2683. **/
  2684. static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
  2685. {
  2686. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2687. struct ixgbe_hw *hw = &adapter->hw;
  2688. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
  2689. int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
  2690. u32 msg[2];
  2691. if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
  2692. max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
  2693. /* MTU < 68 is an error and causes problems on some kernels */
  2694. if ((new_mtu < 68) || (max_frame > max_possible_frame))
  2695. return -EINVAL;
  2696. hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
  2697. netdev->mtu, new_mtu);
  2698. /* must set new MTU before calling down or up */
  2699. netdev->mtu = new_mtu;
  2700. msg[0] = IXGBE_VF_SET_LPE;
  2701. msg[1] = max_frame;
  2702. hw->mbx.ops.write_posted(hw, msg, 2);
  2703. if (netif_running(netdev))
  2704. ixgbevf_reinit_locked(adapter);
  2705. return 0;
  2706. }
  2707. static void ixgbevf_shutdown(struct pci_dev *pdev)
  2708. {
  2709. struct net_device *netdev = pci_get_drvdata(pdev);
  2710. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2711. netif_device_detach(netdev);
  2712. if (netif_running(netdev)) {
  2713. ixgbevf_down(adapter);
  2714. ixgbevf_free_irq(adapter);
  2715. ixgbevf_free_all_tx_resources(adapter);
  2716. ixgbevf_free_all_rx_resources(adapter);
  2717. }
  2718. #ifdef CONFIG_PM
  2719. pci_save_state(pdev);
  2720. #endif
  2721. pci_disable_device(pdev);
  2722. }
  2723. static const struct net_device_ops ixgbe_netdev_ops = {
  2724. .ndo_open = ixgbevf_open,
  2725. .ndo_stop = ixgbevf_close,
  2726. .ndo_start_xmit = ixgbevf_xmit_frame,
  2727. .ndo_set_rx_mode = ixgbevf_set_rx_mode,
  2728. .ndo_set_multicast_list = ixgbevf_set_rx_mode,
  2729. .ndo_validate_addr = eth_validate_addr,
  2730. .ndo_set_mac_address = ixgbevf_set_mac,
  2731. .ndo_change_mtu = ixgbevf_change_mtu,
  2732. .ndo_tx_timeout = ixgbevf_tx_timeout,
  2733. .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
  2734. .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
  2735. };
  2736. static void ixgbevf_assign_netdev_ops(struct net_device *dev)
  2737. {
  2738. dev->netdev_ops = &ixgbe_netdev_ops;
  2739. ixgbevf_set_ethtool_ops(dev);
  2740. dev->watchdog_timeo = 5 * HZ;
  2741. }
  2742. /**
  2743. * ixgbevf_probe - Device Initialization Routine
  2744. * @pdev: PCI device information struct
  2745. * @ent: entry in ixgbevf_pci_tbl
  2746. *
  2747. * Returns 0 on success, negative on failure
  2748. *
  2749. * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
  2750. * The OS initialization, configuring of the adapter private structure,
  2751. * and a hardware reset occur.
  2752. **/
  2753. static int __devinit ixgbevf_probe(struct pci_dev *pdev,
  2754. const struct pci_device_id *ent)
  2755. {
  2756. struct net_device *netdev;
  2757. struct ixgbevf_adapter *adapter = NULL;
  2758. struct ixgbe_hw *hw = NULL;
  2759. const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
  2760. static int cards_found;
  2761. int err, pci_using_dac;
  2762. err = pci_enable_device(pdev);
  2763. if (err)
  2764. return err;
  2765. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
  2766. !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  2767. pci_using_dac = 1;
  2768. } else {
  2769. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  2770. if (err) {
  2771. err = dma_set_coherent_mask(&pdev->dev,
  2772. DMA_BIT_MASK(32));
  2773. if (err) {
  2774. dev_err(&pdev->dev, "No usable DMA "
  2775. "configuration, aborting\n");
  2776. goto err_dma;
  2777. }
  2778. }
  2779. pci_using_dac = 0;
  2780. }
  2781. err = pci_request_regions(pdev, ixgbevf_driver_name);
  2782. if (err) {
  2783. dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
  2784. goto err_pci_reg;
  2785. }
  2786. pci_set_master(pdev);
  2787. #ifdef HAVE_TX_MQ
  2788. netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
  2789. MAX_TX_QUEUES);
  2790. #else
  2791. netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
  2792. #endif
  2793. if (!netdev) {
  2794. err = -ENOMEM;
  2795. goto err_alloc_etherdev;
  2796. }
  2797. SET_NETDEV_DEV(netdev, &pdev->dev);
  2798. pci_set_drvdata(pdev, netdev);
  2799. adapter = netdev_priv(netdev);
  2800. adapter->netdev = netdev;
  2801. adapter->pdev = pdev;
  2802. hw = &adapter->hw;
  2803. hw->back = adapter;
  2804. adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
  2805. /*
  2806. * call save state here in standalone driver because it relies on
  2807. * adapter struct to exist, and needs to call netdev_priv
  2808. */
  2809. pci_save_state(pdev);
  2810. hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
  2811. pci_resource_len(pdev, 0));
  2812. if (!hw->hw_addr) {
  2813. err = -EIO;
  2814. goto err_ioremap;
  2815. }
  2816. ixgbevf_assign_netdev_ops(netdev);
  2817. adapter->bd_number = cards_found;
  2818. /* Setup hw api */
  2819. memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
  2820. hw->mac.type = ii->mac;
  2821. memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
  2822. sizeof(struct ixgbe_mbx_operations));
  2823. adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
  2824. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  2825. adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
  2826. /* setup the private structure */
  2827. err = ixgbevf_sw_init(adapter);
  2828. netdev->features = NETIF_F_SG |
  2829. NETIF_F_IP_CSUM |
  2830. NETIF_F_HW_VLAN_TX |
  2831. NETIF_F_HW_VLAN_RX |
  2832. NETIF_F_HW_VLAN_FILTER;
  2833. netdev->features |= NETIF_F_IPV6_CSUM;
  2834. netdev->features |= NETIF_F_TSO;
  2835. netdev->features |= NETIF_F_TSO6;
  2836. netdev->features |= NETIF_F_GRO;
  2837. netdev->vlan_features |= NETIF_F_TSO;
  2838. netdev->vlan_features |= NETIF_F_TSO6;
  2839. netdev->vlan_features |= NETIF_F_IP_CSUM;
  2840. netdev->vlan_features |= NETIF_F_IPV6_CSUM;
  2841. netdev->vlan_features |= NETIF_F_SG;
  2842. if (pci_using_dac)
  2843. netdev->features |= NETIF_F_HIGHDMA;
  2844. /* The HW MAC address was set and/or determined in sw_init */
  2845. memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
  2846. memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
  2847. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2848. printk(KERN_ERR "invalid MAC address\n");
  2849. err = -EIO;
  2850. goto err_sw_init;
  2851. }
  2852. init_timer(&adapter->watchdog_timer);
  2853. adapter->watchdog_timer.function = ixgbevf_watchdog;
  2854. adapter->watchdog_timer.data = (unsigned long)adapter;
  2855. INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
  2856. INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
  2857. err = ixgbevf_init_interrupt_scheme(adapter);
  2858. if (err)
  2859. goto err_sw_init;
  2860. /* pick up the PCI bus settings for reporting later */
  2861. if (hw->mac.ops.get_bus_info)
  2862. hw->mac.ops.get_bus_info(hw);
  2863. strcpy(netdev->name, "eth%d");
  2864. err = register_netdev(netdev);
  2865. if (err)
  2866. goto err_register;
  2867. adapter->netdev_registered = true;
  2868. netif_carrier_off(netdev);
  2869. ixgbevf_init_last_counter_stats(adapter);
  2870. /* print the MAC address */
  2871. hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  2872. netdev->dev_addr[0],
  2873. netdev->dev_addr[1],
  2874. netdev->dev_addr[2],
  2875. netdev->dev_addr[3],
  2876. netdev->dev_addr[4],
  2877. netdev->dev_addr[5]);
  2878. hw_dbg(hw, "MAC: %d\n", hw->mac.type);
  2879. hw_dbg(hw, "LRO is disabled\n");
  2880. hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
  2881. cards_found++;
  2882. return 0;
  2883. err_register:
  2884. err_sw_init:
  2885. ixgbevf_reset_interrupt_capability(adapter);
  2886. iounmap(hw->hw_addr);
  2887. err_ioremap:
  2888. free_netdev(netdev);
  2889. err_alloc_etherdev:
  2890. pci_release_regions(pdev);
  2891. err_pci_reg:
  2892. err_dma:
  2893. pci_disable_device(pdev);
  2894. return err;
  2895. }
  2896. /**
  2897. * ixgbevf_remove - Device Removal Routine
  2898. * @pdev: PCI device information struct
  2899. *
  2900. * ixgbevf_remove is called by the PCI subsystem to alert the driver
  2901. * that it should release a PCI device. The could be caused by a
  2902. * Hot-Plug event, or because the driver is going to be removed from
  2903. * memory.
  2904. **/
  2905. static void __devexit ixgbevf_remove(struct pci_dev *pdev)
  2906. {
  2907. struct net_device *netdev = pci_get_drvdata(pdev);
  2908. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2909. set_bit(__IXGBEVF_DOWN, &adapter->state);
  2910. del_timer_sync(&adapter->watchdog_timer);
  2911. cancel_work_sync(&adapter->reset_task);
  2912. cancel_work_sync(&adapter->watchdog_task);
  2913. if (adapter->netdev_registered) {
  2914. unregister_netdev(netdev);
  2915. adapter->netdev_registered = false;
  2916. }
  2917. ixgbevf_reset_interrupt_capability(adapter);
  2918. iounmap(adapter->hw.hw_addr);
  2919. pci_release_regions(pdev);
  2920. hw_dbg(&adapter->hw, "Remove complete\n");
  2921. kfree(adapter->tx_ring);
  2922. kfree(adapter->rx_ring);
  2923. free_netdev(netdev);
  2924. pci_disable_device(pdev);
  2925. }
  2926. static struct pci_driver ixgbevf_driver = {
  2927. .name = ixgbevf_driver_name,
  2928. .id_table = ixgbevf_pci_tbl,
  2929. .probe = ixgbevf_probe,
  2930. .remove = __devexit_p(ixgbevf_remove),
  2931. .shutdown = ixgbevf_shutdown,
  2932. };
  2933. /**
  2934. * ixgbevf_init_module - Driver Registration Routine
  2935. *
  2936. * ixgbevf_init_module is the first routine called when the driver is
  2937. * loaded. All it does is register with the PCI subsystem.
  2938. **/
  2939. static int __init ixgbevf_init_module(void)
  2940. {
  2941. int ret;
  2942. printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
  2943. ixgbevf_driver_version);
  2944. printk(KERN_INFO "%s\n", ixgbevf_copyright);
  2945. ret = pci_register_driver(&ixgbevf_driver);
  2946. return ret;
  2947. }
  2948. module_init(ixgbevf_init_module);
  2949. /**
  2950. * ixgbevf_exit_module - Driver Exit Cleanup Routine
  2951. *
  2952. * ixgbevf_exit_module is called just before the driver is removed
  2953. * from memory.
  2954. **/
  2955. static void __exit ixgbevf_exit_module(void)
  2956. {
  2957. pci_unregister_driver(&ixgbevf_driver);
  2958. }
  2959. #ifdef DEBUG
  2960. /**
  2961. * ixgbevf_get_hw_dev_name - return device name string
  2962. * used by hardware layer to print debugging information
  2963. **/
  2964. char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
  2965. {
  2966. struct ixgbevf_adapter *adapter = hw->back;
  2967. return adapter->netdev->name;
  2968. }
  2969. #endif
  2970. module_exit(ixgbevf_exit_module);
  2971. /* ixgbevf_main.c */