greth.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2010 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/dma-mapping.h>
  25. #include <linux/module.h>
  26. #include <linux/uaccess.h>
  27. #include <linux/init.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/io.h>
  34. #include <linux/crc32.h>
  35. #include <linux/mii.h>
  36. #include <linux/of_device.h>
  37. #include <linux/of_platform.h>
  38. #include <linux/slab.h>
  39. #include <asm/cacheflush.h>
  40. #include <asm/byteorder.h>
  41. #ifdef CONFIG_SPARC
  42. #include <asm/idprom.h>
  43. #endif
  44. #include "greth.h"
  45. #define GRETH_DEF_MSG_ENABLE \
  46. (NETIF_MSG_DRV | \
  47. NETIF_MSG_PROBE | \
  48. NETIF_MSG_LINK | \
  49. NETIF_MSG_IFDOWN | \
  50. NETIF_MSG_IFUP | \
  51. NETIF_MSG_RX_ERR | \
  52. NETIF_MSG_TX_ERR)
  53. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  54. module_param(greth_debug, int, 0);
  55. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  56. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  57. static int macaddr[6];
  58. module_param_array(macaddr, int, NULL, 0);
  59. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  60. static int greth_edcl = 1;
  61. module_param(greth_edcl, int, 0);
  62. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  63. static int greth_open(struct net_device *dev);
  64. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  65. struct net_device *dev);
  66. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  67. struct net_device *dev);
  68. static int greth_rx(struct net_device *dev, int limit);
  69. static int greth_rx_gbit(struct net_device *dev, int limit);
  70. static void greth_clean_tx(struct net_device *dev);
  71. static void greth_clean_tx_gbit(struct net_device *dev);
  72. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  73. static int greth_close(struct net_device *dev);
  74. static int greth_set_mac_add(struct net_device *dev, void *p);
  75. static void greth_set_multicast_list(struct net_device *dev);
  76. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  77. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  78. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  79. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  80. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  81. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  82. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  83. static void greth_print_rx_packet(void *addr, int len)
  84. {
  85. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  86. addr, len, true);
  87. }
  88. static void greth_print_tx_packet(struct sk_buff *skb)
  89. {
  90. int i;
  91. int length;
  92. if (skb_shinfo(skb)->nr_frags == 0)
  93. length = skb->len;
  94. else
  95. length = skb_headlen(skb);
  96. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  97. skb->data, length, true);
  98. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  99. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  100. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  101. skb_shinfo(skb)->frags[i].page_offset,
  102. length, true);
  103. }
  104. }
  105. static inline void greth_enable_tx(struct greth_private *greth)
  106. {
  107. wmb();
  108. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  109. }
  110. static inline void greth_disable_tx(struct greth_private *greth)
  111. {
  112. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  113. }
  114. static inline void greth_enable_rx(struct greth_private *greth)
  115. {
  116. wmb();
  117. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  118. }
  119. static inline void greth_disable_rx(struct greth_private *greth)
  120. {
  121. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  122. }
  123. static inline void greth_enable_irqs(struct greth_private *greth)
  124. {
  125. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  126. }
  127. static inline void greth_disable_irqs(struct greth_private *greth)
  128. {
  129. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  130. }
  131. static inline void greth_write_bd(u32 *bd, u32 val)
  132. {
  133. __raw_writel(cpu_to_be32(val), bd);
  134. }
  135. static inline u32 greth_read_bd(u32 *bd)
  136. {
  137. return be32_to_cpu(__raw_readl(bd));
  138. }
  139. static void greth_clean_rings(struct greth_private *greth)
  140. {
  141. int i;
  142. struct greth_bd *rx_bdp = greth->rx_bd_base;
  143. struct greth_bd *tx_bdp = greth->tx_bd_base;
  144. if (greth->gbit_mac) {
  145. /* Free and unmap RX buffers */
  146. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  147. if (greth->rx_skbuff[i] != NULL) {
  148. dev_kfree_skb(greth->rx_skbuff[i]);
  149. dma_unmap_single(greth->dev,
  150. greth_read_bd(&rx_bdp->addr),
  151. MAX_FRAME_SIZE+NET_IP_ALIGN,
  152. DMA_FROM_DEVICE);
  153. }
  154. }
  155. /* TX buffers */
  156. while (greth->tx_free < GRETH_TXBD_NUM) {
  157. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  158. int nr_frags = skb_shinfo(skb)->nr_frags;
  159. tx_bdp = greth->tx_bd_base + greth->tx_last;
  160. greth->tx_last = NEXT_TX(greth->tx_last);
  161. dma_unmap_single(greth->dev,
  162. greth_read_bd(&tx_bdp->addr),
  163. skb_headlen(skb),
  164. DMA_TO_DEVICE);
  165. for (i = 0; i < nr_frags; i++) {
  166. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  167. tx_bdp = greth->tx_bd_base + greth->tx_last;
  168. dma_unmap_page(greth->dev,
  169. greth_read_bd(&tx_bdp->addr),
  170. frag->size,
  171. DMA_TO_DEVICE);
  172. greth->tx_last = NEXT_TX(greth->tx_last);
  173. }
  174. greth->tx_free += nr_frags+1;
  175. dev_kfree_skb(skb);
  176. }
  177. } else { /* 10/100 Mbps MAC */
  178. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  179. kfree(greth->rx_bufs[i]);
  180. dma_unmap_single(greth->dev,
  181. greth_read_bd(&rx_bdp->addr),
  182. MAX_FRAME_SIZE,
  183. DMA_FROM_DEVICE);
  184. }
  185. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  186. kfree(greth->tx_bufs[i]);
  187. dma_unmap_single(greth->dev,
  188. greth_read_bd(&tx_bdp->addr),
  189. MAX_FRAME_SIZE,
  190. DMA_TO_DEVICE);
  191. }
  192. }
  193. }
  194. static int greth_init_rings(struct greth_private *greth)
  195. {
  196. struct sk_buff *skb;
  197. struct greth_bd *rx_bd, *tx_bd;
  198. u32 dma_addr;
  199. int i;
  200. rx_bd = greth->rx_bd_base;
  201. tx_bd = greth->tx_bd_base;
  202. /* Initialize descriptor rings and buffers */
  203. if (greth->gbit_mac) {
  204. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  205. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  206. if (skb == NULL) {
  207. if (netif_msg_ifup(greth))
  208. dev_err(greth->dev, "Error allocating DMA ring.\n");
  209. goto cleanup;
  210. }
  211. skb_reserve(skb, NET_IP_ALIGN);
  212. dma_addr = dma_map_single(greth->dev,
  213. skb->data,
  214. MAX_FRAME_SIZE+NET_IP_ALIGN,
  215. DMA_FROM_DEVICE);
  216. if (dma_mapping_error(greth->dev, dma_addr)) {
  217. if (netif_msg_ifup(greth))
  218. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  219. goto cleanup;
  220. }
  221. greth->rx_skbuff[i] = skb;
  222. greth_write_bd(&rx_bd[i].addr, dma_addr);
  223. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  224. }
  225. } else {
  226. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  227. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  228. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  229. if (greth->rx_bufs[i] == NULL) {
  230. if (netif_msg_ifup(greth))
  231. dev_err(greth->dev, "Error allocating DMA ring.\n");
  232. goto cleanup;
  233. }
  234. dma_addr = dma_map_single(greth->dev,
  235. greth->rx_bufs[i],
  236. MAX_FRAME_SIZE,
  237. DMA_FROM_DEVICE);
  238. if (dma_mapping_error(greth->dev, dma_addr)) {
  239. if (netif_msg_ifup(greth))
  240. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  241. goto cleanup;
  242. }
  243. greth_write_bd(&rx_bd[i].addr, dma_addr);
  244. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  245. }
  246. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  247. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  248. if (greth->tx_bufs[i] == NULL) {
  249. if (netif_msg_ifup(greth))
  250. dev_err(greth->dev, "Error allocating DMA ring.\n");
  251. goto cleanup;
  252. }
  253. dma_addr = dma_map_single(greth->dev,
  254. greth->tx_bufs[i],
  255. MAX_FRAME_SIZE,
  256. DMA_TO_DEVICE);
  257. if (dma_mapping_error(greth->dev, dma_addr)) {
  258. if (netif_msg_ifup(greth))
  259. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  260. goto cleanup;
  261. }
  262. greth_write_bd(&tx_bd[i].addr, dma_addr);
  263. greth_write_bd(&tx_bd[i].stat, 0);
  264. }
  265. }
  266. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  267. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  268. /* Initialize pointers. */
  269. greth->rx_cur = 0;
  270. greth->tx_next = 0;
  271. greth->tx_last = 0;
  272. greth->tx_free = GRETH_TXBD_NUM;
  273. /* Initialize descriptor base address */
  274. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  275. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  276. return 0;
  277. cleanup:
  278. greth_clean_rings(greth);
  279. return -ENOMEM;
  280. }
  281. static int greth_open(struct net_device *dev)
  282. {
  283. struct greth_private *greth = netdev_priv(dev);
  284. int err;
  285. err = greth_init_rings(greth);
  286. if (err) {
  287. if (netif_msg_ifup(greth))
  288. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  289. return err;
  290. }
  291. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  292. if (err) {
  293. if (netif_msg_ifup(greth))
  294. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  295. greth_clean_rings(greth);
  296. return err;
  297. }
  298. if (netif_msg_ifup(greth))
  299. dev_dbg(&dev->dev, " starting queue\n");
  300. netif_start_queue(dev);
  301. GRETH_REGSAVE(greth->regs->status, 0xFF);
  302. napi_enable(&greth->napi);
  303. greth_enable_irqs(greth);
  304. greth_enable_tx(greth);
  305. greth_enable_rx(greth);
  306. return 0;
  307. }
  308. static int greth_close(struct net_device *dev)
  309. {
  310. struct greth_private *greth = netdev_priv(dev);
  311. napi_disable(&greth->napi);
  312. greth_disable_irqs(greth);
  313. greth_disable_tx(greth);
  314. greth_disable_rx(greth);
  315. netif_stop_queue(dev);
  316. free_irq(greth->irq, (void *) dev);
  317. greth_clean_rings(greth);
  318. return 0;
  319. }
  320. static netdev_tx_t
  321. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  322. {
  323. struct greth_private *greth = netdev_priv(dev);
  324. struct greth_bd *bdp;
  325. int err = NETDEV_TX_OK;
  326. u32 status, dma_addr, ctrl;
  327. unsigned long flags;
  328. /* Clean TX Ring */
  329. greth_clean_tx(greth->netdev);
  330. if (unlikely(greth->tx_free <= 0)) {
  331. spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
  332. ctrl = GRETH_REGLOAD(greth->regs->control);
  333. /* Enable TX IRQ only if not already in poll() routine */
  334. if (ctrl & GRETH_RXI)
  335. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
  336. netif_stop_queue(dev);
  337. spin_unlock_irqrestore(&greth->devlock, flags);
  338. return NETDEV_TX_BUSY;
  339. }
  340. if (netif_msg_pktdata(greth))
  341. greth_print_tx_packet(skb);
  342. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  343. dev->stats.tx_errors++;
  344. goto out;
  345. }
  346. bdp = greth->tx_bd_base + greth->tx_next;
  347. dma_addr = greth_read_bd(&bdp->addr);
  348. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  349. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  350. status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
  351. /* Wrap around descriptor ring */
  352. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  353. status |= GRETH_BD_WR;
  354. }
  355. greth->tx_next = NEXT_TX(greth->tx_next);
  356. greth->tx_free--;
  357. /* Write descriptor control word and enable transmission */
  358. greth_write_bd(&bdp->stat, status);
  359. spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
  360. greth_enable_tx(greth);
  361. spin_unlock_irqrestore(&greth->devlock, flags);
  362. out:
  363. dev_kfree_skb(skb);
  364. return err;
  365. }
  366. static netdev_tx_t
  367. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  368. {
  369. struct greth_private *greth = netdev_priv(dev);
  370. struct greth_bd *bdp;
  371. u32 status = 0, dma_addr, ctrl;
  372. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  373. unsigned long flags;
  374. nr_frags = skb_shinfo(skb)->nr_frags;
  375. /* Clean TX Ring */
  376. greth_clean_tx_gbit(dev);
  377. if (greth->tx_free < nr_frags + 1) {
  378. spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
  379. ctrl = GRETH_REGLOAD(greth->regs->control);
  380. /* Enable TX IRQ only if not already in poll() routine */
  381. if (ctrl & GRETH_RXI)
  382. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
  383. netif_stop_queue(dev);
  384. spin_unlock_irqrestore(&greth->devlock, flags);
  385. err = NETDEV_TX_BUSY;
  386. goto out;
  387. }
  388. if (netif_msg_pktdata(greth))
  389. greth_print_tx_packet(skb);
  390. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  391. dev->stats.tx_errors++;
  392. goto out;
  393. }
  394. /* Save skb pointer. */
  395. greth->tx_skbuff[greth->tx_next] = skb;
  396. /* Linear buf */
  397. if (nr_frags != 0)
  398. status = GRETH_TXBD_MORE;
  399. status |= GRETH_TXBD_CSALL;
  400. status |= skb_headlen(skb) & GRETH_BD_LEN;
  401. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  402. status |= GRETH_BD_WR;
  403. bdp = greth->tx_bd_base + greth->tx_next;
  404. greth_write_bd(&bdp->stat, status);
  405. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  406. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  407. goto map_error;
  408. greth_write_bd(&bdp->addr, dma_addr);
  409. curr_tx = NEXT_TX(greth->tx_next);
  410. /* Frags */
  411. for (i = 0; i < nr_frags; i++) {
  412. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  413. greth->tx_skbuff[curr_tx] = NULL;
  414. bdp = greth->tx_bd_base + curr_tx;
  415. status = GRETH_TXBD_CSALL | GRETH_BD_EN;
  416. status |= frag->size & GRETH_BD_LEN;
  417. /* Wrap around descriptor ring */
  418. if (curr_tx == GRETH_TXBD_NUM_MASK)
  419. status |= GRETH_BD_WR;
  420. /* More fragments left */
  421. if (i < nr_frags - 1)
  422. status |= GRETH_TXBD_MORE;
  423. else
  424. status |= GRETH_BD_IE; /* enable IRQ on last fragment */
  425. greth_write_bd(&bdp->stat, status);
  426. dma_addr = dma_map_page(greth->dev,
  427. frag->page,
  428. frag->page_offset,
  429. frag->size,
  430. DMA_TO_DEVICE);
  431. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  432. goto frag_map_error;
  433. greth_write_bd(&bdp->addr, dma_addr);
  434. curr_tx = NEXT_TX(curr_tx);
  435. }
  436. wmb();
  437. /* Enable the descriptor chain by enabling the first descriptor */
  438. bdp = greth->tx_bd_base + greth->tx_next;
  439. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  440. greth->tx_next = curr_tx;
  441. greth->tx_free -= nr_frags + 1;
  442. wmb();
  443. spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
  444. greth_enable_tx(greth);
  445. spin_unlock_irqrestore(&greth->devlock, flags);
  446. return NETDEV_TX_OK;
  447. frag_map_error:
  448. /* Unmap SKB mappings that succeeded and disable descriptor */
  449. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  450. bdp = greth->tx_bd_base + greth->tx_next + i;
  451. dma_unmap_single(greth->dev,
  452. greth_read_bd(&bdp->addr),
  453. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  454. DMA_TO_DEVICE);
  455. greth_write_bd(&bdp->stat, 0);
  456. }
  457. map_error:
  458. if (net_ratelimit())
  459. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  460. dev_kfree_skb(skb);
  461. out:
  462. return err;
  463. }
  464. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  465. {
  466. struct net_device *dev = dev_id;
  467. struct greth_private *greth;
  468. u32 status, ctrl;
  469. irqreturn_t retval = IRQ_NONE;
  470. greth = netdev_priv(dev);
  471. spin_lock(&greth->devlock);
  472. /* Get the interrupt events that caused us to be here. */
  473. status = GRETH_REGLOAD(greth->regs->status);
  474. /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
  475. * set regardless of whether IRQ is enabled or not. Especially
  476. * important when shared IRQ.
  477. */
  478. ctrl = GRETH_REGLOAD(greth->regs->control);
  479. /* Handle rx and tx interrupts through poll */
  480. if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
  481. ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
  482. retval = IRQ_HANDLED;
  483. /* Disable interrupts and schedule poll() */
  484. greth_disable_irqs(greth);
  485. napi_schedule(&greth->napi);
  486. }
  487. mmiowb();
  488. spin_unlock(&greth->devlock);
  489. return retval;
  490. }
  491. static void greth_clean_tx(struct net_device *dev)
  492. {
  493. struct greth_private *greth;
  494. struct greth_bd *bdp;
  495. u32 stat;
  496. greth = netdev_priv(dev);
  497. while (1) {
  498. bdp = greth->tx_bd_base + greth->tx_last;
  499. GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
  500. mb();
  501. stat = greth_read_bd(&bdp->stat);
  502. if (unlikely(stat & GRETH_BD_EN))
  503. break;
  504. if (greth->tx_free == GRETH_TXBD_NUM)
  505. break;
  506. /* Check status for errors */
  507. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  508. dev->stats.tx_errors++;
  509. if (stat & GRETH_TXBD_ERR_AL)
  510. dev->stats.tx_aborted_errors++;
  511. if (stat & GRETH_TXBD_ERR_UE)
  512. dev->stats.tx_fifo_errors++;
  513. }
  514. dev->stats.tx_packets++;
  515. greth->tx_last = NEXT_TX(greth->tx_last);
  516. greth->tx_free++;
  517. }
  518. if (greth->tx_free > 0) {
  519. netif_wake_queue(dev);
  520. }
  521. }
  522. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  523. {
  524. /* Check status for errors */
  525. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  526. dev->stats.tx_errors++;
  527. if (stat & GRETH_TXBD_ERR_AL)
  528. dev->stats.tx_aborted_errors++;
  529. if (stat & GRETH_TXBD_ERR_UE)
  530. dev->stats.tx_fifo_errors++;
  531. if (stat & GRETH_TXBD_ERR_LC)
  532. dev->stats.tx_aborted_errors++;
  533. }
  534. dev->stats.tx_packets++;
  535. }
  536. static void greth_clean_tx_gbit(struct net_device *dev)
  537. {
  538. struct greth_private *greth;
  539. struct greth_bd *bdp, *bdp_last_frag;
  540. struct sk_buff *skb;
  541. u32 stat;
  542. int nr_frags, i;
  543. greth = netdev_priv(dev);
  544. while (greth->tx_free < GRETH_TXBD_NUM) {
  545. skb = greth->tx_skbuff[greth->tx_last];
  546. nr_frags = skb_shinfo(skb)->nr_frags;
  547. /* We only clean fully completed SKBs */
  548. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  549. GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
  550. mb();
  551. stat = greth_read_bd(&bdp_last_frag->stat);
  552. if (stat & GRETH_BD_EN)
  553. break;
  554. greth->tx_skbuff[greth->tx_last] = NULL;
  555. greth_update_tx_stats(dev, stat);
  556. bdp = greth->tx_bd_base + greth->tx_last;
  557. greth->tx_last = NEXT_TX(greth->tx_last);
  558. dma_unmap_single(greth->dev,
  559. greth_read_bd(&bdp->addr),
  560. skb_headlen(skb),
  561. DMA_TO_DEVICE);
  562. for (i = 0; i < nr_frags; i++) {
  563. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  564. bdp = greth->tx_bd_base + greth->tx_last;
  565. dma_unmap_page(greth->dev,
  566. greth_read_bd(&bdp->addr),
  567. frag->size,
  568. DMA_TO_DEVICE);
  569. greth->tx_last = NEXT_TX(greth->tx_last);
  570. }
  571. greth->tx_free += nr_frags+1;
  572. dev_kfree_skb(skb);
  573. }
  574. if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1)))
  575. netif_wake_queue(dev);
  576. }
  577. static int greth_rx(struct net_device *dev, int limit)
  578. {
  579. struct greth_private *greth;
  580. struct greth_bd *bdp;
  581. struct sk_buff *skb;
  582. int pkt_len;
  583. int bad, count;
  584. u32 status, dma_addr;
  585. unsigned long flags;
  586. greth = netdev_priv(dev);
  587. for (count = 0; count < limit; ++count) {
  588. bdp = greth->rx_bd_base + greth->rx_cur;
  589. GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
  590. mb();
  591. status = greth_read_bd(&bdp->stat);
  592. if (unlikely(status & GRETH_BD_EN)) {
  593. break;
  594. }
  595. dma_addr = greth_read_bd(&bdp->addr);
  596. bad = 0;
  597. /* Check status for errors. */
  598. if (unlikely(status & GRETH_RXBD_STATUS)) {
  599. if (status & GRETH_RXBD_ERR_FT) {
  600. dev->stats.rx_length_errors++;
  601. bad = 1;
  602. }
  603. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  604. dev->stats.rx_frame_errors++;
  605. bad = 1;
  606. }
  607. if (status & GRETH_RXBD_ERR_CRC) {
  608. dev->stats.rx_crc_errors++;
  609. bad = 1;
  610. }
  611. }
  612. if (unlikely(bad)) {
  613. dev->stats.rx_errors++;
  614. } else {
  615. pkt_len = status & GRETH_BD_LEN;
  616. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  617. if (unlikely(skb == NULL)) {
  618. if (net_ratelimit())
  619. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  620. dev->stats.rx_dropped++;
  621. } else {
  622. skb_reserve(skb, NET_IP_ALIGN);
  623. skb->dev = dev;
  624. dma_sync_single_for_cpu(greth->dev,
  625. dma_addr,
  626. pkt_len,
  627. DMA_FROM_DEVICE);
  628. if (netif_msg_pktdata(greth))
  629. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  630. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  631. skb->protocol = eth_type_trans(skb, dev);
  632. dev->stats.rx_packets++;
  633. netif_receive_skb(skb);
  634. }
  635. }
  636. status = GRETH_BD_EN | GRETH_BD_IE;
  637. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  638. status |= GRETH_BD_WR;
  639. }
  640. wmb();
  641. greth_write_bd(&bdp->stat, status);
  642. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  643. spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
  644. greth_enable_rx(greth);
  645. spin_unlock_irqrestore(&greth->devlock, flags);
  646. greth->rx_cur = NEXT_RX(greth->rx_cur);
  647. }
  648. return count;
  649. }
  650. static inline int hw_checksummed(u32 status)
  651. {
  652. if (status & GRETH_RXBD_IP_FRAG)
  653. return 0;
  654. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  655. return 0;
  656. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  657. return 0;
  658. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  659. return 0;
  660. return 1;
  661. }
  662. static int greth_rx_gbit(struct net_device *dev, int limit)
  663. {
  664. struct greth_private *greth;
  665. struct greth_bd *bdp;
  666. struct sk_buff *skb, *newskb;
  667. int pkt_len;
  668. int bad, count = 0;
  669. u32 status, dma_addr;
  670. unsigned long flags;
  671. greth = netdev_priv(dev);
  672. for (count = 0; count < limit; ++count) {
  673. bdp = greth->rx_bd_base + greth->rx_cur;
  674. skb = greth->rx_skbuff[greth->rx_cur];
  675. GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
  676. mb();
  677. status = greth_read_bd(&bdp->stat);
  678. bad = 0;
  679. if (status & GRETH_BD_EN)
  680. break;
  681. /* Check status for errors. */
  682. if (unlikely(status & GRETH_RXBD_STATUS)) {
  683. if (status & GRETH_RXBD_ERR_FT) {
  684. dev->stats.rx_length_errors++;
  685. bad = 1;
  686. } else if (status &
  687. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  688. dev->stats.rx_frame_errors++;
  689. bad = 1;
  690. } else if (status & GRETH_RXBD_ERR_CRC) {
  691. dev->stats.rx_crc_errors++;
  692. bad = 1;
  693. }
  694. }
  695. /* Allocate new skb to replace current, not needed if the
  696. * current skb can be reused */
  697. if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
  698. skb_reserve(newskb, NET_IP_ALIGN);
  699. dma_addr = dma_map_single(greth->dev,
  700. newskb->data,
  701. MAX_FRAME_SIZE + NET_IP_ALIGN,
  702. DMA_FROM_DEVICE);
  703. if (!dma_mapping_error(greth->dev, dma_addr)) {
  704. /* Process the incoming frame. */
  705. pkt_len = status & GRETH_BD_LEN;
  706. dma_unmap_single(greth->dev,
  707. greth_read_bd(&bdp->addr),
  708. MAX_FRAME_SIZE + NET_IP_ALIGN,
  709. DMA_FROM_DEVICE);
  710. if (netif_msg_pktdata(greth))
  711. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  712. skb_put(skb, pkt_len);
  713. if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
  714. skb->ip_summed = CHECKSUM_UNNECESSARY;
  715. else
  716. skb_checksum_none_assert(skb);
  717. skb->protocol = eth_type_trans(skb, dev);
  718. dev->stats.rx_packets++;
  719. netif_receive_skb(skb);
  720. greth->rx_skbuff[greth->rx_cur] = newskb;
  721. greth_write_bd(&bdp->addr, dma_addr);
  722. } else {
  723. if (net_ratelimit())
  724. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  725. dev_kfree_skb(newskb);
  726. /* reusing current skb, so it is a drop */
  727. dev->stats.rx_dropped++;
  728. }
  729. } else if (bad) {
  730. /* Bad Frame transfer, the skb is reused */
  731. dev->stats.rx_dropped++;
  732. } else {
  733. /* Failed Allocating a new skb. This is rather stupid
  734. * but the current "filled" skb is reused, as if
  735. * transfer failure. One could argue that RX descriptor
  736. * table handling should be divided into cleaning and
  737. * filling as the TX part of the driver
  738. */
  739. if (net_ratelimit())
  740. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  741. /* reusing current skb, so it is a drop */
  742. dev->stats.rx_dropped++;
  743. }
  744. status = GRETH_BD_EN | GRETH_BD_IE;
  745. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  746. status |= GRETH_BD_WR;
  747. }
  748. wmb();
  749. greth_write_bd(&bdp->stat, status);
  750. spin_lock_irqsave(&greth->devlock, flags);
  751. greth_enable_rx(greth);
  752. spin_unlock_irqrestore(&greth->devlock, flags);
  753. greth->rx_cur = NEXT_RX(greth->rx_cur);
  754. }
  755. return count;
  756. }
  757. static int greth_poll(struct napi_struct *napi, int budget)
  758. {
  759. struct greth_private *greth;
  760. int work_done = 0;
  761. unsigned long flags;
  762. u32 mask, ctrl;
  763. greth = container_of(napi, struct greth_private, napi);
  764. restart_txrx_poll:
  765. if (netif_queue_stopped(greth->netdev)) {
  766. if (greth->gbit_mac)
  767. greth_clean_tx_gbit(greth->netdev);
  768. else
  769. greth_clean_tx(greth->netdev);
  770. }
  771. if (greth->gbit_mac) {
  772. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  773. } else {
  774. work_done += greth_rx(greth->netdev, budget - work_done);
  775. }
  776. if (work_done < budget) {
  777. spin_lock_irqsave(&greth->devlock, flags);
  778. ctrl = GRETH_REGLOAD(greth->regs->control);
  779. if (netif_queue_stopped(greth->netdev)) {
  780. GRETH_REGSAVE(greth->regs->control,
  781. ctrl | GRETH_TXI | GRETH_RXI);
  782. mask = GRETH_INT_RX | GRETH_INT_RE |
  783. GRETH_INT_TX | GRETH_INT_TE;
  784. } else {
  785. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
  786. mask = GRETH_INT_RX | GRETH_INT_RE;
  787. }
  788. if (GRETH_REGLOAD(greth->regs->status) & mask) {
  789. GRETH_REGSAVE(greth->regs->control, ctrl);
  790. spin_unlock_irqrestore(&greth->devlock, flags);
  791. goto restart_txrx_poll;
  792. } else {
  793. __napi_complete(napi);
  794. spin_unlock_irqrestore(&greth->devlock, flags);
  795. }
  796. }
  797. return work_done;
  798. }
  799. static int greth_set_mac_add(struct net_device *dev, void *p)
  800. {
  801. struct sockaddr *addr = p;
  802. struct greth_private *greth;
  803. struct greth_regs *regs;
  804. greth = netdev_priv(dev);
  805. regs = (struct greth_regs *) greth->regs;
  806. if (!is_valid_ether_addr(addr->sa_data))
  807. return -EINVAL;
  808. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  809. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  810. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  811. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  812. return 0;
  813. }
  814. static u32 greth_hash_get_index(__u8 *addr)
  815. {
  816. return (ether_crc(6, addr)) & 0x3F;
  817. }
  818. static void greth_set_hash_filter(struct net_device *dev)
  819. {
  820. struct netdev_hw_addr *ha;
  821. struct greth_private *greth = netdev_priv(dev);
  822. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  823. u32 mc_filter[2];
  824. unsigned int bitnr;
  825. mc_filter[0] = mc_filter[1] = 0;
  826. netdev_for_each_mc_addr(ha, dev) {
  827. bitnr = greth_hash_get_index(ha->addr);
  828. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  829. }
  830. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  831. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  832. }
  833. static void greth_set_multicast_list(struct net_device *dev)
  834. {
  835. int cfg;
  836. struct greth_private *greth = netdev_priv(dev);
  837. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  838. cfg = GRETH_REGLOAD(regs->control);
  839. if (dev->flags & IFF_PROMISC)
  840. cfg |= GRETH_CTRL_PR;
  841. else
  842. cfg &= ~GRETH_CTRL_PR;
  843. if (greth->multicast) {
  844. if (dev->flags & IFF_ALLMULTI) {
  845. GRETH_REGSAVE(regs->hash_msb, -1);
  846. GRETH_REGSAVE(regs->hash_lsb, -1);
  847. cfg |= GRETH_CTRL_MCEN;
  848. GRETH_REGSAVE(regs->control, cfg);
  849. return;
  850. }
  851. if (netdev_mc_empty(dev)) {
  852. cfg &= ~GRETH_CTRL_MCEN;
  853. GRETH_REGSAVE(regs->control, cfg);
  854. return;
  855. }
  856. /* Setup multicast filter */
  857. greth_set_hash_filter(dev);
  858. cfg |= GRETH_CTRL_MCEN;
  859. }
  860. GRETH_REGSAVE(regs->control, cfg);
  861. }
  862. static u32 greth_get_msglevel(struct net_device *dev)
  863. {
  864. struct greth_private *greth = netdev_priv(dev);
  865. return greth->msg_enable;
  866. }
  867. static void greth_set_msglevel(struct net_device *dev, u32 value)
  868. {
  869. struct greth_private *greth = netdev_priv(dev);
  870. greth->msg_enable = value;
  871. }
  872. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  873. {
  874. struct greth_private *greth = netdev_priv(dev);
  875. struct phy_device *phy = greth->phy;
  876. if (!phy)
  877. return -ENODEV;
  878. return phy_ethtool_gset(phy, cmd);
  879. }
  880. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  881. {
  882. struct greth_private *greth = netdev_priv(dev);
  883. struct phy_device *phy = greth->phy;
  884. if (!phy)
  885. return -ENODEV;
  886. return phy_ethtool_sset(phy, cmd);
  887. }
  888. static int greth_get_regs_len(struct net_device *dev)
  889. {
  890. return sizeof(struct greth_regs);
  891. }
  892. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  893. {
  894. struct greth_private *greth = netdev_priv(dev);
  895. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  896. strncpy(info->version, "revision: 1.0", 32);
  897. strncpy(info->bus_info, greth->dev->bus->name, 32);
  898. strncpy(info->fw_version, "N/A", 32);
  899. info->eedump_len = 0;
  900. info->regdump_len = sizeof(struct greth_regs);
  901. }
  902. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  903. {
  904. int i;
  905. struct greth_private *greth = netdev_priv(dev);
  906. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  907. u32 *buff = p;
  908. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  909. buff[i] = greth_read_bd(&greth_regs[i]);
  910. }
  911. static const struct ethtool_ops greth_ethtool_ops = {
  912. .get_msglevel = greth_get_msglevel,
  913. .set_msglevel = greth_set_msglevel,
  914. .get_settings = greth_get_settings,
  915. .set_settings = greth_set_settings,
  916. .get_drvinfo = greth_get_drvinfo,
  917. .get_regs_len = greth_get_regs_len,
  918. .get_regs = greth_get_regs,
  919. .get_link = ethtool_op_get_link,
  920. };
  921. static struct net_device_ops greth_netdev_ops = {
  922. .ndo_open = greth_open,
  923. .ndo_stop = greth_close,
  924. .ndo_start_xmit = greth_start_xmit,
  925. .ndo_set_mac_address = greth_set_mac_add,
  926. .ndo_validate_addr = eth_validate_addr,
  927. };
  928. static inline int wait_for_mdio(struct greth_private *greth)
  929. {
  930. unsigned long timeout = jiffies + 4*HZ/100;
  931. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  932. if (time_after(jiffies, timeout))
  933. return 0;
  934. }
  935. return 1;
  936. }
  937. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  938. {
  939. struct greth_private *greth = bus->priv;
  940. int data;
  941. if (!wait_for_mdio(greth))
  942. return -EBUSY;
  943. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  944. if (!wait_for_mdio(greth))
  945. return -EBUSY;
  946. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  947. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  948. return data;
  949. } else {
  950. return -1;
  951. }
  952. }
  953. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  954. {
  955. struct greth_private *greth = bus->priv;
  956. if (!wait_for_mdio(greth))
  957. return -EBUSY;
  958. GRETH_REGSAVE(greth->regs->mdio,
  959. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  960. if (!wait_for_mdio(greth))
  961. return -EBUSY;
  962. return 0;
  963. }
  964. static int greth_mdio_reset(struct mii_bus *bus)
  965. {
  966. return 0;
  967. }
  968. static void greth_link_change(struct net_device *dev)
  969. {
  970. struct greth_private *greth = netdev_priv(dev);
  971. struct phy_device *phydev = greth->phy;
  972. unsigned long flags;
  973. int status_change = 0;
  974. u32 ctrl;
  975. spin_lock_irqsave(&greth->devlock, flags);
  976. if (phydev->link) {
  977. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  978. ctrl = GRETH_REGLOAD(greth->regs->control) &
  979. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
  980. if (phydev->duplex)
  981. ctrl |= GRETH_CTRL_FD;
  982. if (phydev->speed == SPEED_100)
  983. ctrl |= GRETH_CTRL_SP;
  984. else if (phydev->speed == SPEED_1000)
  985. ctrl |= GRETH_CTRL_GB;
  986. GRETH_REGSAVE(greth->regs->control, ctrl);
  987. greth->speed = phydev->speed;
  988. greth->duplex = phydev->duplex;
  989. status_change = 1;
  990. }
  991. }
  992. if (phydev->link != greth->link) {
  993. if (!phydev->link) {
  994. greth->speed = 0;
  995. greth->duplex = -1;
  996. }
  997. greth->link = phydev->link;
  998. status_change = 1;
  999. }
  1000. spin_unlock_irqrestore(&greth->devlock, flags);
  1001. if (status_change) {
  1002. if (phydev->link)
  1003. pr_debug("%s: link up (%d/%s)\n",
  1004. dev->name, phydev->speed,
  1005. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  1006. else
  1007. pr_debug("%s: link down\n", dev->name);
  1008. }
  1009. }
  1010. static int greth_mdio_probe(struct net_device *dev)
  1011. {
  1012. struct greth_private *greth = netdev_priv(dev);
  1013. struct phy_device *phy = NULL;
  1014. int ret;
  1015. /* Find the first PHY */
  1016. phy = phy_find_first(greth->mdio);
  1017. if (!phy) {
  1018. if (netif_msg_probe(greth))
  1019. dev_err(&dev->dev, "no PHY found\n");
  1020. return -ENXIO;
  1021. }
  1022. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1023. 0, greth->gbit_mac ?
  1024. PHY_INTERFACE_MODE_GMII :
  1025. PHY_INTERFACE_MODE_MII);
  1026. if (ret) {
  1027. if (netif_msg_ifup(greth))
  1028. dev_err(&dev->dev, "could not attach to PHY\n");
  1029. return ret;
  1030. }
  1031. if (greth->gbit_mac)
  1032. phy->supported &= PHY_GBIT_FEATURES;
  1033. else
  1034. phy->supported &= PHY_BASIC_FEATURES;
  1035. phy->advertising = phy->supported;
  1036. greth->link = 0;
  1037. greth->speed = 0;
  1038. greth->duplex = -1;
  1039. greth->phy = phy;
  1040. return 0;
  1041. }
  1042. static inline int phy_aneg_done(struct phy_device *phydev)
  1043. {
  1044. int retval;
  1045. retval = phy_read(phydev, MII_BMSR);
  1046. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1047. }
  1048. static int greth_mdio_init(struct greth_private *greth)
  1049. {
  1050. int ret, phy;
  1051. unsigned long timeout;
  1052. greth->mdio = mdiobus_alloc();
  1053. if (!greth->mdio) {
  1054. return -ENOMEM;
  1055. }
  1056. greth->mdio->name = "greth-mdio";
  1057. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1058. greth->mdio->read = greth_mdio_read;
  1059. greth->mdio->write = greth_mdio_write;
  1060. greth->mdio->reset = greth_mdio_reset;
  1061. greth->mdio->priv = greth;
  1062. greth->mdio->irq = greth->mdio_irqs;
  1063. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1064. greth->mdio->irq[phy] = PHY_POLL;
  1065. ret = mdiobus_register(greth->mdio);
  1066. if (ret) {
  1067. goto error;
  1068. }
  1069. ret = greth_mdio_probe(greth->netdev);
  1070. if (ret) {
  1071. if (netif_msg_probe(greth))
  1072. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1073. goto unreg_mdio;
  1074. }
  1075. phy_start(greth->phy);
  1076. /* If Ethernet debug link is used make autoneg happen right away */
  1077. if (greth->edcl && greth_edcl == 1) {
  1078. phy_start_aneg(greth->phy);
  1079. timeout = jiffies + 6*HZ;
  1080. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1081. }
  1082. genphy_read_status(greth->phy);
  1083. greth_link_change(greth->netdev);
  1084. }
  1085. return 0;
  1086. unreg_mdio:
  1087. mdiobus_unregister(greth->mdio);
  1088. error:
  1089. mdiobus_free(greth->mdio);
  1090. return ret;
  1091. }
  1092. /* Initialize the GRETH MAC */
  1093. static int __devinit greth_of_probe(struct platform_device *ofdev)
  1094. {
  1095. struct net_device *dev;
  1096. struct greth_private *greth;
  1097. struct greth_regs *regs;
  1098. int i;
  1099. int err;
  1100. int tmp;
  1101. unsigned long timeout;
  1102. dev = alloc_etherdev(sizeof(struct greth_private));
  1103. if (dev == NULL)
  1104. return -ENOMEM;
  1105. greth = netdev_priv(dev);
  1106. greth->netdev = dev;
  1107. greth->dev = &ofdev->dev;
  1108. if (greth_debug > 0)
  1109. greth->msg_enable = greth_debug;
  1110. else
  1111. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1112. spin_lock_init(&greth->devlock);
  1113. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1114. resource_size(&ofdev->resource[0]),
  1115. "grlib-greth regs");
  1116. if (greth->regs == NULL) {
  1117. if (netif_msg_probe(greth))
  1118. dev_err(greth->dev, "ioremap failure.\n");
  1119. err = -EIO;
  1120. goto error1;
  1121. }
  1122. regs = (struct greth_regs *) greth->regs;
  1123. greth->irq = ofdev->archdata.irqs[0];
  1124. dev_set_drvdata(greth->dev, dev);
  1125. SET_NETDEV_DEV(dev, greth->dev);
  1126. if (netif_msg_probe(greth))
  1127. dev_dbg(greth->dev, "reseting controller.\n");
  1128. /* Reset the controller. */
  1129. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1130. /* Wait for MAC to reset itself */
  1131. timeout = jiffies + HZ/100;
  1132. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1133. if (time_after(jiffies, timeout)) {
  1134. err = -EIO;
  1135. if (netif_msg_probe(greth))
  1136. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1137. goto error2;
  1138. }
  1139. }
  1140. /* Get default PHY address */
  1141. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1142. /* Check if we have GBIT capable MAC */
  1143. tmp = GRETH_REGLOAD(regs->control);
  1144. greth->gbit_mac = (tmp >> 27) & 1;
  1145. /* Check for multicast capability */
  1146. greth->multicast = (tmp >> 25) & 1;
  1147. greth->edcl = (tmp >> 31) & 1;
  1148. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1149. * it doesn't interfere with the software */
  1150. if (greth->edcl != 0)
  1151. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1152. /* Check if MAC can handle MDIO interrupts */
  1153. greth->mdio_int_en = (tmp >> 26) & 1;
  1154. err = greth_mdio_init(greth);
  1155. if (err) {
  1156. if (netif_msg_probe(greth))
  1157. dev_err(greth->dev, "failed to register MDIO bus\n");
  1158. goto error2;
  1159. }
  1160. /* Allocate TX descriptor ring in coherent memory */
  1161. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1162. 1024,
  1163. &greth->tx_bd_base_phys,
  1164. GFP_KERNEL);
  1165. if (!greth->tx_bd_base) {
  1166. if (netif_msg_probe(greth))
  1167. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1168. err = -ENOMEM;
  1169. goto error3;
  1170. }
  1171. memset(greth->tx_bd_base, 0, 1024);
  1172. /* Allocate RX descriptor ring in coherent memory */
  1173. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1174. 1024,
  1175. &greth->rx_bd_base_phys,
  1176. GFP_KERNEL);
  1177. if (!greth->rx_bd_base) {
  1178. if (netif_msg_probe(greth))
  1179. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1180. err = -ENOMEM;
  1181. goto error4;
  1182. }
  1183. memset(greth->rx_bd_base, 0, 1024);
  1184. /* Get MAC address from: module param, OF property or ID prom */
  1185. for (i = 0; i < 6; i++) {
  1186. if (macaddr[i] != 0)
  1187. break;
  1188. }
  1189. if (i == 6) {
  1190. const unsigned char *addr;
  1191. int len;
  1192. addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
  1193. &len);
  1194. if (addr != NULL && len == 6) {
  1195. for (i = 0; i < 6; i++)
  1196. macaddr[i] = (unsigned int) addr[i];
  1197. } else {
  1198. #ifdef CONFIG_SPARC
  1199. for (i = 0; i < 6; i++)
  1200. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1201. #endif
  1202. }
  1203. }
  1204. for (i = 0; i < 6; i++)
  1205. dev->dev_addr[i] = macaddr[i];
  1206. macaddr[5]++;
  1207. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1208. if (netif_msg_probe(greth))
  1209. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1210. err = -EINVAL;
  1211. goto error5;
  1212. }
  1213. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1214. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1215. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1216. /* Clear all pending interrupts except PHY irq */
  1217. GRETH_REGSAVE(regs->status, 0xFF);
  1218. if (greth->gbit_mac) {
  1219. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  1220. NETIF_F_RXCSUM;
  1221. dev->features = dev->hw_features | NETIF_F_HIGHDMA;
  1222. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1223. }
  1224. if (greth->multicast) {
  1225. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1226. dev->flags |= IFF_MULTICAST;
  1227. } else {
  1228. dev->flags &= ~IFF_MULTICAST;
  1229. }
  1230. dev->netdev_ops = &greth_netdev_ops;
  1231. dev->ethtool_ops = &greth_ethtool_ops;
  1232. err = register_netdev(dev);
  1233. if (err) {
  1234. if (netif_msg_probe(greth))
  1235. dev_err(greth->dev, "netdevice registration failed.\n");
  1236. goto error5;
  1237. }
  1238. /* setup NAPI */
  1239. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1240. return 0;
  1241. error5:
  1242. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1243. error4:
  1244. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1245. error3:
  1246. mdiobus_unregister(greth->mdio);
  1247. error2:
  1248. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1249. error1:
  1250. free_netdev(dev);
  1251. return err;
  1252. }
  1253. static int __devexit greth_of_remove(struct platform_device *of_dev)
  1254. {
  1255. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1256. struct greth_private *greth = netdev_priv(ndev);
  1257. /* Free descriptor areas */
  1258. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1259. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1260. dev_set_drvdata(&of_dev->dev, NULL);
  1261. if (greth->phy)
  1262. phy_stop(greth->phy);
  1263. mdiobus_unregister(greth->mdio);
  1264. unregister_netdev(ndev);
  1265. free_netdev(ndev);
  1266. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1267. return 0;
  1268. }
  1269. static struct of_device_id greth_of_match[] = {
  1270. {
  1271. .name = "GAISLER_ETHMAC",
  1272. },
  1273. {
  1274. .name = "01_01d",
  1275. },
  1276. {},
  1277. };
  1278. MODULE_DEVICE_TABLE(of, greth_of_match);
  1279. static struct platform_driver greth_of_driver = {
  1280. .driver = {
  1281. .name = "grlib-greth",
  1282. .owner = THIS_MODULE,
  1283. .of_match_table = greth_of_match,
  1284. },
  1285. .probe = greth_of_probe,
  1286. .remove = __devexit_p(greth_of_remove),
  1287. };
  1288. static int __init greth_init(void)
  1289. {
  1290. return platform_driver_register(&greth_of_driver);
  1291. }
  1292. static void __exit greth_cleanup(void)
  1293. {
  1294. platform_driver_unregister(&greth_of_driver);
  1295. }
  1296. module_init(greth_init);
  1297. module_exit(greth_cleanup);
  1298. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1299. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1300. MODULE_LICENSE("GPL");