t3_hw.c 114 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. static void t3_port_intr_clear(struct adapter *adapter, int idx);
  37. /**
  38. * t3_wait_op_done_val - wait until an operation is completed
  39. * @adapter: the adapter performing the operation
  40. * @reg: the register to check for completion
  41. * @mask: a single-bit field within @reg that indicates completion
  42. * @polarity: the value of the field when the operation is completed
  43. * @attempts: number of check iterations
  44. * @delay: delay in usecs between iterations
  45. * @valp: where to store the value of the register at completion time
  46. *
  47. * Wait until an operation is completed by checking a bit in a register
  48. * up to @attempts times. If @valp is not NULL the value of the register
  49. * at the time it indicated completion is stored there. Returns 0 if the
  50. * operation completes and -EAGAIN otherwise.
  51. */
  52. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  53. int polarity, int attempts, int delay, u32 *valp)
  54. {
  55. while (1) {
  56. u32 val = t3_read_reg(adapter, reg);
  57. if (!!(val & mask) == polarity) {
  58. if (valp)
  59. *valp = val;
  60. return 0;
  61. }
  62. if (--attempts == 0)
  63. return -EAGAIN;
  64. if (delay)
  65. udelay(delay);
  66. }
  67. }
  68. /**
  69. * t3_write_regs - write a bunch of registers
  70. * @adapter: the adapter to program
  71. * @p: an array of register address/register value pairs
  72. * @n: the number of address/value pairs
  73. * @offset: register address offset
  74. *
  75. * Takes an array of register address/register value pairs and writes each
  76. * value to the corresponding register. Register addresses are adjusted
  77. * by the supplied offset.
  78. */
  79. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  80. int n, unsigned int offset)
  81. {
  82. while (n--) {
  83. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  84. p++;
  85. }
  86. }
  87. /**
  88. * t3_set_reg_field - set a register field to a value
  89. * @adapter: the adapter to program
  90. * @addr: the register address
  91. * @mask: specifies the portion of the register to modify
  92. * @val: the new value for the register field
  93. *
  94. * Sets a register field specified by the supplied mask to the
  95. * given value.
  96. */
  97. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  98. u32 val)
  99. {
  100. u32 v = t3_read_reg(adapter, addr) & ~mask;
  101. t3_write_reg(adapter, addr, v | val);
  102. t3_read_reg(adapter, addr); /* flush */
  103. }
  104. /**
  105. * t3_read_indirect - read indirectly addressed registers
  106. * @adap: the adapter
  107. * @addr_reg: register holding the indirect address
  108. * @data_reg: register holding the value of the indirect register
  109. * @vals: where the read register values are stored
  110. * @start_idx: index of first indirect register to read
  111. * @nregs: how many indirect registers to read
  112. *
  113. * Reads registers that are accessed indirectly through an address/data
  114. * register pair.
  115. */
  116. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  117. unsigned int data_reg, u32 *vals,
  118. unsigned int nregs, unsigned int start_idx)
  119. {
  120. while (nregs--) {
  121. t3_write_reg(adap, addr_reg, start_idx);
  122. *vals++ = t3_read_reg(adap, data_reg);
  123. start_idx++;
  124. }
  125. }
  126. /**
  127. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  128. * @mc7: identifies MC7 to read from
  129. * @start: index of first 64-bit word to read
  130. * @n: number of 64-bit words to read
  131. * @buf: where to store the read result
  132. *
  133. * Read n 64-bit words from MC7 starting at word start, using backdoor
  134. * accesses.
  135. */
  136. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  137. u64 *buf)
  138. {
  139. static const int shift[] = { 0, 0, 16, 24 };
  140. static const int step[] = { 0, 32, 16, 8 };
  141. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  142. struct adapter *adap = mc7->adapter;
  143. if (start >= size64 || start + n > size64)
  144. return -EINVAL;
  145. start *= (8 << mc7->width);
  146. while (n--) {
  147. int i;
  148. u64 val64 = 0;
  149. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  150. int attempts = 10;
  151. u32 val;
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  153. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  154. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  155. while ((val & F_BUSY) && attempts--)
  156. val = t3_read_reg(adap,
  157. mc7->offset + A_MC7_BD_OP);
  158. if (val & F_BUSY)
  159. return -EIO;
  160. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  161. if (mc7->width == 0) {
  162. val64 = t3_read_reg(adap,
  163. mc7->offset +
  164. A_MC7_BD_DATA0);
  165. val64 |= (u64) val << 32;
  166. } else {
  167. if (mc7->width > 1)
  168. val >>= shift[mc7->width];
  169. val64 |= (u64) val << (step[mc7->width] * i);
  170. }
  171. start += 8;
  172. }
  173. *buf++ = val64;
  174. }
  175. return 0;
  176. }
  177. /*
  178. * Initialize MI1.
  179. */
  180. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  181. {
  182. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  183. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  184. t3_write_reg(adap, A_MI1_CFG, val);
  185. }
  186. #define MDIO_ATTEMPTS 20
  187. /*
  188. * MI1 read/write operations for clause 22 PHYs.
  189. */
  190. static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
  191. u16 reg_addr)
  192. {
  193. struct port_info *pi = netdev_priv(dev);
  194. struct adapter *adapter = pi->adapter;
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. mutex_lock(&adapter->mdio_lock);
  198. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  199. t3_write_reg(adapter, A_MI1_ADDR, addr);
  200. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  201. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  202. if (!ret)
  203. ret = t3_read_reg(adapter, A_MI1_DATA);
  204. mutex_unlock(&adapter->mdio_lock);
  205. return ret;
  206. }
  207. static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
  208. u16 reg_addr, u16 val)
  209. {
  210. struct port_info *pi = netdev_priv(dev);
  211. struct adapter *adapter = pi->adapter;
  212. int ret;
  213. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  214. mutex_lock(&adapter->mdio_lock);
  215. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. .read = t3_mi1_read,
  225. .write = t3_mi1_write,
  226. .mode_support = MDIO_SUPPORTS_C22
  227. };
  228. /*
  229. * Performs the address cycle for clause 45 PHYs.
  230. * Must be called with the MDIO_LOCK held.
  231. */
  232. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  233. int reg_addr)
  234. {
  235. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  236. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  237. t3_write_reg(adapter, A_MI1_ADDR, addr);
  238. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  239. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  240. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  241. MDIO_ATTEMPTS, 10);
  242. }
  243. /*
  244. * MI1 read/write operations for indirect-addressed PHYs.
  245. */
  246. static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
  247. u16 reg_addr)
  248. {
  249. struct port_info *pi = netdev_priv(dev);
  250. struct adapter *adapter = pi->adapter;
  251. int ret;
  252. mutex_lock(&adapter->mdio_lock);
  253. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  254. if (!ret) {
  255. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  256. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  257. MDIO_ATTEMPTS, 10);
  258. if (!ret)
  259. ret = t3_read_reg(adapter, A_MI1_DATA);
  260. }
  261. mutex_unlock(&adapter->mdio_lock);
  262. return ret;
  263. }
  264. static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
  265. u16 reg_addr, u16 val)
  266. {
  267. struct port_info *pi = netdev_priv(dev);
  268. struct adapter *adapter = pi->adapter;
  269. int ret;
  270. mutex_lock(&adapter->mdio_lock);
  271. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  272. if (!ret) {
  273. t3_write_reg(adapter, A_MI1_DATA, val);
  274. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  275. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  276. MDIO_ATTEMPTS, 10);
  277. }
  278. mutex_unlock(&adapter->mdio_lock);
  279. return ret;
  280. }
  281. static const struct mdio_ops mi1_mdio_ext_ops = {
  282. .read = mi1_ext_read,
  283. .write = mi1_ext_write,
  284. .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
  285. };
  286. /**
  287. * t3_mdio_change_bits - modify the value of a PHY register
  288. * @phy: the PHY to operate on
  289. * @mmd: the device address
  290. * @reg: the register address
  291. * @clear: what part of the register value to mask off
  292. * @set: what part of the register value to set
  293. *
  294. * Changes the value of a PHY register by applying a mask to its current
  295. * value and ORing the result with a new value.
  296. */
  297. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  298. unsigned int set)
  299. {
  300. int ret;
  301. unsigned int val;
  302. ret = t3_mdio_read(phy, mmd, reg, &val);
  303. if (!ret) {
  304. val &= ~clear;
  305. ret = t3_mdio_write(phy, mmd, reg, val | set);
  306. }
  307. return ret;
  308. }
  309. /**
  310. * t3_phy_reset - reset a PHY block
  311. * @phy: the PHY to operate on
  312. * @mmd: the device address of the PHY block to reset
  313. * @wait: how long to wait for the reset to complete in 1ms increments
  314. *
  315. * Resets a PHY block and optionally waits for the reset to complete.
  316. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  317. * for 10G PHYs.
  318. */
  319. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  320. {
  321. int err;
  322. unsigned int ctl;
  323. err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
  324. MDIO_CTRL1_RESET);
  325. if (err || !wait)
  326. return err;
  327. do {
  328. err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
  329. if (err)
  330. return err;
  331. ctl &= MDIO_CTRL1_RESET;
  332. if (ctl)
  333. msleep(1);
  334. } while (ctl && --wait);
  335. return ctl ? -1 : 0;
  336. }
  337. /**
  338. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  339. * @phy: the PHY to operate on
  340. * @advert: bitmap of capabilities the PHY should advertise
  341. *
  342. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  343. * requested capabilities.
  344. */
  345. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  346. {
  347. int err;
  348. unsigned int val = 0;
  349. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
  350. if (err)
  351. return err;
  352. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  353. if (advert & ADVERTISED_1000baseT_Half)
  354. val |= ADVERTISE_1000HALF;
  355. if (advert & ADVERTISED_1000baseT_Full)
  356. val |= ADVERTISE_1000FULL;
  357. err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
  358. if (err)
  359. return err;
  360. val = 1;
  361. if (advert & ADVERTISED_10baseT_Half)
  362. val |= ADVERTISE_10HALF;
  363. if (advert & ADVERTISED_10baseT_Full)
  364. val |= ADVERTISE_10FULL;
  365. if (advert & ADVERTISED_100baseT_Half)
  366. val |= ADVERTISE_100HALF;
  367. if (advert & ADVERTISED_100baseT_Full)
  368. val |= ADVERTISE_100FULL;
  369. if (advert & ADVERTISED_Pause)
  370. val |= ADVERTISE_PAUSE_CAP;
  371. if (advert & ADVERTISED_Asym_Pause)
  372. val |= ADVERTISE_PAUSE_ASYM;
  373. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  374. }
  375. /**
  376. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  377. * @phy: the PHY to operate on
  378. * @advert: bitmap of capabilities the PHY should advertise
  379. *
  380. * Sets a fiber PHY's advertisement register to advertise the
  381. * requested capabilities.
  382. */
  383. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  384. {
  385. unsigned int val = 0;
  386. if (advert & ADVERTISED_1000baseT_Half)
  387. val |= ADVERTISE_1000XHALF;
  388. if (advert & ADVERTISED_1000baseT_Full)
  389. val |= ADVERTISE_1000XFULL;
  390. if (advert & ADVERTISED_Pause)
  391. val |= ADVERTISE_1000XPAUSE;
  392. if (advert & ADVERTISED_Asym_Pause)
  393. val |= ADVERTISE_1000XPSE_ASYM;
  394. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  395. }
  396. /**
  397. * t3_set_phy_speed_duplex - force PHY speed and duplex
  398. * @phy: the PHY to operate on
  399. * @speed: requested PHY speed
  400. * @duplex: requested PHY duplex
  401. *
  402. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  403. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  404. */
  405. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  406. {
  407. int err;
  408. unsigned int ctl;
  409. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
  410. if (err)
  411. return err;
  412. if (speed >= 0) {
  413. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  414. if (speed == SPEED_100)
  415. ctl |= BMCR_SPEED100;
  416. else if (speed == SPEED_1000)
  417. ctl |= BMCR_SPEED1000;
  418. }
  419. if (duplex >= 0) {
  420. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  421. if (duplex == DUPLEX_FULL)
  422. ctl |= BMCR_FULLDPLX;
  423. }
  424. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  425. ctl |= BMCR_ANENABLE;
  426. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
  427. }
  428. int t3_phy_lasi_intr_enable(struct cphy *phy)
  429. {
  430. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
  431. MDIO_PMA_LASI_LSALARM);
  432. }
  433. int t3_phy_lasi_intr_disable(struct cphy *phy)
  434. {
  435. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
  436. }
  437. int t3_phy_lasi_intr_clear(struct cphy *phy)
  438. {
  439. u32 val;
  440. return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
  441. }
  442. int t3_phy_lasi_intr_handler(struct cphy *phy)
  443. {
  444. unsigned int status;
  445. int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
  446. &status);
  447. if (err)
  448. return err;
  449. return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
  450. }
  451. static const struct adapter_info t3_adap_info[] = {
  452. {1, 1, 0,
  453. F_GPIO2_OEN | F_GPIO4_OEN |
  454. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  455. &mi1_mdio_ops, "Chelsio PE9000"},
  456. {1, 1, 0,
  457. F_GPIO2_OEN | F_GPIO4_OEN |
  458. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  459. &mi1_mdio_ops, "Chelsio T302"},
  460. {1, 0, 0,
  461. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  462. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  463. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  464. &mi1_mdio_ext_ops, "Chelsio T310"},
  465. {1, 1, 0,
  466. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  467. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  468. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  469. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  470. &mi1_mdio_ext_ops, "Chelsio T320"},
  471. {},
  472. {},
  473. {1, 0, 0,
  474. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  475. F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  476. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  477. &mi1_mdio_ext_ops, "Chelsio T310" },
  478. {1, 0, 0,
  479. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  480. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
  481. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  482. &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
  483. };
  484. /*
  485. * Return the adapter_info structure with a given index. Out-of-range indices
  486. * return NULL.
  487. */
  488. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  489. {
  490. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  491. }
  492. struct port_type_info {
  493. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  494. int phy_addr, const struct mdio_ops *ops);
  495. };
  496. static const struct port_type_info port_types[] = {
  497. { NULL },
  498. { t3_ael1002_phy_prep },
  499. { t3_vsc8211_phy_prep },
  500. { NULL},
  501. { t3_xaui_direct_phy_prep },
  502. { t3_ael2005_phy_prep },
  503. { t3_qt2045_phy_prep },
  504. { t3_ael1006_phy_prep },
  505. { NULL },
  506. { t3_aq100x_phy_prep },
  507. { t3_ael2020_phy_prep },
  508. };
  509. #define VPD_ENTRY(name, len) \
  510. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  511. /*
  512. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  513. * VPD-R sections.
  514. */
  515. struct t3_vpd {
  516. u8 id_tag;
  517. u8 id_len[2];
  518. u8 id_data[16];
  519. u8 vpdr_tag;
  520. u8 vpdr_len[2];
  521. VPD_ENTRY(pn, 16); /* part number */
  522. VPD_ENTRY(ec, 16); /* EC level */
  523. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  524. VPD_ENTRY(na, 12); /* MAC address base */
  525. VPD_ENTRY(cclk, 6); /* core clock */
  526. VPD_ENTRY(mclk, 6); /* mem clock */
  527. VPD_ENTRY(uclk, 6); /* uP clk */
  528. VPD_ENTRY(mdc, 6); /* MDIO clk */
  529. VPD_ENTRY(mt, 2); /* mem timing */
  530. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  531. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  532. VPD_ENTRY(port0, 2); /* PHY0 complex */
  533. VPD_ENTRY(port1, 2); /* PHY1 complex */
  534. VPD_ENTRY(port2, 2); /* PHY2 complex */
  535. VPD_ENTRY(port3, 2); /* PHY3 complex */
  536. VPD_ENTRY(rv, 1); /* csum */
  537. u32 pad; /* for multiple-of-4 sizing and alignment */
  538. };
  539. #define EEPROM_MAX_POLL 40
  540. #define EEPROM_STAT_ADDR 0x4000
  541. #define VPD_BASE 0xc00
  542. /**
  543. * t3_seeprom_read - read a VPD EEPROM location
  544. * @adapter: adapter to read
  545. * @addr: EEPROM address
  546. * @data: where to store the read data
  547. *
  548. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  549. * VPD ROM capability. A zero is written to the flag bit when the
  550. * address is written to the control register. The hardware device will
  551. * set the flag to 1 when 4 bytes have been read into the data register.
  552. */
  553. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  554. {
  555. u16 val;
  556. int attempts = EEPROM_MAX_POLL;
  557. u32 v;
  558. unsigned int base = adapter->params.pci.vpd_cap_addr;
  559. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  560. return -EINVAL;
  561. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  562. do {
  563. udelay(10);
  564. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  565. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  566. if (!(val & PCI_VPD_ADDR_F)) {
  567. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  568. return -EIO;
  569. }
  570. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  571. *data = cpu_to_le32(v);
  572. return 0;
  573. }
  574. /**
  575. * t3_seeprom_write - write a VPD EEPROM location
  576. * @adapter: adapter to write
  577. * @addr: EEPROM address
  578. * @data: value to write
  579. *
  580. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  581. * VPD ROM capability.
  582. */
  583. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  584. {
  585. u16 val;
  586. int attempts = EEPROM_MAX_POLL;
  587. unsigned int base = adapter->params.pci.vpd_cap_addr;
  588. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  589. return -EINVAL;
  590. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  591. le32_to_cpu(data));
  592. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  593. addr | PCI_VPD_ADDR_F);
  594. do {
  595. msleep(1);
  596. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  597. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  598. if (val & PCI_VPD_ADDR_F) {
  599. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  600. return -EIO;
  601. }
  602. return 0;
  603. }
  604. /**
  605. * t3_seeprom_wp - enable/disable EEPROM write protection
  606. * @adapter: the adapter
  607. * @enable: 1 to enable write protection, 0 to disable it
  608. *
  609. * Enables or disables write protection on the serial EEPROM.
  610. */
  611. int t3_seeprom_wp(struct adapter *adapter, int enable)
  612. {
  613. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  614. }
  615. /**
  616. * get_vpd_params - read VPD parameters from VPD EEPROM
  617. * @adapter: adapter to read
  618. * @p: where to store the parameters
  619. *
  620. * Reads card parameters stored in VPD EEPROM.
  621. */
  622. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  623. {
  624. int i, addr, ret;
  625. struct t3_vpd vpd;
  626. /*
  627. * Card information is normally at VPD_BASE but some early cards had
  628. * it at 0.
  629. */
  630. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  631. if (ret)
  632. return ret;
  633. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  634. for (i = 0; i < sizeof(vpd); i += 4) {
  635. ret = t3_seeprom_read(adapter, addr + i,
  636. (__le32 *)((u8 *)&vpd + i));
  637. if (ret)
  638. return ret;
  639. }
  640. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  641. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  642. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  643. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  644. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  645. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  646. /* Old eeproms didn't have port information */
  647. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  648. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  649. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  650. } else {
  651. p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
  652. p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
  653. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  654. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  655. }
  656. for (i = 0; i < 6; i++)
  657. p->eth_base[i] = hex_to_bin(vpd.na_data[2 * i]) * 16 +
  658. hex_to_bin(vpd.na_data[2 * i + 1]);
  659. return 0;
  660. }
  661. /* serial flash and firmware constants */
  662. enum {
  663. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  664. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  665. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  666. /* flash command opcodes */
  667. SF_PROG_PAGE = 2, /* program page */
  668. SF_WR_DISABLE = 4, /* disable writes */
  669. SF_RD_STATUS = 5, /* read status register */
  670. SF_WR_ENABLE = 6, /* enable writes */
  671. SF_RD_DATA_FAST = 0xb, /* read flash */
  672. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  673. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  674. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  675. FW_MIN_SIZE = 8 /* at least version and csum */
  676. };
  677. /**
  678. * sf1_read - read data from the serial flash
  679. * @adapter: the adapter
  680. * @byte_cnt: number of bytes to read
  681. * @cont: whether another operation will be chained
  682. * @valp: where to store the read data
  683. *
  684. * Reads up to 4 bytes of data from the serial flash. The location of
  685. * the read needs to be specified prior to calling this by issuing the
  686. * appropriate commands to the serial flash.
  687. */
  688. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  689. u32 *valp)
  690. {
  691. int ret;
  692. if (!byte_cnt || byte_cnt > 4)
  693. return -EINVAL;
  694. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  695. return -EBUSY;
  696. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  697. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  698. if (!ret)
  699. *valp = t3_read_reg(adapter, A_SF_DATA);
  700. return ret;
  701. }
  702. /**
  703. * sf1_write - write data to the serial flash
  704. * @adapter: the adapter
  705. * @byte_cnt: number of bytes to write
  706. * @cont: whether another operation will be chained
  707. * @val: value to write
  708. *
  709. * Writes up to 4 bytes of data to the serial flash. The location of
  710. * the write needs to be specified prior to calling this by issuing the
  711. * appropriate commands to the serial flash.
  712. */
  713. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  714. u32 val)
  715. {
  716. if (!byte_cnt || byte_cnt > 4)
  717. return -EINVAL;
  718. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  719. return -EBUSY;
  720. t3_write_reg(adapter, A_SF_DATA, val);
  721. t3_write_reg(adapter, A_SF_OP,
  722. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  723. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  724. }
  725. /**
  726. * flash_wait_op - wait for a flash operation to complete
  727. * @adapter: the adapter
  728. * @attempts: max number of polls of the status register
  729. * @delay: delay between polls in ms
  730. *
  731. * Wait for a flash operation to complete by polling the status register.
  732. */
  733. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  734. {
  735. int ret;
  736. u32 status;
  737. while (1) {
  738. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  739. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  740. return ret;
  741. if (!(status & 1))
  742. return 0;
  743. if (--attempts == 0)
  744. return -EAGAIN;
  745. if (delay)
  746. msleep(delay);
  747. }
  748. }
  749. /**
  750. * t3_read_flash - read words from serial flash
  751. * @adapter: the adapter
  752. * @addr: the start address for the read
  753. * @nwords: how many 32-bit words to read
  754. * @data: where to store the read data
  755. * @byte_oriented: whether to store data as bytes or as words
  756. *
  757. * Read the specified number of 32-bit words from the serial flash.
  758. * If @byte_oriented is set the read data is stored as a byte array
  759. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  760. * natural endianess.
  761. */
  762. static int t3_read_flash(struct adapter *adapter, unsigned int addr,
  763. unsigned int nwords, u32 *data, int byte_oriented)
  764. {
  765. int ret;
  766. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  767. return -EINVAL;
  768. addr = swab32(addr) | SF_RD_DATA_FAST;
  769. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  770. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  771. return ret;
  772. for (; nwords; nwords--, data++) {
  773. ret = sf1_read(adapter, 4, nwords > 1, data);
  774. if (ret)
  775. return ret;
  776. if (byte_oriented)
  777. *data = htonl(*data);
  778. }
  779. return 0;
  780. }
  781. /**
  782. * t3_write_flash - write up to a page of data to the serial flash
  783. * @adapter: the adapter
  784. * @addr: the start address to write
  785. * @n: length of data to write
  786. * @data: the data to write
  787. *
  788. * Writes up to a page of data (256 bytes) to the serial flash starting
  789. * at the given address.
  790. */
  791. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  792. unsigned int n, const u8 *data)
  793. {
  794. int ret;
  795. u32 buf[64];
  796. unsigned int i, c, left, val, offset = addr & 0xff;
  797. if (addr + n > SF_SIZE || offset + n > 256)
  798. return -EINVAL;
  799. val = swab32(addr) | SF_PROG_PAGE;
  800. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  801. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  802. return ret;
  803. for (left = n; left; left -= c) {
  804. c = min(left, 4U);
  805. for (val = 0, i = 0; i < c; ++i)
  806. val = (val << 8) + *data++;
  807. ret = sf1_write(adapter, c, c != left, val);
  808. if (ret)
  809. return ret;
  810. }
  811. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  812. return ret;
  813. /* Read the page to verify the write succeeded */
  814. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  815. if (ret)
  816. return ret;
  817. if (memcmp(data - n, (u8 *) buf + offset, n))
  818. return -EIO;
  819. return 0;
  820. }
  821. /**
  822. * t3_get_tp_version - read the tp sram version
  823. * @adapter: the adapter
  824. * @vers: where to place the version
  825. *
  826. * Reads the protocol sram version from sram.
  827. */
  828. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  829. {
  830. int ret;
  831. /* Get version loaded in SRAM */
  832. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  833. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  834. 1, 1, 5, 1);
  835. if (ret)
  836. return ret;
  837. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  838. return 0;
  839. }
  840. /**
  841. * t3_check_tpsram_version - read the tp sram version
  842. * @adapter: the adapter
  843. *
  844. * Reads the protocol sram version from flash.
  845. */
  846. int t3_check_tpsram_version(struct adapter *adapter)
  847. {
  848. int ret;
  849. u32 vers;
  850. unsigned int major, minor;
  851. if (adapter->params.rev == T3_REV_A)
  852. return 0;
  853. ret = t3_get_tp_version(adapter, &vers);
  854. if (ret)
  855. return ret;
  856. major = G_TP_VERSION_MAJOR(vers);
  857. minor = G_TP_VERSION_MINOR(vers);
  858. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  859. return 0;
  860. else {
  861. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  862. "driver compiled for version %d.%d\n", major, minor,
  863. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  864. }
  865. return -EINVAL;
  866. }
  867. /**
  868. * t3_check_tpsram - check if provided protocol SRAM
  869. * is compatible with this driver
  870. * @adapter: the adapter
  871. * @tp_sram: the firmware image to write
  872. * @size: image size
  873. *
  874. * Checks if an adapter's tp sram is compatible with the driver.
  875. * Returns 0 if the versions are compatible, a negative error otherwise.
  876. */
  877. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  878. unsigned int size)
  879. {
  880. u32 csum;
  881. unsigned int i;
  882. const __be32 *p = (const __be32 *)tp_sram;
  883. /* Verify checksum */
  884. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  885. csum += ntohl(p[i]);
  886. if (csum != 0xffffffff) {
  887. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  888. csum);
  889. return -EINVAL;
  890. }
  891. return 0;
  892. }
  893. enum fw_version_type {
  894. FW_VERSION_N3,
  895. FW_VERSION_T3
  896. };
  897. /**
  898. * t3_get_fw_version - read the firmware version
  899. * @adapter: the adapter
  900. * @vers: where to place the version
  901. *
  902. * Reads the FW version from flash.
  903. */
  904. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  905. {
  906. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  907. }
  908. /**
  909. * t3_check_fw_version - check if the FW is compatible with this driver
  910. * @adapter: the adapter
  911. *
  912. * Checks if an adapter's FW is compatible with the driver. Returns 0
  913. * if the versions are compatible, a negative error otherwise.
  914. */
  915. int t3_check_fw_version(struct adapter *adapter)
  916. {
  917. int ret;
  918. u32 vers;
  919. unsigned int type, major, minor;
  920. ret = t3_get_fw_version(adapter, &vers);
  921. if (ret)
  922. return ret;
  923. type = G_FW_VERSION_TYPE(vers);
  924. major = G_FW_VERSION_MAJOR(vers);
  925. minor = G_FW_VERSION_MINOR(vers);
  926. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  927. minor == FW_VERSION_MINOR)
  928. return 0;
  929. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  930. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  931. "driver compiled for version %u.%u\n", major, minor,
  932. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  933. else {
  934. CH_WARN(adapter, "found newer FW version(%u.%u), "
  935. "driver compiled for version %u.%u\n", major, minor,
  936. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  937. return 0;
  938. }
  939. return -EINVAL;
  940. }
  941. /**
  942. * t3_flash_erase_sectors - erase a range of flash sectors
  943. * @adapter: the adapter
  944. * @start: the first sector to erase
  945. * @end: the last sector to erase
  946. *
  947. * Erases the sectors in the given range.
  948. */
  949. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  950. {
  951. while (start <= end) {
  952. int ret;
  953. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  954. (ret = sf1_write(adapter, 4, 0,
  955. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  956. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  957. return ret;
  958. start++;
  959. }
  960. return 0;
  961. }
  962. /*
  963. * t3_load_fw - download firmware
  964. * @adapter: the adapter
  965. * @fw_data: the firmware image to write
  966. * @size: image size
  967. *
  968. * Write the supplied firmware image to the card's serial flash.
  969. * The FW image has the following sections: @size - 8 bytes of code and
  970. * data, followed by 4 bytes of FW version, followed by the 32-bit
  971. * 1's complement checksum of the whole image.
  972. */
  973. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  974. {
  975. u32 csum;
  976. unsigned int i;
  977. const __be32 *p = (const __be32 *)fw_data;
  978. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  979. if ((size & 3) || size < FW_MIN_SIZE)
  980. return -EINVAL;
  981. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  982. return -EFBIG;
  983. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  984. csum += ntohl(p[i]);
  985. if (csum != 0xffffffff) {
  986. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  987. csum);
  988. return -EINVAL;
  989. }
  990. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  991. if (ret)
  992. goto out;
  993. size -= 8; /* trim off version and checksum */
  994. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  995. unsigned int chunk_size = min(size, 256U);
  996. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  997. if (ret)
  998. goto out;
  999. addr += chunk_size;
  1000. fw_data += chunk_size;
  1001. size -= chunk_size;
  1002. }
  1003. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  1004. out:
  1005. if (ret)
  1006. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  1007. return ret;
  1008. }
  1009. #define CIM_CTL_BASE 0x2000
  1010. /**
  1011. * t3_cim_ctl_blk_read - read a block from CIM control region
  1012. *
  1013. * @adap: the adapter
  1014. * @addr: the start address within the CIM control region
  1015. * @n: number of words to read
  1016. * @valp: where to store the result
  1017. *
  1018. * Reads a block of 4-byte words from the CIM control region.
  1019. */
  1020. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1021. unsigned int n, unsigned int *valp)
  1022. {
  1023. int ret = 0;
  1024. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1025. return -EBUSY;
  1026. for ( ; !ret && n--; addr += 4) {
  1027. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1028. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1029. 0, 5, 2);
  1030. if (!ret)
  1031. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1032. }
  1033. return ret;
  1034. }
  1035. static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
  1036. u32 *rx_hash_high, u32 *rx_hash_low)
  1037. {
  1038. /* stop Rx unicast traffic */
  1039. t3_mac_disable_exact_filters(mac);
  1040. /* stop broadcast, multicast, promiscuous mode traffic */
  1041. *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
  1042. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1043. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1044. F_DISBCAST);
  1045. *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
  1046. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
  1047. *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
  1048. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
  1049. /* Leave time to drain max RX fifo */
  1050. msleep(1);
  1051. }
  1052. static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
  1053. u32 rx_hash_high, u32 rx_hash_low)
  1054. {
  1055. t3_mac_enable_exact_filters(mac);
  1056. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1057. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1058. rx_cfg);
  1059. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
  1060. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
  1061. }
  1062. /**
  1063. * t3_link_changed - handle interface link changes
  1064. * @adapter: the adapter
  1065. * @port_id: the port index that changed link state
  1066. *
  1067. * Called when a port's link settings change to propagate the new values
  1068. * to the associated PHY and MAC. After performing the common tasks it
  1069. * invokes an OS-specific handler.
  1070. */
  1071. void t3_link_changed(struct adapter *adapter, int port_id)
  1072. {
  1073. int link_ok, speed, duplex, fc;
  1074. struct port_info *pi = adap2pinfo(adapter, port_id);
  1075. struct cphy *phy = &pi->phy;
  1076. struct cmac *mac = &pi->mac;
  1077. struct link_config *lc = &pi->link_config;
  1078. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1079. if (!lc->link_ok && link_ok) {
  1080. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1081. u32 status;
  1082. t3_xgm_intr_enable(adapter, port_id);
  1083. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1084. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1085. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1086. status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
  1087. if (status & F_LINKFAULTCHANGE) {
  1088. mac->stats.link_faults++;
  1089. pi->link_fault = 1;
  1090. }
  1091. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1092. }
  1093. if (lc->requested_fc & PAUSE_AUTONEG)
  1094. fc &= lc->requested_fc;
  1095. else
  1096. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1097. if (link_ok == lc->link_ok && speed == lc->speed &&
  1098. duplex == lc->duplex && fc == lc->fc)
  1099. return; /* nothing changed */
  1100. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1101. uses_xaui(adapter)) {
  1102. if (link_ok)
  1103. t3b_pcs_reset(mac);
  1104. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1105. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1106. }
  1107. lc->link_ok = link_ok;
  1108. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1109. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1110. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1111. /* Set MAC speed, duplex, and flow control to match PHY. */
  1112. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1113. lc->fc = fc;
  1114. }
  1115. t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
  1116. speed, duplex, fc);
  1117. }
  1118. void t3_link_fault(struct adapter *adapter, int port_id)
  1119. {
  1120. struct port_info *pi = adap2pinfo(adapter, port_id);
  1121. struct cmac *mac = &pi->mac;
  1122. struct cphy *phy = &pi->phy;
  1123. struct link_config *lc = &pi->link_config;
  1124. int link_ok, speed, duplex, fc, link_fault;
  1125. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1126. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1127. if (adapter->params.rev > 0 && uses_xaui(adapter))
  1128. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
  1129. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1130. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1131. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1132. link_fault = t3_read_reg(adapter,
  1133. A_XGM_INT_STATUS + mac->offset);
  1134. link_fault &= F_LINKFAULTCHANGE;
  1135. link_ok = lc->link_ok;
  1136. speed = lc->speed;
  1137. duplex = lc->duplex;
  1138. fc = lc->fc;
  1139. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1140. if (link_fault) {
  1141. lc->link_ok = 0;
  1142. lc->speed = SPEED_INVALID;
  1143. lc->duplex = DUPLEX_INVALID;
  1144. t3_os_link_fault(adapter, port_id, 0);
  1145. /* Account link faults only when the phy reports a link up */
  1146. if (link_ok)
  1147. mac->stats.link_faults++;
  1148. } else {
  1149. if (link_ok)
  1150. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1151. F_TXACTENABLE | F_RXEN);
  1152. pi->link_fault = 0;
  1153. lc->link_ok = (unsigned char)link_ok;
  1154. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1155. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1156. t3_os_link_fault(adapter, port_id, link_ok);
  1157. }
  1158. }
  1159. /**
  1160. * t3_link_start - apply link configuration to MAC/PHY
  1161. * @phy: the PHY to setup
  1162. * @mac: the MAC to setup
  1163. * @lc: the requested link configuration
  1164. *
  1165. * Set up a port's MAC and PHY according to a desired link configuration.
  1166. * - If the PHY can auto-negotiate first decide what to advertise, then
  1167. * enable/disable auto-negotiation as desired, and reset.
  1168. * - If the PHY does not auto-negotiate just reset it.
  1169. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1170. * otherwise do it later based on the outcome of auto-negotiation.
  1171. */
  1172. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1173. {
  1174. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1175. lc->link_ok = 0;
  1176. if (lc->supported & SUPPORTED_Autoneg) {
  1177. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1178. if (fc) {
  1179. lc->advertising |= ADVERTISED_Asym_Pause;
  1180. if (fc & PAUSE_RX)
  1181. lc->advertising |= ADVERTISED_Pause;
  1182. }
  1183. phy->ops->advertise(phy, lc->advertising);
  1184. if (lc->autoneg == AUTONEG_DISABLE) {
  1185. lc->speed = lc->requested_speed;
  1186. lc->duplex = lc->requested_duplex;
  1187. lc->fc = (unsigned char)fc;
  1188. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1189. fc);
  1190. /* Also disables autoneg */
  1191. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1192. } else
  1193. phy->ops->autoneg_enable(phy);
  1194. } else {
  1195. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1196. lc->fc = (unsigned char)fc;
  1197. phy->ops->reset(phy, 0);
  1198. }
  1199. return 0;
  1200. }
  1201. /**
  1202. * t3_set_vlan_accel - control HW VLAN extraction
  1203. * @adapter: the adapter
  1204. * @ports: bitmap of adapter ports to operate on
  1205. * @on: enable (1) or disable (0) HW VLAN extraction
  1206. *
  1207. * Enables or disables HW extraction of VLAN tags for the given port.
  1208. */
  1209. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1210. {
  1211. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1212. ports << S_VLANEXTRACTIONENABLE,
  1213. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1214. }
  1215. struct intr_info {
  1216. unsigned int mask; /* bits to check in interrupt status */
  1217. const char *msg; /* message to print or NULL */
  1218. short stat_idx; /* stat counter to increment or -1 */
  1219. unsigned short fatal; /* whether the condition reported is fatal */
  1220. };
  1221. /**
  1222. * t3_handle_intr_status - table driven interrupt handler
  1223. * @adapter: the adapter that generated the interrupt
  1224. * @reg: the interrupt status register to process
  1225. * @mask: a mask to apply to the interrupt status
  1226. * @acts: table of interrupt actions
  1227. * @stats: statistics counters tracking interrupt occurrences
  1228. *
  1229. * A table driven interrupt handler that applies a set of masks to an
  1230. * interrupt status word and performs the corresponding actions if the
  1231. * interrupts described by the mask have occurred. The actions include
  1232. * optionally printing a warning or alert message, and optionally
  1233. * incrementing a stat counter. The table is terminated by an entry
  1234. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1235. */
  1236. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1237. unsigned int mask,
  1238. const struct intr_info *acts,
  1239. unsigned long *stats)
  1240. {
  1241. int fatal = 0;
  1242. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1243. for (; acts->mask; ++acts) {
  1244. if (!(status & acts->mask))
  1245. continue;
  1246. if (acts->fatal) {
  1247. fatal++;
  1248. CH_ALERT(adapter, "%s (0x%x)\n",
  1249. acts->msg, status & acts->mask);
  1250. status &= ~acts->mask;
  1251. } else if (acts->msg)
  1252. CH_WARN(adapter, "%s (0x%x)\n",
  1253. acts->msg, status & acts->mask);
  1254. if (acts->stat_idx >= 0)
  1255. stats[acts->stat_idx]++;
  1256. }
  1257. if (status) /* clear processed interrupts */
  1258. t3_write_reg(adapter, reg, status);
  1259. return fatal;
  1260. }
  1261. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1262. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1263. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1264. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1265. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1266. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1267. F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
  1268. F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
  1269. F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
  1270. F_LOPIODRBDROPERR)
  1271. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1272. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1273. F_NFASRCHFAIL)
  1274. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1275. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1276. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1277. F_TXFIFO_UNDERRUN)
  1278. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1279. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1280. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1281. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1282. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1283. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1284. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1285. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1286. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1287. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1288. F_TXPARERR | V_BISTERR(M_BISTERR))
  1289. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1290. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1291. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1292. #define ULPTX_INTR_MASK 0xfc
  1293. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1294. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1295. F_ZERO_SWITCH_ERROR)
  1296. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1297. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1298. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1299. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1300. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1301. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1302. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1303. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1304. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1305. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1306. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1307. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1308. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1309. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1310. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1311. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1312. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1313. V_MCAPARERRENB(M_MCAPARERRENB))
  1314. #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
  1315. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1316. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1317. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1318. F_MPS0 | F_CPL_SWITCH)
  1319. /*
  1320. * Interrupt handler for the PCIX1 module.
  1321. */
  1322. static void pci_intr_handler(struct adapter *adapter)
  1323. {
  1324. static const struct intr_info pcix1_intr_info[] = {
  1325. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1326. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1327. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1328. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1329. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1330. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1331. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1332. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1333. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1334. 1},
  1335. {F_DETCORECCERR, "PCI correctable ECC error",
  1336. STAT_PCI_CORR_ECC, 0},
  1337. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1338. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1339. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1340. 1},
  1341. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1342. 1},
  1343. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1344. 1},
  1345. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1346. "error", -1, 1},
  1347. {0}
  1348. };
  1349. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1350. pcix1_intr_info, adapter->irq_stats))
  1351. t3_fatal_err(adapter);
  1352. }
  1353. /*
  1354. * Interrupt handler for the PCIE module.
  1355. */
  1356. static void pcie_intr_handler(struct adapter *adapter)
  1357. {
  1358. static const struct intr_info pcie_intr_info[] = {
  1359. {F_PEXERR, "PCI PEX error", -1, 1},
  1360. {F_UNXSPLCPLERRR,
  1361. "PCI unexpected split completion DMA read error", -1, 1},
  1362. {F_UNXSPLCPLERRC,
  1363. "PCI unexpected split completion DMA command error", -1, 1},
  1364. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1365. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1366. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1367. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1368. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1369. "PCI MSI-X table/PBA parity error", -1, 1},
  1370. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1371. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1372. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1373. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1374. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1375. {0}
  1376. };
  1377. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1378. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1379. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1380. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1381. pcie_intr_info, adapter->irq_stats))
  1382. t3_fatal_err(adapter);
  1383. }
  1384. /*
  1385. * TP interrupt handler.
  1386. */
  1387. static void tp_intr_handler(struct adapter *adapter)
  1388. {
  1389. static const struct intr_info tp_intr_info[] = {
  1390. {0xffffff, "TP parity error", -1, 1},
  1391. {0x1000000, "TP out of Rx pages", -1, 1},
  1392. {0x2000000, "TP out of Tx pages", -1, 1},
  1393. {0}
  1394. };
  1395. static const struct intr_info tp_intr_info_t3c[] = {
  1396. {0x1fffffff, "TP parity error", -1, 1},
  1397. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1398. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1399. {0}
  1400. };
  1401. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1402. adapter->params.rev < T3_REV_C ?
  1403. tp_intr_info : tp_intr_info_t3c, NULL))
  1404. t3_fatal_err(adapter);
  1405. }
  1406. /*
  1407. * CIM interrupt handler.
  1408. */
  1409. static void cim_intr_handler(struct adapter *adapter)
  1410. {
  1411. static const struct intr_info cim_intr_info[] = {
  1412. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1413. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1414. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1415. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1416. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1417. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1418. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1419. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1420. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1421. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1422. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1423. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1424. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1425. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1426. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1427. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1428. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1429. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1430. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1431. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1432. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1433. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1434. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1435. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1436. {0}
  1437. };
  1438. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1439. cim_intr_info, NULL))
  1440. t3_fatal_err(adapter);
  1441. }
  1442. /*
  1443. * ULP RX interrupt handler.
  1444. */
  1445. static void ulprx_intr_handler(struct adapter *adapter)
  1446. {
  1447. static const struct intr_info ulprx_intr_info[] = {
  1448. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1449. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1450. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1451. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1452. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1453. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1454. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1455. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1456. {0}
  1457. };
  1458. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1459. ulprx_intr_info, NULL))
  1460. t3_fatal_err(adapter);
  1461. }
  1462. /*
  1463. * ULP TX interrupt handler.
  1464. */
  1465. static void ulptx_intr_handler(struct adapter *adapter)
  1466. {
  1467. static const struct intr_info ulptx_intr_info[] = {
  1468. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1469. STAT_ULP_CH0_PBL_OOB, 0},
  1470. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1471. STAT_ULP_CH1_PBL_OOB, 0},
  1472. {0xfc, "ULP TX parity error", -1, 1},
  1473. {0}
  1474. };
  1475. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1476. ulptx_intr_info, adapter->irq_stats))
  1477. t3_fatal_err(adapter);
  1478. }
  1479. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1480. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1481. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1482. F_ICSPI1_TX_FRAMING_ERROR)
  1483. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1484. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1485. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1486. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1487. /*
  1488. * PM TX interrupt handler.
  1489. */
  1490. static void pmtx_intr_handler(struct adapter *adapter)
  1491. {
  1492. static const struct intr_info pmtx_intr_info[] = {
  1493. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1494. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1495. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1496. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1497. "PMTX ispi parity error", -1, 1},
  1498. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1499. "PMTX ospi parity error", -1, 1},
  1500. {0}
  1501. };
  1502. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1503. pmtx_intr_info, NULL))
  1504. t3_fatal_err(adapter);
  1505. }
  1506. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1507. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1508. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1509. F_IESPI1_TX_FRAMING_ERROR)
  1510. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1511. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1512. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1513. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1514. /*
  1515. * PM RX interrupt handler.
  1516. */
  1517. static void pmrx_intr_handler(struct adapter *adapter)
  1518. {
  1519. static const struct intr_info pmrx_intr_info[] = {
  1520. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1521. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1522. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1523. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1524. "PMRX ispi parity error", -1, 1},
  1525. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1526. "PMRX ospi parity error", -1, 1},
  1527. {0}
  1528. };
  1529. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1530. pmrx_intr_info, NULL))
  1531. t3_fatal_err(adapter);
  1532. }
  1533. /*
  1534. * CPL switch interrupt handler.
  1535. */
  1536. static void cplsw_intr_handler(struct adapter *adapter)
  1537. {
  1538. static const struct intr_info cplsw_intr_info[] = {
  1539. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1540. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1541. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1542. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1543. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1544. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1545. {0}
  1546. };
  1547. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1548. cplsw_intr_info, NULL))
  1549. t3_fatal_err(adapter);
  1550. }
  1551. /*
  1552. * MPS interrupt handler.
  1553. */
  1554. static void mps_intr_handler(struct adapter *adapter)
  1555. {
  1556. static const struct intr_info mps_intr_info[] = {
  1557. {0x1ff, "MPS parity error", -1, 1},
  1558. {0}
  1559. };
  1560. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1561. mps_intr_info, NULL))
  1562. t3_fatal_err(adapter);
  1563. }
  1564. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1565. /*
  1566. * MC7 interrupt handler.
  1567. */
  1568. static void mc7_intr_handler(struct mc7 *mc7)
  1569. {
  1570. struct adapter *adapter = mc7->adapter;
  1571. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1572. if (cause & F_CE) {
  1573. mc7->stats.corr_err++;
  1574. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1575. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1576. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1577. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1578. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1579. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1580. }
  1581. if (cause & F_UE) {
  1582. mc7->stats.uncorr_err++;
  1583. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1584. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1585. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1586. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1587. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1588. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1589. }
  1590. if (G_PE(cause)) {
  1591. mc7->stats.parity_err++;
  1592. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1593. mc7->name, G_PE(cause));
  1594. }
  1595. if (cause & F_AE) {
  1596. u32 addr = 0;
  1597. if (adapter->params.rev > 0)
  1598. addr = t3_read_reg(adapter,
  1599. mc7->offset + A_MC7_ERR_ADDR);
  1600. mc7->stats.addr_err++;
  1601. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1602. mc7->name, addr);
  1603. }
  1604. if (cause & MC7_INTR_FATAL)
  1605. t3_fatal_err(adapter);
  1606. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1607. }
  1608. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1609. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1610. /*
  1611. * XGMAC interrupt handler.
  1612. */
  1613. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1614. {
  1615. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1616. /*
  1617. * We mask out interrupt causes for which we're not taking interrupts.
  1618. * This allows us to use polling logic to monitor some of the other
  1619. * conditions when taking interrupts would impose too much load on the
  1620. * system.
  1621. */
  1622. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
  1623. ~F_RXFIFO_OVERFLOW;
  1624. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1625. mac->stats.tx_fifo_parity_err++;
  1626. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1627. }
  1628. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1629. mac->stats.rx_fifo_parity_err++;
  1630. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1631. }
  1632. if (cause & F_TXFIFO_UNDERRUN)
  1633. mac->stats.tx_fifo_urun++;
  1634. if (cause & F_RXFIFO_OVERFLOW)
  1635. mac->stats.rx_fifo_ovfl++;
  1636. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1637. mac->stats.serdes_signal_loss++;
  1638. if (cause & F_XAUIPCSCTCERR)
  1639. mac->stats.xaui_pcs_ctc_err++;
  1640. if (cause & F_XAUIPCSALIGNCHANGE)
  1641. mac->stats.xaui_pcs_align_change++;
  1642. if (cause & F_XGM_INT) {
  1643. t3_set_reg_field(adap,
  1644. A_XGM_INT_ENABLE + mac->offset,
  1645. F_XGM_INT, 0);
  1646. mac->stats.link_faults++;
  1647. t3_os_link_fault_handler(adap, idx);
  1648. }
  1649. if (cause & XGM_INTR_FATAL)
  1650. t3_fatal_err(adap);
  1651. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1652. return cause != 0;
  1653. }
  1654. /*
  1655. * Interrupt handler for PHY events.
  1656. */
  1657. int t3_phy_intr_handler(struct adapter *adapter)
  1658. {
  1659. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1660. for_each_port(adapter, i) {
  1661. struct port_info *p = adap2pinfo(adapter, i);
  1662. if (!(p->phy.caps & SUPPORTED_IRQ))
  1663. continue;
  1664. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1665. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1666. if (phy_cause & cphy_cause_link_change)
  1667. t3_link_changed(adapter, i);
  1668. if (phy_cause & cphy_cause_fifo_error)
  1669. p->phy.fifo_errors++;
  1670. if (phy_cause & cphy_cause_module_change)
  1671. t3_os_phymod_changed(adapter, i);
  1672. }
  1673. }
  1674. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1675. return 0;
  1676. }
  1677. /*
  1678. * T3 slow path (non-data) interrupt handler.
  1679. */
  1680. int t3_slow_intr_handler(struct adapter *adapter)
  1681. {
  1682. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1683. cause &= adapter->slow_intr_mask;
  1684. if (!cause)
  1685. return 0;
  1686. if (cause & F_PCIM0) {
  1687. if (is_pcie(adapter))
  1688. pcie_intr_handler(adapter);
  1689. else
  1690. pci_intr_handler(adapter);
  1691. }
  1692. if (cause & F_SGE3)
  1693. t3_sge_err_intr_handler(adapter);
  1694. if (cause & F_MC7_PMRX)
  1695. mc7_intr_handler(&adapter->pmrx);
  1696. if (cause & F_MC7_PMTX)
  1697. mc7_intr_handler(&adapter->pmtx);
  1698. if (cause & F_MC7_CM)
  1699. mc7_intr_handler(&adapter->cm);
  1700. if (cause & F_CIM)
  1701. cim_intr_handler(adapter);
  1702. if (cause & F_TP1)
  1703. tp_intr_handler(adapter);
  1704. if (cause & F_ULP2_RX)
  1705. ulprx_intr_handler(adapter);
  1706. if (cause & F_ULP2_TX)
  1707. ulptx_intr_handler(adapter);
  1708. if (cause & F_PM1_RX)
  1709. pmrx_intr_handler(adapter);
  1710. if (cause & F_PM1_TX)
  1711. pmtx_intr_handler(adapter);
  1712. if (cause & F_CPL_SWITCH)
  1713. cplsw_intr_handler(adapter);
  1714. if (cause & F_MPS0)
  1715. mps_intr_handler(adapter);
  1716. if (cause & F_MC5A)
  1717. t3_mc5_intr_handler(&adapter->mc5);
  1718. if (cause & F_XGMAC0_0)
  1719. mac_intr_handler(adapter, 0);
  1720. if (cause & F_XGMAC0_1)
  1721. mac_intr_handler(adapter, 1);
  1722. if (cause & F_T3DBG)
  1723. t3_os_ext_intr_handler(adapter);
  1724. /* Clear the interrupts just processed. */
  1725. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1726. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1727. return 1;
  1728. }
  1729. static unsigned int calc_gpio_intr(struct adapter *adap)
  1730. {
  1731. unsigned int i, gpi_intr = 0;
  1732. for_each_port(adap, i)
  1733. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1734. adapter_info(adap)->gpio_intr[i])
  1735. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1736. return gpi_intr;
  1737. }
  1738. /**
  1739. * t3_intr_enable - enable interrupts
  1740. * @adapter: the adapter whose interrupts should be enabled
  1741. *
  1742. * Enable interrupts by setting the interrupt enable registers of the
  1743. * various HW modules and then enabling the top-level interrupt
  1744. * concentrator.
  1745. */
  1746. void t3_intr_enable(struct adapter *adapter)
  1747. {
  1748. static const struct addr_val_pair intr_en_avp[] = {
  1749. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1750. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1751. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1752. MC7_INTR_MASK},
  1753. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1754. MC7_INTR_MASK},
  1755. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1756. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1757. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1758. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1759. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1760. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1761. };
  1762. adapter->slow_intr_mask = PL_INTR_MASK;
  1763. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1764. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1765. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1766. if (adapter->params.rev > 0) {
  1767. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1768. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1769. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1770. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1771. F_PBL_BOUND_ERR_CH1);
  1772. } else {
  1773. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1774. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1775. }
  1776. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1777. if (is_pcie(adapter))
  1778. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1779. else
  1780. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1781. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1782. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1783. }
  1784. /**
  1785. * t3_intr_disable - disable a card's interrupts
  1786. * @adapter: the adapter whose interrupts should be disabled
  1787. *
  1788. * Disable interrupts. We only disable the top-level interrupt
  1789. * concentrator and the SGE data interrupts.
  1790. */
  1791. void t3_intr_disable(struct adapter *adapter)
  1792. {
  1793. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1794. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1795. adapter->slow_intr_mask = 0;
  1796. }
  1797. /**
  1798. * t3_intr_clear - clear all interrupts
  1799. * @adapter: the adapter whose interrupts should be cleared
  1800. *
  1801. * Clears all interrupts.
  1802. */
  1803. void t3_intr_clear(struct adapter *adapter)
  1804. {
  1805. static const unsigned int cause_reg_addr[] = {
  1806. A_SG_INT_CAUSE,
  1807. A_SG_RSPQ_FL_STATUS,
  1808. A_PCIX_INT_CAUSE,
  1809. A_MC7_INT_CAUSE,
  1810. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1811. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1812. A_CIM_HOST_INT_CAUSE,
  1813. A_TP_INT_CAUSE,
  1814. A_MC5_DB_INT_CAUSE,
  1815. A_ULPRX_INT_CAUSE,
  1816. A_ULPTX_INT_CAUSE,
  1817. A_CPL_INTR_CAUSE,
  1818. A_PM1_TX_INT_CAUSE,
  1819. A_PM1_RX_INT_CAUSE,
  1820. A_MPS_INT_CAUSE,
  1821. A_T3DBG_INT_CAUSE,
  1822. };
  1823. unsigned int i;
  1824. /* Clear PHY and MAC interrupts for each port. */
  1825. for_each_port(adapter, i)
  1826. t3_port_intr_clear(adapter, i);
  1827. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1828. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1829. if (is_pcie(adapter))
  1830. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1831. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1832. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1833. }
  1834. void t3_xgm_intr_enable(struct adapter *adapter, int idx)
  1835. {
  1836. struct port_info *pi = adap2pinfo(adapter, idx);
  1837. t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
  1838. XGM_EXTRA_INTR_MASK);
  1839. }
  1840. void t3_xgm_intr_disable(struct adapter *adapter, int idx)
  1841. {
  1842. struct port_info *pi = adap2pinfo(adapter, idx);
  1843. t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
  1844. 0x7ff);
  1845. }
  1846. /**
  1847. * t3_port_intr_enable - enable port-specific interrupts
  1848. * @adapter: associated adapter
  1849. * @idx: index of port whose interrupts should be enabled
  1850. *
  1851. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1852. * adapter port.
  1853. */
  1854. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1855. {
  1856. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1857. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1858. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1859. phy->ops->intr_enable(phy);
  1860. }
  1861. /**
  1862. * t3_port_intr_disable - disable port-specific interrupts
  1863. * @adapter: associated adapter
  1864. * @idx: index of port whose interrupts should be disabled
  1865. *
  1866. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1867. * adapter port.
  1868. */
  1869. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1870. {
  1871. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1872. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1873. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1874. phy->ops->intr_disable(phy);
  1875. }
  1876. /**
  1877. * t3_port_intr_clear - clear port-specific interrupts
  1878. * @adapter: associated adapter
  1879. * @idx: index of port whose interrupts to clear
  1880. *
  1881. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1882. * adapter port.
  1883. */
  1884. static void t3_port_intr_clear(struct adapter *adapter, int idx)
  1885. {
  1886. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1887. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1888. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1889. phy->ops->intr_clear(phy);
  1890. }
  1891. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1892. /**
  1893. * t3_sge_write_context - write an SGE context
  1894. * @adapter: the adapter
  1895. * @id: the context id
  1896. * @type: the context type
  1897. *
  1898. * Program an SGE context with the values already loaded in the
  1899. * CONTEXT_DATA? registers.
  1900. */
  1901. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1902. unsigned int type)
  1903. {
  1904. if (type == F_RESPONSEQ) {
  1905. /*
  1906. * Can't write the Response Queue Context bits for
  1907. * Interrupt Armed or the Reserve bits after the chip
  1908. * has been initialized out of reset. Writing to these
  1909. * bits can confuse the hardware.
  1910. */
  1911. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1912. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1913. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
  1914. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1915. } else {
  1916. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1917. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1918. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1919. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1920. }
  1921. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1922. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1923. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1924. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1925. }
  1926. /**
  1927. * clear_sge_ctxt - completely clear an SGE context
  1928. * @adapter: the adapter
  1929. * @id: the context id
  1930. * @type: the context type
  1931. *
  1932. * Completely clear an SGE context. Used predominantly at post-reset
  1933. * initialization. Note in particular that we don't skip writing to any
  1934. * "sensitive bits" in the contexts the way that t3_sge_write_context()
  1935. * does ...
  1936. */
  1937. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1938. unsigned int type)
  1939. {
  1940. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1941. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1942. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1943. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1944. t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
  1945. t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
  1946. t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
  1947. t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
  1948. t3_write_reg(adap, A_SG_CONTEXT_CMD,
  1949. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1950. return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1951. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1952. }
  1953. /**
  1954. * t3_sge_init_ecntxt - initialize an SGE egress context
  1955. * @adapter: the adapter to configure
  1956. * @id: the context id
  1957. * @gts_enable: whether to enable GTS for the context
  1958. * @type: the egress context type
  1959. * @respq: associated response queue
  1960. * @base_addr: base address of queue
  1961. * @size: number of queue entries
  1962. * @token: uP token
  1963. * @gen: initial generation value for the context
  1964. * @cidx: consumer pointer
  1965. *
  1966. * Initialize an SGE egress context and make it ready for use. If the
  1967. * platform allows concurrent context operations, the caller is
  1968. * responsible for appropriate locking.
  1969. */
  1970. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1971. enum sge_context_type type, int respq, u64 base_addr,
  1972. unsigned int size, unsigned int token, int gen,
  1973. unsigned int cidx)
  1974. {
  1975. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1976. if (base_addr & 0xfff) /* must be 4K aligned */
  1977. return -EINVAL;
  1978. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1979. return -EBUSY;
  1980. base_addr >>= 12;
  1981. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1982. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1983. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1984. V_EC_BASE_LO(base_addr & 0xffff));
  1985. base_addr >>= 16;
  1986. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1987. base_addr >>= 32;
  1988. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1989. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1990. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1991. F_EC_VALID);
  1992. return t3_sge_write_context(adapter, id, F_EGRESS);
  1993. }
  1994. /**
  1995. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1996. * @adapter: the adapter to configure
  1997. * @id: the context id
  1998. * @gts_enable: whether to enable GTS for the context
  1999. * @base_addr: base address of queue
  2000. * @size: number of queue entries
  2001. * @bsize: size of each buffer for this queue
  2002. * @cong_thres: threshold to signal congestion to upstream producers
  2003. * @gen: initial generation value for the context
  2004. * @cidx: consumer pointer
  2005. *
  2006. * Initialize an SGE free list context and make it ready for use. The
  2007. * caller is responsible for ensuring only one context operation occurs
  2008. * at a time.
  2009. */
  2010. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  2011. int gts_enable, u64 base_addr, unsigned int size,
  2012. unsigned int bsize, unsigned int cong_thres, int gen,
  2013. unsigned int cidx)
  2014. {
  2015. if (base_addr & 0xfff) /* must be 4K aligned */
  2016. return -EINVAL;
  2017. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2018. return -EBUSY;
  2019. base_addr >>= 12;
  2020. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  2021. base_addr >>= 32;
  2022. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  2023. V_FL_BASE_HI((u32) base_addr) |
  2024. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  2025. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  2026. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  2027. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  2028. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2029. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  2030. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  2031. return t3_sge_write_context(adapter, id, F_FREELIST);
  2032. }
  2033. /**
  2034. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  2035. * @adapter: the adapter to configure
  2036. * @id: the context id
  2037. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  2038. * @base_addr: base address of queue
  2039. * @size: number of queue entries
  2040. * @fl_thres: threshold for selecting the normal or jumbo free list
  2041. * @gen: initial generation value for the context
  2042. * @cidx: consumer pointer
  2043. *
  2044. * Initialize an SGE response queue context and make it ready for use.
  2045. * The caller is responsible for ensuring only one context operation
  2046. * occurs at a time.
  2047. */
  2048. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  2049. int irq_vec_idx, u64 base_addr, unsigned int size,
  2050. unsigned int fl_thres, int gen, unsigned int cidx)
  2051. {
  2052. unsigned int intr = 0;
  2053. if (base_addr & 0xfff) /* must be 4K aligned */
  2054. return -EINVAL;
  2055. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2056. return -EBUSY;
  2057. base_addr >>= 12;
  2058. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  2059. V_CQ_INDEX(cidx));
  2060. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2061. base_addr >>= 32;
  2062. if (irq_vec_idx >= 0)
  2063. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  2064. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2065. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  2066. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  2067. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  2068. }
  2069. /**
  2070. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  2071. * @adapter: the adapter to configure
  2072. * @id: the context id
  2073. * @base_addr: base address of queue
  2074. * @size: number of queue entries
  2075. * @rspq: response queue for async notifications
  2076. * @ovfl_mode: CQ overflow mode
  2077. * @credits: completion queue credits
  2078. * @credit_thres: the credit threshold
  2079. *
  2080. * Initialize an SGE completion queue context and make it ready for use.
  2081. * The caller is responsible for ensuring only one context operation
  2082. * occurs at a time.
  2083. */
  2084. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  2085. unsigned int size, int rspq, int ovfl_mode,
  2086. unsigned int credits, unsigned int credit_thres)
  2087. {
  2088. if (base_addr & 0xfff) /* must be 4K aligned */
  2089. return -EINVAL;
  2090. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2091. return -EBUSY;
  2092. base_addr >>= 12;
  2093. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  2094. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2095. base_addr >>= 32;
  2096. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2097. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  2098. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  2099. V_CQ_ERR(ovfl_mode));
  2100. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  2101. V_CQ_CREDIT_THRES(credit_thres));
  2102. return t3_sge_write_context(adapter, id, F_CQ);
  2103. }
  2104. /**
  2105. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  2106. * @adapter: the adapter
  2107. * @id: the egress context id
  2108. * @enable: enable (1) or disable (0) the context
  2109. *
  2110. * Enable or disable an SGE egress context. The caller is responsible for
  2111. * ensuring only one context operation occurs at a time.
  2112. */
  2113. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  2114. {
  2115. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2116. return -EBUSY;
  2117. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2118. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2119. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2120. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  2121. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  2122. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2123. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  2124. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2125. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2126. }
  2127. /**
  2128. * t3_sge_disable_fl - disable an SGE free-buffer list
  2129. * @adapter: the adapter
  2130. * @id: the free list context id
  2131. *
  2132. * Disable an SGE free-buffer list. The caller is responsible for
  2133. * ensuring only one context operation occurs at a time.
  2134. */
  2135. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  2136. {
  2137. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2138. return -EBUSY;
  2139. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2140. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2141. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  2142. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2143. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  2144. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2145. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  2146. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2147. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2148. }
  2149. /**
  2150. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2151. * @adapter: the adapter
  2152. * @id: the response queue context id
  2153. *
  2154. * Disable an SGE response queue. The caller is responsible for
  2155. * ensuring only one context operation occurs at a time.
  2156. */
  2157. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2158. {
  2159. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2160. return -EBUSY;
  2161. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2162. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2163. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2164. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2165. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2166. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2167. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2168. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2169. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2170. }
  2171. /**
  2172. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2173. * @adapter: the adapter
  2174. * @id: the completion queue context id
  2175. *
  2176. * Disable an SGE completion queue. The caller is responsible for
  2177. * ensuring only one context operation occurs at a time.
  2178. */
  2179. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2180. {
  2181. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2182. return -EBUSY;
  2183. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2184. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2185. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2186. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2187. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2188. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2189. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2190. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2191. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2192. }
  2193. /**
  2194. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2195. * @adapter: the adapter
  2196. * @id: the context id
  2197. * @op: the operation to perform
  2198. *
  2199. * Perform the selected operation on an SGE completion queue context.
  2200. * The caller is responsible for ensuring only one context operation
  2201. * occurs at a time.
  2202. */
  2203. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2204. unsigned int credits)
  2205. {
  2206. u32 val;
  2207. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2208. return -EBUSY;
  2209. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2210. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2211. V_CONTEXT(id) | F_CQ);
  2212. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2213. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2214. return -EIO;
  2215. if (op >= 2 && op < 7) {
  2216. if (adapter->params.rev > 0)
  2217. return G_CQ_INDEX(val);
  2218. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2219. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2220. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2221. F_CONTEXT_CMD_BUSY, 0,
  2222. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2223. return -EIO;
  2224. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2225. }
  2226. return 0;
  2227. }
  2228. /**
  2229. * t3_config_rss - configure Rx packet steering
  2230. * @adapter: the adapter
  2231. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2232. * @cpus: values for the CPU lookup table (0xff terminated)
  2233. * @rspq: values for the response queue lookup table (0xffff terminated)
  2234. *
  2235. * Programs the receive packet steering logic. @cpus and @rspq provide
  2236. * the values for the CPU and response queue lookup tables. If they
  2237. * provide fewer values than the size of the tables the supplied values
  2238. * are used repeatedly until the tables are fully populated.
  2239. */
  2240. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2241. const u8 * cpus, const u16 *rspq)
  2242. {
  2243. int i, j, cpu_idx = 0, q_idx = 0;
  2244. if (cpus)
  2245. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2246. u32 val = i << 16;
  2247. for (j = 0; j < 2; ++j) {
  2248. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2249. if (cpus[cpu_idx] == 0xff)
  2250. cpu_idx = 0;
  2251. }
  2252. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2253. }
  2254. if (rspq)
  2255. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2256. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2257. (i << 16) | rspq[q_idx++]);
  2258. if (rspq[q_idx] == 0xffff)
  2259. q_idx = 0;
  2260. }
  2261. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2262. }
  2263. /**
  2264. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2265. * @adap: the adapter
  2266. * @enable: 1 to select offload mode, 0 for regular NIC
  2267. *
  2268. * Switches TP to NIC/offload mode.
  2269. */
  2270. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2271. {
  2272. if (is_offload(adap) || !enable)
  2273. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2274. V_NICMODE(!enable));
  2275. }
  2276. /**
  2277. * pm_num_pages - calculate the number of pages of the payload memory
  2278. * @mem_size: the size of the payload memory
  2279. * @pg_size: the size of each payload memory page
  2280. *
  2281. * Calculate the number of pages, each of the given size, that fit in a
  2282. * memory of the specified size, respecting the HW requirement that the
  2283. * number of pages must be a multiple of 24.
  2284. */
  2285. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2286. unsigned int pg_size)
  2287. {
  2288. unsigned int n = mem_size / pg_size;
  2289. return n - n % 24;
  2290. }
  2291. #define mem_region(adap, start, size, reg) \
  2292. t3_write_reg((adap), A_ ## reg, (start)); \
  2293. start += size
  2294. /**
  2295. * partition_mem - partition memory and configure TP memory settings
  2296. * @adap: the adapter
  2297. * @p: the TP parameters
  2298. *
  2299. * Partitions context and payload memory and configures TP's memory
  2300. * registers.
  2301. */
  2302. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2303. {
  2304. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2305. unsigned int timers = 0, timers_shift = 22;
  2306. if (adap->params.rev > 0) {
  2307. if (tids <= 16 * 1024) {
  2308. timers = 1;
  2309. timers_shift = 16;
  2310. } else if (tids <= 64 * 1024) {
  2311. timers = 2;
  2312. timers_shift = 18;
  2313. } else if (tids <= 256 * 1024) {
  2314. timers = 3;
  2315. timers_shift = 20;
  2316. }
  2317. }
  2318. t3_write_reg(adap, A_TP_PMM_SIZE,
  2319. p->chan_rx_size | (p->chan_tx_size >> 16));
  2320. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2321. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2322. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2323. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2324. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2325. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2326. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2327. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2328. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2329. /* Add a bit of headroom and make multiple of 24 */
  2330. pstructs += 48;
  2331. pstructs -= pstructs % 24;
  2332. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2333. m = tids * TCB_SIZE;
  2334. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2335. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2336. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2337. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2338. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2339. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2340. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2341. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2342. m = (m + 4095) & ~0xfff;
  2343. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2344. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2345. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2346. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2347. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2348. if (tids < m)
  2349. adap->params.mc5.nservers += m - tids;
  2350. }
  2351. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2352. u32 val)
  2353. {
  2354. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2355. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2356. }
  2357. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2358. {
  2359. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2360. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2361. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2362. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2363. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2364. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2365. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2366. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2367. V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
  2368. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2369. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2370. F_IPV6ENABLE | F_NICMODE);
  2371. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2372. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2373. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2374. adap->params.rev > 0 ? F_ENABLEESND :
  2375. F_T3A_ENABLEESND);
  2376. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2377. F_ENABLEEPCMDAFULL,
  2378. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2379. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2380. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2381. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2382. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2383. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2384. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2385. if (adap->params.rev > 0) {
  2386. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2387. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2388. F_TXPACEAUTO);
  2389. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2390. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2391. } else
  2392. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2393. if (adap->params.rev == T3_REV_C)
  2394. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2395. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2396. V_TABLELATENCYDELTA(4));
  2397. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2398. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2399. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2400. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2401. }
  2402. /* Desired TP timer resolution in usec */
  2403. #define TP_TMR_RES 50
  2404. /* TCP timer values in ms */
  2405. #define TP_DACK_TIMER 50
  2406. #define TP_RTO_MIN 250
  2407. /**
  2408. * tp_set_timers - set TP timing parameters
  2409. * @adap: the adapter to set
  2410. * @core_clk: the core clock frequency in Hz
  2411. *
  2412. * Set TP's timing parameters, such as the various timer resolutions and
  2413. * the TCP timer values.
  2414. */
  2415. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2416. {
  2417. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2418. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2419. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2420. unsigned int tps = core_clk >> tre;
  2421. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2422. V_DELAYEDACKRESOLUTION(dack_re) |
  2423. V_TIMESTAMPRESOLUTION(tstamp_re));
  2424. t3_write_reg(adap, A_TP_DACK_TIMER,
  2425. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2426. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2427. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2428. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2429. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2430. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2431. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2432. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2433. V_KEEPALIVEMAX(9));
  2434. #define SECONDS * tps
  2435. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2436. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2437. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2438. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2439. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2440. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2441. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2442. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2443. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2444. #undef SECONDS
  2445. }
  2446. /**
  2447. * t3_tp_set_coalescing_size - set receive coalescing size
  2448. * @adap: the adapter
  2449. * @size: the receive coalescing size
  2450. * @psh: whether a set PSH bit should deliver coalesced data
  2451. *
  2452. * Set the receive coalescing size and PSH bit handling.
  2453. */
  2454. static int t3_tp_set_coalescing_size(struct adapter *adap,
  2455. unsigned int size, int psh)
  2456. {
  2457. u32 val;
  2458. if (size > MAX_RX_COALESCING_LEN)
  2459. return -EINVAL;
  2460. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2461. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2462. if (size) {
  2463. val |= F_RXCOALESCEENABLE;
  2464. if (psh)
  2465. val |= F_RXCOALESCEPSHEN;
  2466. size = min(MAX_RX_COALESCING_LEN, size);
  2467. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2468. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2469. }
  2470. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2471. return 0;
  2472. }
  2473. /**
  2474. * t3_tp_set_max_rxsize - set the max receive size
  2475. * @adap: the adapter
  2476. * @size: the max receive size
  2477. *
  2478. * Set TP's max receive size. This is the limit that applies when
  2479. * receive coalescing is disabled.
  2480. */
  2481. static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2482. {
  2483. t3_write_reg(adap, A_TP_PARA_REG7,
  2484. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2485. }
  2486. static void init_mtus(unsigned short mtus[])
  2487. {
  2488. /*
  2489. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2490. * it can accommodate max size TCP/IP headers when SACK and timestamps
  2491. * are enabled and still have at least 8 bytes of payload.
  2492. */
  2493. mtus[0] = 88;
  2494. mtus[1] = 88;
  2495. mtus[2] = 256;
  2496. mtus[3] = 512;
  2497. mtus[4] = 576;
  2498. mtus[5] = 1024;
  2499. mtus[6] = 1280;
  2500. mtus[7] = 1492;
  2501. mtus[8] = 1500;
  2502. mtus[9] = 2002;
  2503. mtus[10] = 2048;
  2504. mtus[11] = 4096;
  2505. mtus[12] = 4352;
  2506. mtus[13] = 8192;
  2507. mtus[14] = 9000;
  2508. mtus[15] = 9600;
  2509. }
  2510. /*
  2511. * Initial congestion control parameters.
  2512. */
  2513. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2514. {
  2515. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2516. a[9] = 2;
  2517. a[10] = 3;
  2518. a[11] = 4;
  2519. a[12] = 5;
  2520. a[13] = 6;
  2521. a[14] = 7;
  2522. a[15] = 8;
  2523. a[16] = 9;
  2524. a[17] = 10;
  2525. a[18] = 14;
  2526. a[19] = 17;
  2527. a[20] = 21;
  2528. a[21] = 25;
  2529. a[22] = 30;
  2530. a[23] = 35;
  2531. a[24] = 45;
  2532. a[25] = 60;
  2533. a[26] = 80;
  2534. a[27] = 100;
  2535. a[28] = 200;
  2536. a[29] = 300;
  2537. a[30] = 400;
  2538. a[31] = 500;
  2539. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2540. b[9] = b[10] = 1;
  2541. b[11] = b[12] = 2;
  2542. b[13] = b[14] = b[15] = b[16] = 3;
  2543. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2544. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2545. b[28] = b[29] = 6;
  2546. b[30] = b[31] = 7;
  2547. }
  2548. /* The minimum additive increment value for the congestion control table */
  2549. #define CC_MIN_INCR 2U
  2550. /**
  2551. * t3_load_mtus - write the MTU and congestion control HW tables
  2552. * @adap: the adapter
  2553. * @mtus: the unrestricted values for the MTU table
  2554. * @alphs: the values for the congestion control alpha parameter
  2555. * @beta: the values for the congestion control beta parameter
  2556. * @mtu_cap: the maximum permitted effective MTU
  2557. *
  2558. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2559. * Update the high-speed congestion control table with the supplied alpha,
  2560. * beta, and MTUs.
  2561. */
  2562. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2563. unsigned short alpha[NCCTRL_WIN],
  2564. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2565. {
  2566. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2567. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2568. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2569. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2570. };
  2571. unsigned int i, w;
  2572. for (i = 0; i < NMTUS; ++i) {
  2573. unsigned int mtu = min(mtus[i], mtu_cap);
  2574. unsigned int log2 = fls(mtu);
  2575. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2576. log2--;
  2577. t3_write_reg(adap, A_TP_MTU_TABLE,
  2578. (i << 24) | (log2 << 16) | mtu);
  2579. for (w = 0; w < NCCTRL_WIN; ++w) {
  2580. unsigned int inc;
  2581. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2582. CC_MIN_INCR);
  2583. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2584. (w << 16) | (beta[w] << 13) | inc);
  2585. }
  2586. }
  2587. }
  2588. /**
  2589. * t3_tp_get_mib_stats - read TP's MIB counters
  2590. * @adap: the adapter
  2591. * @tps: holds the returned counter values
  2592. *
  2593. * Returns the values of TP's MIB counters.
  2594. */
  2595. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2596. {
  2597. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2598. sizeof(*tps) / sizeof(u32), 0);
  2599. }
  2600. #define ulp_region(adap, name, start, len) \
  2601. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2602. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2603. (start) + (len) - 1); \
  2604. start += len
  2605. #define ulptx_region(adap, name, start, len) \
  2606. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2607. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2608. (start) + (len) - 1)
  2609. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2610. {
  2611. unsigned int m = p->chan_rx_size;
  2612. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2613. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2614. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2615. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2616. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2617. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2618. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2619. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2620. }
  2621. /**
  2622. * t3_set_proto_sram - set the contents of the protocol sram
  2623. * @adapter: the adapter
  2624. * @data: the protocol image
  2625. *
  2626. * Write the contents of the protocol SRAM.
  2627. */
  2628. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2629. {
  2630. int i;
  2631. const __be32 *buf = (const __be32 *)data;
  2632. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2633. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2634. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2635. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2636. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2637. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2638. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2639. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2640. return -EIO;
  2641. }
  2642. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2643. return 0;
  2644. }
  2645. void t3_config_trace_filter(struct adapter *adapter,
  2646. const struct trace_params *tp, int filter_index,
  2647. int invert, int enable)
  2648. {
  2649. u32 addr, key[4], mask[4];
  2650. key[0] = tp->sport | (tp->sip << 16);
  2651. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2652. key[2] = tp->dip;
  2653. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2654. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2655. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2656. mask[2] = tp->dip_mask;
  2657. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2658. if (invert)
  2659. key[3] |= (1 << 29);
  2660. if (enable)
  2661. key[3] |= (1 << 28);
  2662. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2663. tp_wr_indirect(adapter, addr++, key[0]);
  2664. tp_wr_indirect(adapter, addr++, mask[0]);
  2665. tp_wr_indirect(adapter, addr++, key[1]);
  2666. tp_wr_indirect(adapter, addr++, mask[1]);
  2667. tp_wr_indirect(adapter, addr++, key[2]);
  2668. tp_wr_indirect(adapter, addr++, mask[2]);
  2669. tp_wr_indirect(adapter, addr++, key[3]);
  2670. tp_wr_indirect(adapter, addr, mask[3]);
  2671. t3_read_reg(adapter, A_TP_PIO_DATA);
  2672. }
  2673. /**
  2674. * t3_config_sched - configure a HW traffic scheduler
  2675. * @adap: the adapter
  2676. * @kbps: target rate in Kbps
  2677. * @sched: the scheduler index
  2678. *
  2679. * Configure a HW scheduler for the target rate
  2680. */
  2681. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2682. {
  2683. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2684. unsigned int clk = adap->params.vpd.cclk * 1000;
  2685. unsigned int selected_cpt = 0, selected_bpt = 0;
  2686. if (kbps > 0) {
  2687. kbps *= 125; /* -> bytes */
  2688. for (cpt = 1; cpt <= 255; cpt++) {
  2689. tps = clk / cpt;
  2690. bpt = (kbps + tps / 2) / tps;
  2691. if (bpt > 0 && bpt <= 255) {
  2692. v = bpt * tps;
  2693. delta = v >= kbps ? v - kbps : kbps - v;
  2694. if (delta <= mindelta) {
  2695. mindelta = delta;
  2696. selected_cpt = cpt;
  2697. selected_bpt = bpt;
  2698. }
  2699. } else if (selected_cpt)
  2700. break;
  2701. }
  2702. if (!selected_cpt)
  2703. return -EINVAL;
  2704. }
  2705. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2706. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2707. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2708. if (sched & 1)
  2709. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2710. else
  2711. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2712. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2713. return 0;
  2714. }
  2715. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2716. {
  2717. int busy = 0;
  2718. tp_config(adap, p);
  2719. t3_set_vlan_accel(adap, 3, 0);
  2720. if (is_offload(adap)) {
  2721. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2722. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2723. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2724. 0, 1000, 5);
  2725. if (busy)
  2726. CH_ERR(adap, "TP initialization timed out\n");
  2727. }
  2728. if (!busy)
  2729. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2730. return busy;
  2731. }
  2732. /*
  2733. * Perform the bits of HW initialization that are dependent on the Tx
  2734. * channels being used.
  2735. */
  2736. static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
  2737. {
  2738. int i;
  2739. if (chan_map != 3) { /* one channel */
  2740. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2741. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2742. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
  2743. (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
  2744. F_TPTXPORT1EN | F_PORT1ACTIVE));
  2745. t3_write_reg(adap, A_PM1_TX_CFG,
  2746. chan_map == 1 ? 0xffffffff : 0);
  2747. } else { /* two channels */
  2748. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2749. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2750. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2751. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2752. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2753. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2754. F_ENFORCEPKT);
  2755. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2756. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2757. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2758. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2759. for (i = 0; i < 16; i++)
  2760. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2761. (i << 16) | 0x1010);
  2762. }
  2763. }
  2764. static int calibrate_xgm(struct adapter *adapter)
  2765. {
  2766. if (uses_xaui(adapter)) {
  2767. unsigned int v, i;
  2768. for (i = 0; i < 5; ++i) {
  2769. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2770. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2771. msleep(1);
  2772. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2773. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2774. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2775. V_XAUIIMP(G_CALIMP(v) >> 2));
  2776. return 0;
  2777. }
  2778. }
  2779. CH_ERR(adapter, "MAC calibration failed\n");
  2780. return -1;
  2781. } else {
  2782. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2783. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2784. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2785. F_XGM_IMPSETUPDATE);
  2786. }
  2787. return 0;
  2788. }
  2789. static void calibrate_xgm_t3b(struct adapter *adapter)
  2790. {
  2791. if (!uses_xaui(adapter)) {
  2792. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2793. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2794. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2795. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2796. F_XGM_IMPSETUPDATE);
  2797. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2798. 0);
  2799. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2800. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2801. }
  2802. }
  2803. struct mc7_timing_params {
  2804. unsigned char ActToPreDly;
  2805. unsigned char ActToRdWrDly;
  2806. unsigned char PreCyc;
  2807. unsigned char RefCyc[5];
  2808. unsigned char BkCyc;
  2809. unsigned char WrToRdDly;
  2810. unsigned char RdToWrDly;
  2811. };
  2812. /*
  2813. * Write a value to a register and check that the write completed. These
  2814. * writes normally complete in a cycle or two, so one read should suffice.
  2815. * The very first read exists to flush the posted write to the device.
  2816. */
  2817. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2818. {
  2819. t3_write_reg(adapter, addr, val);
  2820. t3_read_reg(adapter, addr); /* flush */
  2821. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2822. return 0;
  2823. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2824. return -EIO;
  2825. }
  2826. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2827. {
  2828. static const unsigned int mc7_mode[] = {
  2829. 0x632, 0x642, 0x652, 0x432, 0x442
  2830. };
  2831. static const struct mc7_timing_params mc7_timings[] = {
  2832. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2833. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2834. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2835. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2836. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2837. };
  2838. u32 val;
  2839. unsigned int width, density, slow, attempts;
  2840. struct adapter *adapter = mc7->adapter;
  2841. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2842. if (!mc7->size)
  2843. return 0;
  2844. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2845. slow = val & F_SLOW;
  2846. width = G_WIDTH(val);
  2847. density = G_DEN(val);
  2848. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2849. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2850. msleep(1);
  2851. if (!slow) {
  2852. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2853. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2854. msleep(1);
  2855. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2856. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2857. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2858. mc7->name);
  2859. goto out_fail;
  2860. }
  2861. }
  2862. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2863. V_ACTTOPREDLY(p->ActToPreDly) |
  2864. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2865. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2866. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2867. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2868. val | F_CLKEN | F_TERM150);
  2869. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2870. if (!slow)
  2871. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2872. F_DLLENB);
  2873. udelay(1);
  2874. val = slow ? 3 : 6;
  2875. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2876. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2877. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2878. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2879. goto out_fail;
  2880. if (!slow) {
  2881. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2882. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2883. udelay(5);
  2884. }
  2885. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2886. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2887. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2888. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2889. mc7_mode[mem_type]) ||
  2890. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2891. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2892. goto out_fail;
  2893. /* clock value is in KHz */
  2894. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2895. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2896. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2897. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2898. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2899. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2900. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2901. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2902. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2903. (mc7->size << width) - 1);
  2904. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2905. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2906. attempts = 50;
  2907. do {
  2908. msleep(250);
  2909. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2910. } while ((val & F_BUSY) && --attempts);
  2911. if (val & F_BUSY) {
  2912. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2913. goto out_fail;
  2914. }
  2915. /* Enable normal memory accesses. */
  2916. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2917. return 0;
  2918. out_fail:
  2919. return -1;
  2920. }
  2921. static void config_pcie(struct adapter *adap)
  2922. {
  2923. static const u16 ack_lat[4][6] = {
  2924. {237, 416, 559, 1071, 2095, 4143},
  2925. {128, 217, 289, 545, 1057, 2081},
  2926. {73, 118, 154, 282, 538, 1050},
  2927. {67, 107, 86, 150, 278, 534}
  2928. };
  2929. static const u16 rpl_tmr[4][6] = {
  2930. {711, 1248, 1677, 3213, 6285, 12429},
  2931. {384, 651, 867, 1635, 3171, 6243},
  2932. {219, 354, 462, 846, 1614, 3150},
  2933. {201, 321, 258, 450, 834, 1602}
  2934. };
  2935. u16 val, devid;
  2936. unsigned int log2_width, pldsize;
  2937. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2938. pci_read_config_word(adap->pdev,
  2939. adap->pdev->pcie_cap + PCI_EXP_DEVCTL,
  2940. &val);
  2941. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2942. pci_read_config_word(adap->pdev, 0x2, &devid);
  2943. if (devid == 0x37) {
  2944. pci_write_config_word(adap->pdev,
  2945. adap->pdev->pcie_cap + PCI_EXP_DEVCTL,
  2946. val & ~PCI_EXP_DEVCTL_READRQ &
  2947. ~PCI_EXP_DEVCTL_PAYLOAD);
  2948. pldsize = 0;
  2949. }
  2950. pci_read_config_word(adap->pdev, adap->pdev->pcie_cap + PCI_EXP_LNKCTL,
  2951. &val);
  2952. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2953. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2954. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2955. log2_width = fls(adap->params.pci.width) - 1;
  2956. acklat = ack_lat[log2_width][pldsize];
  2957. if (val & 1) /* check LOsEnable */
  2958. acklat += fst_trn_tx * 4;
  2959. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2960. if (adap->params.rev == 0)
  2961. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2962. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2963. V_T3A_ACKLAT(acklat));
  2964. else
  2965. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2966. V_ACKLAT(acklat));
  2967. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2968. V_REPLAYLMT(rpllmt));
  2969. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2970. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  2971. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  2972. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  2973. }
  2974. /*
  2975. * Initialize and configure T3 HW modules. This performs the
  2976. * initialization steps that need to be done once after a card is reset.
  2977. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2978. *
  2979. * fw_params are passed to FW and their value is platform dependent. Only the
  2980. * top 8 bits are available for use, the rest must be 0.
  2981. */
  2982. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2983. {
  2984. int err = -EIO, attempts, i;
  2985. const struct vpd_params *vpd = &adapter->params.vpd;
  2986. if (adapter->params.rev > 0)
  2987. calibrate_xgm_t3b(adapter);
  2988. else if (calibrate_xgm(adapter))
  2989. goto out_err;
  2990. if (vpd->mclk) {
  2991. partition_mem(adapter, &adapter->params.tp);
  2992. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2993. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2994. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2995. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2996. adapter->params.mc5.nfilters,
  2997. adapter->params.mc5.nroutes))
  2998. goto out_err;
  2999. for (i = 0; i < 32; i++)
  3000. if (clear_sge_ctxt(adapter, i, F_CQ))
  3001. goto out_err;
  3002. }
  3003. if (tp_init(adapter, &adapter->params.tp))
  3004. goto out_err;
  3005. t3_tp_set_coalescing_size(adapter,
  3006. min(adapter->params.sge.max_pkt_size,
  3007. MAX_RX_COALESCING_LEN), 1);
  3008. t3_tp_set_max_rxsize(adapter,
  3009. min(adapter->params.sge.max_pkt_size, 16384U));
  3010. ulp_config(adapter, &adapter->params.tp);
  3011. if (is_pcie(adapter))
  3012. config_pcie(adapter);
  3013. else
  3014. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3015. F_DMASTOPEN | F_CLIDECEN);
  3016. if (adapter->params.rev == T3_REV_C)
  3017. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3018. F_CFG_CQE_SOP_MASK);
  3019. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3020. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3021. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3022. chan_init_hw(adapter, adapter->params.chan_map);
  3023. t3_sge_init(adapter, &adapter->params.sge);
  3024. t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN);
  3025. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3026. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3027. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3028. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3029. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3030. attempts = 100;
  3031. do { /* wait for uP to initialize */
  3032. msleep(20);
  3033. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3034. if (!attempts) {
  3035. CH_ERR(adapter, "uP initialization timed out\n");
  3036. goto out_err;
  3037. }
  3038. err = 0;
  3039. out_err:
  3040. return err;
  3041. }
  3042. /**
  3043. * get_pci_mode - determine a card's PCI mode
  3044. * @adapter: the adapter
  3045. * @p: where to store the PCI settings
  3046. *
  3047. * Determines a card's PCI mode and associated parameters, such as speed
  3048. * and width.
  3049. */
  3050. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3051. {
  3052. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3053. u32 pci_mode, pcie_cap;
  3054. pcie_cap = pci_pcie_cap(adapter->pdev);
  3055. if (pcie_cap) {
  3056. u16 val;
  3057. p->variant = PCI_VARIANT_PCIE;
  3058. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3059. &val);
  3060. p->width = (val >> 4) & 0x3f;
  3061. return;
  3062. }
  3063. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3064. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3065. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3066. pci_mode = G_PCIXINITPAT(pci_mode);
  3067. if (pci_mode == 0)
  3068. p->variant = PCI_VARIANT_PCI;
  3069. else if (pci_mode < 4)
  3070. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3071. else if (pci_mode < 8)
  3072. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3073. else
  3074. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3075. }
  3076. /**
  3077. * init_link_config - initialize a link's SW state
  3078. * @lc: structure holding the link state
  3079. * @ai: information about the current card
  3080. *
  3081. * Initializes the SW state maintained for each link, including the link's
  3082. * capabilities and default speed/duplex/flow-control/autonegotiation
  3083. * settings.
  3084. */
  3085. static void init_link_config(struct link_config *lc, unsigned int caps)
  3086. {
  3087. lc->supported = caps;
  3088. lc->requested_speed = lc->speed = SPEED_INVALID;
  3089. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3090. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3091. if (lc->supported & SUPPORTED_Autoneg) {
  3092. lc->advertising = lc->supported;
  3093. lc->autoneg = AUTONEG_ENABLE;
  3094. lc->requested_fc |= PAUSE_AUTONEG;
  3095. } else {
  3096. lc->advertising = 0;
  3097. lc->autoneg = AUTONEG_DISABLE;
  3098. }
  3099. }
  3100. /**
  3101. * mc7_calc_size - calculate MC7 memory size
  3102. * @cfg: the MC7 configuration
  3103. *
  3104. * Calculates the size of an MC7 memory in bytes from the value of its
  3105. * configuration register.
  3106. */
  3107. static unsigned int mc7_calc_size(u32 cfg)
  3108. {
  3109. unsigned int width = G_WIDTH(cfg);
  3110. unsigned int banks = !!(cfg & F_BKS) + 1;
  3111. unsigned int org = !!(cfg & F_ORG) + 1;
  3112. unsigned int density = G_DEN(cfg);
  3113. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3114. return MBs << 20;
  3115. }
  3116. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3117. unsigned int base_addr, const char *name)
  3118. {
  3119. u32 cfg;
  3120. mc7->adapter = adapter;
  3121. mc7->name = name;
  3122. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3123. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3124. mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3125. mc7->width = G_WIDTH(cfg);
  3126. }
  3127. static void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3128. {
  3129. u16 devid;
  3130. mac->adapter = adapter;
  3131. pci_read_config_word(adapter->pdev, 0x2, &devid);
  3132. if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
  3133. index = 0;
  3134. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3135. mac->nucast = 1;
  3136. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3137. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3138. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3139. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3140. F_ENRGMII, 0);
  3141. }
  3142. }
  3143. static void early_hw_init(struct adapter *adapter,
  3144. const struct adapter_info *ai)
  3145. {
  3146. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3147. mi1_init(adapter, ai);
  3148. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3149. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3150. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3151. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3152. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3153. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3154. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3155. val |= F_ENRGMII;
  3156. /* Enable MAC clocks so we can access the registers */
  3157. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3158. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3159. val |= F_CLKDIVRESET_;
  3160. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3161. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3162. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3163. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3164. }
  3165. /*
  3166. * Reset the adapter.
  3167. * Older PCIe cards lose their config space during reset, PCI-X
  3168. * ones don't.
  3169. */
  3170. int t3_reset_adapter(struct adapter *adapter)
  3171. {
  3172. int i, save_and_restore_pcie =
  3173. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3174. uint16_t devid = 0;
  3175. if (save_and_restore_pcie)
  3176. pci_save_state(adapter->pdev);
  3177. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3178. /*
  3179. * Delay. Give Some time to device to reset fully.
  3180. * XXX The delay time should be modified.
  3181. */
  3182. for (i = 0; i < 10; i++) {
  3183. msleep(50);
  3184. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3185. if (devid == 0x1425)
  3186. break;
  3187. }
  3188. if (devid != 0x1425)
  3189. return -1;
  3190. if (save_and_restore_pcie)
  3191. pci_restore_state(adapter->pdev);
  3192. return 0;
  3193. }
  3194. static int init_parity(struct adapter *adap)
  3195. {
  3196. int i, err, addr;
  3197. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3198. return -EBUSY;
  3199. for (err = i = 0; !err && i < 16; i++)
  3200. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3201. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3202. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3203. for (i = 0; !err && i < SGE_QSETS; i++)
  3204. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3205. if (err)
  3206. return err;
  3207. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3208. for (i = 0; i < 4; i++)
  3209. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3210. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3211. F_IBQDBGWR | V_IBQDBGQID(i) |
  3212. V_IBQDBGADDR(addr));
  3213. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3214. F_IBQDBGBUSY, 0, 2, 1);
  3215. if (err)
  3216. return err;
  3217. }
  3218. return 0;
  3219. }
  3220. /*
  3221. * Initialize adapter SW state for the various HW modules, set initial values
  3222. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3223. * interface.
  3224. */
  3225. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3226. int reset)
  3227. {
  3228. int ret;
  3229. unsigned int i, j = -1;
  3230. get_pci_mode(adapter, &adapter->params.pci);
  3231. adapter->params.info = ai;
  3232. adapter->params.nports = ai->nports0 + ai->nports1;
  3233. adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
  3234. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3235. /*
  3236. * We used to only run the "adapter check task" once a second if
  3237. * we had PHYs which didn't support interrupts (we would check
  3238. * their link status once a second). Now we check other conditions
  3239. * in that routine which could potentially impose a very high
  3240. * interrupt load on the system. As such, we now always scan the
  3241. * adapter state once a second ...
  3242. */
  3243. adapter->params.linkpoll_period = 10;
  3244. adapter->params.stats_update_period = is_10G(adapter) ?
  3245. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3246. adapter->params.pci.vpd_cap_addr =
  3247. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3248. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3249. if (ret < 0)
  3250. return ret;
  3251. if (reset && t3_reset_adapter(adapter))
  3252. return -1;
  3253. t3_sge_prep(adapter, &adapter->params.sge);
  3254. if (adapter->params.vpd.mclk) {
  3255. struct tp_params *p = &adapter->params.tp;
  3256. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3257. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3258. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3259. p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
  3260. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3261. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3262. p->cm_size = t3_mc7_size(&adapter->cm);
  3263. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3264. p->chan_tx_size = p->pmtx_size / p->nchan;
  3265. p->rx_pg_size = 64 * 1024;
  3266. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3267. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3268. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3269. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3270. adapter->params.rev > 0 ? 12 : 6;
  3271. }
  3272. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3273. t3_mc7_size(&adapter->pmtx) &&
  3274. t3_mc7_size(&adapter->cm);
  3275. if (is_offload(adapter)) {
  3276. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3277. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3278. DEFAULT_NFILTERS : 0;
  3279. adapter->params.mc5.nroutes = 0;
  3280. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3281. init_mtus(adapter->params.mtus);
  3282. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3283. }
  3284. early_hw_init(adapter, ai);
  3285. ret = init_parity(adapter);
  3286. if (ret)
  3287. return ret;
  3288. for_each_port(adapter, i) {
  3289. u8 hw_addr[6];
  3290. const struct port_type_info *pti;
  3291. struct port_info *p = adap2pinfo(adapter, i);
  3292. while (!adapter->params.vpd.port_type[++j])
  3293. ;
  3294. pti = &port_types[adapter->params.vpd.port_type[j]];
  3295. if (!pti->phy_prep) {
  3296. CH_ALERT(adapter, "Invalid port type index %d\n",
  3297. adapter->params.vpd.port_type[j]);
  3298. return -EINVAL;
  3299. }
  3300. p->phy.mdio.dev = adapter->port[i];
  3301. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3302. ai->mdio_ops);
  3303. if (ret)
  3304. return ret;
  3305. mac_prep(&p->mac, adapter, j);
  3306. /*
  3307. * The VPD EEPROM stores the base Ethernet address for the
  3308. * card. A port's address is derived from the base by adding
  3309. * the port's index to the base's low octet.
  3310. */
  3311. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3312. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3313. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3314. ETH_ALEN);
  3315. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3316. ETH_ALEN);
  3317. init_link_config(&p->link_config, p->phy.caps);
  3318. p->phy.ops->power_down(&p->phy, 1);
  3319. /*
  3320. * If the PHY doesn't support interrupts for link status
  3321. * changes, schedule a scan of the adapter links at least
  3322. * once a second.
  3323. */
  3324. if (!(p->phy.caps & SUPPORTED_IRQ) &&
  3325. adapter->params.linkpoll_period > 10)
  3326. adapter->params.linkpoll_period = 10;
  3327. }
  3328. return 0;
  3329. }
  3330. void t3_led_ready(struct adapter *adapter)
  3331. {
  3332. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3333. F_GPIO0_OUT_VAL);
  3334. }
  3335. int t3_replay_prep_adapter(struct adapter *adapter)
  3336. {
  3337. const struct adapter_info *ai = adapter->params.info;
  3338. unsigned int i, j = -1;
  3339. int ret;
  3340. early_hw_init(adapter, ai);
  3341. ret = init_parity(adapter);
  3342. if (ret)
  3343. return ret;
  3344. for_each_port(adapter, i) {
  3345. const struct port_type_info *pti;
  3346. struct port_info *p = adap2pinfo(adapter, i);
  3347. while (!adapter->params.vpd.port_type[++j])
  3348. ;
  3349. pti = &port_types[adapter->params.vpd.port_type[j]];
  3350. ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
  3351. if (ret)
  3352. return ret;
  3353. p->phy.ops->power_down(&p->phy, 1);
  3354. }
  3355. return 0;
  3356. }