sh_mmcif.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/mmc/card.h>
  24. #include <linux/mmc/core.h>
  25. #include <linux/mmc/host.h>
  26. #include <linux/mmc/mmc.h>
  27. #include <linux/mmc/sdio.h>
  28. #include <linux/mmc/sh_mmcif.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/spinlock.h>
  33. #define DRIVER_NAME "sh_mmcif"
  34. #define DRIVER_VERSION "2010-04-28"
  35. /* CE_CMD_SET */
  36. #define CMD_MASK 0x3f000000
  37. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  38. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  39. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  40. #define CMD_SET_RBSY (1 << 21) /* R1b */
  41. #define CMD_SET_CCSEN (1 << 20)
  42. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  43. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  44. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  45. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  46. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  47. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  48. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  49. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  50. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  51. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  52. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  53. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  54. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  55. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  56. #define CMD_SET_CCSH (1 << 5)
  57. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  58. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  59. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  60. /* CE_CMD_CTRL */
  61. #define CMD_CTRL_BREAK (1 << 0)
  62. /* CE_BLOCK_SET */
  63. #define BLOCK_SIZE_MASK 0x0000ffff
  64. /* CE_INT */
  65. #define INT_CCSDE (1 << 29)
  66. #define INT_CMD12DRE (1 << 26)
  67. #define INT_CMD12RBE (1 << 25)
  68. #define INT_CMD12CRE (1 << 24)
  69. #define INT_DTRANE (1 << 23)
  70. #define INT_BUFRE (1 << 22)
  71. #define INT_BUFWEN (1 << 21)
  72. #define INT_BUFREN (1 << 20)
  73. #define INT_CCSRCV (1 << 19)
  74. #define INT_RBSYE (1 << 17)
  75. #define INT_CRSPE (1 << 16)
  76. #define INT_CMDVIO (1 << 15)
  77. #define INT_BUFVIO (1 << 14)
  78. #define INT_WDATERR (1 << 11)
  79. #define INT_RDATERR (1 << 10)
  80. #define INT_RIDXERR (1 << 9)
  81. #define INT_RSPERR (1 << 8)
  82. #define INT_CCSTO (1 << 5)
  83. #define INT_CRCSTO (1 << 4)
  84. #define INT_WDATTO (1 << 3)
  85. #define INT_RDATTO (1 << 2)
  86. #define INT_RBSYTO (1 << 1)
  87. #define INT_RSPTO (1 << 0)
  88. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  89. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  90. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  91. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  92. /* CE_INT_MASK */
  93. #define MASK_ALL 0x00000000
  94. #define MASK_MCCSDE (1 << 29)
  95. #define MASK_MCMD12DRE (1 << 26)
  96. #define MASK_MCMD12RBE (1 << 25)
  97. #define MASK_MCMD12CRE (1 << 24)
  98. #define MASK_MDTRANE (1 << 23)
  99. #define MASK_MBUFRE (1 << 22)
  100. #define MASK_MBUFWEN (1 << 21)
  101. #define MASK_MBUFREN (1 << 20)
  102. #define MASK_MCCSRCV (1 << 19)
  103. #define MASK_MRBSYE (1 << 17)
  104. #define MASK_MCRSPE (1 << 16)
  105. #define MASK_MCMDVIO (1 << 15)
  106. #define MASK_MBUFVIO (1 << 14)
  107. #define MASK_MWDATERR (1 << 11)
  108. #define MASK_MRDATERR (1 << 10)
  109. #define MASK_MRIDXERR (1 << 9)
  110. #define MASK_MRSPERR (1 << 8)
  111. #define MASK_MCCSTO (1 << 5)
  112. #define MASK_MCRCSTO (1 << 4)
  113. #define MASK_MWDATTO (1 << 3)
  114. #define MASK_MRDATTO (1 << 2)
  115. #define MASK_MRBSYTO (1 << 1)
  116. #define MASK_MRSPTO (1 << 0)
  117. /* CE_HOST_STS1 */
  118. #define STS1_CMDSEQ (1 << 31)
  119. /* CE_HOST_STS2 */
  120. #define STS2_CRCSTE (1 << 31)
  121. #define STS2_CRC16E (1 << 30)
  122. #define STS2_AC12CRCE (1 << 29)
  123. #define STS2_RSPCRC7E (1 << 28)
  124. #define STS2_CRCSTEBE (1 << 27)
  125. #define STS2_RDATEBE (1 << 26)
  126. #define STS2_AC12REBE (1 << 25)
  127. #define STS2_RSPEBE (1 << 24)
  128. #define STS2_AC12IDXE (1 << 23)
  129. #define STS2_RSPIDXE (1 << 22)
  130. #define STS2_CCSTO (1 << 15)
  131. #define STS2_RDATTO (1 << 14)
  132. #define STS2_DATBSYTO (1 << 13)
  133. #define STS2_CRCSTTO (1 << 12)
  134. #define STS2_AC12BSYTO (1 << 11)
  135. #define STS2_RSPBSYTO (1 << 10)
  136. #define STS2_AC12RSPTO (1 << 9)
  137. #define STS2_RSPTO (1 << 8)
  138. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  139. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  140. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  141. STS2_DATBSYTO | STS2_CRCSTTO | \
  142. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  143. STS2_AC12RSPTO | STS2_RSPTO)
  144. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  145. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  146. #define CLKDEV_INIT 400000 /* 400 KHz */
  147. enum mmcif_state {
  148. STATE_IDLE,
  149. STATE_REQUEST,
  150. STATE_IOS,
  151. };
  152. struct sh_mmcif_host {
  153. struct mmc_host *mmc;
  154. struct mmc_data *data;
  155. struct platform_device *pd;
  156. struct clk *hclk;
  157. unsigned int clk;
  158. int bus_width;
  159. bool sd_error;
  160. long timeout;
  161. void __iomem *addr;
  162. struct completion intr_wait;
  163. enum mmcif_state state;
  164. spinlock_t lock;
  165. bool power;
  166. bool card_present;
  167. /* DMA support */
  168. struct dma_chan *chan_rx;
  169. struct dma_chan *chan_tx;
  170. struct completion dma_complete;
  171. bool dma_active;
  172. };
  173. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  174. unsigned int reg, u32 val)
  175. {
  176. writel(val | readl(host->addr + reg), host->addr + reg);
  177. }
  178. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  179. unsigned int reg, u32 val)
  180. {
  181. writel(~val & readl(host->addr + reg), host->addr + reg);
  182. }
  183. static void mmcif_dma_complete(void *arg)
  184. {
  185. struct sh_mmcif_host *host = arg;
  186. dev_dbg(&host->pd->dev, "Command completed\n");
  187. if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
  188. dev_name(&host->pd->dev)))
  189. return;
  190. if (host->data->flags & MMC_DATA_READ)
  191. dma_unmap_sg(host->chan_rx->device->dev,
  192. host->data->sg, host->data->sg_len,
  193. DMA_FROM_DEVICE);
  194. else
  195. dma_unmap_sg(host->chan_tx->device->dev,
  196. host->data->sg, host->data->sg_len,
  197. DMA_TO_DEVICE);
  198. complete(&host->dma_complete);
  199. }
  200. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  201. {
  202. struct scatterlist *sg = host->data->sg;
  203. struct dma_async_tx_descriptor *desc = NULL;
  204. struct dma_chan *chan = host->chan_rx;
  205. dma_cookie_t cookie = -EINVAL;
  206. int ret;
  207. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  208. DMA_FROM_DEVICE);
  209. if (ret > 0) {
  210. host->dma_active = true;
  211. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  212. DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  213. }
  214. if (desc) {
  215. desc->callback = mmcif_dma_complete;
  216. desc->callback_param = host;
  217. cookie = dmaengine_submit(desc);
  218. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  219. dma_async_issue_pending(chan);
  220. }
  221. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  222. __func__, host->data->sg_len, ret, cookie);
  223. if (!desc) {
  224. /* DMA failed, fall back to PIO */
  225. if (ret >= 0)
  226. ret = -EIO;
  227. host->chan_rx = NULL;
  228. host->dma_active = false;
  229. dma_release_channel(chan);
  230. /* Free the Tx channel too */
  231. chan = host->chan_tx;
  232. if (chan) {
  233. host->chan_tx = NULL;
  234. dma_release_channel(chan);
  235. }
  236. dev_warn(&host->pd->dev,
  237. "DMA failed: %d, falling back to PIO\n", ret);
  238. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  239. }
  240. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  241. desc, cookie, host->data->sg_len);
  242. }
  243. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  244. {
  245. struct scatterlist *sg = host->data->sg;
  246. struct dma_async_tx_descriptor *desc = NULL;
  247. struct dma_chan *chan = host->chan_tx;
  248. dma_cookie_t cookie = -EINVAL;
  249. int ret;
  250. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  251. DMA_TO_DEVICE);
  252. if (ret > 0) {
  253. host->dma_active = true;
  254. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  255. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  256. }
  257. if (desc) {
  258. desc->callback = mmcif_dma_complete;
  259. desc->callback_param = host;
  260. cookie = dmaengine_submit(desc);
  261. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  262. dma_async_issue_pending(chan);
  263. }
  264. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  265. __func__, host->data->sg_len, ret, cookie);
  266. if (!desc) {
  267. /* DMA failed, fall back to PIO */
  268. if (ret >= 0)
  269. ret = -EIO;
  270. host->chan_tx = NULL;
  271. host->dma_active = false;
  272. dma_release_channel(chan);
  273. /* Free the Rx channel too */
  274. chan = host->chan_rx;
  275. if (chan) {
  276. host->chan_rx = NULL;
  277. dma_release_channel(chan);
  278. }
  279. dev_warn(&host->pd->dev,
  280. "DMA failed: %d, falling back to PIO\n", ret);
  281. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  282. }
  283. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  284. desc, cookie);
  285. }
  286. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  287. {
  288. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  289. chan->private = arg;
  290. return true;
  291. }
  292. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  293. struct sh_mmcif_plat_data *pdata)
  294. {
  295. host->dma_active = false;
  296. /* We can only either use DMA for both Tx and Rx or not use it at all */
  297. if (pdata->dma) {
  298. dma_cap_mask_t mask;
  299. dma_cap_zero(mask);
  300. dma_cap_set(DMA_SLAVE, mask);
  301. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
  302. &pdata->dma->chan_priv_tx);
  303. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  304. host->chan_tx);
  305. if (!host->chan_tx)
  306. return;
  307. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
  308. &pdata->dma->chan_priv_rx);
  309. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  310. host->chan_rx);
  311. if (!host->chan_rx) {
  312. dma_release_channel(host->chan_tx);
  313. host->chan_tx = NULL;
  314. return;
  315. }
  316. init_completion(&host->dma_complete);
  317. }
  318. }
  319. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  320. {
  321. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  322. /* Descriptors are freed automatically */
  323. if (host->chan_tx) {
  324. struct dma_chan *chan = host->chan_tx;
  325. host->chan_tx = NULL;
  326. dma_release_channel(chan);
  327. }
  328. if (host->chan_rx) {
  329. struct dma_chan *chan = host->chan_rx;
  330. host->chan_rx = NULL;
  331. dma_release_channel(chan);
  332. }
  333. host->dma_active = false;
  334. }
  335. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  336. {
  337. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  338. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  339. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  340. if (!clk)
  341. return;
  342. if (p->sup_pclk && clk == host->clk)
  343. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  344. else
  345. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  346. (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
  347. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  348. }
  349. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  350. {
  351. u32 tmp;
  352. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  353. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  354. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  355. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  356. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  357. /* byte swap on */
  358. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  359. }
  360. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  361. {
  362. u32 state1, state2;
  363. int ret, timeout = 10000000;
  364. host->sd_error = false;
  365. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  366. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  367. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  368. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  369. if (state1 & STS1_CMDSEQ) {
  370. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  371. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  372. while (1) {
  373. timeout--;
  374. if (timeout < 0) {
  375. dev_err(&host->pd->dev,
  376. "Forceed end of command sequence timeout err\n");
  377. return -EIO;
  378. }
  379. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  380. & STS1_CMDSEQ))
  381. break;
  382. mdelay(1);
  383. }
  384. sh_mmcif_sync_reset(host);
  385. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  386. return -EIO;
  387. }
  388. if (state2 & STS2_CRC_ERR) {
  389. dev_dbg(&host->pd->dev, ": Happened CRC error\n");
  390. ret = -EIO;
  391. } else if (state2 & STS2_TIMEOUT_ERR) {
  392. dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
  393. ret = -ETIMEDOUT;
  394. } else {
  395. dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
  396. ret = -EIO;
  397. }
  398. return ret;
  399. }
  400. static int sh_mmcif_single_read(struct sh_mmcif_host *host,
  401. struct mmc_request *mrq)
  402. {
  403. struct mmc_data *data = mrq->data;
  404. long time;
  405. u32 blocksize, i, *p = sg_virt(data->sg);
  406. /* buf read enable */
  407. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  408. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  409. host->timeout);
  410. if (time <= 0 || host->sd_error)
  411. return sh_mmcif_error_manage(host);
  412. blocksize = (BLOCK_SIZE_MASK &
  413. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  414. for (i = 0; i < blocksize / 4; i++)
  415. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  416. /* buffer read end */
  417. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  418. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  419. host->timeout);
  420. if (time <= 0 || host->sd_error)
  421. return sh_mmcif_error_manage(host);
  422. return 0;
  423. }
  424. static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
  425. struct mmc_request *mrq)
  426. {
  427. struct mmc_data *data = mrq->data;
  428. long time;
  429. u32 blocksize, i, j, sec, *p;
  430. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  431. MMCIF_CE_BLOCK_SET);
  432. for (j = 0; j < data->sg_len; j++) {
  433. p = sg_virt(data->sg);
  434. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  435. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  436. /* buf read enable */
  437. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  438. host->timeout);
  439. if (time <= 0 || host->sd_error)
  440. return sh_mmcif_error_manage(host);
  441. for (i = 0; i < blocksize / 4; i++)
  442. *p++ = sh_mmcif_readl(host->addr,
  443. MMCIF_CE_DATA);
  444. }
  445. if (j < data->sg_len - 1)
  446. data->sg++;
  447. }
  448. return 0;
  449. }
  450. static int sh_mmcif_single_write(struct sh_mmcif_host *host,
  451. struct mmc_request *mrq)
  452. {
  453. struct mmc_data *data = mrq->data;
  454. long time;
  455. u32 blocksize, i, *p = sg_virt(data->sg);
  456. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  457. /* buf write enable */
  458. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  459. host->timeout);
  460. if (time <= 0 || host->sd_error)
  461. return sh_mmcif_error_manage(host);
  462. blocksize = (BLOCK_SIZE_MASK &
  463. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  464. for (i = 0; i < blocksize / 4; i++)
  465. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  466. /* buffer write end */
  467. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  468. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  469. host->timeout);
  470. if (time <= 0 || host->sd_error)
  471. return sh_mmcif_error_manage(host);
  472. return 0;
  473. }
  474. static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
  475. struct mmc_request *mrq)
  476. {
  477. struct mmc_data *data = mrq->data;
  478. long time;
  479. u32 i, sec, j, blocksize, *p;
  480. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  481. MMCIF_CE_BLOCK_SET);
  482. for (j = 0; j < data->sg_len; j++) {
  483. p = sg_virt(data->sg);
  484. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  485. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  486. /* buf write enable*/
  487. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  488. host->timeout);
  489. if (time <= 0 || host->sd_error)
  490. return sh_mmcif_error_manage(host);
  491. for (i = 0; i < blocksize / 4; i++)
  492. sh_mmcif_writel(host->addr,
  493. MMCIF_CE_DATA, *p++);
  494. }
  495. if (j < data->sg_len - 1)
  496. data->sg++;
  497. }
  498. return 0;
  499. }
  500. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  501. struct mmc_command *cmd)
  502. {
  503. if (cmd->flags & MMC_RSP_136) {
  504. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  505. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  506. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  507. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  508. } else
  509. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  510. }
  511. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  512. struct mmc_command *cmd)
  513. {
  514. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  515. }
  516. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  517. struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
  518. {
  519. u32 tmp = 0;
  520. /* Response Type check */
  521. switch (mmc_resp_type(cmd)) {
  522. case MMC_RSP_NONE:
  523. tmp |= CMD_SET_RTYP_NO;
  524. break;
  525. case MMC_RSP_R1:
  526. case MMC_RSP_R1B:
  527. case MMC_RSP_R3:
  528. tmp |= CMD_SET_RTYP_6B;
  529. break;
  530. case MMC_RSP_R2:
  531. tmp |= CMD_SET_RTYP_17B;
  532. break;
  533. default:
  534. dev_err(&host->pd->dev, "Unsupported response type.\n");
  535. break;
  536. }
  537. switch (opc) {
  538. /* RBSY */
  539. case MMC_SWITCH:
  540. case MMC_STOP_TRANSMISSION:
  541. case MMC_SET_WRITE_PROT:
  542. case MMC_CLR_WRITE_PROT:
  543. case MMC_ERASE:
  544. case MMC_GEN_CMD:
  545. tmp |= CMD_SET_RBSY;
  546. break;
  547. }
  548. /* WDAT / DATW */
  549. if (host->data) {
  550. tmp |= CMD_SET_WDAT;
  551. switch (host->bus_width) {
  552. case MMC_BUS_WIDTH_1:
  553. tmp |= CMD_SET_DATW_1;
  554. break;
  555. case MMC_BUS_WIDTH_4:
  556. tmp |= CMD_SET_DATW_4;
  557. break;
  558. case MMC_BUS_WIDTH_8:
  559. tmp |= CMD_SET_DATW_8;
  560. break;
  561. default:
  562. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  563. break;
  564. }
  565. }
  566. /* DWEN */
  567. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  568. tmp |= CMD_SET_DWEN;
  569. /* CMLTE/CMD12EN */
  570. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  571. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  572. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  573. mrq->data->blocks << 16);
  574. }
  575. /* RIDXC[1:0] check bits */
  576. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  577. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  578. tmp |= CMD_SET_RIDXC_BITS;
  579. /* RCRC7C[1:0] check bits */
  580. if (opc == MMC_SEND_OP_COND)
  581. tmp |= CMD_SET_CRC7C_BITS;
  582. /* RCRC7C[1:0] internal CRC7 */
  583. if (opc == MMC_ALL_SEND_CID ||
  584. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  585. tmp |= CMD_SET_CRC7C_INTERNAL;
  586. return opc = ((opc << 24) | tmp);
  587. }
  588. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  589. struct mmc_request *mrq, u32 opc)
  590. {
  591. int ret;
  592. switch (opc) {
  593. case MMC_READ_MULTIPLE_BLOCK:
  594. ret = sh_mmcif_multi_read(host, mrq);
  595. break;
  596. case MMC_WRITE_MULTIPLE_BLOCK:
  597. ret = sh_mmcif_multi_write(host, mrq);
  598. break;
  599. case MMC_WRITE_BLOCK:
  600. ret = sh_mmcif_single_write(host, mrq);
  601. break;
  602. case MMC_READ_SINGLE_BLOCK:
  603. case MMC_SEND_EXT_CSD:
  604. ret = sh_mmcif_single_read(host, mrq);
  605. break;
  606. default:
  607. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  608. ret = -EINVAL;
  609. break;
  610. }
  611. return ret;
  612. }
  613. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  614. struct mmc_request *mrq, struct mmc_command *cmd)
  615. {
  616. long time;
  617. int ret = 0, mask = 0;
  618. u32 opc = cmd->opcode;
  619. switch (opc) {
  620. /* respons busy check */
  621. case MMC_SWITCH:
  622. case MMC_STOP_TRANSMISSION:
  623. case MMC_SET_WRITE_PROT:
  624. case MMC_CLR_WRITE_PROT:
  625. case MMC_ERASE:
  626. case MMC_GEN_CMD:
  627. mask = MASK_MRBSYE;
  628. break;
  629. default:
  630. mask = MASK_MCRSPE;
  631. break;
  632. }
  633. mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
  634. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
  635. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
  636. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
  637. if (host->data) {
  638. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  639. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  640. mrq->data->blksz);
  641. }
  642. opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
  643. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  644. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  645. /* set arg */
  646. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  647. /* set cmd */
  648. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  649. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  650. host->timeout);
  651. if (time <= 0) {
  652. cmd->error = sh_mmcif_error_manage(host);
  653. return;
  654. }
  655. if (host->sd_error) {
  656. switch (cmd->opcode) {
  657. case MMC_ALL_SEND_CID:
  658. case MMC_SELECT_CARD:
  659. case MMC_APP_CMD:
  660. cmd->error = -ETIMEDOUT;
  661. break;
  662. default:
  663. dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
  664. cmd->opcode);
  665. cmd->error = sh_mmcif_error_manage(host);
  666. break;
  667. }
  668. host->sd_error = false;
  669. return;
  670. }
  671. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  672. cmd->error = 0;
  673. return;
  674. }
  675. sh_mmcif_get_response(host, cmd);
  676. if (host->data) {
  677. if (!host->dma_active) {
  678. ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
  679. } else {
  680. long time =
  681. wait_for_completion_interruptible_timeout(&host->dma_complete,
  682. host->timeout);
  683. if (!time)
  684. ret = -ETIMEDOUT;
  685. else if (time < 0)
  686. ret = time;
  687. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  688. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  689. host->dma_active = false;
  690. }
  691. if (ret < 0)
  692. mrq->data->bytes_xfered = 0;
  693. else
  694. mrq->data->bytes_xfered =
  695. mrq->data->blocks * mrq->data->blksz;
  696. }
  697. cmd->error = ret;
  698. }
  699. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  700. struct mmc_request *mrq, struct mmc_command *cmd)
  701. {
  702. long time;
  703. if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
  704. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  705. else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
  706. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  707. else {
  708. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  709. cmd->error = sh_mmcif_error_manage(host);
  710. return;
  711. }
  712. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  713. host->timeout);
  714. if (time <= 0 || host->sd_error) {
  715. cmd->error = sh_mmcif_error_manage(host);
  716. return;
  717. }
  718. sh_mmcif_get_cmd12response(host, cmd);
  719. cmd->error = 0;
  720. }
  721. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  722. {
  723. struct sh_mmcif_host *host = mmc_priv(mmc);
  724. unsigned long flags;
  725. spin_lock_irqsave(&host->lock, flags);
  726. if (host->state != STATE_IDLE) {
  727. spin_unlock_irqrestore(&host->lock, flags);
  728. mrq->cmd->error = -EAGAIN;
  729. mmc_request_done(mmc, mrq);
  730. return;
  731. }
  732. host->state = STATE_REQUEST;
  733. spin_unlock_irqrestore(&host->lock, flags);
  734. switch (mrq->cmd->opcode) {
  735. /* MMCIF does not support SD/SDIO command */
  736. case SD_IO_SEND_OP_COND:
  737. case MMC_APP_CMD:
  738. host->state = STATE_IDLE;
  739. mrq->cmd->error = -ETIMEDOUT;
  740. mmc_request_done(mmc, mrq);
  741. return;
  742. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  743. if (!mrq->data) {
  744. /* send_if_cond cmd (not support) */
  745. host->state = STATE_IDLE;
  746. mrq->cmd->error = -ETIMEDOUT;
  747. mmc_request_done(mmc, mrq);
  748. return;
  749. }
  750. break;
  751. default:
  752. break;
  753. }
  754. host->data = mrq->data;
  755. if (mrq->data) {
  756. if (mrq->data->flags & MMC_DATA_READ) {
  757. if (host->chan_rx)
  758. sh_mmcif_start_dma_rx(host);
  759. } else {
  760. if (host->chan_tx)
  761. sh_mmcif_start_dma_tx(host);
  762. }
  763. }
  764. sh_mmcif_start_cmd(host, mrq, mrq->cmd);
  765. host->data = NULL;
  766. if (!mrq->cmd->error && mrq->stop)
  767. sh_mmcif_stop_cmd(host, mrq, mrq->stop);
  768. host->state = STATE_IDLE;
  769. mmc_request_done(mmc, mrq);
  770. }
  771. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  772. {
  773. struct sh_mmcif_host *host = mmc_priv(mmc);
  774. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  775. unsigned long flags;
  776. spin_lock_irqsave(&host->lock, flags);
  777. if (host->state != STATE_IDLE) {
  778. spin_unlock_irqrestore(&host->lock, flags);
  779. return;
  780. }
  781. host->state = STATE_IOS;
  782. spin_unlock_irqrestore(&host->lock, flags);
  783. if (ios->power_mode == MMC_POWER_UP) {
  784. if (!host->card_present) {
  785. /* See if we also get DMA */
  786. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  787. host->card_present = true;
  788. }
  789. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  790. /* clock stop */
  791. sh_mmcif_clock_control(host, 0);
  792. if (ios->power_mode == MMC_POWER_OFF) {
  793. if (host->card_present) {
  794. sh_mmcif_release_dma(host);
  795. host->card_present = false;
  796. }
  797. }
  798. if (host->power) {
  799. pm_runtime_put(&host->pd->dev);
  800. host->power = false;
  801. if (p->down_pwr)
  802. p->down_pwr(host->pd);
  803. }
  804. host->state = STATE_IDLE;
  805. return;
  806. }
  807. if (ios->clock) {
  808. if (!host->power) {
  809. if (p->set_pwr)
  810. p->set_pwr(host->pd, ios->power_mode);
  811. pm_runtime_get_sync(&host->pd->dev);
  812. host->power = true;
  813. sh_mmcif_sync_reset(host);
  814. }
  815. sh_mmcif_clock_control(host, ios->clock);
  816. }
  817. host->bus_width = ios->bus_width;
  818. host->state = STATE_IDLE;
  819. }
  820. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  821. {
  822. struct sh_mmcif_host *host = mmc_priv(mmc);
  823. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  824. if (!p->get_cd)
  825. return -ENOSYS;
  826. else
  827. return p->get_cd(host->pd);
  828. }
  829. static struct mmc_host_ops sh_mmcif_ops = {
  830. .request = sh_mmcif_request,
  831. .set_ios = sh_mmcif_set_ios,
  832. .get_cd = sh_mmcif_get_cd,
  833. };
  834. static void sh_mmcif_detect(struct mmc_host *mmc)
  835. {
  836. mmc_detect_change(mmc, 0);
  837. }
  838. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  839. {
  840. struct sh_mmcif_host *host = dev_id;
  841. u32 state;
  842. int err = 0;
  843. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  844. if (state & INT_RBSYE) {
  845. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  846. ~(INT_RBSYE | INT_CRSPE));
  847. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  848. } else if (state & INT_CRSPE) {
  849. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  850. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  851. } else if (state & INT_BUFREN) {
  852. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  853. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  854. } else if (state & INT_BUFWEN) {
  855. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  856. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  857. } else if (state & INT_CMD12DRE) {
  858. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  859. ~(INT_CMD12DRE | INT_CMD12RBE |
  860. INT_CMD12CRE | INT_BUFRE));
  861. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  862. } else if (state & INT_BUFRE) {
  863. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  864. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  865. } else if (state & INT_DTRANE) {
  866. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  867. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  868. } else if (state & INT_CMD12RBE) {
  869. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  870. ~(INT_CMD12RBE | INT_CMD12CRE));
  871. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  872. } else if (state & INT_ERR_STS) {
  873. /* err interrupts */
  874. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  875. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  876. err = 1;
  877. } else {
  878. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  879. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  880. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  881. err = 1;
  882. }
  883. if (err) {
  884. host->sd_error = true;
  885. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  886. }
  887. if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
  888. complete(&host->intr_wait);
  889. else
  890. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  891. return IRQ_HANDLED;
  892. }
  893. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  894. {
  895. int ret = 0, irq[2];
  896. struct mmc_host *mmc;
  897. struct sh_mmcif_host *host;
  898. struct sh_mmcif_plat_data *pd;
  899. struct resource *res;
  900. void __iomem *reg;
  901. char clk_name[8];
  902. irq[0] = platform_get_irq(pdev, 0);
  903. irq[1] = platform_get_irq(pdev, 1);
  904. if (irq[0] < 0 || irq[1] < 0) {
  905. dev_err(&pdev->dev, "Get irq error\n");
  906. return -ENXIO;
  907. }
  908. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  909. if (!res) {
  910. dev_err(&pdev->dev, "platform_get_resource error.\n");
  911. return -ENXIO;
  912. }
  913. reg = ioremap(res->start, resource_size(res));
  914. if (!reg) {
  915. dev_err(&pdev->dev, "ioremap error.\n");
  916. return -ENOMEM;
  917. }
  918. pd = pdev->dev.platform_data;
  919. if (!pd) {
  920. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  921. ret = -ENXIO;
  922. goto clean_up;
  923. }
  924. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  925. if (!mmc) {
  926. ret = -ENOMEM;
  927. goto clean_up;
  928. }
  929. host = mmc_priv(mmc);
  930. host->mmc = mmc;
  931. host->addr = reg;
  932. host->timeout = 1000;
  933. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  934. host->hclk = clk_get(&pdev->dev, clk_name);
  935. if (IS_ERR(host->hclk)) {
  936. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  937. ret = PTR_ERR(host->hclk);
  938. goto clean_up1;
  939. }
  940. clk_enable(host->hclk);
  941. host->clk = clk_get_rate(host->hclk);
  942. host->pd = pdev;
  943. init_completion(&host->intr_wait);
  944. spin_lock_init(&host->lock);
  945. mmc->ops = &sh_mmcif_ops;
  946. mmc->f_max = host->clk;
  947. /* close to 400KHz */
  948. if (mmc->f_max < 51200000)
  949. mmc->f_min = mmc->f_max / 128;
  950. else if (mmc->f_max < 102400000)
  951. mmc->f_min = mmc->f_max / 256;
  952. else
  953. mmc->f_min = mmc->f_max / 512;
  954. if (pd->ocr)
  955. mmc->ocr_avail = pd->ocr;
  956. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  957. if (pd->caps)
  958. mmc->caps |= pd->caps;
  959. mmc->max_segs = 32;
  960. mmc->max_blk_size = 512;
  961. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  962. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  963. mmc->max_seg_size = mmc->max_req_size;
  964. sh_mmcif_sync_reset(host);
  965. platform_set_drvdata(pdev, host);
  966. pm_runtime_enable(&pdev->dev);
  967. host->power = false;
  968. ret = pm_runtime_resume(&pdev->dev);
  969. if (ret < 0)
  970. goto clean_up2;
  971. mmc_add_host(mmc);
  972. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  973. ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
  974. if (ret) {
  975. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  976. goto clean_up3;
  977. }
  978. ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
  979. if (ret) {
  980. free_irq(irq[0], host);
  981. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  982. goto clean_up3;
  983. }
  984. sh_mmcif_detect(host->mmc);
  985. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  986. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  987. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  988. return ret;
  989. clean_up3:
  990. mmc_remove_host(mmc);
  991. pm_runtime_suspend(&pdev->dev);
  992. clean_up2:
  993. pm_runtime_disable(&pdev->dev);
  994. clk_disable(host->hclk);
  995. clean_up1:
  996. mmc_free_host(mmc);
  997. clean_up:
  998. if (reg)
  999. iounmap(reg);
  1000. return ret;
  1001. }
  1002. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  1003. {
  1004. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1005. int irq[2];
  1006. pm_runtime_get_sync(&pdev->dev);
  1007. mmc_remove_host(host->mmc);
  1008. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1009. if (host->addr)
  1010. iounmap(host->addr);
  1011. irq[0] = platform_get_irq(pdev, 0);
  1012. irq[1] = platform_get_irq(pdev, 1);
  1013. free_irq(irq[0], host);
  1014. free_irq(irq[1], host);
  1015. platform_set_drvdata(pdev, NULL);
  1016. clk_disable(host->hclk);
  1017. mmc_free_host(host->mmc);
  1018. pm_runtime_put_sync(&pdev->dev);
  1019. pm_runtime_disable(&pdev->dev);
  1020. return 0;
  1021. }
  1022. #ifdef CONFIG_PM
  1023. static int sh_mmcif_suspend(struct device *dev)
  1024. {
  1025. struct platform_device *pdev = to_platform_device(dev);
  1026. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1027. int ret = mmc_suspend_host(host->mmc);
  1028. if (!ret) {
  1029. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1030. clk_disable(host->hclk);
  1031. }
  1032. return ret;
  1033. }
  1034. static int sh_mmcif_resume(struct device *dev)
  1035. {
  1036. struct platform_device *pdev = to_platform_device(dev);
  1037. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1038. clk_enable(host->hclk);
  1039. return mmc_resume_host(host->mmc);
  1040. }
  1041. #else
  1042. #define sh_mmcif_suspend NULL
  1043. #define sh_mmcif_resume NULL
  1044. #endif /* CONFIG_PM */
  1045. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1046. .suspend = sh_mmcif_suspend,
  1047. .resume = sh_mmcif_resume,
  1048. };
  1049. static struct platform_driver sh_mmcif_driver = {
  1050. .probe = sh_mmcif_probe,
  1051. .remove = sh_mmcif_remove,
  1052. .driver = {
  1053. .name = DRIVER_NAME,
  1054. .pm = &sh_mmcif_dev_pm_ops,
  1055. },
  1056. };
  1057. static int __init sh_mmcif_init(void)
  1058. {
  1059. return platform_driver_register(&sh_mmcif_driver);
  1060. }
  1061. static void __exit sh_mmcif_exit(void)
  1062. {
  1063. platform_driver_unregister(&sh_mmcif_driver);
  1064. }
  1065. module_init(sh_mmcif_init);
  1066. module_exit(sh_mmcif_exit);
  1067. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1068. MODULE_LICENSE("GPL");
  1069. MODULE_ALIAS("platform:" DRIVER_NAME);
  1070. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");