fsl_elbc_nand.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008
  1. /* Freescale Enhanced Local Bus Controller NAND driver
  2. *
  3. * Copyright © 2006-2007, 2010 Freescale Semiconductor
  4. *
  5. * Authors: Nick Spence <nick.spence@freescale.com>,
  6. * Scott Wood <scottwood@freescale.com>
  7. * Jack Lan <jack.lan@freescale.com>
  8. * Roy Zang <tie-fei.zang@freescale.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/kernel.h>
  28. #include <linux/string.h>
  29. #include <linux/ioport.h>
  30. #include <linux/of_platform.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/slab.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/nand.h>
  36. #include <linux/mtd/nand_ecc.h>
  37. #include <linux/mtd/partitions.h>
  38. #include <asm/io.h>
  39. #include <asm/fsl_lbc.h>
  40. #define MAX_BANKS 8
  41. #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  42. #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  43. /* mtd information per set */
  44. struct fsl_elbc_mtd {
  45. struct mtd_info mtd;
  46. struct nand_chip chip;
  47. struct fsl_lbc_ctrl *ctrl;
  48. struct device *dev;
  49. int bank; /* Chip select bank number */
  50. u8 __iomem *vbase; /* Chip select base virtual address */
  51. int page_size; /* NAND page size (0=512, 1=2048) */
  52. unsigned int fmr; /* FCM Flash Mode Register value */
  53. };
  54. /* Freescale eLBC FCM controller information */
  55. struct fsl_elbc_fcm_ctrl {
  56. struct nand_hw_control controller;
  57. struct fsl_elbc_mtd *chips[MAX_BANKS];
  58. u8 __iomem *addr; /* Address of assigned FCM buffer */
  59. unsigned int page; /* Last page written to / read from */
  60. unsigned int read_bytes; /* Number of bytes read during command */
  61. unsigned int column; /* Saved column from SEQIN */
  62. unsigned int index; /* Pointer to next byte to 'read' */
  63. unsigned int status; /* status read from LTESR after last op */
  64. unsigned int mdr; /* UPM/FCM Data Register value */
  65. unsigned int use_mdr; /* Non zero if the MDR is to be set */
  66. unsigned int oob; /* Non zero if operating on OOB data */
  67. unsigned int counter; /* counter for the initializations */
  68. char *oob_poi; /* Place to write ECC after read back */
  69. };
  70. /* These map to the positions used by the FCM hardware ECC generator */
  71. /* Small Page FLASH with FMR[ECCM] = 0 */
  72. static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  73. .eccbytes = 3,
  74. .eccpos = {6, 7, 8},
  75. .oobfree = { {0, 5}, {9, 7} },
  76. };
  77. /* Small Page FLASH with FMR[ECCM] = 1 */
  78. static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  79. .eccbytes = 3,
  80. .eccpos = {8, 9, 10},
  81. .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  82. };
  83. /* Large Page FLASH with FMR[ECCM] = 0 */
  84. static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  85. .eccbytes = 12,
  86. .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
  87. .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
  88. };
  89. /* Large Page FLASH with FMR[ECCM] = 1 */
  90. static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
  91. .eccbytes = 12,
  92. .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
  93. .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
  94. };
  95. /*
  96. * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
  97. * 1, so we have to adjust bad block pattern. This pattern should be used for
  98. * x8 chips only. So far hardware does not support x16 chips anyway.
  99. */
  100. static u8 scan_ff_pattern[] = { 0xff, };
  101. static struct nand_bbt_descr largepage_memorybased = {
  102. .options = 0,
  103. .offs = 0,
  104. .len = 1,
  105. .pattern = scan_ff_pattern,
  106. };
  107. /*
  108. * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
  109. * interfere with ECC positions, that's why we implement our own descriptors.
  110. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
  111. */
  112. static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  113. static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  114. static struct nand_bbt_descr bbt_main_descr = {
  115. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  116. NAND_BBT_2BIT | NAND_BBT_VERSION,
  117. .offs = 11,
  118. .len = 4,
  119. .veroffs = 15,
  120. .maxblocks = 4,
  121. .pattern = bbt_pattern,
  122. };
  123. static struct nand_bbt_descr bbt_mirror_descr = {
  124. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  125. NAND_BBT_2BIT | NAND_BBT_VERSION,
  126. .offs = 11,
  127. .len = 4,
  128. .veroffs = 15,
  129. .maxblocks = 4,
  130. .pattern = mirror_pattern,
  131. };
  132. /*=================================*/
  133. /*
  134. * Set up the FCM hardware block and page address fields, and the fcm
  135. * structure addr field to point to the correct FCM buffer in memory
  136. */
  137. static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
  138. {
  139. struct nand_chip *chip = mtd->priv;
  140. struct fsl_elbc_mtd *priv = chip->priv;
  141. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  142. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  143. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  144. int buf_num;
  145. elbc_fcm_ctrl->page = page_addr;
  146. out_be32(&lbc->fbar,
  147. page_addr >> (chip->phys_erase_shift - chip->page_shift));
  148. if (priv->page_size) {
  149. out_be32(&lbc->fpar,
  150. ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
  151. (oob ? FPAR_LP_MS : 0) | column);
  152. buf_num = (page_addr & 1) << 2;
  153. } else {
  154. out_be32(&lbc->fpar,
  155. ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
  156. (oob ? FPAR_SP_MS : 0) | column);
  157. buf_num = page_addr & 7;
  158. }
  159. elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
  160. elbc_fcm_ctrl->index = column;
  161. /* for OOB data point to the second half of the buffer */
  162. if (oob)
  163. elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
  164. dev_vdbg(priv->dev, "set_addr: bank=%d, "
  165. "elbc_fcm_ctrl->addr=0x%p (0x%p), "
  166. "index %x, pes %d ps %d\n",
  167. buf_num, elbc_fcm_ctrl->addr, priv->vbase,
  168. elbc_fcm_ctrl->index,
  169. chip->phys_erase_shift, chip->page_shift);
  170. }
  171. /*
  172. * execute FCM command and wait for it to complete
  173. */
  174. static int fsl_elbc_run_command(struct mtd_info *mtd)
  175. {
  176. struct nand_chip *chip = mtd->priv;
  177. struct fsl_elbc_mtd *priv = chip->priv;
  178. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  179. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  180. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  181. /* Setup the FMR[OP] to execute without write protection */
  182. out_be32(&lbc->fmr, priv->fmr | 3);
  183. if (elbc_fcm_ctrl->use_mdr)
  184. out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
  185. dev_vdbg(priv->dev,
  186. "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
  187. in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
  188. dev_vdbg(priv->dev,
  189. "fsl_elbc_run_command: fbar=%08x fpar=%08x "
  190. "fbcr=%08x bank=%d\n",
  191. in_be32(&lbc->fbar), in_be32(&lbc->fpar),
  192. in_be32(&lbc->fbcr), priv->bank);
  193. ctrl->irq_status = 0;
  194. /* execute special operation */
  195. out_be32(&lbc->lsor, priv->bank);
  196. /* wait for FCM complete flag or timeout */
  197. wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
  198. FCM_TIMEOUT_MSECS * HZ/1000);
  199. elbc_fcm_ctrl->status = ctrl->irq_status;
  200. /* store mdr value in case it was needed */
  201. if (elbc_fcm_ctrl->use_mdr)
  202. elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
  203. elbc_fcm_ctrl->use_mdr = 0;
  204. if (elbc_fcm_ctrl->status != LTESR_CC) {
  205. dev_info(priv->dev,
  206. "command failed: fir %x fcr %x status %x mdr %x\n",
  207. in_be32(&lbc->fir), in_be32(&lbc->fcr),
  208. elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
  209. return -EIO;
  210. }
  211. return 0;
  212. }
  213. static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
  214. {
  215. struct fsl_elbc_mtd *priv = chip->priv;
  216. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  217. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  218. if (priv->page_size) {
  219. out_be32(&lbc->fir,
  220. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  221. (FIR_OP_CA << FIR_OP1_SHIFT) |
  222. (FIR_OP_PA << FIR_OP2_SHIFT) |
  223. (FIR_OP_CM1 << FIR_OP3_SHIFT) |
  224. (FIR_OP_RBW << FIR_OP4_SHIFT));
  225. out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  226. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  227. } else {
  228. out_be32(&lbc->fir,
  229. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  230. (FIR_OP_CA << FIR_OP1_SHIFT) |
  231. (FIR_OP_PA << FIR_OP2_SHIFT) |
  232. (FIR_OP_RBW << FIR_OP3_SHIFT));
  233. if (oob)
  234. out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
  235. else
  236. out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  237. }
  238. }
  239. /* cmdfunc send commands to the FCM */
  240. static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
  241. int column, int page_addr)
  242. {
  243. struct nand_chip *chip = mtd->priv;
  244. struct fsl_elbc_mtd *priv = chip->priv;
  245. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  246. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  247. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  248. elbc_fcm_ctrl->use_mdr = 0;
  249. /* clear the read buffer */
  250. elbc_fcm_ctrl->read_bytes = 0;
  251. if (command != NAND_CMD_PAGEPROG)
  252. elbc_fcm_ctrl->index = 0;
  253. switch (command) {
  254. /* READ0 and READ1 read the entire buffer to use hardware ECC. */
  255. case NAND_CMD_READ1:
  256. column += 256;
  257. /* fall-through */
  258. case NAND_CMD_READ0:
  259. dev_dbg(priv->dev,
  260. "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
  261. " 0x%x, column: 0x%x.\n", page_addr, column);
  262. out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
  263. set_addr(mtd, 0, page_addr, 0);
  264. elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  265. elbc_fcm_ctrl->index += column;
  266. fsl_elbc_do_read(chip, 0);
  267. fsl_elbc_run_command(mtd);
  268. return;
  269. /* READOOB reads only the OOB because no ECC is performed. */
  270. case NAND_CMD_READOOB:
  271. dev_vdbg(priv->dev,
  272. "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
  273. " 0x%x, column: 0x%x.\n", page_addr, column);
  274. out_be32(&lbc->fbcr, mtd->oobsize - column);
  275. set_addr(mtd, column, page_addr, 1);
  276. elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  277. fsl_elbc_do_read(chip, 1);
  278. fsl_elbc_run_command(mtd);
  279. return;
  280. /* READID must read all 5 possible bytes while CEB is active */
  281. case NAND_CMD_READID:
  282. dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
  283. out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  284. (FIR_OP_UA << FIR_OP1_SHIFT) |
  285. (FIR_OP_RBW << FIR_OP2_SHIFT));
  286. out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
  287. /* nand_get_flash_type() reads 8 bytes of entire ID string */
  288. out_be32(&lbc->fbcr, 8);
  289. elbc_fcm_ctrl->read_bytes = 8;
  290. elbc_fcm_ctrl->use_mdr = 1;
  291. elbc_fcm_ctrl->mdr = 0;
  292. set_addr(mtd, 0, 0, 0);
  293. fsl_elbc_run_command(mtd);
  294. return;
  295. /* ERASE1 stores the block and page address */
  296. case NAND_CMD_ERASE1:
  297. dev_vdbg(priv->dev,
  298. "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
  299. "page_addr: 0x%x.\n", page_addr);
  300. set_addr(mtd, 0, page_addr, 0);
  301. return;
  302. /* ERASE2 uses the block and page address from ERASE1 */
  303. case NAND_CMD_ERASE2:
  304. dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
  305. out_be32(&lbc->fir,
  306. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  307. (FIR_OP_PA << FIR_OP1_SHIFT) |
  308. (FIR_OP_CM2 << FIR_OP2_SHIFT) |
  309. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  310. (FIR_OP_RS << FIR_OP4_SHIFT));
  311. out_be32(&lbc->fcr,
  312. (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
  313. (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  314. (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
  315. out_be32(&lbc->fbcr, 0);
  316. elbc_fcm_ctrl->read_bytes = 0;
  317. elbc_fcm_ctrl->use_mdr = 1;
  318. fsl_elbc_run_command(mtd);
  319. return;
  320. /* SEQIN sets up the addr buffer and all registers except the length */
  321. case NAND_CMD_SEQIN: {
  322. __be32 fcr;
  323. dev_vdbg(priv->dev,
  324. "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
  325. "page_addr: 0x%x, column: 0x%x.\n",
  326. page_addr, column);
  327. elbc_fcm_ctrl->column = column;
  328. elbc_fcm_ctrl->oob = 0;
  329. elbc_fcm_ctrl->use_mdr = 1;
  330. fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  331. (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
  332. (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
  333. if (priv->page_size) {
  334. out_be32(&lbc->fir,
  335. (FIR_OP_CM2 << FIR_OP0_SHIFT) |
  336. (FIR_OP_CA << FIR_OP1_SHIFT) |
  337. (FIR_OP_PA << FIR_OP2_SHIFT) |
  338. (FIR_OP_WB << FIR_OP3_SHIFT) |
  339. (FIR_OP_CM3 << FIR_OP4_SHIFT) |
  340. (FIR_OP_CW1 << FIR_OP5_SHIFT) |
  341. (FIR_OP_RS << FIR_OP6_SHIFT));
  342. } else {
  343. out_be32(&lbc->fir,
  344. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  345. (FIR_OP_CM2 << FIR_OP1_SHIFT) |
  346. (FIR_OP_CA << FIR_OP2_SHIFT) |
  347. (FIR_OP_PA << FIR_OP3_SHIFT) |
  348. (FIR_OP_WB << FIR_OP4_SHIFT) |
  349. (FIR_OP_CM3 << FIR_OP5_SHIFT) |
  350. (FIR_OP_CW1 << FIR_OP6_SHIFT) |
  351. (FIR_OP_RS << FIR_OP7_SHIFT));
  352. if (column >= mtd->writesize) {
  353. /* OOB area --> READOOB */
  354. column -= mtd->writesize;
  355. fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
  356. elbc_fcm_ctrl->oob = 1;
  357. } else {
  358. WARN_ON(column != 0);
  359. /* First 256 bytes --> READ0 */
  360. fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
  361. }
  362. }
  363. out_be32(&lbc->fcr, fcr);
  364. set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
  365. return;
  366. }
  367. /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
  368. case NAND_CMD_PAGEPROG: {
  369. int full_page;
  370. dev_vdbg(priv->dev,
  371. "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
  372. "writing %d bytes.\n", elbc_fcm_ctrl->index);
  373. /* if the write did not start at 0 or is not a full page
  374. * then set the exact length, otherwise use a full page
  375. * write so the HW generates the ECC.
  376. */
  377. if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
  378. elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
  379. out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
  380. full_page = 0;
  381. } else {
  382. out_be32(&lbc->fbcr, 0);
  383. full_page = 1;
  384. }
  385. fsl_elbc_run_command(mtd);
  386. /* Read back the page in order to fill in the ECC for the
  387. * caller. Is this really needed?
  388. */
  389. if (full_page && elbc_fcm_ctrl->oob_poi) {
  390. out_be32(&lbc->fbcr, 3);
  391. set_addr(mtd, 6, page_addr, 1);
  392. elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
  393. fsl_elbc_do_read(chip, 1);
  394. fsl_elbc_run_command(mtd);
  395. memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
  396. &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
  397. elbc_fcm_ctrl->index += 3;
  398. }
  399. elbc_fcm_ctrl->oob_poi = NULL;
  400. return;
  401. }
  402. /* CMD_STATUS must read the status byte while CEB is active */
  403. /* Note - it does not wait for the ready line */
  404. case NAND_CMD_STATUS:
  405. out_be32(&lbc->fir,
  406. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  407. (FIR_OP_RBW << FIR_OP1_SHIFT));
  408. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  409. out_be32(&lbc->fbcr, 1);
  410. set_addr(mtd, 0, 0, 0);
  411. elbc_fcm_ctrl->read_bytes = 1;
  412. fsl_elbc_run_command(mtd);
  413. /* The chip always seems to report that it is
  414. * write-protected, even when it is not.
  415. */
  416. setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
  417. return;
  418. /* RESET without waiting for the ready line */
  419. case NAND_CMD_RESET:
  420. dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
  421. out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
  422. out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
  423. fsl_elbc_run_command(mtd);
  424. return;
  425. default:
  426. dev_err(priv->dev,
  427. "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
  428. command);
  429. }
  430. }
  431. static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
  432. {
  433. /* The hardware does not seem to support multiple
  434. * chips per bank.
  435. */
  436. }
  437. /*
  438. * Write buf to the FCM Controller Data Buffer
  439. */
  440. static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  441. {
  442. struct nand_chip *chip = mtd->priv;
  443. struct fsl_elbc_mtd *priv = chip->priv;
  444. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  445. unsigned int bufsize = mtd->writesize + mtd->oobsize;
  446. if (len <= 0) {
  447. dev_err(priv->dev, "write_buf of %d bytes", len);
  448. elbc_fcm_ctrl->status = 0;
  449. return;
  450. }
  451. if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
  452. dev_err(priv->dev,
  453. "write_buf beyond end of buffer "
  454. "(%d requested, %u available)\n",
  455. len, bufsize - elbc_fcm_ctrl->index);
  456. len = bufsize - elbc_fcm_ctrl->index;
  457. }
  458. memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
  459. /*
  460. * This is workaround for the weird elbc hangs during nand write,
  461. * Scott Wood says: "...perhaps difference in how long it takes a
  462. * write to make it through the localbus compared to a write to IMMR
  463. * is causing problems, and sync isn't helping for some reason."
  464. * Reading back the last byte helps though.
  465. */
  466. in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
  467. elbc_fcm_ctrl->index += len;
  468. }
  469. /*
  470. * read a byte from either the FCM hardware buffer if it has any data left
  471. * otherwise issue a command to read a single byte.
  472. */
  473. static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
  474. {
  475. struct nand_chip *chip = mtd->priv;
  476. struct fsl_elbc_mtd *priv = chip->priv;
  477. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  478. /* If there are still bytes in the FCM, then use the next byte. */
  479. if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
  480. return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
  481. dev_err(priv->dev, "read_byte beyond end of buffer\n");
  482. return ERR_BYTE;
  483. }
  484. /*
  485. * Read from the FCM Controller Data Buffer
  486. */
  487. static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  488. {
  489. struct nand_chip *chip = mtd->priv;
  490. struct fsl_elbc_mtd *priv = chip->priv;
  491. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  492. int avail;
  493. if (len < 0)
  494. return;
  495. avail = min((unsigned int)len,
  496. elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
  497. memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
  498. elbc_fcm_ctrl->index += avail;
  499. if (len > avail)
  500. dev_err(priv->dev,
  501. "read_buf beyond end of buffer "
  502. "(%d requested, %d available)\n",
  503. len, avail);
  504. }
  505. /*
  506. * Verify buffer against the FCM Controller Data Buffer
  507. */
  508. static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
  509. {
  510. struct nand_chip *chip = mtd->priv;
  511. struct fsl_elbc_mtd *priv = chip->priv;
  512. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  513. int i;
  514. if (len < 0) {
  515. dev_err(priv->dev, "write_buf of %d bytes", len);
  516. return -EINVAL;
  517. }
  518. if ((unsigned int)len >
  519. elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
  520. dev_err(priv->dev,
  521. "verify_buf beyond end of buffer "
  522. "(%d requested, %u available)\n",
  523. len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
  524. elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
  525. return -EINVAL;
  526. }
  527. for (i = 0; i < len; i++)
  528. if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
  529. != buf[i])
  530. break;
  531. elbc_fcm_ctrl->index += len;
  532. return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
  533. }
  534. /* This function is called after Program and Erase Operations to
  535. * check for success or failure.
  536. */
  537. static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
  538. {
  539. struct fsl_elbc_mtd *priv = chip->priv;
  540. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  541. if (elbc_fcm_ctrl->status != LTESR_CC)
  542. return NAND_STATUS_FAIL;
  543. /* The chip always seems to report that it is
  544. * write-protected, even when it is not.
  545. */
  546. return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
  547. }
  548. static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
  549. {
  550. struct nand_chip *chip = mtd->priv;
  551. struct fsl_elbc_mtd *priv = chip->priv;
  552. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  553. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  554. unsigned int al;
  555. /* calculate FMR Address Length field */
  556. al = 0;
  557. if (chip->pagemask & 0xffff0000)
  558. al++;
  559. if (chip->pagemask & 0xff000000)
  560. al++;
  561. /* add to ECCM mode set in fsl_elbc_init */
  562. priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
  563. (al << FMR_AL_SHIFT);
  564. dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
  565. chip->numchips);
  566. dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
  567. chip->chipsize);
  568. dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
  569. chip->pagemask);
  570. dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
  571. chip->chip_delay);
  572. dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
  573. chip->badblockpos);
  574. dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
  575. chip->chip_shift);
  576. dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
  577. chip->page_shift);
  578. dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
  579. chip->phys_erase_shift);
  580. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
  581. chip->ecclayout);
  582. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
  583. chip->ecc.mode);
  584. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
  585. chip->ecc.steps);
  586. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
  587. chip->ecc.bytes);
  588. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
  589. chip->ecc.total);
  590. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
  591. chip->ecc.layout);
  592. dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
  593. dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
  594. dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
  595. mtd->erasesize);
  596. dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
  597. mtd->writesize);
  598. dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
  599. mtd->oobsize);
  600. /* adjust Option Register and ECC to match Flash page size */
  601. if (mtd->writesize == 512) {
  602. priv->page_size = 0;
  603. clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  604. } else if (mtd->writesize == 2048) {
  605. priv->page_size = 1;
  606. setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  607. /* adjust ecc setup if needed */
  608. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  609. BR_DECC_CHK_GEN) {
  610. chip->ecc.size = 512;
  611. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  612. &fsl_elbc_oob_lp_eccm1 :
  613. &fsl_elbc_oob_lp_eccm0;
  614. chip->badblock_pattern = &largepage_memorybased;
  615. }
  616. } else {
  617. dev_err(priv->dev,
  618. "fsl_elbc_init: page size %d is not supported\n",
  619. mtd->writesize);
  620. return -1;
  621. }
  622. return 0;
  623. }
  624. static int fsl_elbc_read_page(struct mtd_info *mtd,
  625. struct nand_chip *chip,
  626. uint8_t *buf,
  627. int page)
  628. {
  629. fsl_elbc_read_buf(mtd, buf, mtd->writesize);
  630. fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  631. if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
  632. mtd->ecc_stats.failed++;
  633. return 0;
  634. }
  635. /* ECC will be calculated automatically, and errors will be detected in
  636. * waitfunc.
  637. */
  638. static void fsl_elbc_write_page(struct mtd_info *mtd,
  639. struct nand_chip *chip,
  640. const uint8_t *buf)
  641. {
  642. struct fsl_elbc_mtd *priv = chip->priv;
  643. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  644. fsl_elbc_write_buf(mtd, buf, mtd->writesize);
  645. fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  646. elbc_fcm_ctrl->oob_poi = chip->oob_poi;
  647. }
  648. static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
  649. {
  650. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  651. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  652. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  653. struct nand_chip *chip = &priv->chip;
  654. dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
  655. /* Fill in fsl_elbc_mtd structure */
  656. priv->mtd.priv = chip;
  657. priv->mtd.owner = THIS_MODULE;
  658. /* Set the ECCM according to the settings in bootloader.*/
  659. priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
  660. /* fill in nand_chip structure */
  661. /* set up function call table */
  662. chip->read_byte = fsl_elbc_read_byte;
  663. chip->write_buf = fsl_elbc_write_buf;
  664. chip->read_buf = fsl_elbc_read_buf;
  665. chip->verify_buf = fsl_elbc_verify_buf;
  666. chip->select_chip = fsl_elbc_select_chip;
  667. chip->cmdfunc = fsl_elbc_cmdfunc;
  668. chip->waitfunc = fsl_elbc_wait;
  669. chip->bbt_td = &bbt_main_descr;
  670. chip->bbt_md = &bbt_mirror_descr;
  671. /* set up nand options */
  672. chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
  673. NAND_USE_FLASH_BBT;
  674. chip->controller = &elbc_fcm_ctrl->controller;
  675. chip->priv = priv;
  676. chip->ecc.read_page = fsl_elbc_read_page;
  677. chip->ecc.write_page = fsl_elbc_write_page;
  678. /* If CS Base Register selects full hardware ECC then use it */
  679. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  680. BR_DECC_CHK_GEN) {
  681. chip->ecc.mode = NAND_ECC_HW;
  682. /* put in small page settings and adjust later if needed */
  683. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  684. &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
  685. chip->ecc.size = 512;
  686. chip->ecc.bytes = 3;
  687. } else {
  688. /* otherwise fall back to default software ECC */
  689. chip->ecc.mode = NAND_ECC_SOFT;
  690. }
  691. return 0;
  692. }
  693. static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
  694. {
  695. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  696. nand_release(&priv->mtd);
  697. kfree(priv->mtd.name);
  698. if (priv->vbase)
  699. iounmap(priv->vbase);
  700. elbc_fcm_ctrl->chips[priv->bank] = NULL;
  701. kfree(priv);
  702. kfree(elbc_fcm_ctrl);
  703. return 0;
  704. }
  705. static DEFINE_MUTEX(fsl_elbc_nand_mutex);
  706. static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
  707. {
  708. struct fsl_lbc_regs __iomem *lbc;
  709. struct fsl_elbc_mtd *priv;
  710. struct resource res;
  711. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
  712. static const char *part_probe_types[]
  713. = { "cmdlinepart", "RedBoot", NULL };
  714. struct mtd_partition *parts;
  715. int ret;
  716. int bank;
  717. struct device *dev;
  718. struct device_node *node = pdev->dev.of_node;
  719. if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
  720. return -ENODEV;
  721. lbc = fsl_lbc_ctrl_dev->regs;
  722. dev = fsl_lbc_ctrl_dev->dev;
  723. /* get, allocate and map the memory resource */
  724. ret = of_address_to_resource(node, 0, &res);
  725. if (ret) {
  726. dev_err(dev, "failed to get resource\n");
  727. return ret;
  728. }
  729. /* find which chip select it is connected to */
  730. for (bank = 0; bank < MAX_BANKS; bank++)
  731. if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
  732. (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
  733. (in_be32(&lbc->bank[bank].br) &
  734. in_be32(&lbc->bank[bank].or) & BR_BA)
  735. == fsl_lbc_addr(res.start))
  736. break;
  737. if (bank >= MAX_BANKS) {
  738. dev_err(dev, "address did not match any chip selects\n");
  739. return -ENODEV;
  740. }
  741. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  742. if (!priv)
  743. return -ENOMEM;
  744. mutex_lock(&fsl_elbc_nand_mutex);
  745. if (!fsl_lbc_ctrl_dev->nand) {
  746. elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
  747. if (!elbc_fcm_ctrl) {
  748. dev_err(dev, "failed to allocate memory\n");
  749. mutex_unlock(&fsl_elbc_nand_mutex);
  750. ret = -ENOMEM;
  751. goto err;
  752. }
  753. elbc_fcm_ctrl->counter++;
  754. spin_lock_init(&elbc_fcm_ctrl->controller.lock);
  755. init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
  756. fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
  757. } else {
  758. elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
  759. }
  760. mutex_unlock(&fsl_elbc_nand_mutex);
  761. elbc_fcm_ctrl->chips[bank] = priv;
  762. priv->bank = bank;
  763. priv->ctrl = fsl_lbc_ctrl_dev;
  764. priv->dev = dev;
  765. priv->vbase = ioremap(res.start, resource_size(&res));
  766. if (!priv->vbase) {
  767. dev_err(dev, "failed to map chip region\n");
  768. ret = -ENOMEM;
  769. goto err;
  770. }
  771. priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
  772. if (!priv->mtd.name) {
  773. ret = -ENOMEM;
  774. goto err;
  775. }
  776. ret = fsl_elbc_chip_init(priv);
  777. if (ret)
  778. goto err;
  779. ret = nand_scan_ident(&priv->mtd, 1, NULL);
  780. if (ret)
  781. goto err;
  782. ret = fsl_elbc_chip_init_tail(&priv->mtd);
  783. if (ret)
  784. goto err;
  785. ret = nand_scan_tail(&priv->mtd);
  786. if (ret)
  787. goto err;
  788. /* First look for RedBoot table or partitions on the command
  789. * line, these take precedence over device tree information */
  790. ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
  791. if (ret < 0)
  792. goto err;
  793. if (ret == 0) {
  794. ret = of_mtd_parse_partitions(priv->dev, node, &parts);
  795. if (ret < 0)
  796. goto err;
  797. }
  798. mtd_device_register(&priv->mtd, parts, ret);
  799. printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
  800. (unsigned long long)res.start, priv->bank);
  801. return 0;
  802. err:
  803. fsl_elbc_chip_remove(priv);
  804. return ret;
  805. }
  806. static int fsl_elbc_nand_remove(struct platform_device *pdev)
  807. {
  808. int i;
  809. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
  810. for (i = 0; i < MAX_BANKS; i++)
  811. if (elbc_fcm_ctrl->chips[i])
  812. fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
  813. mutex_lock(&fsl_elbc_nand_mutex);
  814. elbc_fcm_ctrl->counter--;
  815. if (!elbc_fcm_ctrl->counter) {
  816. fsl_lbc_ctrl_dev->nand = NULL;
  817. kfree(elbc_fcm_ctrl);
  818. }
  819. mutex_unlock(&fsl_elbc_nand_mutex);
  820. return 0;
  821. }
  822. static const struct of_device_id fsl_elbc_nand_match[] = {
  823. { .compatible = "fsl,elbc-fcm-nand", },
  824. {}
  825. };
  826. static struct platform_driver fsl_elbc_nand_driver = {
  827. .driver = {
  828. .name = "fsl,elbc-fcm-nand",
  829. .owner = THIS_MODULE,
  830. .of_match_table = fsl_elbc_nand_match,
  831. },
  832. .probe = fsl_elbc_nand_probe,
  833. .remove = fsl_elbc_nand_remove,
  834. };
  835. static int __init fsl_elbc_nand_init(void)
  836. {
  837. return platform_driver_register(&fsl_elbc_nand_driver);
  838. }
  839. static void __exit fsl_elbc_nand_exit(void)
  840. {
  841. platform_driver_unregister(&fsl_elbc_nand_driver);
  842. }
  843. module_init(fsl_elbc_nand_init);
  844. module_exit(fsl_elbc_nand_exit);
  845. MODULE_LICENSE("GPL");
  846. MODULE_AUTHOR("Freescale");
  847. MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");