ixp4xx_eth.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/net_tstamp.h>
  33. #include <linux/phy.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/ptp_classify.h>
  36. #include <linux/slab.h>
  37. #include <mach/ixp46x_ts.h>
  38. #include <mach/npe.h>
  39. #include <mach/qmgr.h>
  40. #define DEBUG_DESC 0
  41. #define DEBUG_RX 0
  42. #define DEBUG_TX 0
  43. #define DEBUG_PKT_BYTES 0
  44. #define DEBUG_MDIO 0
  45. #define DEBUG_CLOSE 0
  46. #define DRV_NAME "ixp4xx_eth"
  47. #define MAX_NPES 3
  48. #define RX_DESCS 64 /* also length of all RX queues */
  49. #define TX_DESCS 16 /* also length of all TX queues */
  50. #define TXDONE_QUEUE_LEN 64 /* dwords */
  51. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  52. #define REGS_SIZE 0x1000
  53. #define MAX_MRU 1536 /* 0x600 */
  54. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  55. #define NAPI_WEIGHT 16
  56. #define MDIO_INTERVAL (3 * HZ)
  57. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  58. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  59. #define NPE_ID(port_id) ((port_id) >> 4)
  60. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  61. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  62. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  63. #define TXDONE_QUEUE 31
  64. #define PTP_SLAVE_MODE 1
  65. #define PTP_MASTER_MODE 2
  66. #define PORT2CHANNEL(p) NPE_ID(p->id)
  67. /* TX Control Registers */
  68. #define TX_CNTRL0_TX_EN 0x01
  69. #define TX_CNTRL0_HALFDUPLEX 0x02
  70. #define TX_CNTRL0_RETRY 0x04
  71. #define TX_CNTRL0_PAD_EN 0x08
  72. #define TX_CNTRL0_APPEND_FCS 0x10
  73. #define TX_CNTRL0_2DEFER 0x20
  74. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  75. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  76. /* RX Control Registers */
  77. #define RX_CNTRL0_RX_EN 0x01
  78. #define RX_CNTRL0_PADSTRIP_EN 0x02
  79. #define RX_CNTRL0_SEND_FCS 0x04
  80. #define RX_CNTRL0_PAUSE_EN 0x08
  81. #define RX_CNTRL0_LOOP_EN 0x10
  82. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  83. #define RX_CNTRL0_RX_RUNT_EN 0x40
  84. #define RX_CNTRL0_BCAST_DIS 0x80
  85. #define RX_CNTRL1_DEFER_EN 0x01
  86. /* Core Control Register */
  87. #define CORE_RESET 0x01
  88. #define CORE_RX_FIFO_FLUSH 0x02
  89. #define CORE_TX_FIFO_FLUSH 0x04
  90. #define CORE_SEND_JAM 0x08
  91. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  92. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  93. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  94. TX_CNTRL0_2DEFER)
  95. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  96. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  97. /* NPE message codes */
  98. #define NPE_GETSTATUS 0x00
  99. #define NPE_EDB_SETPORTADDRESS 0x01
  100. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  101. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  102. #define NPE_GETSTATS 0x04
  103. #define NPE_RESETSTATS 0x05
  104. #define NPE_SETMAXFRAMELENGTHS 0x06
  105. #define NPE_VLAN_SETRXTAGMODE 0x07
  106. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  107. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  108. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  109. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  110. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  111. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  112. #define NPE_FW_SETFIREWALLMODE 0x0E
  113. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  114. #define NPE_PC_SETAPMACTABLE 0x11
  115. #define NPE_SETLOOPBACK_MODE 0x12
  116. #define NPE_PC_SETBSSIDTABLE 0x13
  117. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  118. #define NPE_APPENDFCSCONFIG 0x15
  119. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  120. #define NPE_MAC_RECOVERY_START 0x17
  121. #ifdef __ARMEB__
  122. typedef struct sk_buff buffer_t;
  123. #define free_buffer dev_kfree_skb
  124. #define free_buffer_irq dev_kfree_skb_irq
  125. #else
  126. typedef void buffer_t;
  127. #define free_buffer kfree
  128. #define free_buffer_irq kfree
  129. #endif
  130. struct eth_regs {
  131. u32 tx_control[2], __res1[2]; /* 000 */
  132. u32 rx_control[2], __res2[2]; /* 010 */
  133. u32 random_seed, __res3[3]; /* 020 */
  134. u32 partial_empty_threshold, __res4; /* 030 */
  135. u32 partial_full_threshold, __res5; /* 038 */
  136. u32 tx_start_bytes, __res6[3]; /* 040 */
  137. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  138. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  139. u32 slot_time, __res9[3]; /* 070 */
  140. u32 mdio_command[4]; /* 080 */
  141. u32 mdio_status[4]; /* 090 */
  142. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  143. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  144. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  145. u32 hw_addr[6], __res13[61]; /* 0F0 */
  146. u32 core_control; /* 1FC */
  147. };
  148. struct port {
  149. struct resource *mem_res;
  150. struct eth_regs __iomem *regs;
  151. struct npe *npe;
  152. struct net_device *netdev;
  153. struct napi_struct napi;
  154. struct phy_device *phydev;
  155. struct eth_plat_info *plat;
  156. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  157. struct desc *desc_tab; /* coherent */
  158. u32 desc_tab_phys;
  159. int id; /* logical port ID */
  160. int speed, duplex;
  161. u8 firmware[4];
  162. int hwts_tx_en;
  163. int hwts_rx_en;
  164. };
  165. /* NPE message structure */
  166. struct msg {
  167. #ifdef __ARMEB__
  168. u8 cmd, eth_id, byte2, byte3;
  169. u8 byte4, byte5, byte6, byte7;
  170. #else
  171. u8 byte3, byte2, eth_id, cmd;
  172. u8 byte7, byte6, byte5, byte4;
  173. #endif
  174. };
  175. /* Ethernet packet descriptor */
  176. struct desc {
  177. u32 next; /* pointer to next buffer, unused */
  178. #ifdef __ARMEB__
  179. u16 buf_len; /* buffer length */
  180. u16 pkt_len; /* packet length */
  181. u32 data; /* pointer to data buffer in RAM */
  182. u8 dest_id;
  183. u8 src_id;
  184. u16 flags;
  185. u8 qos;
  186. u8 padlen;
  187. u16 vlan_tci;
  188. #else
  189. u16 pkt_len; /* packet length */
  190. u16 buf_len; /* buffer length */
  191. u32 data; /* pointer to data buffer in RAM */
  192. u16 flags;
  193. u8 src_id;
  194. u8 dest_id;
  195. u16 vlan_tci;
  196. u8 padlen;
  197. u8 qos;
  198. #endif
  199. #ifdef __ARMEB__
  200. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  201. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  202. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  203. #else
  204. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  205. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  206. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  207. #endif
  208. };
  209. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  210. (n) * sizeof(struct desc))
  211. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  212. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  213. ((n) + RX_DESCS) * sizeof(struct desc))
  214. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  215. #ifndef __ARMEB__
  216. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  217. {
  218. int i;
  219. for (i = 0; i < cnt; i++)
  220. dest[i] = swab32(src[i]);
  221. }
  222. #endif
  223. static spinlock_t mdio_lock;
  224. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  225. static struct mii_bus *mdio_bus;
  226. static int ports_open;
  227. static struct port *npe_port_tab[MAX_NPES];
  228. static struct dma_pool *dma_pool;
  229. static struct sock_filter ptp_filter[] = {
  230. PTP_FILTER
  231. };
  232. static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
  233. {
  234. u8 *data = skb->data;
  235. unsigned int offset;
  236. u16 *hi, *id;
  237. u32 lo;
  238. if (sk_run_filter(skb, ptp_filter) != PTP_CLASS_V1_IPV4)
  239. return 0;
  240. offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
  241. if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
  242. return 0;
  243. hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
  244. id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
  245. memcpy(&lo, &hi[1], sizeof(lo));
  246. return (uid_hi == ntohs(*hi) &&
  247. uid_lo == ntohl(lo) &&
  248. seqid == ntohs(*id));
  249. }
  250. static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
  251. {
  252. struct skb_shared_hwtstamps *shhwtstamps;
  253. struct ixp46x_ts_regs *regs;
  254. u64 ns;
  255. u32 ch, hi, lo, val;
  256. u16 uid, seq;
  257. if (!port->hwts_rx_en)
  258. return;
  259. ch = PORT2CHANNEL(port);
  260. regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
  261. val = __raw_readl(&regs->channel[ch].ch_event);
  262. if (!(val & RX_SNAPSHOT_LOCKED))
  263. return;
  264. lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
  265. hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
  266. uid = hi & 0xffff;
  267. seq = (hi >> 16) & 0xffff;
  268. if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
  269. goto out;
  270. lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
  271. hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
  272. ns = ((u64) hi) << 32;
  273. ns |= lo;
  274. ns <<= TICKS_NS_SHIFT;
  275. shhwtstamps = skb_hwtstamps(skb);
  276. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  277. shhwtstamps->hwtstamp = ns_to_ktime(ns);
  278. out:
  279. __raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
  280. }
  281. static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
  282. {
  283. struct skb_shared_hwtstamps shhwtstamps;
  284. struct ixp46x_ts_regs *regs;
  285. struct skb_shared_info *shtx;
  286. u64 ns;
  287. u32 ch, cnt, hi, lo, val;
  288. shtx = skb_shinfo(skb);
  289. if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
  290. shtx->tx_flags |= SKBTX_IN_PROGRESS;
  291. else
  292. return;
  293. ch = PORT2CHANNEL(port);
  294. regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
  295. /*
  296. * This really stinks, but we have to poll for the Tx time stamp.
  297. * Usually, the time stamp is ready after 4 to 6 microseconds.
  298. */
  299. for (cnt = 0; cnt < 100; cnt++) {
  300. val = __raw_readl(&regs->channel[ch].ch_event);
  301. if (val & TX_SNAPSHOT_LOCKED)
  302. break;
  303. udelay(1);
  304. }
  305. if (!(val & TX_SNAPSHOT_LOCKED)) {
  306. shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
  307. return;
  308. }
  309. lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
  310. hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
  311. ns = ((u64) hi) << 32;
  312. ns |= lo;
  313. ns <<= TICKS_NS_SHIFT;
  314. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  315. shhwtstamps.hwtstamp = ns_to_ktime(ns);
  316. skb_tstamp_tx(skb, &shhwtstamps);
  317. __raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
  318. }
  319. static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  320. {
  321. struct hwtstamp_config cfg;
  322. struct ixp46x_ts_regs *regs;
  323. struct port *port = netdev_priv(netdev);
  324. int ch;
  325. if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
  326. return -EFAULT;
  327. if (cfg.flags) /* reserved for future extensions */
  328. return -EINVAL;
  329. ch = PORT2CHANNEL(port);
  330. regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
  331. switch (cfg.tx_type) {
  332. case HWTSTAMP_TX_OFF:
  333. port->hwts_tx_en = 0;
  334. break;
  335. case HWTSTAMP_TX_ON:
  336. port->hwts_tx_en = 1;
  337. break;
  338. default:
  339. return -ERANGE;
  340. }
  341. switch (cfg.rx_filter) {
  342. case HWTSTAMP_FILTER_NONE:
  343. port->hwts_rx_en = 0;
  344. break;
  345. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  346. port->hwts_rx_en = PTP_SLAVE_MODE;
  347. __raw_writel(0, &regs->channel[ch].ch_control);
  348. break;
  349. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  350. port->hwts_rx_en = PTP_MASTER_MODE;
  351. __raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
  352. break;
  353. default:
  354. return -ERANGE;
  355. }
  356. /* Clear out any old time stamps. */
  357. __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
  358. &regs->channel[ch].ch_event);
  359. return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
  360. }
  361. static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
  362. int write, u16 cmd)
  363. {
  364. int cycles = 0;
  365. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  366. printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
  367. return -1;
  368. }
  369. if (write) {
  370. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  371. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  372. }
  373. __raw_writel(((phy_id << 5) | location) & 0xFF,
  374. &mdio_regs->mdio_command[2]);
  375. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  376. &mdio_regs->mdio_command[3]);
  377. while ((cycles < MAX_MDIO_RETRIES) &&
  378. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  379. udelay(1);
  380. cycles++;
  381. }
  382. if (cycles == MAX_MDIO_RETRIES) {
  383. printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
  384. phy_id);
  385. return -1;
  386. }
  387. #if DEBUG_MDIO
  388. printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
  389. phy_id, write ? "write" : "read", cycles);
  390. #endif
  391. if (write)
  392. return 0;
  393. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  394. #if DEBUG_MDIO
  395. printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
  396. phy_id);
  397. #endif
  398. return 0xFFFF; /* don't return error */
  399. }
  400. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  401. ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
  402. }
  403. static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
  404. {
  405. unsigned long flags;
  406. int ret;
  407. spin_lock_irqsave(&mdio_lock, flags);
  408. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
  409. spin_unlock_irqrestore(&mdio_lock, flags);
  410. #if DEBUG_MDIO
  411. printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
  412. phy_id, location, ret);
  413. #endif
  414. return ret;
  415. }
  416. static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
  417. u16 val)
  418. {
  419. unsigned long flags;
  420. int ret;
  421. spin_lock_irqsave(&mdio_lock, flags);
  422. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
  423. spin_unlock_irqrestore(&mdio_lock, flags);
  424. #if DEBUG_MDIO
  425. printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
  426. bus->name, phy_id, location, val, ret);
  427. #endif
  428. return ret;
  429. }
  430. static int ixp4xx_mdio_register(void)
  431. {
  432. int err;
  433. if (!(mdio_bus = mdiobus_alloc()))
  434. return -ENOMEM;
  435. if (cpu_is_ixp43x()) {
  436. /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
  437. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
  438. return -ENODEV;
  439. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  440. } else {
  441. /* All MII PHY accesses use NPE-B Ethernet registers */
  442. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  443. return -ENODEV;
  444. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  445. }
  446. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  447. spin_lock_init(&mdio_lock);
  448. mdio_bus->name = "IXP4xx MII Bus";
  449. mdio_bus->read = &ixp4xx_mdio_read;
  450. mdio_bus->write = &ixp4xx_mdio_write;
  451. strcpy(mdio_bus->id, "0");
  452. if ((err = mdiobus_register(mdio_bus)))
  453. mdiobus_free(mdio_bus);
  454. return err;
  455. }
  456. static void ixp4xx_mdio_remove(void)
  457. {
  458. mdiobus_unregister(mdio_bus);
  459. mdiobus_free(mdio_bus);
  460. }
  461. static void ixp4xx_adjust_link(struct net_device *dev)
  462. {
  463. struct port *port = netdev_priv(dev);
  464. struct phy_device *phydev = port->phydev;
  465. if (!phydev->link) {
  466. if (port->speed) {
  467. port->speed = 0;
  468. printk(KERN_INFO "%s: link down\n", dev->name);
  469. }
  470. return;
  471. }
  472. if (port->speed == phydev->speed && port->duplex == phydev->duplex)
  473. return;
  474. port->speed = phydev->speed;
  475. port->duplex = phydev->duplex;
  476. if (port->duplex)
  477. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  478. &port->regs->tx_control[0]);
  479. else
  480. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  481. &port->regs->tx_control[0]);
  482. printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
  483. dev->name, port->speed, port->duplex ? "full" : "half");
  484. }
  485. static inline void debug_pkt(struct net_device *dev, const char *func,
  486. u8 *data, int len)
  487. {
  488. #if DEBUG_PKT_BYTES
  489. int i;
  490. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  491. for (i = 0; i < len; i++) {
  492. if (i >= DEBUG_PKT_BYTES)
  493. break;
  494. printk("%s%02X",
  495. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  496. data[i]);
  497. }
  498. printk("\n");
  499. #endif
  500. }
  501. static inline void debug_desc(u32 phys, struct desc *desc)
  502. {
  503. #if DEBUG_DESC
  504. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  505. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  506. phys, desc->next, desc->buf_len, desc->pkt_len,
  507. desc->data, desc->dest_id, desc->src_id, desc->flags,
  508. desc->qos, desc->padlen, desc->vlan_tci,
  509. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  510. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  511. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  512. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  513. #endif
  514. }
  515. static inline int queue_get_desc(unsigned int queue, struct port *port,
  516. int is_tx)
  517. {
  518. u32 phys, tab_phys, n_desc;
  519. struct desc *tab;
  520. if (!(phys = qmgr_get_entry(queue)))
  521. return -1;
  522. phys &= ~0x1F; /* mask out non-address bits */
  523. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  524. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  525. n_desc = (phys - tab_phys) / sizeof(struct desc);
  526. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  527. debug_desc(phys, &tab[n_desc]);
  528. BUG_ON(tab[n_desc].next);
  529. return n_desc;
  530. }
  531. static inline void queue_put_desc(unsigned int queue, u32 phys,
  532. struct desc *desc)
  533. {
  534. debug_desc(phys, desc);
  535. BUG_ON(phys & 0x1F);
  536. qmgr_put_entry(queue, phys);
  537. /* Don't check for queue overflow here, we've allocated sufficient
  538. length and queues >= 32 don't support this check anyway. */
  539. }
  540. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  541. {
  542. #ifdef __ARMEB__
  543. dma_unmap_single(&port->netdev->dev, desc->data,
  544. desc->buf_len, DMA_TO_DEVICE);
  545. #else
  546. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  547. ALIGN((desc->data & 3) + desc->buf_len, 4),
  548. DMA_TO_DEVICE);
  549. #endif
  550. }
  551. static void eth_rx_irq(void *pdev)
  552. {
  553. struct net_device *dev = pdev;
  554. struct port *port = netdev_priv(dev);
  555. #if DEBUG_RX
  556. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  557. #endif
  558. qmgr_disable_irq(port->plat->rxq);
  559. napi_schedule(&port->napi);
  560. }
  561. static int eth_poll(struct napi_struct *napi, int budget)
  562. {
  563. struct port *port = container_of(napi, struct port, napi);
  564. struct net_device *dev = port->netdev;
  565. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  566. int received = 0;
  567. #if DEBUG_RX
  568. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  569. #endif
  570. while (received < budget) {
  571. struct sk_buff *skb;
  572. struct desc *desc;
  573. int n;
  574. #ifdef __ARMEB__
  575. struct sk_buff *temp;
  576. u32 phys;
  577. #endif
  578. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  579. #if DEBUG_RX
  580. printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
  581. dev->name);
  582. #endif
  583. napi_complete(napi);
  584. qmgr_enable_irq(rxq);
  585. if (!qmgr_stat_below_low_watermark(rxq) &&
  586. napi_reschedule(napi)) { /* not empty again */
  587. #if DEBUG_RX
  588. printk(KERN_DEBUG "%s: eth_poll"
  589. " napi_reschedule successed\n",
  590. dev->name);
  591. #endif
  592. qmgr_disable_irq(rxq);
  593. continue;
  594. }
  595. #if DEBUG_RX
  596. printk(KERN_DEBUG "%s: eth_poll all done\n",
  597. dev->name);
  598. #endif
  599. return received; /* all work done */
  600. }
  601. desc = rx_desc_ptr(port, n);
  602. #ifdef __ARMEB__
  603. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  604. phys = dma_map_single(&dev->dev, skb->data,
  605. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  606. if (dma_mapping_error(&dev->dev, phys)) {
  607. dev_kfree_skb(skb);
  608. skb = NULL;
  609. }
  610. }
  611. #else
  612. skb = netdev_alloc_skb(dev,
  613. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  614. #endif
  615. if (!skb) {
  616. dev->stats.rx_dropped++;
  617. /* put the desc back on RX-ready queue */
  618. desc->buf_len = MAX_MRU;
  619. desc->pkt_len = 0;
  620. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  621. continue;
  622. }
  623. /* process received frame */
  624. #ifdef __ARMEB__
  625. temp = skb;
  626. skb = port->rx_buff_tab[n];
  627. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  628. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  629. #else
  630. dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
  631. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  632. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  633. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  634. #endif
  635. skb_reserve(skb, NET_IP_ALIGN);
  636. skb_put(skb, desc->pkt_len);
  637. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  638. ixp_rx_timestamp(port, skb);
  639. skb->protocol = eth_type_trans(skb, dev);
  640. dev->stats.rx_packets++;
  641. dev->stats.rx_bytes += skb->len;
  642. netif_receive_skb(skb);
  643. /* put the new buffer on RX-free queue */
  644. #ifdef __ARMEB__
  645. port->rx_buff_tab[n] = temp;
  646. desc->data = phys + NET_IP_ALIGN;
  647. #endif
  648. desc->buf_len = MAX_MRU;
  649. desc->pkt_len = 0;
  650. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  651. received++;
  652. }
  653. #if DEBUG_RX
  654. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  655. #endif
  656. return received; /* not all work done */
  657. }
  658. static void eth_txdone_irq(void *unused)
  659. {
  660. u32 phys;
  661. #if DEBUG_TX
  662. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  663. #endif
  664. while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
  665. u32 npe_id, n_desc;
  666. struct port *port;
  667. struct desc *desc;
  668. int start;
  669. npe_id = phys & 3;
  670. BUG_ON(npe_id >= MAX_NPES);
  671. port = npe_port_tab[npe_id];
  672. BUG_ON(!port);
  673. phys &= ~0x1F; /* mask out non-address bits */
  674. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  675. BUG_ON(n_desc >= TX_DESCS);
  676. desc = tx_desc_ptr(port, n_desc);
  677. debug_desc(phys, desc);
  678. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  679. port->netdev->stats.tx_packets++;
  680. port->netdev->stats.tx_bytes += desc->pkt_len;
  681. dma_unmap_tx(port, desc);
  682. #if DEBUG_TX
  683. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  684. port->netdev->name, port->tx_buff_tab[n_desc]);
  685. #endif
  686. free_buffer_irq(port->tx_buff_tab[n_desc]);
  687. port->tx_buff_tab[n_desc] = NULL;
  688. }
  689. start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
  690. queue_put_desc(port->plat->txreadyq, phys, desc);
  691. if (start) { /* TX-ready queue was empty */
  692. #if DEBUG_TX
  693. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  694. port->netdev->name);
  695. #endif
  696. netif_wake_queue(port->netdev);
  697. }
  698. }
  699. }
  700. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  701. {
  702. struct port *port = netdev_priv(dev);
  703. unsigned int txreadyq = port->plat->txreadyq;
  704. int len, offset, bytes, n;
  705. void *mem;
  706. u32 phys;
  707. struct desc *desc;
  708. #if DEBUG_TX
  709. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  710. #endif
  711. if (unlikely(skb->len > MAX_MRU)) {
  712. dev_kfree_skb(skb);
  713. dev->stats.tx_errors++;
  714. return NETDEV_TX_OK;
  715. }
  716. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  717. len = skb->len;
  718. #ifdef __ARMEB__
  719. offset = 0; /* no need to keep alignment */
  720. bytes = len;
  721. mem = skb->data;
  722. #else
  723. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  724. bytes = ALIGN(offset + len, 4);
  725. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  726. dev_kfree_skb(skb);
  727. dev->stats.tx_dropped++;
  728. return NETDEV_TX_OK;
  729. }
  730. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  731. #endif
  732. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  733. if (dma_mapping_error(&dev->dev, phys)) {
  734. dev_kfree_skb(skb);
  735. #ifndef __ARMEB__
  736. kfree(mem);
  737. #endif
  738. dev->stats.tx_dropped++;
  739. return NETDEV_TX_OK;
  740. }
  741. n = queue_get_desc(txreadyq, port, 1);
  742. BUG_ON(n < 0);
  743. desc = tx_desc_ptr(port, n);
  744. #ifdef __ARMEB__
  745. port->tx_buff_tab[n] = skb;
  746. #else
  747. port->tx_buff_tab[n] = mem;
  748. #endif
  749. desc->data = phys + offset;
  750. desc->buf_len = desc->pkt_len = len;
  751. /* NPE firmware pads short frames with zeros internally */
  752. wmb();
  753. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  754. if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
  755. #if DEBUG_TX
  756. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  757. #endif
  758. netif_stop_queue(dev);
  759. /* we could miss TX ready interrupt */
  760. /* really empty in fact */
  761. if (!qmgr_stat_below_low_watermark(txreadyq)) {
  762. #if DEBUG_TX
  763. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  764. dev->name);
  765. #endif
  766. netif_wake_queue(dev);
  767. }
  768. }
  769. #if DEBUG_TX
  770. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  771. #endif
  772. ixp_tx_timestamp(port, skb);
  773. skb_tx_timestamp(skb);
  774. #ifndef __ARMEB__
  775. dev_kfree_skb(skb);
  776. #endif
  777. return NETDEV_TX_OK;
  778. }
  779. static void eth_set_mcast_list(struct net_device *dev)
  780. {
  781. struct port *port = netdev_priv(dev);
  782. struct netdev_hw_addr *ha;
  783. u8 diffs[ETH_ALEN], *addr;
  784. int i;
  785. static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
  786. if (dev->flags & IFF_ALLMULTI) {
  787. for (i = 0; i < ETH_ALEN; i++) {
  788. __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
  789. __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
  790. }
  791. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  792. &port->regs->rx_control[0]);
  793. return;
  794. }
  795. if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
  796. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  797. &port->regs->rx_control[0]);
  798. return;
  799. }
  800. memset(diffs, 0, ETH_ALEN);
  801. addr = NULL;
  802. netdev_for_each_mc_addr(ha, dev) {
  803. if (!addr)
  804. addr = ha->addr; /* first MAC address */
  805. for (i = 0; i < ETH_ALEN; i++)
  806. diffs[i] |= addr[i] ^ ha->addr[i];
  807. }
  808. for (i = 0; i < ETH_ALEN; i++) {
  809. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  810. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  811. }
  812. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  813. &port->regs->rx_control[0]);
  814. }
  815. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  816. {
  817. struct port *port = netdev_priv(dev);
  818. if (!netif_running(dev))
  819. return -EINVAL;
  820. if (cpu_is_ixp46x() && cmd == SIOCSHWTSTAMP)
  821. return hwtstamp_ioctl(dev, req, cmd);
  822. return phy_mii_ioctl(port->phydev, req, cmd);
  823. }
  824. /* ethtool support */
  825. static void ixp4xx_get_drvinfo(struct net_device *dev,
  826. struct ethtool_drvinfo *info)
  827. {
  828. struct port *port = netdev_priv(dev);
  829. strcpy(info->driver, DRV_NAME);
  830. snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
  831. port->firmware[0], port->firmware[1],
  832. port->firmware[2], port->firmware[3]);
  833. strcpy(info->bus_info, "internal");
  834. }
  835. static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  836. {
  837. struct port *port = netdev_priv(dev);
  838. return phy_ethtool_gset(port->phydev, cmd);
  839. }
  840. static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  841. {
  842. struct port *port = netdev_priv(dev);
  843. return phy_ethtool_sset(port->phydev, cmd);
  844. }
  845. static int ixp4xx_nway_reset(struct net_device *dev)
  846. {
  847. struct port *port = netdev_priv(dev);
  848. return phy_start_aneg(port->phydev);
  849. }
  850. static const struct ethtool_ops ixp4xx_ethtool_ops = {
  851. .get_drvinfo = ixp4xx_get_drvinfo,
  852. .get_settings = ixp4xx_get_settings,
  853. .set_settings = ixp4xx_set_settings,
  854. .nway_reset = ixp4xx_nway_reset,
  855. .get_link = ethtool_op_get_link,
  856. };
  857. static int request_queues(struct port *port)
  858. {
  859. int err;
  860. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
  861. "%s:RX-free", port->netdev->name);
  862. if (err)
  863. return err;
  864. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
  865. "%s:RX", port->netdev->name);
  866. if (err)
  867. goto rel_rxfree;
  868. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
  869. "%s:TX", port->netdev->name);
  870. if (err)
  871. goto rel_rx;
  872. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
  873. "%s:TX-ready", port->netdev->name);
  874. if (err)
  875. goto rel_tx;
  876. /* TX-done queue handles skbs sent out by the NPEs */
  877. if (!ports_open) {
  878. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
  879. "%s:TX-done", DRV_NAME);
  880. if (err)
  881. goto rel_txready;
  882. }
  883. return 0;
  884. rel_txready:
  885. qmgr_release_queue(port->plat->txreadyq);
  886. rel_tx:
  887. qmgr_release_queue(TX_QUEUE(port->id));
  888. rel_rx:
  889. qmgr_release_queue(port->plat->rxq);
  890. rel_rxfree:
  891. qmgr_release_queue(RXFREE_QUEUE(port->id));
  892. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  893. port->netdev->name);
  894. return err;
  895. }
  896. static void release_queues(struct port *port)
  897. {
  898. qmgr_release_queue(RXFREE_QUEUE(port->id));
  899. qmgr_release_queue(port->plat->rxq);
  900. qmgr_release_queue(TX_QUEUE(port->id));
  901. qmgr_release_queue(port->plat->txreadyq);
  902. if (!ports_open)
  903. qmgr_release_queue(TXDONE_QUEUE);
  904. }
  905. static int init_queues(struct port *port)
  906. {
  907. int i;
  908. if (!ports_open)
  909. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  910. POOL_ALLOC_SIZE, 32, 0)))
  911. return -ENOMEM;
  912. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  913. &port->desc_tab_phys)))
  914. return -ENOMEM;
  915. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  916. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  917. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  918. /* Setup RX buffers */
  919. for (i = 0; i < RX_DESCS; i++) {
  920. struct desc *desc = rx_desc_ptr(port, i);
  921. buffer_t *buff; /* skb or kmalloc()ated memory */
  922. void *data;
  923. #ifdef __ARMEB__
  924. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  925. return -ENOMEM;
  926. data = buff->data;
  927. #else
  928. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  929. return -ENOMEM;
  930. data = buff;
  931. #endif
  932. desc->buf_len = MAX_MRU;
  933. desc->data = dma_map_single(&port->netdev->dev, data,
  934. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  935. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  936. free_buffer(buff);
  937. return -EIO;
  938. }
  939. desc->data += NET_IP_ALIGN;
  940. port->rx_buff_tab[i] = buff;
  941. }
  942. return 0;
  943. }
  944. static void destroy_queues(struct port *port)
  945. {
  946. int i;
  947. if (port->desc_tab) {
  948. for (i = 0; i < RX_DESCS; i++) {
  949. struct desc *desc = rx_desc_ptr(port, i);
  950. buffer_t *buff = port->rx_buff_tab[i];
  951. if (buff) {
  952. dma_unmap_single(&port->netdev->dev,
  953. desc->data - NET_IP_ALIGN,
  954. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  955. free_buffer(buff);
  956. }
  957. }
  958. for (i = 0; i < TX_DESCS; i++) {
  959. struct desc *desc = tx_desc_ptr(port, i);
  960. buffer_t *buff = port->tx_buff_tab[i];
  961. if (buff) {
  962. dma_unmap_tx(port, desc);
  963. free_buffer(buff);
  964. }
  965. }
  966. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  967. port->desc_tab = NULL;
  968. }
  969. if (!ports_open && dma_pool) {
  970. dma_pool_destroy(dma_pool);
  971. dma_pool = NULL;
  972. }
  973. }
  974. static int eth_open(struct net_device *dev)
  975. {
  976. struct port *port = netdev_priv(dev);
  977. struct npe *npe = port->npe;
  978. struct msg msg;
  979. int i, err;
  980. if (!npe_running(npe)) {
  981. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  982. if (err)
  983. return err;
  984. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  985. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  986. npe_name(npe));
  987. return -EIO;
  988. }
  989. port->firmware[0] = msg.byte4;
  990. port->firmware[1] = msg.byte5;
  991. port->firmware[2] = msg.byte6;
  992. port->firmware[3] = msg.byte7;
  993. }
  994. memset(&msg, 0, sizeof(msg));
  995. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  996. msg.eth_id = port->id;
  997. msg.byte5 = port->plat->rxq | 0x80;
  998. msg.byte7 = port->plat->rxq << 4;
  999. for (i = 0; i < 8; i++) {
  1000. msg.byte3 = i;
  1001. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  1002. return -EIO;
  1003. }
  1004. msg.cmd = NPE_EDB_SETPORTADDRESS;
  1005. msg.eth_id = PHYSICAL_ID(port->id);
  1006. msg.byte2 = dev->dev_addr[0];
  1007. msg.byte3 = dev->dev_addr[1];
  1008. msg.byte4 = dev->dev_addr[2];
  1009. msg.byte5 = dev->dev_addr[3];
  1010. msg.byte6 = dev->dev_addr[4];
  1011. msg.byte7 = dev->dev_addr[5];
  1012. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  1013. return -EIO;
  1014. memset(&msg, 0, sizeof(msg));
  1015. msg.cmd = NPE_FW_SETFIREWALLMODE;
  1016. msg.eth_id = port->id;
  1017. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  1018. return -EIO;
  1019. if ((err = request_queues(port)) != 0)
  1020. return err;
  1021. if ((err = init_queues(port)) != 0) {
  1022. destroy_queues(port);
  1023. release_queues(port);
  1024. return err;
  1025. }
  1026. port->speed = 0; /* force "link up" message */
  1027. phy_start(port->phydev);
  1028. for (i = 0; i < ETH_ALEN; i++)
  1029. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  1030. __raw_writel(0x08, &port->regs->random_seed);
  1031. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  1032. __raw_writel(0x30, &port->regs->partial_full_threshold);
  1033. __raw_writel(0x08, &port->regs->tx_start_bytes);
  1034. __raw_writel(0x15, &port->regs->tx_deferral);
  1035. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  1036. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  1037. __raw_writel(0x80, &port->regs->slot_time);
  1038. __raw_writel(0x01, &port->regs->int_clock_threshold);
  1039. /* Populate queues with buffers, no failure after this point */
  1040. for (i = 0; i < TX_DESCS; i++)
  1041. queue_put_desc(port->plat->txreadyq,
  1042. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  1043. for (i = 0; i < RX_DESCS; i++)
  1044. queue_put_desc(RXFREE_QUEUE(port->id),
  1045. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  1046. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  1047. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  1048. __raw_writel(0, &port->regs->rx_control[1]);
  1049. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  1050. napi_enable(&port->napi);
  1051. eth_set_mcast_list(dev);
  1052. netif_start_queue(dev);
  1053. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  1054. eth_rx_irq, dev);
  1055. if (!ports_open) {
  1056. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  1057. eth_txdone_irq, NULL);
  1058. qmgr_enable_irq(TXDONE_QUEUE);
  1059. }
  1060. ports_open++;
  1061. /* we may already have RX data, enables IRQ */
  1062. napi_schedule(&port->napi);
  1063. return 0;
  1064. }
  1065. static int eth_close(struct net_device *dev)
  1066. {
  1067. struct port *port = netdev_priv(dev);
  1068. struct msg msg;
  1069. int buffs = RX_DESCS; /* allocated RX buffers */
  1070. int i;
  1071. ports_open--;
  1072. qmgr_disable_irq(port->plat->rxq);
  1073. napi_disable(&port->napi);
  1074. netif_stop_queue(dev);
  1075. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  1076. buffs--;
  1077. memset(&msg, 0, sizeof(msg));
  1078. msg.cmd = NPE_SETLOOPBACK_MODE;
  1079. msg.eth_id = port->id;
  1080. msg.byte3 = 1;
  1081. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  1082. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  1083. i = 0;
  1084. do { /* drain RX buffers */
  1085. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  1086. buffs--;
  1087. if (!buffs)
  1088. break;
  1089. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  1090. /* we have to inject some packet */
  1091. struct desc *desc;
  1092. u32 phys;
  1093. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  1094. BUG_ON(n < 0);
  1095. desc = tx_desc_ptr(port, n);
  1096. phys = tx_desc_phys(port, n);
  1097. desc->buf_len = desc->pkt_len = 1;
  1098. wmb();
  1099. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  1100. }
  1101. udelay(1);
  1102. } while (++i < MAX_CLOSE_WAIT);
  1103. if (buffs)
  1104. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  1105. " left in NPE\n", dev->name, buffs);
  1106. #if DEBUG_CLOSE
  1107. if (!buffs)
  1108. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  1109. #endif
  1110. buffs = TX_DESCS;
  1111. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  1112. buffs--; /* cancel TX */
  1113. i = 0;
  1114. do {
  1115. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  1116. buffs--;
  1117. if (!buffs)
  1118. break;
  1119. } while (++i < MAX_CLOSE_WAIT);
  1120. if (buffs)
  1121. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  1122. "left in NPE\n", dev->name, buffs);
  1123. #if DEBUG_CLOSE
  1124. if (!buffs)
  1125. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  1126. #endif
  1127. msg.byte3 = 0;
  1128. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  1129. printk(KERN_CRIT "%s: unable to disable loopback\n",
  1130. dev->name);
  1131. phy_stop(port->phydev);
  1132. if (!ports_open)
  1133. qmgr_disable_irq(TXDONE_QUEUE);
  1134. destroy_queues(port);
  1135. release_queues(port);
  1136. return 0;
  1137. }
  1138. static const struct net_device_ops ixp4xx_netdev_ops = {
  1139. .ndo_open = eth_open,
  1140. .ndo_stop = eth_close,
  1141. .ndo_start_xmit = eth_xmit,
  1142. .ndo_set_multicast_list = eth_set_mcast_list,
  1143. .ndo_do_ioctl = eth_ioctl,
  1144. .ndo_change_mtu = eth_change_mtu,
  1145. .ndo_set_mac_address = eth_mac_addr,
  1146. .ndo_validate_addr = eth_validate_addr,
  1147. };
  1148. static int __devinit eth_init_one(struct platform_device *pdev)
  1149. {
  1150. struct port *port;
  1151. struct net_device *dev;
  1152. struct eth_plat_info *plat = pdev->dev.platform_data;
  1153. u32 regs_phys;
  1154. char phy_id[MII_BUS_ID_SIZE + 3];
  1155. int err;
  1156. if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
  1157. pr_err("ixp4xx_eth: bad ptp filter\n");
  1158. return -EINVAL;
  1159. }
  1160. if (!(dev = alloc_etherdev(sizeof(struct port))))
  1161. return -ENOMEM;
  1162. SET_NETDEV_DEV(dev, &pdev->dev);
  1163. port = netdev_priv(dev);
  1164. port->netdev = dev;
  1165. port->id = pdev->id;
  1166. switch (port->id) {
  1167. case IXP4XX_ETH_NPEA:
  1168. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  1169. regs_phys = IXP4XX_EthA_BASE_PHYS;
  1170. break;
  1171. case IXP4XX_ETH_NPEB:
  1172. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1173. regs_phys = IXP4XX_EthB_BASE_PHYS;
  1174. break;
  1175. case IXP4XX_ETH_NPEC:
  1176. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  1177. regs_phys = IXP4XX_EthC_BASE_PHYS;
  1178. break;
  1179. default:
  1180. err = -ENODEV;
  1181. goto err_free;
  1182. }
  1183. dev->netdev_ops = &ixp4xx_netdev_ops;
  1184. dev->ethtool_ops = &ixp4xx_ethtool_ops;
  1185. dev->tx_queue_len = 100;
  1186. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1187. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1188. err = -EIO;
  1189. goto err_free;
  1190. }
  1191. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1192. if (!port->mem_res) {
  1193. err = -EBUSY;
  1194. goto err_npe_rel;
  1195. }
  1196. port->plat = plat;
  1197. npe_port_tab[NPE_ID(port->id)] = port;
  1198. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1199. platform_set_drvdata(pdev, dev);
  1200. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1201. &port->regs->core_control);
  1202. udelay(50);
  1203. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1204. udelay(50);
  1205. snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy);
  1206. port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
  1207. PHY_INTERFACE_MODE_MII);
  1208. if (IS_ERR(port->phydev)) {
  1209. err = PTR_ERR(port->phydev);
  1210. goto err_free_mem;
  1211. }
  1212. port->phydev->irq = PHY_POLL;
  1213. if ((err = register_netdev(dev)))
  1214. goto err_phy_dis;
  1215. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1216. npe_name(port->npe));
  1217. return 0;
  1218. err_phy_dis:
  1219. phy_disconnect(port->phydev);
  1220. err_free_mem:
  1221. npe_port_tab[NPE_ID(port->id)] = NULL;
  1222. platform_set_drvdata(pdev, NULL);
  1223. release_resource(port->mem_res);
  1224. err_npe_rel:
  1225. npe_release(port->npe);
  1226. err_free:
  1227. free_netdev(dev);
  1228. return err;
  1229. }
  1230. static int __devexit eth_remove_one(struct platform_device *pdev)
  1231. {
  1232. struct net_device *dev = platform_get_drvdata(pdev);
  1233. struct port *port = netdev_priv(dev);
  1234. unregister_netdev(dev);
  1235. phy_disconnect(port->phydev);
  1236. npe_port_tab[NPE_ID(port->id)] = NULL;
  1237. platform_set_drvdata(pdev, NULL);
  1238. npe_release(port->npe);
  1239. release_resource(port->mem_res);
  1240. free_netdev(dev);
  1241. return 0;
  1242. }
  1243. static struct platform_driver ixp4xx_eth_driver = {
  1244. .driver.name = DRV_NAME,
  1245. .probe = eth_init_one,
  1246. .remove = eth_remove_one,
  1247. };
  1248. static int __init eth_init_module(void)
  1249. {
  1250. int err;
  1251. if ((err = ixp4xx_mdio_register()))
  1252. return err;
  1253. return platform_driver_register(&ixp4xx_eth_driver);
  1254. }
  1255. static void __exit eth_cleanup_module(void)
  1256. {
  1257. platform_driver_unregister(&ixp4xx_eth_driver);
  1258. ixp4xx_mdio_remove();
  1259. }
  1260. MODULE_AUTHOR("Krzysztof Halasa");
  1261. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1262. MODULE_LICENSE("GPL v2");
  1263. MODULE_ALIAS("platform:ixp4xx_eth");
  1264. module_init(eth_init_module);
  1265. module_exit(eth_cleanup_module);