md.c 211 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays(int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  56. static struct workqueue_struct *md_wq;
  57. static struct workqueue_struct *md_misc_wq;
  58. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  59. /*
  60. * Default number of read corrections we'll attempt on an rdev
  61. * before ejecting it from the array. We divide the read error
  62. * count by 2 for every hour elapsed between read errors.
  63. */
  64. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  65. /*
  66. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  67. * is 1000 KB/sec, so the extra system load does not show up that much.
  68. * Increase it if you want to have more _guaranteed_ speed. Note that
  69. * the RAID driver will use the maximum available bandwidth if the IO
  70. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  71. * speed limit - in case reconstruction slows down your system despite
  72. * idle IO detection.
  73. *
  74. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  75. * or /sys/block/mdX/md/sync_speed_{min,max}
  76. */
  77. static int sysctl_speed_limit_min = 1000;
  78. static int sysctl_speed_limit_max = 200000;
  79. static inline int speed_min(mddev_t *mddev)
  80. {
  81. return mddev->sync_speed_min ?
  82. mddev->sync_speed_min : sysctl_speed_limit_min;
  83. }
  84. static inline int speed_max(mddev_t *mddev)
  85. {
  86. return mddev->sync_speed_max ?
  87. mddev->sync_speed_max : sysctl_speed_limit_max;
  88. }
  89. static struct ctl_table_header *raid_table_header;
  90. static ctl_table raid_table[] = {
  91. {
  92. .procname = "speed_limit_min",
  93. .data = &sysctl_speed_limit_min,
  94. .maxlen = sizeof(int),
  95. .mode = S_IRUGO|S_IWUSR,
  96. .proc_handler = proc_dointvec,
  97. },
  98. {
  99. .procname = "speed_limit_max",
  100. .data = &sysctl_speed_limit_max,
  101. .maxlen = sizeof(int),
  102. .mode = S_IRUGO|S_IWUSR,
  103. .proc_handler = proc_dointvec,
  104. },
  105. { }
  106. };
  107. static ctl_table raid_dir_table[] = {
  108. {
  109. .procname = "raid",
  110. .maxlen = 0,
  111. .mode = S_IRUGO|S_IXUGO,
  112. .child = raid_table,
  113. },
  114. { }
  115. };
  116. static ctl_table raid_root_table[] = {
  117. {
  118. .procname = "dev",
  119. .maxlen = 0,
  120. .mode = 0555,
  121. .child = raid_dir_table,
  122. },
  123. { }
  124. };
  125. static const struct block_device_operations md_fops;
  126. static int start_readonly;
  127. /* bio_clone_mddev
  128. * like bio_clone, but with a local bio set
  129. */
  130. static void mddev_bio_destructor(struct bio *bio)
  131. {
  132. mddev_t *mddev, **mddevp;
  133. mddevp = (void*)bio;
  134. mddev = mddevp[-1];
  135. bio_free(bio, mddev->bio_set);
  136. }
  137. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  138. mddev_t *mddev)
  139. {
  140. struct bio *b;
  141. mddev_t **mddevp;
  142. if (!mddev || !mddev->bio_set)
  143. return bio_alloc(gfp_mask, nr_iovecs);
  144. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  145. mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. mddevp = (void*)b;
  149. mddevp[-1] = mddev;
  150. b->bi_destructor = mddev_bio_destructor;
  151. return b;
  152. }
  153. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  154. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  155. mddev_t *mddev)
  156. {
  157. struct bio *b;
  158. mddev_t **mddevp;
  159. if (!mddev || !mddev->bio_set)
  160. return bio_clone(bio, gfp_mask);
  161. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  162. mddev->bio_set);
  163. if (!b)
  164. return NULL;
  165. mddevp = (void*)b;
  166. mddevp[-1] = mddev;
  167. b->bi_destructor = mddev_bio_destructor;
  168. __bio_clone(b, bio);
  169. if (bio_integrity(bio)) {
  170. int ret;
  171. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  172. if (ret < 0) {
  173. bio_put(b);
  174. return NULL;
  175. }
  176. }
  177. return b;
  178. }
  179. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  180. void md_trim_bio(struct bio *bio, int offset, int size)
  181. {
  182. /* 'bio' is a cloned bio which we need to trim to match
  183. * the given offset and size.
  184. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  185. */
  186. int i;
  187. struct bio_vec *bvec;
  188. int sofar = 0;
  189. size <<= 9;
  190. if (offset == 0 && size == bio->bi_size)
  191. return;
  192. bio->bi_sector += offset;
  193. bio->bi_size = size;
  194. offset <<= 9;
  195. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  196. while (bio->bi_idx < bio->bi_vcnt &&
  197. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  198. /* remove this whole bio_vec */
  199. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  200. bio->bi_idx++;
  201. }
  202. if (bio->bi_idx < bio->bi_vcnt) {
  203. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  204. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  205. }
  206. /* avoid any complications with bi_idx being non-zero*/
  207. if (bio->bi_idx) {
  208. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  209. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  210. bio->bi_vcnt -= bio->bi_idx;
  211. bio->bi_idx = 0;
  212. }
  213. /* Make sure vcnt and last bv are not too big */
  214. bio_for_each_segment(bvec, bio, i) {
  215. if (sofar + bvec->bv_len > size)
  216. bvec->bv_len = size - sofar;
  217. if (bvec->bv_len == 0) {
  218. bio->bi_vcnt = i;
  219. break;
  220. }
  221. sofar += bvec->bv_len;
  222. }
  223. }
  224. EXPORT_SYMBOL_GPL(md_trim_bio);
  225. /*
  226. * We have a system wide 'event count' that is incremented
  227. * on any 'interesting' event, and readers of /proc/mdstat
  228. * can use 'poll' or 'select' to find out when the event
  229. * count increases.
  230. *
  231. * Events are:
  232. * start array, stop array, error, add device, remove device,
  233. * start build, activate spare
  234. */
  235. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  236. static atomic_t md_event_count;
  237. void md_new_event(mddev_t *mddev)
  238. {
  239. atomic_inc(&md_event_count);
  240. wake_up(&md_event_waiters);
  241. }
  242. EXPORT_SYMBOL_GPL(md_new_event);
  243. /* Alternate version that can be called from interrupts
  244. * when calling sysfs_notify isn't needed.
  245. */
  246. static void md_new_event_inintr(mddev_t *mddev)
  247. {
  248. atomic_inc(&md_event_count);
  249. wake_up(&md_event_waiters);
  250. }
  251. /*
  252. * Enables to iterate over all existing md arrays
  253. * all_mddevs_lock protects this list.
  254. */
  255. static LIST_HEAD(all_mddevs);
  256. static DEFINE_SPINLOCK(all_mddevs_lock);
  257. /*
  258. * iterates through all used mddevs in the system.
  259. * We take care to grab the all_mddevs_lock whenever navigating
  260. * the list, and to always hold a refcount when unlocked.
  261. * Any code which breaks out of this loop while own
  262. * a reference to the current mddev and must mddev_put it.
  263. */
  264. #define for_each_mddev(mddev,tmp) \
  265. \
  266. for (({ spin_lock(&all_mddevs_lock); \
  267. tmp = all_mddevs.next; \
  268. mddev = NULL;}); \
  269. ({ if (tmp != &all_mddevs) \
  270. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  271. spin_unlock(&all_mddevs_lock); \
  272. if (mddev) mddev_put(mddev); \
  273. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  274. tmp != &all_mddevs;}); \
  275. ({ spin_lock(&all_mddevs_lock); \
  276. tmp = tmp->next;}) \
  277. )
  278. /* Rather than calling directly into the personality make_request function,
  279. * IO requests come here first so that we can check if the device is
  280. * being suspended pending a reconfiguration.
  281. * We hold a refcount over the call to ->make_request. By the time that
  282. * call has finished, the bio has been linked into some internal structure
  283. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  284. */
  285. static int md_make_request(struct request_queue *q, struct bio *bio)
  286. {
  287. const int rw = bio_data_dir(bio);
  288. mddev_t *mddev = q->queuedata;
  289. int rv;
  290. int cpu;
  291. unsigned int sectors;
  292. if (mddev == NULL || mddev->pers == NULL
  293. || !mddev->ready) {
  294. bio_io_error(bio);
  295. return 0;
  296. }
  297. smp_rmb(); /* Ensure implications of 'active' are visible */
  298. rcu_read_lock();
  299. if (mddev->suspended) {
  300. DEFINE_WAIT(__wait);
  301. for (;;) {
  302. prepare_to_wait(&mddev->sb_wait, &__wait,
  303. TASK_UNINTERRUPTIBLE);
  304. if (!mddev->suspended)
  305. break;
  306. rcu_read_unlock();
  307. schedule();
  308. rcu_read_lock();
  309. }
  310. finish_wait(&mddev->sb_wait, &__wait);
  311. }
  312. atomic_inc(&mddev->active_io);
  313. rcu_read_unlock();
  314. /*
  315. * save the sectors now since our bio can
  316. * go away inside make_request
  317. */
  318. sectors = bio_sectors(bio);
  319. rv = mddev->pers->make_request(mddev, bio);
  320. cpu = part_stat_lock();
  321. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  322. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  323. part_stat_unlock();
  324. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  325. wake_up(&mddev->sb_wait);
  326. return rv;
  327. }
  328. /* mddev_suspend makes sure no new requests are submitted
  329. * to the device, and that any requests that have been submitted
  330. * are completely handled.
  331. * Once ->stop is called and completes, the module will be completely
  332. * unused.
  333. */
  334. void mddev_suspend(mddev_t *mddev)
  335. {
  336. BUG_ON(mddev->suspended);
  337. mddev->suspended = 1;
  338. synchronize_rcu();
  339. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  340. mddev->pers->quiesce(mddev, 1);
  341. }
  342. EXPORT_SYMBOL_GPL(mddev_suspend);
  343. void mddev_resume(mddev_t *mddev)
  344. {
  345. mddev->suspended = 0;
  346. wake_up(&mddev->sb_wait);
  347. mddev->pers->quiesce(mddev, 0);
  348. md_wakeup_thread(mddev->thread);
  349. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  350. }
  351. EXPORT_SYMBOL_GPL(mddev_resume);
  352. int mddev_congested(mddev_t *mddev, int bits)
  353. {
  354. return mddev->suspended;
  355. }
  356. EXPORT_SYMBOL(mddev_congested);
  357. /*
  358. * Generic flush handling for md
  359. */
  360. static void md_end_flush(struct bio *bio, int err)
  361. {
  362. mdk_rdev_t *rdev = bio->bi_private;
  363. mddev_t *mddev = rdev->mddev;
  364. rdev_dec_pending(rdev, mddev);
  365. if (atomic_dec_and_test(&mddev->flush_pending)) {
  366. /* The pre-request flush has finished */
  367. queue_work(md_wq, &mddev->flush_work);
  368. }
  369. bio_put(bio);
  370. }
  371. static void md_submit_flush_data(struct work_struct *ws);
  372. static void submit_flushes(struct work_struct *ws)
  373. {
  374. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  375. mdk_rdev_t *rdev;
  376. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  377. atomic_set(&mddev->flush_pending, 1);
  378. rcu_read_lock();
  379. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  380. if (rdev->raid_disk >= 0 &&
  381. !test_bit(Faulty, &rdev->flags)) {
  382. /* Take two references, one is dropped
  383. * when request finishes, one after
  384. * we reclaim rcu_read_lock
  385. */
  386. struct bio *bi;
  387. atomic_inc(&rdev->nr_pending);
  388. atomic_inc(&rdev->nr_pending);
  389. rcu_read_unlock();
  390. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  391. bi->bi_end_io = md_end_flush;
  392. bi->bi_private = rdev;
  393. bi->bi_bdev = rdev->bdev;
  394. atomic_inc(&mddev->flush_pending);
  395. submit_bio(WRITE_FLUSH, bi);
  396. rcu_read_lock();
  397. rdev_dec_pending(rdev, mddev);
  398. }
  399. rcu_read_unlock();
  400. if (atomic_dec_and_test(&mddev->flush_pending))
  401. queue_work(md_wq, &mddev->flush_work);
  402. }
  403. static void md_submit_flush_data(struct work_struct *ws)
  404. {
  405. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  406. struct bio *bio = mddev->flush_bio;
  407. if (bio->bi_size == 0)
  408. /* an empty barrier - all done */
  409. bio_endio(bio, 0);
  410. else {
  411. bio->bi_rw &= ~REQ_FLUSH;
  412. if (mddev->pers->make_request(mddev, bio))
  413. generic_make_request(bio);
  414. }
  415. mddev->flush_bio = NULL;
  416. wake_up(&mddev->sb_wait);
  417. }
  418. void md_flush_request(mddev_t *mddev, struct bio *bio)
  419. {
  420. spin_lock_irq(&mddev->write_lock);
  421. wait_event_lock_irq(mddev->sb_wait,
  422. !mddev->flush_bio,
  423. mddev->write_lock, /*nothing*/);
  424. mddev->flush_bio = bio;
  425. spin_unlock_irq(&mddev->write_lock);
  426. INIT_WORK(&mddev->flush_work, submit_flushes);
  427. queue_work(md_wq, &mddev->flush_work);
  428. }
  429. EXPORT_SYMBOL(md_flush_request);
  430. /* Support for plugging.
  431. * This mirrors the plugging support in request_queue, but does not
  432. * require having a whole queue or request structures.
  433. * We allocate an md_plug_cb for each md device and each thread it gets
  434. * plugged on. This links tot the private plug_handle structure in the
  435. * personality data where we keep a count of the number of outstanding
  436. * plugs so other code can see if a plug is active.
  437. */
  438. struct md_plug_cb {
  439. struct blk_plug_cb cb;
  440. mddev_t *mddev;
  441. };
  442. static void plugger_unplug(struct blk_plug_cb *cb)
  443. {
  444. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  445. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  446. md_wakeup_thread(mdcb->mddev->thread);
  447. kfree(mdcb);
  448. }
  449. /* Check that an unplug wakeup will come shortly.
  450. * If not, wakeup the md thread immediately
  451. */
  452. int mddev_check_plugged(mddev_t *mddev)
  453. {
  454. struct blk_plug *plug = current->plug;
  455. struct md_plug_cb *mdcb;
  456. if (!plug)
  457. return 0;
  458. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  459. if (mdcb->cb.callback == plugger_unplug &&
  460. mdcb->mddev == mddev) {
  461. /* Already on the list, move to top */
  462. if (mdcb != list_first_entry(&plug->cb_list,
  463. struct md_plug_cb,
  464. cb.list))
  465. list_move(&mdcb->cb.list, &plug->cb_list);
  466. return 1;
  467. }
  468. }
  469. /* Not currently on the callback list */
  470. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  471. if (!mdcb)
  472. return 0;
  473. mdcb->mddev = mddev;
  474. mdcb->cb.callback = plugger_unplug;
  475. atomic_inc(&mddev->plug_cnt);
  476. list_add(&mdcb->cb.list, &plug->cb_list);
  477. return 1;
  478. }
  479. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  480. static inline mddev_t *mddev_get(mddev_t *mddev)
  481. {
  482. atomic_inc(&mddev->active);
  483. return mddev;
  484. }
  485. static void mddev_delayed_delete(struct work_struct *ws);
  486. static void mddev_put(mddev_t *mddev)
  487. {
  488. struct bio_set *bs = NULL;
  489. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  490. return;
  491. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  492. mddev->ctime == 0 && !mddev->hold_active) {
  493. /* Array is not configured at all, and not held active,
  494. * so destroy it */
  495. list_del(&mddev->all_mddevs);
  496. bs = mddev->bio_set;
  497. mddev->bio_set = NULL;
  498. if (mddev->gendisk) {
  499. /* We did a probe so need to clean up. Call
  500. * queue_work inside the spinlock so that
  501. * flush_workqueue() after mddev_find will
  502. * succeed in waiting for the work to be done.
  503. */
  504. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  505. queue_work(md_misc_wq, &mddev->del_work);
  506. } else
  507. kfree(mddev);
  508. }
  509. spin_unlock(&all_mddevs_lock);
  510. if (bs)
  511. bioset_free(bs);
  512. }
  513. void mddev_init(mddev_t *mddev)
  514. {
  515. mutex_init(&mddev->open_mutex);
  516. mutex_init(&mddev->reconfig_mutex);
  517. mutex_init(&mddev->bitmap_info.mutex);
  518. INIT_LIST_HEAD(&mddev->disks);
  519. INIT_LIST_HEAD(&mddev->all_mddevs);
  520. init_timer(&mddev->safemode_timer);
  521. atomic_set(&mddev->active, 1);
  522. atomic_set(&mddev->openers, 0);
  523. atomic_set(&mddev->active_io, 0);
  524. atomic_set(&mddev->plug_cnt, 0);
  525. spin_lock_init(&mddev->write_lock);
  526. atomic_set(&mddev->flush_pending, 0);
  527. init_waitqueue_head(&mddev->sb_wait);
  528. init_waitqueue_head(&mddev->recovery_wait);
  529. mddev->reshape_position = MaxSector;
  530. mddev->resync_min = 0;
  531. mddev->resync_max = MaxSector;
  532. mddev->level = LEVEL_NONE;
  533. }
  534. EXPORT_SYMBOL_GPL(mddev_init);
  535. static mddev_t * mddev_find(dev_t unit)
  536. {
  537. mddev_t *mddev, *new = NULL;
  538. if (unit && MAJOR(unit) != MD_MAJOR)
  539. unit &= ~((1<<MdpMinorShift)-1);
  540. retry:
  541. spin_lock(&all_mddevs_lock);
  542. if (unit) {
  543. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  544. if (mddev->unit == unit) {
  545. mddev_get(mddev);
  546. spin_unlock(&all_mddevs_lock);
  547. kfree(new);
  548. return mddev;
  549. }
  550. if (new) {
  551. list_add(&new->all_mddevs, &all_mddevs);
  552. spin_unlock(&all_mddevs_lock);
  553. new->hold_active = UNTIL_IOCTL;
  554. return new;
  555. }
  556. } else if (new) {
  557. /* find an unused unit number */
  558. static int next_minor = 512;
  559. int start = next_minor;
  560. int is_free = 0;
  561. int dev = 0;
  562. while (!is_free) {
  563. dev = MKDEV(MD_MAJOR, next_minor);
  564. next_minor++;
  565. if (next_minor > MINORMASK)
  566. next_minor = 0;
  567. if (next_minor == start) {
  568. /* Oh dear, all in use. */
  569. spin_unlock(&all_mddevs_lock);
  570. kfree(new);
  571. return NULL;
  572. }
  573. is_free = 1;
  574. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  575. if (mddev->unit == dev) {
  576. is_free = 0;
  577. break;
  578. }
  579. }
  580. new->unit = dev;
  581. new->md_minor = MINOR(dev);
  582. new->hold_active = UNTIL_STOP;
  583. list_add(&new->all_mddevs, &all_mddevs);
  584. spin_unlock(&all_mddevs_lock);
  585. return new;
  586. }
  587. spin_unlock(&all_mddevs_lock);
  588. new = kzalloc(sizeof(*new), GFP_KERNEL);
  589. if (!new)
  590. return NULL;
  591. new->unit = unit;
  592. if (MAJOR(unit) == MD_MAJOR)
  593. new->md_minor = MINOR(unit);
  594. else
  595. new->md_minor = MINOR(unit) >> MdpMinorShift;
  596. mddev_init(new);
  597. goto retry;
  598. }
  599. static inline int mddev_lock(mddev_t * mddev)
  600. {
  601. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  602. }
  603. static inline int mddev_is_locked(mddev_t *mddev)
  604. {
  605. return mutex_is_locked(&mddev->reconfig_mutex);
  606. }
  607. static inline int mddev_trylock(mddev_t * mddev)
  608. {
  609. return mutex_trylock(&mddev->reconfig_mutex);
  610. }
  611. static struct attribute_group md_redundancy_group;
  612. static void mddev_unlock(mddev_t * mddev)
  613. {
  614. if (mddev->to_remove) {
  615. /* These cannot be removed under reconfig_mutex as
  616. * an access to the files will try to take reconfig_mutex
  617. * while holding the file unremovable, which leads to
  618. * a deadlock.
  619. * So hold set sysfs_active while the remove in happeing,
  620. * and anything else which might set ->to_remove or my
  621. * otherwise change the sysfs namespace will fail with
  622. * -EBUSY if sysfs_active is still set.
  623. * We set sysfs_active under reconfig_mutex and elsewhere
  624. * test it under the same mutex to ensure its correct value
  625. * is seen.
  626. */
  627. struct attribute_group *to_remove = mddev->to_remove;
  628. mddev->to_remove = NULL;
  629. mddev->sysfs_active = 1;
  630. mutex_unlock(&mddev->reconfig_mutex);
  631. if (mddev->kobj.sd) {
  632. if (to_remove != &md_redundancy_group)
  633. sysfs_remove_group(&mddev->kobj, to_remove);
  634. if (mddev->pers == NULL ||
  635. mddev->pers->sync_request == NULL) {
  636. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  637. if (mddev->sysfs_action)
  638. sysfs_put(mddev->sysfs_action);
  639. mddev->sysfs_action = NULL;
  640. }
  641. }
  642. mddev->sysfs_active = 0;
  643. } else
  644. mutex_unlock(&mddev->reconfig_mutex);
  645. md_wakeup_thread(mddev->thread);
  646. }
  647. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  648. {
  649. mdk_rdev_t *rdev;
  650. list_for_each_entry(rdev, &mddev->disks, same_set)
  651. if (rdev->desc_nr == nr)
  652. return rdev;
  653. return NULL;
  654. }
  655. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  656. {
  657. mdk_rdev_t *rdev;
  658. list_for_each_entry(rdev, &mddev->disks, same_set)
  659. if (rdev->bdev->bd_dev == dev)
  660. return rdev;
  661. return NULL;
  662. }
  663. static struct mdk_personality *find_pers(int level, char *clevel)
  664. {
  665. struct mdk_personality *pers;
  666. list_for_each_entry(pers, &pers_list, list) {
  667. if (level != LEVEL_NONE && pers->level == level)
  668. return pers;
  669. if (strcmp(pers->name, clevel)==0)
  670. return pers;
  671. }
  672. return NULL;
  673. }
  674. /* return the offset of the super block in 512byte sectors */
  675. static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
  676. {
  677. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  678. return MD_NEW_SIZE_SECTORS(num_sectors);
  679. }
  680. static int alloc_disk_sb(mdk_rdev_t * rdev)
  681. {
  682. if (rdev->sb_page)
  683. MD_BUG();
  684. rdev->sb_page = alloc_page(GFP_KERNEL);
  685. if (!rdev->sb_page) {
  686. printk(KERN_ALERT "md: out of memory.\n");
  687. return -ENOMEM;
  688. }
  689. return 0;
  690. }
  691. static void free_disk_sb(mdk_rdev_t * rdev)
  692. {
  693. if (rdev->sb_page) {
  694. put_page(rdev->sb_page);
  695. rdev->sb_loaded = 0;
  696. rdev->sb_page = NULL;
  697. rdev->sb_start = 0;
  698. rdev->sectors = 0;
  699. }
  700. if (rdev->bb_page) {
  701. put_page(rdev->bb_page);
  702. rdev->bb_page = NULL;
  703. }
  704. }
  705. static void super_written(struct bio *bio, int error)
  706. {
  707. mdk_rdev_t *rdev = bio->bi_private;
  708. mddev_t *mddev = rdev->mddev;
  709. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  710. printk("md: super_written gets error=%d, uptodate=%d\n",
  711. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  712. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  713. md_error(mddev, rdev);
  714. }
  715. if (atomic_dec_and_test(&mddev->pending_writes))
  716. wake_up(&mddev->sb_wait);
  717. bio_put(bio);
  718. }
  719. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  720. sector_t sector, int size, struct page *page)
  721. {
  722. /* write first size bytes of page to sector of rdev
  723. * Increment mddev->pending_writes before returning
  724. * and decrement it on completion, waking up sb_wait
  725. * if zero is reached.
  726. * If an error occurred, call md_error
  727. */
  728. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  729. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  730. bio->bi_sector = sector;
  731. bio_add_page(bio, page, size, 0);
  732. bio->bi_private = rdev;
  733. bio->bi_end_io = super_written;
  734. atomic_inc(&mddev->pending_writes);
  735. submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
  736. }
  737. void md_super_wait(mddev_t *mddev)
  738. {
  739. /* wait for all superblock writes that were scheduled to complete */
  740. DEFINE_WAIT(wq);
  741. for(;;) {
  742. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  743. if (atomic_read(&mddev->pending_writes)==0)
  744. break;
  745. schedule();
  746. }
  747. finish_wait(&mddev->sb_wait, &wq);
  748. }
  749. static void bi_complete(struct bio *bio, int error)
  750. {
  751. complete((struct completion*)bio->bi_private);
  752. }
  753. int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
  754. struct page *page, int rw, bool metadata_op)
  755. {
  756. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  757. struct completion event;
  758. int ret;
  759. rw |= REQ_SYNC;
  760. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  761. rdev->meta_bdev : rdev->bdev;
  762. if (metadata_op)
  763. bio->bi_sector = sector + rdev->sb_start;
  764. else
  765. bio->bi_sector = sector + rdev->data_offset;
  766. bio_add_page(bio, page, size, 0);
  767. init_completion(&event);
  768. bio->bi_private = &event;
  769. bio->bi_end_io = bi_complete;
  770. submit_bio(rw, bio);
  771. wait_for_completion(&event);
  772. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  773. bio_put(bio);
  774. return ret;
  775. }
  776. EXPORT_SYMBOL_GPL(sync_page_io);
  777. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  778. {
  779. char b[BDEVNAME_SIZE];
  780. if (!rdev->sb_page) {
  781. MD_BUG();
  782. return -EINVAL;
  783. }
  784. if (rdev->sb_loaded)
  785. return 0;
  786. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  787. goto fail;
  788. rdev->sb_loaded = 1;
  789. return 0;
  790. fail:
  791. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  792. bdevname(rdev->bdev,b));
  793. return -EINVAL;
  794. }
  795. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  796. {
  797. return sb1->set_uuid0 == sb2->set_uuid0 &&
  798. sb1->set_uuid1 == sb2->set_uuid1 &&
  799. sb1->set_uuid2 == sb2->set_uuid2 &&
  800. sb1->set_uuid3 == sb2->set_uuid3;
  801. }
  802. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  803. {
  804. int ret;
  805. mdp_super_t *tmp1, *tmp2;
  806. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  807. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  808. if (!tmp1 || !tmp2) {
  809. ret = 0;
  810. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  811. goto abort;
  812. }
  813. *tmp1 = *sb1;
  814. *tmp2 = *sb2;
  815. /*
  816. * nr_disks is not constant
  817. */
  818. tmp1->nr_disks = 0;
  819. tmp2->nr_disks = 0;
  820. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  821. abort:
  822. kfree(tmp1);
  823. kfree(tmp2);
  824. return ret;
  825. }
  826. static u32 md_csum_fold(u32 csum)
  827. {
  828. csum = (csum & 0xffff) + (csum >> 16);
  829. return (csum & 0xffff) + (csum >> 16);
  830. }
  831. static unsigned int calc_sb_csum(mdp_super_t * sb)
  832. {
  833. u64 newcsum = 0;
  834. u32 *sb32 = (u32*)sb;
  835. int i;
  836. unsigned int disk_csum, csum;
  837. disk_csum = sb->sb_csum;
  838. sb->sb_csum = 0;
  839. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  840. newcsum += sb32[i];
  841. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  842. #ifdef CONFIG_ALPHA
  843. /* This used to use csum_partial, which was wrong for several
  844. * reasons including that different results are returned on
  845. * different architectures. It isn't critical that we get exactly
  846. * the same return value as before (we always csum_fold before
  847. * testing, and that removes any differences). However as we
  848. * know that csum_partial always returned a 16bit value on
  849. * alphas, do a fold to maximise conformity to previous behaviour.
  850. */
  851. sb->sb_csum = md_csum_fold(disk_csum);
  852. #else
  853. sb->sb_csum = disk_csum;
  854. #endif
  855. return csum;
  856. }
  857. /*
  858. * Handle superblock details.
  859. * We want to be able to handle multiple superblock formats
  860. * so we have a common interface to them all, and an array of
  861. * different handlers.
  862. * We rely on user-space to write the initial superblock, and support
  863. * reading and updating of superblocks.
  864. * Interface methods are:
  865. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  866. * loads and validates a superblock on dev.
  867. * if refdev != NULL, compare superblocks on both devices
  868. * Return:
  869. * 0 - dev has a superblock that is compatible with refdev
  870. * 1 - dev has a superblock that is compatible and newer than refdev
  871. * so dev should be used as the refdev in future
  872. * -EINVAL superblock incompatible or invalid
  873. * -othererror e.g. -EIO
  874. *
  875. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  876. * Verify that dev is acceptable into mddev.
  877. * The first time, mddev->raid_disks will be 0, and data from
  878. * dev should be merged in. Subsequent calls check that dev
  879. * is new enough. Return 0 or -EINVAL
  880. *
  881. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  882. * Update the superblock for rdev with data in mddev
  883. * This does not write to disc.
  884. *
  885. */
  886. struct super_type {
  887. char *name;
  888. struct module *owner;
  889. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  890. int minor_version);
  891. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  892. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  893. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  894. sector_t num_sectors);
  895. };
  896. /*
  897. * Check that the given mddev has no bitmap.
  898. *
  899. * This function is called from the run method of all personalities that do not
  900. * support bitmaps. It prints an error message and returns non-zero if mddev
  901. * has a bitmap. Otherwise, it returns 0.
  902. *
  903. */
  904. int md_check_no_bitmap(mddev_t *mddev)
  905. {
  906. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  907. return 0;
  908. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  909. mdname(mddev), mddev->pers->name);
  910. return 1;
  911. }
  912. EXPORT_SYMBOL(md_check_no_bitmap);
  913. /*
  914. * load_super for 0.90.0
  915. */
  916. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  917. {
  918. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  919. mdp_super_t *sb;
  920. int ret;
  921. /*
  922. * Calculate the position of the superblock (512byte sectors),
  923. * it's at the end of the disk.
  924. *
  925. * It also happens to be a multiple of 4Kb.
  926. */
  927. rdev->sb_start = calc_dev_sboffset(rdev);
  928. ret = read_disk_sb(rdev, MD_SB_BYTES);
  929. if (ret) return ret;
  930. ret = -EINVAL;
  931. bdevname(rdev->bdev, b);
  932. sb = page_address(rdev->sb_page);
  933. if (sb->md_magic != MD_SB_MAGIC) {
  934. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  935. b);
  936. goto abort;
  937. }
  938. if (sb->major_version != 0 ||
  939. sb->minor_version < 90 ||
  940. sb->minor_version > 91) {
  941. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  942. sb->major_version, sb->minor_version,
  943. b);
  944. goto abort;
  945. }
  946. if (sb->raid_disks <= 0)
  947. goto abort;
  948. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  949. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  950. b);
  951. goto abort;
  952. }
  953. rdev->preferred_minor = sb->md_minor;
  954. rdev->data_offset = 0;
  955. rdev->sb_size = MD_SB_BYTES;
  956. rdev->badblocks.shift = -1;
  957. if (sb->level == LEVEL_MULTIPATH)
  958. rdev->desc_nr = -1;
  959. else
  960. rdev->desc_nr = sb->this_disk.number;
  961. if (!refdev) {
  962. ret = 1;
  963. } else {
  964. __u64 ev1, ev2;
  965. mdp_super_t *refsb = page_address(refdev->sb_page);
  966. if (!uuid_equal(refsb, sb)) {
  967. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  968. b, bdevname(refdev->bdev,b2));
  969. goto abort;
  970. }
  971. if (!sb_equal(refsb, sb)) {
  972. printk(KERN_WARNING "md: %s has same UUID"
  973. " but different superblock to %s\n",
  974. b, bdevname(refdev->bdev, b2));
  975. goto abort;
  976. }
  977. ev1 = md_event(sb);
  978. ev2 = md_event(refsb);
  979. if (ev1 > ev2)
  980. ret = 1;
  981. else
  982. ret = 0;
  983. }
  984. rdev->sectors = rdev->sb_start;
  985. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  986. /* "this cannot possibly happen" ... */
  987. ret = -EINVAL;
  988. abort:
  989. return ret;
  990. }
  991. /*
  992. * validate_super for 0.90.0
  993. */
  994. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  995. {
  996. mdp_disk_t *desc;
  997. mdp_super_t *sb = page_address(rdev->sb_page);
  998. __u64 ev1 = md_event(sb);
  999. rdev->raid_disk = -1;
  1000. clear_bit(Faulty, &rdev->flags);
  1001. clear_bit(In_sync, &rdev->flags);
  1002. clear_bit(WriteMostly, &rdev->flags);
  1003. if (mddev->raid_disks == 0) {
  1004. mddev->major_version = 0;
  1005. mddev->minor_version = sb->minor_version;
  1006. mddev->patch_version = sb->patch_version;
  1007. mddev->external = 0;
  1008. mddev->chunk_sectors = sb->chunk_size >> 9;
  1009. mddev->ctime = sb->ctime;
  1010. mddev->utime = sb->utime;
  1011. mddev->level = sb->level;
  1012. mddev->clevel[0] = 0;
  1013. mddev->layout = sb->layout;
  1014. mddev->raid_disks = sb->raid_disks;
  1015. mddev->dev_sectors = sb->size * 2;
  1016. mddev->events = ev1;
  1017. mddev->bitmap_info.offset = 0;
  1018. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1019. if (mddev->minor_version >= 91) {
  1020. mddev->reshape_position = sb->reshape_position;
  1021. mddev->delta_disks = sb->delta_disks;
  1022. mddev->new_level = sb->new_level;
  1023. mddev->new_layout = sb->new_layout;
  1024. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1025. } else {
  1026. mddev->reshape_position = MaxSector;
  1027. mddev->delta_disks = 0;
  1028. mddev->new_level = mddev->level;
  1029. mddev->new_layout = mddev->layout;
  1030. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1031. }
  1032. if (sb->state & (1<<MD_SB_CLEAN))
  1033. mddev->recovery_cp = MaxSector;
  1034. else {
  1035. if (sb->events_hi == sb->cp_events_hi &&
  1036. sb->events_lo == sb->cp_events_lo) {
  1037. mddev->recovery_cp = sb->recovery_cp;
  1038. } else
  1039. mddev->recovery_cp = 0;
  1040. }
  1041. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1042. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1043. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1044. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1045. mddev->max_disks = MD_SB_DISKS;
  1046. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1047. mddev->bitmap_info.file == NULL)
  1048. mddev->bitmap_info.offset =
  1049. mddev->bitmap_info.default_offset;
  1050. } else if (mddev->pers == NULL) {
  1051. /* Insist on good event counter while assembling, except
  1052. * for spares (which don't need an event count) */
  1053. ++ev1;
  1054. if (sb->disks[rdev->desc_nr].state & (
  1055. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1056. if (ev1 < mddev->events)
  1057. return -EINVAL;
  1058. } else if (mddev->bitmap) {
  1059. /* if adding to array with a bitmap, then we can accept an
  1060. * older device ... but not too old.
  1061. */
  1062. if (ev1 < mddev->bitmap->events_cleared)
  1063. return 0;
  1064. } else {
  1065. if (ev1 < mddev->events)
  1066. /* just a hot-add of a new device, leave raid_disk at -1 */
  1067. return 0;
  1068. }
  1069. if (mddev->level != LEVEL_MULTIPATH) {
  1070. desc = sb->disks + rdev->desc_nr;
  1071. if (desc->state & (1<<MD_DISK_FAULTY))
  1072. set_bit(Faulty, &rdev->flags);
  1073. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1074. desc->raid_disk < mddev->raid_disks */) {
  1075. set_bit(In_sync, &rdev->flags);
  1076. rdev->raid_disk = desc->raid_disk;
  1077. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1078. /* active but not in sync implies recovery up to
  1079. * reshape position. We don't know exactly where
  1080. * that is, so set to zero for now */
  1081. if (mddev->minor_version >= 91) {
  1082. rdev->recovery_offset = 0;
  1083. rdev->raid_disk = desc->raid_disk;
  1084. }
  1085. }
  1086. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1087. set_bit(WriteMostly, &rdev->flags);
  1088. } else /* MULTIPATH are always insync */
  1089. set_bit(In_sync, &rdev->flags);
  1090. return 0;
  1091. }
  1092. /*
  1093. * sync_super for 0.90.0
  1094. */
  1095. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1096. {
  1097. mdp_super_t *sb;
  1098. mdk_rdev_t *rdev2;
  1099. int next_spare = mddev->raid_disks;
  1100. /* make rdev->sb match mddev data..
  1101. *
  1102. * 1/ zero out disks
  1103. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1104. * 3/ any empty disks < next_spare become removed
  1105. *
  1106. * disks[0] gets initialised to REMOVED because
  1107. * we cannot be sure from other fields if it has
  1108. * been initialised or not.
  1109. */
  1110. int i;
  1111. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1112. rdev->sb_size = MD_SB_BYTES;
  1113. sb = page_address(rdev->sb_page);
  1114. memset(sb, 0, sizeof(*sb));
  1115. sb->md_magic = MD_SB_MAGIC;
  1116. sb->major_version = mddev->major_version;
  1117. sb->patch_version = mddev->patch_version;
  1118. sb->gvalid_words = 0; /* ignored */
  1119. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1120. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1121. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1122. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1123. sb->ctime = mddev->ctime;
  1124. sb->level = mddev->level;
  1125. sb->size = mddev->dev_sectors / 2;
  1126. sb->raid_disks = mddev->raid_disks;
  1127. sb->md_minor = mddev->md_minor;
  1128. sb->not_persistent = 0;
  1129. sb->utime = mddev->utime;
  1130. sb->state = 0;
  1131. sb->events_hi = (mddev->events>>32);
  1132. sb->events_lo = (u32)mddev->events;
  1133. if (mddev->reshape_position == MaxSector)
  1134. sb->minor_version = 90;
  1135. else {
  1136. sb->minor_version = 91;
  1137. sb->reshape_position = mddev->reshape_position;
  1138. sb->new_level = mddev->new_level;
  1139. sb->delta_disks = mddev->delta_disks;
  1140. sb->new_layout = mddev->new_layout;
  1141. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1142. }
  1143. mddev->minor_version = sb->minor_version;
  1144. if (mddev->in_sync)
  1145. {
  1146. sb->recovery_cp = mddev->recovery_cp;
  1147. sb->cp_events_hi = (mddev->events>>32);
  1148. sb->cp_events_lo = (u32)mddev->events;
  1149. if (mddev->recovery_cp == MaxSector)
  1150. sb->state = (1<< MD_SB_CLEAN);
  1151. } else
  1152. sb->recovery_cp = 0;
  1153. sb->layout = mddev->layout;
  1154. sb->chunk_size = mddev->chunk_sectors << 9;
  1155. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1156. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1157. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1158. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1159. mdp_disk_t *d;
  1160. int desc_nr;
  1161. int is_active = test_bit(In_sync, &rdev2->flags);
  1162. if (rdev2->raid_disk >= 0 &&
  1163. sb->minor_version >= 91)
  1164. /* we have nowhere to store the recovery_offset,
  1165. * but if it is not below the reshape_position,
  1166. * we can piggy-back on that.
  1167. */
  1168. is_active = 1;
  1169. if (rdev2->raid_disk < 0 ||
  1170. test_bit(Faulty, &rdev2->flags))
  1171. is_active = 0;
  1172. if (is_active)
  1173. desc_nr = rdev2->raid_disk;
  1174. else
  1175. desc_nr = next_spare++;
  1176. rdev2->desc_nr = desc_nr;
  1177. d = &sb->disks[rdev2->desc_nr];
  1178. nr_disks++;
  1179. d->number = rdev2->desc_nr;
  1180. d->major = MAJOR(rdev2->bdev->bd_dev);
  1181. d->minor = MINOR(rdev2->bdev->bd_dev);
  1182. if (is_active)
  1183. d->raid_disk = rdev2->raid_disk;
  1184. else
  1185. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1186. if (test_bit(Faulty, &rdev2->flags))
  1187. d->state = (1<<MD_DISK_FAULTY);
  1188. else if (is_active) {
  1189. d->state = (1<<MD_DISK_ACTIVE);
  1190. if (test_bit(In_sync, &rdev2->flags))
  1191. d->state |= (1<<MD_DISK_SYNC);
  1192. active++;
  1193. working++;
  1194. } else {
  1195. d->state = 0;
  1196. spare++;
  1197. working++;
  1198. }
  1199. if (test_bit(WriteMostly, &rdev2->flags))
  1200. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1201. }
  1202. /* now set the "removed" and "faulty" bits on any missing devices */
  1203. for (i=0 ; i < mddev->raid_disks ; i++) {
  1204. mdp_disk_t *d = &sb->disks[i];
  1205. if (d->state == 0 && d->number == 0) {
  1206. d->number = i;
  1207. d->raid_disk = i;
  1208. d->state = (1<<MD_DISK_REMOVED);
  1209. d->state |= (1<<MD_DISK_FAULTY);
  1210. failed++;
  1211. }
  1212. }
  1213. sb->nr_disks = nr_disks;
  1214. sb->active_disks = active;
  1215. sb->working_disks = working;
  1216. sb->failed_disks = failed;
  1217. sb->spare_disks = spare;
  1218. sb->this_disk = sb->disks[rdev->desc_nr];
  1219. sb->sb_csum = calc_sb_csum(sb);
  1220. }
  1221. /*
  1222. * rdev_size_change for 0.90.0
  1223. */
  1224. static unsigned long long
  1225. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1226. {
  1227. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1228. return 0; /* component must fit device */
  1229. if (rdev->mddev->bitmap_info.offset)
  1230. return 0; /* can't move bitmap */
  1231. rdev->sb_start = calc_dev_sboffset(rdev);
  1232. if (!num_sectors || num_sectors > rdev->sb_start)
  1233. num_sectors = rdev->sb_start;
  1234. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1235. rdev->sb_page);
  1236. md_super_wait(rdev->mddev);
  1237. return num_sectors;
  1238. }
  1239. /*
  1240. * version 1 superblock
  1241. */
  1242. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1243. {
  1244. __le32 disk_csum;
  1245. u32 csum;
  1246. unsigned long long newcsum;
  1247. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1248. __le32 *isuper = (__le32*)sb;
  1249. int i;
  1250. disk_csum = sb->sb_csum;
  1251. sb->sb_csum = 0;
  1252. newcsum = 0;
  1253. for (i=0; size>=4; size -= 4 )
  1254. newcsum += le32_to_cpu(*isuper++);
  1255. if (size == 2)
  1256. newcsum += le16_to_cpu(*(__le16*) isuper);
  1257. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1258. sb->sb_csum = disk_csum;
  1259. return cpu_to_le32(csum);
  1260. }
  1261. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1262. int acknowledged);
  1263. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1264. {
  1265. struct mdp_superblock_1 *sb;
  1266. int ret;
  1267. sector_t sb_start;
  1268. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1269. int bmask;
  1270. /*
  1271. * Calculate the position of the superblock in 512byte sectors.
  1272. * It is always aligned to a 4K boundary and
  1273. * depeding on minor_version, it can be:
  1274. * 0: At least 8K, but less than 12K, from end of device
  1275. * 1: At start of device
  1276. * 2: 4K from start of device.
  1277. */
  1278. switch(minor_version) {
  1279. case 0:
  1280. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1281. sb_start -= 8*2;
  1282. sb_start &= ~(sector_t)(4*2-1);
  1283. break;
  1284. case 1:
  1285. sb_start = 0;
  1286. break;
  1287. case 2:
  1288. sb_start = 8;
  1289. break;
  1290. default:
  1291. return -EINVAL;
  1292. }
  1293. rdev->sb_start = sb_start;
  1294. /* superblock is rarely larger than 1K, but it can be larger,
  1295. * and it is safe to read 4k, so we do that
  1296. */
  1297. ret = read_disk_sb(rdev, 4096);
  1298. if (ret) return ret;
  1299. sb = page_address(rdev->sb_page);
  1300. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1301. sb->major_version != cpu_to_le32(1) ||
  1302. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1303. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1304. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1305. return -EINVAL;
  1306. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1307. printk("md: invalid superblock checksum on %s\n",
  1308. bdevname(rdev->bdev,b));
  1309. return -EINVAL;
  1310. }
  1311. if (le64_to_cpu(sb->data_size) < 10) {
  1312. printk("md: data_size too small on %s\n",
  1313. bdevname(rdev->bdev,b));
  1314. return -EINVAL;
  1315. }
  1316. rdev->preferred_minor = 0xffff;
  1317. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1318. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1319. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1320. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1321. if (rdev->sb_size & bmask)
  1322. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1323. if (minor_version
  1324. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1325. return -EINVAL;
  1326. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1327. rdev->desc_nr = -1;
  1328. else
  1329. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1330. if (!rdev->bb_page) {
  1331. rdev->bb_page = alloc_page(GFP_KERNEL);
  1332. if (!rdev->bb_page)
  1333. return -ENOMEM;
  1334. }
  1335. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1336. rdev->badblocks.count == 0) {
  1337. /* need to load the bad block list.
  1338. * Currently we limit it to one page.
  1339. */
  1340. s32 offset;
  1341. sector_t bb_sector;
  1342. u64 *bbp;
  1343. int i;
  1344. int sectors = le16_to_cpu(sb->bblog_size);
  1345. if (sectors > (PAGE_SIZE / 512))
  1346. return -EINVAL;
  1347. offset = le32_to_cpu(sb->bblog_offset);
  1348. if (offset == 0)
  1349. return -EINVAL;
  1350. bb_sector = (long long)offset;
  1351. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1352. rdev->bb_page, READ, true))
  1353. return -EIO;
  1354. bbp = (u64 *)page_address(rdev->bb_page);
  1355. rdev->badblocks.shift = sb->bblog_shift;
  1356. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1357. u64 bb = le64_to_cpu(*bbp);
  1358. int count = bb & (0x3ff);
  1359. u64 sector = bb >> 10;
  1360. sector <<= sb->bblog_shift;
  1361. count <<= sb->bblog_shift;
  1362. if (bb + 1 == 0)
  1363. break;
  1364. if (md_set_badblocks(&rdev->badblocks,
  1365. sector, count, 1) == 0)
  1366. return -EINVAL;
  1367. }
  1368. } else if (sb->bblog_offset == 0)
  1369. rdev->badblocks.shift = -1;
  1370. if (!refdev) {
  1371. ret = 1;
  1372. } else {
  1373. __u64 ev1, ev2;
  1374. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1375. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1376. sb->level != refsb->level ||
  1377. sb->layout != refsb->layout ||
  1378. sb->chunksize != refsb->chunksize) {
  1379. printk(KERN_WARNING "md: %s has strangely different"
  1380. " superblock to %s\n",
  1381. bdevname(rdev->bdev,b),
  1382. bdevname(refdev->bdev,b2));
  1383. return -EINVAL;
  1384. }
  1385. ev1 = le64_to_cpu(sb->events);
  1386. ev2 = le64_to_cpu(refsb->events);
  1387. if (ev1 > ev2)
  1388. ret = 1;
  1389. else
  1390. ret = 0;
  1391. }
  1392. if (minor_version)
  1393. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1394. le64_to_cpu(sb->data_offset);
  1395. else
  1396. rdev->sectors = rdev->sb_start;
  1397. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1398. return -EINVAL;
  1399. rdev->sectors = le64_to_cpu(sb->data_size);
  1400. if (le64_to_cpu(sb->size) > rdev->sectors)
  1401. return -EINVAL;
  1402. return ret;
  1403. }
  1404. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1405. {
  1406. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1407. __u64 ev1 = le64_to_cpu(sb->events);
  1408. rdev->raid_disk = -1;
  1409. clear_bit(Faulty, &rdev->flags);
  1410. clear_bit(In_sync, &rdev->flags);
  1411. clear_bit(WriteMostly, &rdev->flags);
  1412. if (mddev->raid_disks == 0) {
  1413. mddev->major_version = 1;
  1414. mddev->patch_version = 0;
  1415. mddev->external = 0;
  1416. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1417. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1418. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1419. mddev->level = le32_to_cpu(sb->level);
  1420. mddev->clevel[0] = 0;
  1421. mddev->layout = le32_to_cpu(sb->layout);
  1422. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1423. mddev->dev_sectors = le64_to_cpu(sb->size);
  1424. mddev->events = ev1;
  1425. mddev->bitmap_info.offset = 0;
  1426. mddev->bitmap_info.default_offset = 1024 >> 9;
  1427. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1428. memcpy(mddev->uuid, sb->set_uuid, 16);
  1429. mddev->max_disks = (4096-256)/2;
  1430. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1431. mddev->bitmap_info.file == NULL )
  1432. mddev->bitmap_info.offset =
  1433. (__s32)le32_to_cpu(sb->bitmap_offset);
  1434. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1435. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1436. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1437. mddev->new_level = le32_to_cpu(sb->new_level);
  1438. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1439. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1440. } else {
  1441. mddev->reshape_position = MaxSector;
  1442. mddev->delta_disks = 0;
  1443. mddev->new_level = mddev->level;
  1444. mddev->new_layout = mddev->layout;
  1445. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1446. }
  1447. } else if (mddev->pers == NULL) {
  1448. /* Insist of good event counter while assembling, except for
  1449. * spares (which don't need an event count) */
  1450. ++ev1;
  1451. if (rdev->desc_nr >= 0 &&
  1452. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1453. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1454. if (ev1 < mddev->events)
  1455. return -EINVAL;
  1456. } else if (mddev->bitmap) {
  1457. /* If adding to array with a bitmap, then we can accept an
  1458. * older device, but not too old.
  1459. */
  1460. if (ev1 < mddev->bitmap->events_cleared)
  1461. return 0;
  1462. } else {
  1463. if (ev1 < mddev->events)
  1464. /* just a hot-add of a new device, leave raid_disk at -1 */
  1465. return 0;
  1466. }
  1467. if (mddev->level != LEVEL_MULTIPATH) {
  1468. int role;
  1469. if (rdev->desc_nr < 0 ||
  1470. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1471. role = 0xffff;
  1472. rdev->desc_nr = -1;
  1473. } else
  1474. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1475. switch(role) {
  1476. case 0xffff: /* spare */
  1477. break;
  1478. case 0xfffe: /* faulty */
  1479. set_bit(Faulty, &rdev->flags);
  1480. break;
  1481. default:
  1482. if ((le32_to_cpu(sb->feature_map) &
  1483. MD_FEATURE_RECOVERY_OFFSET))
  1484. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1485. else
  1486. set_bit(In_sync, &rdev->flags);
  1487. rdev->raid_disk = role;
  1488. break;
  1489. }
  1490. if (sb->devflags & WriteMostly1)
  1491. set_bit(WriteMostly, &rdev->flags);
  1492. } else /* MULTIPATH are always insync */
  1493. set_bit(In_sync, &rdev->flags);
  1494. return 0;
  1495. }
  1496. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1497. {
  1498. struct mdp_superblock_1 *sb;
  1499. mdk_rdev_t *rdev2;
  1500. int max_dev, i;
  1501. /* make rdev->sb match mddev and rdev data. */
  1502. sb = page_address(rdev->sb_page);
  1503. sb->feature_map = 0;
  1504. sb->pad0 = 0;
  1505. sb->recovery_offset = cpu_to_le64(0);
  1506. memset(sb->pad1, 0, sizeof(sb->pad1));
  1507. memset(sb->pad3, 0, sizeof(sb->pad3));
  1508. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1509. sb->events = cpu_to_le64(mddev->events);
  1510. if (mddev->in_sync)
  1511. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1512. else
  1513. sb->resync_offset = cpu_to_le64(0);
  1514. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1515. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1516. sb->size = cpu_to_le64(mddev->dev_sectors);
  1517. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1518. sb->level = cpu_to_le32(mddev->level);
  1519. sb->layout = cpu_to_le32(mddev->layout);
  1520. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1521. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1522. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1523. }
  1524. if (rdev->raid_disk >= 0 &&
  1525. !test_bit(In_sync, &rdev->flags)) {
  1526. sb->feature_map |=
  1527. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1528. sb->recovery_offset =
  1529. cpu_to_le64(rdev->recovery_offset);
  1530. }
  1531. if (mddev->reshape_position != MaxSector) {
  1532. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1533. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1534. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1535. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1536. sb->new_level = cpu_to_le32(mddev->new_level);
  1537. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1538. }
  1539. if (rdev->badblocks.count == 0)
  1540. /* Nothing to do for bad blocks*/ ;
  1541. else if (sb->bblog_offset == 0)
  1542. /* Cannot record bad blocks on this device */
  1543. md_error(mddev, rdev);
  1544. else {
  1545. struct badblocks *bb = &rdev->badblocks;
  1546. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1547. u64 *p = bb->page;
  1548. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1549. if (bb->changed) {
  1550. unsigned seq;
  1551. retry:
  1552. seq = read_seqbegin(&bb->lock);
  1553. memset(bbp, 0xff, PAGE_SIZE);
  1554. for (i = 0 ; i < bb->count ; i++) {
  1555. u64 internal_bb = *p++;
  1556. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1557. | BB_LEN(internal_bb));
  1558. *bbp++ = cpu_to_le64(store_bb);
  1559. }
  1560. if (read_seqretry(&bb->lock, seq))
  1561. goto retry;
  1562. bb->sector = (rdev->sb_start +
  1563. (int)le32_to_cpu(sb->bblog_offset));
  1564. bb->size = le16_to_cpu(sb->bblog_size);
  1565. bb->changed = 0;
  1566. }
  1567. }
  1568. max_dev = 0;
  1569. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1570. if (rdev2->desc_nr+1 > max_dev)
  1571. max_dev = rdev2->desc_nr+1;
  1572. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1573. int bmask;
  1574. sb->max_dev = cpu_to_le32(max_dev);
  1575. rdev->sb_size = max_dev * 2 + 256;
  1576. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1577. if (rdev->sb_size & bmask)
  1578. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1579. } else
  1580. max_dev = le32_to_cpu(sb->max_dev);
  1581. for (i=0; i<max_dev;i++)
  1582. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1583. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1584. i = rdev2->desc_nr;
  1585. if (test_bit(Faulty, &rdev2->flags))
  1586. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1587. else if (test_bit(In_sync, &rdev2->flags))
  1588. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1589. else if (rdev2->raid_disk >= 0)
  1590. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1591. else
  1592. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1593. }
  1594. sb->sb_csum = calc_sb_1_csum(sb);
  1595. }
  1596. static unsigned long long
  1597. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1598. {
  1599. struct mdp_superblock_1 *sb;
  1600. sector_t max_sectors;
  1601. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1602. return 0; /* component must fit device */
  1603. if (rdev->sb_start < rdev->data_offset) {
  1604. /* minor versions 1 and 2; superblock before data */
  1605. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1606. max_sectors -= rdev->data_offset;
  1607. if (!num_sectors || num_sectors > max_sectors)
  1608. num_sectors = max_sectors;
  1609. } else if (rdev->mddev->bitmap_info.offset) {
  1610. /* minor version 0 with bitmap we can't move */
  1611. return 0;
  1612. } else {
  1613. /* minor version 0; superblock after data */
  1614. sector_t sb_start;
  1615. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1616. sb_start &= ~(sector_t)(4*2 - 1);
  1617. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1618. if (!num_sectors || num_sectors > max_sectors)
  1619. num_sectors = max_sectors;
  1620. rdev->sb_start = sb_start;
  1621. }
  1622. sb = page_address(rdev->sb_page);
  1623. sb->data_size = cpu_to_le64(num_sectors);
  1624. sb->super_offset = rdev->sb_start;
  1625. sb->sb_csum = calc_sb_1_csum(sb);
  1626. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1627. rdev->sb_page);
  1628. md_super_wait(rdev->mddev);
  1629. return num_sectors;
  1630. }
  1631. static struct super_type super_types[] = {
  1632. [0] = {
  1633. .name = "0.90.0",
  1634. .owner = THIS_MODULE,
  1635. .load_super = super_90_load,
  1636. .validate_super = super_90_validate,
  1637. .sync_super = super_90_sync,
  1638. .rdev_size_change = super_90_rdev_size_change,
  1639. },
  1640. [1] = {
  1641. .name = "md-1",
  1642. .owner = THIS_MODULE,
  1643. .load_super = super_1_load,
  1644. .validate_super = super_1_validate,
  1645. .sync_super = super_1_sync,
  1646. .rdev_size_change = super_1_rdev_size_change,
  1647. },
  1648. };
  1649. static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
  1650. {
  1651. if (mddev->sync_super) {
  1652. mddev->sync_super(mddev, rdev);
  1653. return;
  1654. }
  1655. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1656. super_types[mddev->major_version].sync_super(mddev, rdev);
  1657. }
  1658. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1659. {
  1660. mdk_rdev_t *rdev, *rdev2;
  1661. rcu_read_lock();
  1662. rdev_for_each_rcu(rdev, mddev1)
  1663. rdev_for_each_rcu(rdev2, mddev2)
  1664. if (rdev->bdev->bd_contains ==
  1665. rdev2->bdev->bd_contains) {
  1666. rcu_read_unlock();
  1667. return 1;
  1668. }
  1669. rcu_read_unlock();
  1670. return 0;
  1671. }
  1672. static LIST_HEAD(pending_raid_disks);
  1673. /*
  1674. * Try to register data integrity profile for an mddev
  1675. *
  1676. * This is called when an array is started and after a disk has been kicked
  1677. * from the array. It only succeeds if all working and active component devices
  1678. * are integrity capable with matching profiles.
  1679. */
  1680. int md_integrity_register(mddev_t *mddev)
  1681. {
  1682. mdk_rdev_t *rdev, *reference = NULL;
  1683. if (list_empty(&mddev->disks))
  1684. return 0; /* nothing to do */
  1685. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1686. return 0; /* shouldn't register, or already is */
  1687. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1688. /* skip spares and non-functional disks */
  1689. if (test_bit(Faulty, &rdev->flags))
  1690. continue;
  1691. if (rdev->raid_disk < 0)
  1692. continue;
  1693. if (!reference) {
  1694. /* Use the first rdev as the reference */
  1695. reference = rdev;
  1696. continue;
  1697. }
  1698. /* does this rdev's profile match the reference profile? */
  1699. if (blk_integrity_compare(reference->bdev->bd_disk,
  1700. rdev->bdev->bd_disk) < 0)
  1701. return -EINVAL;
  1702. }
  1703. if (!reference || !bdev_get_integrity(reference->bdev))
  1704. return 0;
  1705. /*
  1706. * All component devices are integrity capable and have matching
  1707. * profiles, register the common profile for the md device.
  1708. */
  1709. if (blk_integrity_register(mddev->gendisk,
  1710. bdev_get_integrity(reference->bdev)) != 0) {
  1711. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1712. mdname(mddev));
  1713. return -EINVAL;
  1714. }
  1715. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1716. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1717. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1718. mdname(mddev));
  1719. return -EINVAL;
  1720. }
  1721. return 0;
  1722. }
  1723. EXPORT_SYMBOL(md_integrity_register);
  1724. /* Disable data integrity if non-capable/non-matching disk is being added */
  1725. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1726. {
  1727. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1728. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1729. if (!bi_mddev) /* nothing to do */
  1730. return;
  1731. if (rdev->raid_disk < 0) /* skip spares */
  1732. return;
  1733. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1734. rdev->bdev->bd_disk) >= 0)
  1735. return;
  1736. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1737. blk_integrity_unregister(mddev->gendisk);
  1738. }
  1739. EXPORT_SYMBOL(md_integrity_add_rdev);
  1740. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1741. {
  1742. char b[BDEVNAME_SIZE];
  1743. struct kobject *ko;
  1744. char *s;
  1745. int err;
  1746. if (rdev->mddev) {
  1747. MD_BUG();
  1748. return -EINVAL;
  1749. }
  1750. /* prevent duplicates */
  1751. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1752. return -EEXIST;
  1753. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1754. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1755. rdev->sectors < mddev->dev_sectors)) {
  1756. if (mddev->pers) {
  1757. /* Cannot change size, so fail
  1758. * If mddev->level <= 0, then we don't care
  1759. * about aligning sizes (e.g. linear)
  1760. */
  1761. if (mddev->level > 0)
  1762. return -ENOSPC;
  1763. } else
  1764. mddev->dev_sectors = rdev->sectors;
  1765. }
  1766. /* Verify rdev->desc_nr is unique.
  1767. * If it is -1, assign a free number, else
  1768. * check number is not in use
  1769. */
  1770. if (rdev->desc_nr < 0) {
  1771. int choice = 0;
  1772. if (mddev->pers) choice = mddev->raid_disks;
  1773. while (find_rdev_nr(mddev, choice))
  1774. choice++;
  1775. rdev->desc_nr = choice;
  1776. } else {
  1777. if (find_rdev_nr(mddev, rdev->desc_nr))
  1778. return -EBUSY;
  1779. }
  1780. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1781. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1782. mdname(mddev), mddev->max_disks);
  1783. return -EBUSY;
  1784. }
  1785. bdevname(rdev->bdev,b);
  1786. while ( (s=strchr(b, '/')) != NULL)
  1787. *s = '!';
  1788. rdev->mddev = mddev;
  1789. printk(KERN_INFO "md: bind<%s>\n", b);
  1790. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1791. goto fail;
  1792. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1793. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1794. /* failure here is OK */;
  1795. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1796. list_add_rcu(&rdev->same_set, &mddev->disks);
  1797. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1798. /* May as well allow recovery to be retried once */
  1799. mddev->recovery_disabled++;
  1800. return 0;
  1801. fail:
  1802. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1803. b, mdname(mddev));
  1804. return err;
  1805. }
  1806. static void md_delayed_delete(struct work_struct *ws)
  1807. {
  1808. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1809. kobject_del(&rdev->kobj);
  1810. kobject_put(&rdev->kobj);
  1811. }
  1812. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1813. {
  1814. char b[BDEVNAME_SIZE];
  1815. if (!rdev->mddev) {
  1816. MD_BUG();
  1817. return;
  1818. }
  1819. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1820. list_del_rcu(&rdev->same_set);
  1821. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1822. rdev->mddev = NULL;
  1823. sysfs_remove_link(&rdev->kobj, "block");
  1824. sysfs_put(rdev->sysfs_state);
  1825. rdev->sysfs_state = NULL;
  1826. kfree(rdev->badblocks.page);
  1827. rdev->badblocks.count = 0;
  1828. rdev->badblocks.page = NULL;
  1829. /* We need to delay this, otherwise we can deadlock when
  1830. * writing to 'remove' to "dev/state". We also need
  1831. * to delay it due to rcu usage.
  1832. */
  1833. synchronize_rcu();
  1834. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1835. kobject_get(&rdev->kobj);
  1836. queue_work(md_misc_wq, &rdev->del_work);
  1837. }
  1838. /*
  1839. * prevent the device from being mounted, repartitioned or
  1840. * otherwise reused by a RAID array (or any other kernel
  1841. * subsystem), by bd_claiming the device.
  1842. */
  1843. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1844. {
  1845. int err = 0;
  1846. struct block_device *bdev;
  1847. char b[BDEVNAME_SIZE];
  1848. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1849. shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1850. if (IS_ERR(bdev)) {
  1851. printk(KERN_ERR "md: could not open %s.\n",
  1852. __bdevname(dev, b));
  1853. return PTR_ERR(bdev);
  1854. }
  1855. rdev->bdev = bdev;
  1856. return err;
  1857. }
  1858. static void unlock_rdev(mdk_rdev_t *rdev)
  1859. {
  1860. struct block_device *bdev = rdev->bdev;
  1861. rdev->bdev = NULL;
  1862. if (!bdev)
  1863. MD_BUG();
  1864. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1865. }
  1866. void md_autodetect_dev(dev_t dev);
  1867. static void export_rdev(mdk_rdev_t * rdev)
  1868. {
  1869. char b[BDEVNAME_SIZE];
  1870. printk(KERN_INFO "md: export_rdev(%s)\n",
  1871. bdevname(rdev->bdev,b));
  1872. if (rdev->mddev)
  1873. MD_BUG();
  1874. free_disk_sb(rdev);
  1875. #ifndef MODULE
  1876. if (test_bit(AutoDetected, &rdev->flags))
  1877. md_autodetect_dev(rdev->bdev->bd_dev);
  1878. #endif
  1879. unlock_rdev(rdev);
  1880. kobject_put(&rdev->kobj);
  1881. }
  1882. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1883. {
  1884. unbind_rdev_from_array(rdev);
  1885. export_rdev(rdev);
  1886. }
  1887. static void export_array(mddev_t *mddev)
  1888. {
  1889. mdk_rdev_t *rdev, *tmp;
  1890. rdev_for_each(rdev, tmp, mddev) {
  1891. if (!rdev->mddev) {
  1892. MD_BUG();
  1893. continue;
  1894. }
  1895. kick_rdev_from_array(rdev);
  1896. }
  1897. if (!list_empty(&mddev->disks))
  1898. MD_BUG();
  1899. mddev->raid_disks = 0;
  1900. mddev->major_version = 0;
  1901. }
  1902. static void print_desc(mdp_disk_t *desc)
  1903. {
  1904. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1905. desc->major,desc->minor,desc->raid_disk,desc->state);
  1906. }
  1907. static void print_sb_90(mdp_super_t *sb)
  1908. {
  1909. int i;
  1910. printk(KERN_INFO
  1911. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1912. sb->major_version, sb->minor_version, sb->patch_version,
  1913. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1914. sb->ctime);
  1915. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1916. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1917. sb->md_minor, sb->layout, sb->chunk_size);
  1918. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1919. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1920. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1921. sb->failed_disks, sb->spare_disks,
  1922. sb->sb_csum, (unsigned long)sb->events_lo);
  1923. printk(KERN_INFO);
  1924. for (i = 0; i < MD_SB_DISKS; i++) {
  1925. mdp_disk_t *desc;
  1926. desc = sb->disks + i;
  1927. if (desc->number || desc->major || desc->minor ||
  1928. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1929. printk(" D %2d: ", i);
  1930. print_desc(desc);
  1931. }
  1932. }
  1933. printk(KERN_INFO "md: THIS: ");
  1934. print_desc(&sb->this_disk);
  1935. }
  1936. static void print_sb_1(struct mdp_superblock_1 *sb)
  1937. {
  1938. __u8 *uuid;
  1939. uuid = sb->set_uuid;
  1940. printk(KERN_INFO
  1941. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1942. "md: Name: \"%s\" CT:%llu\n",
  1943. le32_to_cpu(sb->major_version),
  1944. le32_to_cpu(sb->feature_map),
  1945. uuid,
  1946. sb->set_name,
  1947. (unsigned long long)le64_to_cpu(sb->ctime)
  1948. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1949. uuid = sb->device_uuid;
  1950. printk(KERN_INFO
  1951. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1952. " RO:%llu\n"
  1953. "md: Dev:%08x UUID: %pU\n"
  1954. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1955. "md: (MaxDev:%u) \n",
  1956. le32_to_cpu(sb->level),
  1957. (unsigned long long)le64_to_cpu(sb->size),
  1958. le32_to_cpu(sb->raid_disks),
  1959. le32_to_cpu(sb->layout),
  1960. le32_to_cpu(sb->chunksize),
  1961. (unsigned long long)le64_to_cpu(sb->data_offset),
  1962. (unsigned long long)le64_to_cpu(sb->data_size),
  1963. (unsigned long long)le64_to_cpu(sb->super_offset),
  1964. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1965. le32_to_cpu(sb->dev_number),
  1966. uuid,
  1967. sb->devflags,
  1968. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1969. (unsigned long long)le64_to_cpu(sb->events),
  1970. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1971. le32_to_cpu(sb->sb_csum),
  1972. le32_to_cpu(sb->max_dev)
  1973. );
  1974. }
  1975. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1976. {
  1977. char b[BDEVNAME_SIZE];
  1978. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1979. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1980. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1981. rdev->desc_nr);
  1982. if (rdev->sb_loaded) {
  1983. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1984. switch (major_version) {
  1985. case 0:
  1986. print_sb_90(page_address(rdev->sb_page));
  1987. break;
  1988. case 1:
  1989. print_sb_1(page_address(rdev->sb_page));
  1990. break;
  1991. }
  1992. } else
  1993. printk(KERN_INFO "md: no rdev superblock!\n");
  1994. }
  1995. static void md_print_devices(void)
  1996. {
  1997. struct list_head *tmp;
  1998. mdk_rdev_t *rdev;
  1999. mddev_t *mddev;
  2000. char b[BDEVNAME_SIZE];
  2001. printk("\n");
  2002. printk("md: **********************************\n");
  2003. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2004. printk("md: **********************************\n");
  2005. for_each_mddev(mddev, tmp) {
  2006. if (mddev->bitmap)
  2007. bitmap_print_sb(mddev->bitmap);
  2008. else
  2009. printk("%s: ", mdname(mddev));
  2010. list_for_each_entry(rdev, &mddev->disks, same_set)
  2011. printk("<%s>", bdevname(rdev->bdev,b));
  2012. printk("\n");
  2013. list_for_each_entry(rdev, &mddev->disks, same_set)
  2014. print_rdev(rdev, mddev->major_version);
  2015. }
  2016. printk("md: **********************************\n");
  2017. printk("\n");
  2018. }
  2019. static void sync_sbs(mddev_t * mddev, int nospares)
  2020. {
  2021. /* Update each superblock (in-memory image), but
  2022. * if we are allowed to, skip spares which already
  2023. * have the right event counter, or have one earlier
  2024. * (which would mean they aren't being marked as dirty
  2025. * with the rest of the array)
  2026. */
  2027. mdk_rdev_t *rdev;
  2028. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2029. if (rdev->sb_events == mddev->events ||
  2030. (nospares &&
  2031. rdev->raid_disk < 0 &&
  2032. rdev->sb_events+1 == mddev->events)) {
  2033. /* Don't update this superblock */
  2034. rdev->sb_loaded = 2;
  2035. } else {
  2036. sync_super(mddev, rdev);
  2037. rdev->sb_loaded = 1;
  2038. }
  2039. }
  2040. }
  2041. static void md_update_sb(mddev_t * mddev, int force_change)
  2042. {
  2043. mdk_rdev_t *rdev;
  2044. int sync_req;
  2045. int nospares = 0;
  2046. int any_badblocks_changed = 0;
  2047. repeat:
  2048. /* First make sure individual recovery_offsets are correct */
  2049. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2050. if (rdev->raid_disk >= 0 &&
  2051. mddev->delta_disks >= 0 &&
  2052. !test_bit(In_sync, &rdev->flags) &&
  2053. mddev->curr_resync_completed > rdev->recovery_offset)
  2054. rdev->recovery_offset = mddev->curr_resync_completed;
  2055. }
  2056. if (!mddev->persistent) {
  2057. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2058. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2059. if (!mddev->external) {
  2060. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2061. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2062. if (rdev->badblocks.changed) {
  2063. md_ack_all_badblocks(&rdev->badblocks);
  2064. md_error(mddev, rdev);
  2065. }
  2066. clear_bit(Blocked, &rdev->flags);
  2067. clear_bit(BlockedBadBlocks, &rdev->flags);
  2068. wake_up(&rdev->blocked_wait);
  2069. }
  2070. }
  2071. wake_up(&mddev->sb_wait);
  2072. return;
  2073. }
  2074. spin_lock_irq(&mddev->write_lock);
  2075. mddev->utime = get_seconds();
  2076. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2077. force_change = 1;
  2078. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2079. /* just a clean<-> dirty transition, possibly leave spares alone,
  2080. * though if events isn't the right even/odd, we will have to do
  2081. * spares after all
  2082. */
  2083. nospares = 1;
  2084. if (force_change)
  2085. nospares = 0;
  2086. if (mddev->degraded)
  2087. /* If the array is degraded, then skipping spares is both
  2088. * dangerous and fairly pointless.
  2089. * Dangerous because a device that was removed from the array
  2090. * might have a event_count that still looks up-to-date,
  2091. * so it can be re-added without a resync.
  2092. * Pointless because if there are any spares to skip,
  2093. * then a recovery will happen and soon that array won't
  2094. * be degraded any more and the spare can go back to sleep then.
  2095. */
  2096. nospares = 0;
  2097. sync_req = mddev->in_sync;
  2098. /* If this is just a dirty<->clean transition, and the array is clean
  2099. * and 'events' is odd, we can roll back to the previous clean state */
  2100. if (nospares
  2101. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2102. && mddev->can_decrease_events
  2103. && mddev->events != 1) {
  2104. mddev->events--;
  2105. mddev->can_decrease_events = 0;
  2106. } else {
  2107. /* otherwise we have to go forward and ... */
  2108. mddev->events ++;
  2109. mddev->can_decrease_events = nospares;
  2110. }
  2111. if (!mddev->events) {
  2112. /*
  2113. * oops, this 64-bit counter should never wrap.
  2114. * Either we are in around ~1 trillion A.C., assuming
  2115. * 1 reboot per second, or we have a bug:
  2116. */
  2117. MD_BUG();
  2118. mddev->events --;
  2119. }
  2120. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2121. if (rdev->badblocks.changed)
  2122. any_badblocks_changed++;
  2123. if (test_bit(Faulty, &rdev->flags))
  2124. set_bit(FaultRecorded, &rdev->flags);
  2125. }
  2126. sync_sbs(mddev, nospares);
  2127. spin_unlock_irq(&mddev->write_lock);
  2128. dprintk(KERN_INFO
  2129. "md: updating %s RAID superblock on device (in sync %d)\n",
  2130. mdname(mddev),mddev->in_sync);
  2131. bitmap_update_sb(mddev->bitmap);
  2132. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2133. char b[BDEVNAME_SIZE];
  2134. dprintk(KERN_INFO "md: ");
  2135. if (rdev->sb_loaded != 1)
  2136. continue; /* no noise on spare devices */
  2137. if (test_bit(Faulty, &rdev->flags))
  2138. dprintk("(skipping faulty ");
  2139. dprintk("%s ", bdevname(rdev->bdev,b));
  2140. if (!test_bit(Faulty, &rdev->flags)) {
  2141. md_super_write(mddev,rdev,
  2142. rdev->sb_start, rdev->sb_size,
  2143. rdev->sb_page);
  2144. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  2145. bdevname(rdev->bdev,b),
  2146. (unsigned long long)rdev->sb_start);
  2147. rdev->sb_events = mddev->events;
  2148. if (rdev->badblocks.size) {
  2149. md_super_write(mddev, rdev,
  2150. rdev->badblocks.sector,
  2151. rdev->badblocks.size << 9,
  2152. rdev->bb_page);
  2153. rdev->badblocks.size = 0;
  2154. }
  2155. } else
  2156. dprintk(")\n");
  2157. if (mddev->level == LEVEL_MULTIPATH)
  2158. /* only need to write one superblock... */
  2159. break;
  2160. }
  2161. md_super_wait(mddev);
  2162. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2163. spin_lock_irq(&mddev->write_lock);
  2164. if (mddev->in_sync != sync_req ||
  2165. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2166. /* have to write it out again */
  2167. spin_unlock_irq(&mddev->write_lock);
  2168. goto repeat;
  2169. }
  2170. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2171. spin_unlock_irq(&mddev->write_lock);
  2172. wake_up(&mddev->sb_wait);
  2173. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2174. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2175. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2176. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2177. clear_bit(Blocked, &rdev->flags);
  2178. if (any_badblocks_changed)
  2179. md_ack_all_badblocks(&rdev->badblocks);
  2180. clear_bit(BlockedBadBlocks, &rdev->flags);
  2181. wake_up(&rdev->blocked_wait);
  2182. }
  2183. }
  2184. /* words written to sysfs files may, or may not, be \n terminated.
  2185. * We want to accept with case. For this we use cmd_match.
  2186. */
  2187. static int cmd_match(const char *cmd, const char *str)
  2188. {
  2189. /* See if cmd, written into a sysfs file, matches
  2190. * str. They must either be the same, or cmd can
  2191. * have a trailing newline
  2192. */
  2193. while (*cmd && *str && *cmd == *str) {
  2194. cmd++;
  2195. str++;
  2196. }
  2197. if (*cmd == '\n')
  2198. cmd++;
  2199. if (*str || *cmd)
  2200. return 0;
  2201. return 1;
  2202. }
  2203. struct rdev_sysfs_entry {
  2204. struct attribute attr;
  2205. ssize_t (*show)(mdk_rdev_t *, char *);
  2206. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  2207. };
  2208. static ssize_t
  2209. state_show(mdk_rdev_t *rdev, char *page)
  2210. {
  2211. char *sep = "";
  2212. size_t len = 0;
  2213. if (test_bit(Faulty, &rdev->flags) ||
  2214. rdev->badblocks.unacked_exist) {
  2215. len+= sprintf(page+len, "%sfaulty",sep);
  2216. sep = ",";
  2217. }
  2218. if (test_bit(In_sync, &rdev->flags)) {
  2219. len += sprintf(page+len, "%sin_sync",sep);
  2220. sep = ",";
  2221. }
  2222. if (test_bit(WriteMostly, &rdev->flags)) {
  2223. len += sprintf(page+len, "%swrite_mostly",sep);
  2224. sep = ",";
  2225. }
  2226. if (test_bit(Blocked, &rdev->flags) ||
  2227. rdev->badblocks.unacked_exist) {
  2228. len += sprintf(page+len, "%sblocked", sep);
  2229. sep = ",";
  2230. }
  2231. if (!test_bit(Faulty, &rdev->flags) &&
  2232. !test_bit(In_sync, &rdev->flags)) {
  2233. len += sprintf(page+len, "%sspare", sep);
  2234. sep = ",";
  2235. }
  2236. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2237. len += sprintf(page+len, "%swrite_error", sep);
  2238. sep = ",";
  2239. }
  2240. return len+sprintf(page+len, "\n");
  2241. }
  2242. static ssize_t
  2243. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2244. {
  2245. /* can write
  2246. * faulty - simulates an error
  2247. * remove - disconnects the device
  2248. * writemostly - sets write_mostly
  2249. * -writemostly - clears write_mostly
  2250. * blocked - sets the Blocked flags
  2251. * -blocked - clears the Blocked and possibly simulates an error
  2252. * insync - sets Insync providing device isn't active
  2253. * write_error - sets WriteErrorSeen
  2254. * -write_error - clears WriteErrorSeen
  2255. */
  2256. int err = -EINVAL;
  2257. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2258. md_error(rdev->mddev, rdev);
  2259. err = 0;
  2260. } else if (cmd_match(buf, "remove")) {
  2261. if (rdev->raid_disk >= 0)
  2262. err = -EBUSY;
  2263. else {
  2264. mddev_t *mddev = rdev->mddev;
  2265. kick_rdev_from_array(rdev);
  2266. if (mddev->pers)
  2267. md_update_sb(mddev, 1);
  2268. md_new_event(mddev);
  2269. err = 0;
  2270. }
  2271. } else if (cmd_match(buf, "writemostly")) {
  2272. set_bit(WriteMostly, &rdev->flags);
  2273. err = 0;
  2274. } else if (cmd_match(buf, "-writemostly")) {
  2275. clear_bit(WriteMostly, &rdev->flags);
  2276. err = 0;
  2277. } else if (cmd_match(buf, "blocked")) {
  2278. set_bit(Blocked, &rdev->flags);
  2279. err = 0;
  2280. } else if (cmd_match(buf, "-blocked")) {
  2281. if (!test_bit(Faulty, &rdev->flags) &&
  2282. test_bit(BlockedBadBlocks, &rdev->flags)) {
  2283. /* metadata handler doesn't understand badblocks,
  2284. * so we need to fail the device
  2285. */
  2286. md_error(rdev->mddev, rdev);
  2287. }
  2288. clear_bit(Blocked, &rdev->flags);
  2289. clear_bit(BlockedBadBlocks, &rdev->flags);
  2290. wake_up(&rdev->blocked_wait);
  2291. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2292. md_wakeup_thread(rdev->mddev->thread);
  2293. err = 0;
  2294. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2295. set_bit(In_sync, &rdev->flags);
  2296. err = 0;
  2297. } else if (cmd_match(buf, "write_error")) {
  2298. set_bit(WriteErrorSeen, &rdev->flags);
  2299. err = 0;
  2300. } else if (cmd_match(buf, "-write_error")) {
  2301. clear_bit(WriteErrorSeen, &rdev->flags);
  2302. err = 0;
  2303. }
  2304. if (!err)
  2305. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2306. return err ? err : len;
  2307. }
  2308. static struct rdev_sysfs_entry rdev_state =
  2309. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2310. static ssize_t
  2311. errors_show(mdk_rdev_t *rdev, char *page)
  2312. {
  2313. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2314. }
  2315. static ssize_t
  2316. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2317. {
  2318. char *e;
  2319. unsigned long n = simple_strtoul(buf, &e, 10);
  2320. if (*buf && (*e == 0 || *e == '\n')) {
  2321. atomic_set(&rdev->corrected_errors, n);
  2322. return len;
  2323. }
  2324. return -EINVAL;
  2325. }
  2326. static struct rdev_sysfs_entry rdev_errors =
  2327. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2328. static ssize_t
  2329. slot_show(mdk_rdev_t *rdev, char *page)
  2330. {
  2331. if (rdev->raid_disk < 0)
  2332. return sprintf(page, "none\n");
  2333. else
  2334. return sprintf(page, "%d\n", rdev->raid_disk);
  2335. }
  2336. static ssize_t
  2337. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2338. {
  2339. char *e;
  2340. int err;
  2341. int slot = simple_strtoul(buf, &e, 10);
  2342. if (strncmp(buf, "none", 4)==0)
  2343. slot = -1;
  2344. else if (e==buf || (*e && *e!= '\n'))
  2345. return -EINVAL;
  2346. if (rdev->mddev->pers && slot == -1) {
  2347. /* Setting 'slot' on an active array requires also
  2348. * updating the 'rd%d' link, and communicating
  2349. * with the personality with ->hot_*_disk.
  2350. * For now we only support removing
  2351. * failed/spare devices. This normally happens automatically,
  2352. * but not when the metadata is externally managed.
  2353. */
  2354. if (rdev->raid_disk == -1)
  2355. return -EEXIST;
  2356. /* personality does all needed checks */
  2357. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2358. return -EINVAL;
  2359. err = rdev->mddev->pers->
  2360. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2361. if (err)
  2362. return err;
  2363. sysfs_unlink_rdev(rdev->mddev, rdev);
  2364. rdev->raid_disk = -1;
  2365. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2366. md_wakeup_thread(rdev->mddev->thread);
  2367. } else if (rdev->mddev->pers) {
  2368. mdk_rdev_t *rdev2;
  2369. /* Activating a spare .. or possibly reactivating
  2370. * if we ever get bitmaps working here.
  2371. */
  2372. if (rdev->raid_disk != -1)
  2373. return -EBUSY;
  2374. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2375. return -EBUSY;
  2376. if (rdev->mddev->pers->hot_add_disk == NULL)
  2377. return -EINVAL;
  2378. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2379. if (rdev2->raid_disk == slot)
  2380. return -EEXIST;
  2381. if (slot >= rdev->mddev->raid_disks &&
  2382. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2383. return -ENOSPC;
  2384. rdev->raid_disk = slot;
  2385. if (test_bit(In_sync, &rdev->flags))
  2386. rdev->saved_raid_disk = slot;
  2387. else
  2388. rdev->saved_raid_disk = -1;
  2389. err = rdev->mddev->pers->
  2390. hot_add_disk(rdev->mddev, rdev);
  2391. if (err) {
  2392. rdev->raid_disk = -1;
  2393. return err;
  2394. } else
  2395. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2396. if (sysfs_link_rdev(rdev->mddev, rdev))
  2397. /* failure here is OK */;
  2398. /* don't wakeup anyone, leave that to userspace. */
  2399. } else {
  2400. if (slot >= rdev->mddev->raid_disks &&
  2401. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2402. return -ENOSPC;
  2403. rdev->raid_disk = slot;
  2404. /* assume it is working */
  2405. clear_bit(Faulty, &rdev->flags);
  2406. clear_bit(WriteMostly, &rdev->flags);
  2407. set_bit(In_sync, &rdev->flags);
  2408. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2409. }
  2410. return len;
  2411. }
  2412. static struct rdev_sysfs_entry rdev_slot =
  2413. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2414. static ssize_t
  2415. offset_show(mdk_rdev_t *rdev, char *page)
  2416. {
  2417. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2418. }
  2419. static ssize_t
  2420. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2421. {
  2422. char *e;
  2423. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2424. if (e==buf || (*e && *e != '\n'))
  2425. return -EINVAL;
  2426. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2427. return -EBUSY;
  2428. if (rdev->sectors && rdev->mddev->external)
  2429. /* Must set offset before size, so overlap checks
  2430. * can be sane */
  2431. return -EBUSY;
  2432. rdev->data_offset = offset;
  2433. return len;
  2434. }
  2435. static struct rdev_sysfs_entry rdev_offset =
  2436. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2437. static ssize_t
  2438. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2439. {
  2440. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2441. }
  2442. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2443. {
  2444. /* check if two start/length pairs overlap */
  2445. if (s1+l1 <= s2)
  2446. return 0;
  2447. if (s2+l2 <= s1)
  2448. return 0;
  2449. return 1;
  2450. }
  2451. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2452. {
  2453. unsigned long long blocks;
  2454. sector_t new;
  2455. if (strict_strtoull(buf, 10, &blocks) < 0)
  2456. return -EINVAL;
  2457. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2458. return -EINVAL; /* sector conversion overflow */
  2459. new = blocks * 2;
  2460. if (new != blocks * 2)
  2461. return -EINVAL; /* unsigned long long to sector_t overflow */
  2462. *sectors = new;
  2463. return 0;
  2464. }
  2465. static ssize_t
  2466. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2467. {
  2468. mddev_t *my_mddev = rdev->mddev;
  2469. sector_t oldsectors = rdev->sectors;
  2470. sector_t sectors;
  2471. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2472. return -EINVAL;
  2473. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2474. if (my_mddev->persistent) {
  2475. sectors = super_types[my_mddev->major_version].
  2476. rdev_size_change(rdev, sectors);
  2477. if (!sectors)
  2478. return -EBUSY;
  2479. } else if (!sectors)
  2480. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2481. rdev->data_offset;
  2482. }
  2483. if (sectors < my_mddev->dev_sectors)
  2484. return -EINVAL; /* component must fit device */
  2485. rdev->sectors = sectors;
  2486. if (sectors > oldsectors && my_mddev->external) {
  2487. /* need to check that all other rdevs with the same ->bdev
  2488. * do not overlap. We need to unlock the mddev to avoid
  2489. * a deadlock. We have already changed rdev->sectors, and if
  2490. * we have to change it back, we will have the lock again.
  2491. */
  2492. mddev_t *mddev;
  2493. int overlap = 0;
  2494. struct list_head *tmp;
  2495. mddev_unlock(my_mddev);
  2496. for_each_mddev(mddev, tmp) {
  2497. mdk_rdev_t *rdev2;
  2498. mddev_lock(mddev);
  2499. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2500. if (rdev->bdev == rdev2->bdev &&
  2501. rdev != rdev2 &&
  2502. overlaps(rdev->data_offset, rdev->sectors,
  2503. rdev2->data_offset,
  2504. rdev2->sectors)) {
  2505. overlap = 1;
  2506. break;
  2507. }
  2508. mddev_unlock(mddev);
  2509. if (overlap) {
  2510. mddev_put(mddev);
  2511. break;
  2512. }
  2513. }
  2514. mddev_lock(my_mddev);
  2515. if (overlap) {
  2516. /* Someone else could have slipped in a size
  2517. * change here, but doing so is just silly.
  2518. * We put oldsectors back because we *know* it is
  2519. * safe, and trust userspace not to race with
  2520. * itself
  2521. */
  2522. rdev->sectors = oldsectors;
  2523. return -EBUSY;
  2524. }
  2525. }
  2526. return len;
  2527. }
  2528. static struct rdev_sysfs_entry rdev_size =
  2529. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2530. static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
  2531. {
  2532. unsigned long long recovery_start = rdev->recovery_offset;
  2533. if (test_bit(In_sync, &rdev->flags) ||
  2534. recovery_start == MaxSector)
  2535. return sprintf(page, "none\n");
  2536. return sprintf(page, "%llu\n", recovery_start);
  2537. }
  2538. static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2539. {
  2540. unsigned long long recovery_start;
  2541. if (cmd_match(buf, "none"))
  2542. recovery_start = MaxSector;
  2543. else if (strict_strtoull(buf, 10, &recovery_start))
  2544. return -EINVAL;
  2545. if (rdev->mddev->pers &&
  2546. rdev->raid_disk >= 0)
  2547. return -EBUSY;
  2548. rdev->recovery_offset = recovery_start;
  2549. if (recovery_start == MaxSector)
  2550. set_bit(In_sync, &rdev->flags);
  2551. else
  2552. clear_bit(In_sync, &rdev->flags);
  2553. return len;
  2554. }
  2555. static struct rdev_sysfs_entry rdev_recovery_start =
  2556. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2557. static ssize_t
  2558. badblocks_show(struct badblocks *bb, char *page, int unack);
  2559. static ssize_t
  2560. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2561. static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
  2562. {
  2563. return badblocks_show(&rdev->badblocks, page, 0);
  2564. }
  2565. static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
  2566. {
  2567. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2568. /* Maybe that ack was all we needed */
  2569. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2570. wake_up(&rdev->blocked_wait);
  2571. return rv;
  2572. }
  2573. static struct rdev_sysfs_entry rdev_bad_blocks =
  2574. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2575. static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
  2576. {
  2577. return badblocks_show(&rdev->badblocks, page, 1);
  2578. }
  2579. static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
  2580. {
  2581. return badblocks_store(&rdev->badblocks, page, len, 1);
  2582. }
  2583. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2584. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2585. static struct attribute *rdev_default_attrs[] = {
  2586. &rdev_state.attr,
  2587. &rdev_errors.attr,
  2588. &rdev_slot.attr,
  2589. &rdev_offset.attr,
  2590. &rdev_size.attr,
  2591. &rdev_recovery_start.attr,
  2592. &rdev_bad_blocks.attr,
  2593. &rdev_unack_bad_blocks.attr,
  2594. NULL,
  2595. };
  2596. static ssize_t
  2597. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2598. {
  2599. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2600. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2601. mddev_t *mddev = rdev->mddev;
  2602. ssize_t rv;
  2603. if (!entry->show)
  2604. return -EIO;
  2605. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2606. if (!rv) {
  2607. if (rdev->mddev == NULL)
  2608. rv = -EBUSY;
  2609. else
  2610. rv = entry->show(rdev, page);
  2611. mddev_unlock(mddev);
  2612. }
  2613. return rv;
  2614. }
  2615. static ssize_t
  2616. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2617. const char *page, size_t length)
  2618. {
  2619. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2620. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2621. ssize_t rv;
  2622. mddev_t *mddev = rdev->mddev;
  2623. if (!entry->store)
  2624. return -EIO;
  2625. if (!capable(CAP_SYS_ADMIN))
  2626. return -EACCES;
  2627. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2628. if (!rv) {
  2629. if (rdev->mddev == NULL)
  2630. rv = -EBUSY;
  2631. else
  2632. rv = entry->store(rdev, page, length);
  2633. mddev_unlock(mddev);
  2634. }
  2635. return rv;
  2636. }
  2637. static void rdev_free(struct kobject *ko)
  2638. {
  2639. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2640. kfree(rdev);
  2641. }
  2642. static const struct sysfs_ops rdev_sysfs_ops = {
  2643. .show = rdev_attr_show,
  2644. .store = rdev_attr_store,
  2645. };
  2646. static struct kobj_type rdev_ktype = {
  2647. .release = rdev_free,
  2648. .sysfs_ops = &rdev_sysfs_ops,
  2649. .default_attrs = rdev_default_attrs,
  2650. };
  2651. int md_rdev_init(mdk_rdev_t *rdev)
  2652. {
  2653. rdev->desc_nr = -1;
  2654. rdev->saved_raid_disk = -1;
  2655. rdev->raid_disk = -1;
  2656. rdev->flags = 0;
  2657. rdev->data_offset = 0;
  2658. rdev->sb_events = 0;
  2659. rdev->last_read_error.tv_sec = 0;
  2660. rdev->last_read_error.tv_nsec = 0;
  2661. rdev->sb_loaded = 0;
  2662. rdev->bb_page = NULL;
  2663. atomic_set(&rdev->nr_pending, 0);
  2664. atomic_set(&rdev->read_errors, 0);
  2665. atomic_set(&rdev->corrected_errors, 0);
  2666. INIT_LIST_HEAD(&rdev->same_set);
  2667. init_waitqueue_head(&rdev->blocked_wait);
  2668. /* Add space to store bad block list.
  2669. * This reserves the space even on arrays where it cannot
  2670. * be used - I wonder if that matters
  2671. */
  2672. rdev->badblocks.count = 0;
  2673. rdev->badblocks.shift = 0;
  2674. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2675. seqlock_init(&rdev->badblocks.lock);
  2676. if (rdev->badblocks.page == NULL)
  2677. return -ENOMEM;
  2678. return 0;
  2679. }
  2680. EXPORT_SYMBOL_GPL(md_rdev_init);
  2681. /*
  2682. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2683. *
  2684. * mark the device faulty if:
  2685. *
  2686. * - the device is nonexistent (zero size)
  2687. * - the device has no valid superblock
  2688. *
  2689. * a faulty rdev _never_ has rdev->sb set.
  2690. */
  2691. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2692. {
  2693. char b[BDEVNAME_SIZE];
  2694. int err;
  2695. mdk_rdev_t *rdev;
  2696. sector_t size;
  2697. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2698. if (!rdev) {
  2699. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2700. return ERR_PTR(-ENOMEM);
  2701. }
  2702. err = md_rdev_init(rdev);
  2703. if (err)
  2704. goto abort_free;
  2705. err = alloc_disk_sb(rdev);
  2706. if (err)
  2707. goto abort_free;
  2708. err = lock_rdev(rdev, newdev, super_format == -2);
  2709. if (err)
  2710. goto abort_free;
  2711. kobject_init(&rdev->kobj, &rdev_ktype);
  2712. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2713. if (!size) {
  2714. printk(KERN_WARNING
  2715. "md: %s has zero or unknown size, marking faulty!\n",
  2716. bdevname(rdev->bdev,b));
  2717. err = -EINVAL;
  2718. goto abort_free;
  2719. }
  2720. if (super_format >= 0) {
  2721. err = super_types[super_format].
  2722. load_super(rdev, NULL, super_minor);
  2723. if (err == -EINVAL) {
  2724. printk(KERN_WARNING
  2725. "md: %s does not have a valid v%d.%d "
  2726. "superblock, not importing!\n",
  2727. bdevname(rdev->bdev,b),
  2728. super_format, super_minor);
  2729. goto abort_free;
  2730. }
  2731. if (err < 0) {
  2732. printk(KERN_WARNING
  2733. "md: could not read %s's sb, not importing!\n",
  2734. bdevname(rdev->bdev,b));
  2735. goto abort_free;
  2736. }
  2737. }
  2738. if (super_format == -1)
  2739. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2740. rdev->badblocks.shift = -1;
  2741. return rdev;
  2742. abort_free:
  2743. if (rdev->bdev)
  2744. unlock_rdev(rdev);
  2745. free_disk_sb(rdev);
  2746. kfree(rdev->badblocks.page);
  2747. kfree(rdev);
  2748. return ERR_PTR(err);
  2749. }
  2750. /*
  2751. * Check a full RAID array for plausibility
  2752. */
  2753. static void analyze_sbs(mddev_t * mddev)
  2754. {
  2755. int i;
  2756. mdk_rdev_t *rdev, *freshest, *tmp;
  2757. char b[BDEVNAME_SIZE];
  2758. freshest = NULL;
  2759. rdev_for_each(rdev, tmp, mddev)
  2760. switch (super_types[mddev->major_version].
  2761. load_super(rdev, freshest, mddev->minor_version)) {
  2762. case 1:
  2763. freshest = rdev;
  2764. break;
  2765. case 0:
  2766. break;
  2767. default:
  2768. printk( KERN_ERR \
  2769. "md: fatal superblock inconsistency in %s"
  2770. " -- removing from array\n",
  2771. bdevname(rdev->bdev,b));
  2772. kick_rdev_from_array(rdev);
  2773. }
  2774. super_types[mddev->major_version].
  2775. validate_super(mddev, freshest);
  2776. i = 0;
  2777. rdev_for_each(rdev, tmp, mddev) {
  2778. if (mddev->max_disks &&
  2779. (rdev->desc_nr >= mddev->max_disks ||
  2780. i > mddev->max_disks)) {
  2781. printk(KERN_WARNING
  2782. "md: %s: %s: only %d devices permitted\n",
  2783. mdname(mddev), bdevname(rdev->bdev, b),
  2784. mddev->max_disks);
  2785. kick_rdev_from_array(rdev);
  2786. continue;
  2787. }
  2788. if (rdev != freshest)
  2789. if (super_types[mddev->major_version].
  2790. validate_super(mddev, rdev)) {
  2791. printk(KERN_WARNING "md: kicking non-fresh %s"
  2792. " from array!\n",
  2793. bdevname(rdev->bdev,b));
  2794. kick_rdev_from_array(rdev);
  2795. continue;
  2796. }
  2797. if (mddev->level == LEVEL_MULTIPATH) {
  2798. rdev->desc_nr = i++;
  2799. rdev->raid_disk = rdev->desc_nr;
  2800. set_bit(In_sync, &rdev->flags);
  2801. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2802. rdev->raid_disk = -1;
  2803. clear_bit(In_sync, &rdev->flags);
  2804. }
  2805. }
  2806. }
  2807. /* Read a fixed-point number.
  2808. * Numbers in sysfs attributes should be in "standard" units where
  2809. * possible, so time should be in seconds.
  2810. * However we internally use a a much smaller unit such as
  2811. * milliseconds or jiffies.
  2812. * This function takes a decimal number with a possible fractional
  2813. * component, and produces an integer which is the result of
  2814. * multiplying that number by 10^'scale'.
  2815. * all without any floating-point arithmetic.
  2816. */
  2817. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2818. {
  2819. unsigned long result = 0;
  2820. long decimals = -1;
  2821. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2822. if (*cp == '.')
  2823. decimals = 0;
  2824. else if (decimals < scale) {
  2825. unsigned int value;
  2826. value = *cp - '0';
  2827. result = result * 10 + value;
  2828. if (decimals >= 0)
  2829. decimals++;
  2830. }
  2831. cp++;
  2832. }
  2833. if (*cp == '\n')
  2834. cp++;
  2835. if (*cp)
  2836. return -EINVAL;
  2837. if (decimals < 0)
  2838. decimals = 0;
  2839. while (decimals < scale) {
  2840. result *= 10;
  2841. decimals ++;
  2842. }
  2843. *res = result;
  2844. return 0;
  2845. }
  2846. static void md_safemode_timeout(unsigned long data);
  2847. static ssize_t
  2848. safe_delay_show(mddev_t *mddev, char *page)
  2849. {
  2850. int msec = (mddev->safemode_delay*1000)/HZ;
  2851. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2852. }
  2853. static ssize_t
  2854. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2855. {
  2856. unsigned long msec;
  2857. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2858. return -EINVAL;
  2859. if (msec == 0)
  2860. mddev->safemode_delay = 0;
  2861. else {
  2862. unsigned long old_delay = mddev->safemode_delay;
  2863. mddev->safemode_delay = (msec*HZ)/1000;
  2864. if (mddev->safemode_delay == 0)
  2865. mddev->safemode_delay = 1;
  2866. if (mddev->safemode_delay < old_delay)
  2867. md_safemode_timeout((unsigned long)mddev);
  2868. }
  2869. return len;
  2870. }
  2871. static struct md_sysfs_entry md_safe_delay =
  2872. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2873. static ssize_t
  2874. level_show(mddev_t *mddev, char *page)
  2875. {
  2876. struct mdk_personality *p = mddev->pers;
  2877. if (p)
  2878. return sprintf(page, "%s\n", p->name);
  2879. else if (mddev->clevel[0])
  2880. return sprintf(page, "%s\n", mddev->clevel);
  2881. else if (mddev->level != LEVEL_NONE)
  2882. return sprintf(page, "%d\n", mddev->level);
  2883. else
  2884. return 0;
  2885. }
  2886. static ssize_t
  2887. level_store(mddev_t *mddev, const char *buf, size_t len)
  2888. {
  2889. char clevel[16];
  2890. ssize_t rv = len;
  2891. struct mdk_personality *pers;
  2892. long level;
  2893. void *priv;
  2894. mdk_rdev_t *rdev;
  2895. if (mddev->pers == NULL) {
  2896. if (len == 0)
  2897. return 0;
  2898. if (len >= sizeof(mddev->clevel))
  2899. return -ENOSPC;
  2900. strncpy(mddev->clevel, buf, len);
  2901. if (mddev->clevel[len-1] == '\n')
  2902. len--;
  2903. mddev->clevel[len] = 0;
  2904. mddev->level = LEVEL_NONE;
  2905. return rv;
  2906. }
  2907. /* request to change the personality. Need to ensure:
  2908. * - array is not engaged in resync/recovery/reshape
  2909. * - old personality can be suspended
  2910. * - new personality will access other array.
  2911. */
  2912. if (mddev->sync_thread ||
  2913. mddev->reshape_position != MaxSector ||
  2914. mddev->sysfs_active)
  2915. return -EBUSY;
  2916. if (!mddev->pers->quiesce) {
  2917. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2918. mdname(mddev), mddev->pers->name);
  2919. return -EINVAL;
  2920. }
  2921. /* Now find the new personality */
  2922. if (len == 0 || len >= sizeof(clevel))
  2923. return -EINVAL;
  2924. strncpy(clevel, buf, len);
  2925. if (clevel[len-1] == '\n')
  2926. len--;
  2927. clevel[len] = 0;
  2928. if (strict_strtol(clevel, 10, &level))
  2929. level = LEVEL_NONE;
  2930. if (request_module("md-%s", clevel) != 0)
  2931. request_module("md-level-%s", clevel);
  2932. spin_lock(&pers_lock);
  2933. pers = find_pers(level, clevel);
  2934. if (!pers || !try_module_get(pers->owner)) {
  2935. spin_unlock(&pers_lock);
  2936. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2937. return -EINVAL;
  2938. }
  2939. spin_unlock(&pers_lock);
  2940. if (pers == mddev->pers) {
  2941. /* Nothing to do! */
  2942. module_put(pers->owner);
  2943. return rv;
  2944. }
  2945. if (!pers->takeover) {
  2946. module_put(pers->owner);
  2947. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2948. mdname(mddev), clevel);
  2949. return -EINVAL;
  2950. }
  2951. list_for_each_entry(rdev, &mddev->disks, same_set)
  2952. rdev->new_raid_disk = rdev->raid_disk;
  2953. /* ->takeover must set new_* and/or delta_disks
  2954. * if it succeeds, and may set them when it fails.
  2955. */
  2956. priv = pers->takeover(mddev);
  2957. if (IS_ERR(priv)) {
  2958. mddev->new_level = mddev->level;
  2959. mddev->new_layout = mddev->layout;
  2960. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2961. mddev->raid_disks -= mddev->delta_disks;
  2962. mddev->delta_disks = 0;
  2963. module_put(pers->owner);
  2964. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2965. mdname(mddev), clevel);
  2966. return PTR_ERR(priv);
  2967. }
  2968. /* Looks like we have a winner */
  2969. mddev_suspend(mddev);
  2970. mddev->pers->stop(mddev);
  2971. if (mddev->pers->sync_request == NULL &&
  2972. pers->sync_request != NULL) {
  2973. /* need to add the md_redundancy_group */
  2974. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2975. printk(KERN_WARNING
  2976. "md: cannot register extra attributes for %s\n",
  2977. mdname(mddev));
  2978. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  2979. }
  2980. if (mddev->pers->sync_request != NULL &&
  2981. pers->sync_request == NULL) {
  2982. /* need to remove the md_redundancy_group */
  2983. if (mddev->to_remove == NULL)
  2984. mddev->to_remove = &md_redundancy_group;
  2985. }
  2986. if (mddev->pers->sync_request == NULL &&
  2987. mddev->external) {
  2988. /* We are converting from a no-redundancy array
  2989. * to a redundancy array and metadata is managed
  2990. * externally so we need to be sure that writes
  2991. * won't block due to a need to transition
  2992. * clean->dirty
  2993. * until external management is started.
  2994. */
  2995. mddev->in_sync = 0;
  2996. mddev->safemode_delay = 0;
  2997. mddev->safemode = 0;
  2998. }
  2999. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3000. if (rdev->raid_disk < 0)
  3001. continue;
  3002. if (rdev->new_raid_disk >= mddev->raid_disks)
  3003. rdev->new_raid_disk = -1;
  3004. if (rdev->new_raid_disk == rdev->raid_disk)
  3005. continue;
  3006. sysfs_unlink_rdev(mddev, rdev);
  3007. }
  3008. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3009. if (rdev->raid_disk < 0)
  3010. continue;
  3011. if (rdev->new_raid_disk == rdev->raid_disk)
  3012. continue;
  3013. rdev->raid_disk = rdev->new_raid_disk;
  3014. if (rdev->raid_disk < 0)
  3015. clear_bit(In_sync, &rdev->flags);
  3016. else {
  3017. if (sysfs_link_rdev(mddev, rdev))
  3018. printk(KERN_WARNING "md: cannot register rd%d"
  3019. " for %s after level change\n",
  3020. rdev->raid_disk, mdname(mddev));
  3021. }
  3022. }
  3023. module_put(mddev->pers->owner);
  3024. mddev->pers = pers;
  3025. mddev->private = priv;
  3026. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3027. mddev->level = mddev->new_level;
  3028. mddev->layout = mddev->new_layout;
  3029. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3030. mddev->delta_disks = 0;
  3031. mddev->degraded = 0;
  3032. if (mddev->pers->sync_request == NULL) {
  3033. /* this is now an array without redundancy, so
  3034. * it must always be in_sync
  3035. */
  3036. mddev->in_sync = 1;
  3037. del_timer_sync(&mddev->safemode_timer);
  3038. }
  3039. pers->run(mddev);
  3040. mddev_resume(mddev);
  3041. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3042. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3043. md_wakeup_thread(mddev->thread);
  3044. sysfs_notify(&mddev->kobj, NULL, "level");
  3045. md_new_event(mddev);
  3046. return rv;
  3047. }
  3048. static struct md_sysfs_entry md_level =
  3049. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3050. static ssize_t
  3051. layout_show(mddev_t *mddev, char *page)
  3052. {
  3053. /* just a number, not meaningful for all levels */
  3054. if (mddev->reshape_position != MaxSector &&
  3055. mddev->layout != mddev->new_layout)
  3056. return sprintf(page, "%d (%d)\n",
  3057. mddev->new_layout, mddev->layout);
  3058. return sprintf(page, "%d\n", mddev->layout);
  3059. }
  3060. static ssize_t
  3061. layout_store(mddev_t *mddev, const char *buf, size_t len)
  3062. {
  3063. char *e;
  3064. unsigned long n = simple_strtoul(buf, &e, 10);
  3065. if (!*buf || (*e && *e != '\n'))
  3066. return -EINVAL;
  3067. if (mddev->pers) {
  3068. int err;
  3069. if (mddev->pers->check_reshape == NULL)
  3070. return -EBUSY;
  3071. mddev->new_layout = n;
  3072. err = mddev->pers->check_reshape(mddev);
  3073. if (err) {
  3074. mddev->new_layout = mddev->layout;
  3075. return err;
  3076. }
  3077. } else {
  3078. mddev->new_layout = n;
  3079. if (mddev->reshape_position == MaxSector)
  3080. mddev->layout = n;
  3081. }
  3082. return len;
  3083. }
  3084. static struct md_sysfs_entry md_layout =
  3085. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3086. static ssize_t
  3087. raid_disks_show(mddev_t *mddev, char *page)
  3088. {
  3089. if (mddev->raid_disks == 0)
  3090. return 0;
  3091. if (mddev->reshape_position != MaxSector &&
  3092. mddev->delta_disks != 0)
  3093. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3094. mddev->raid_disks - mddev->delta_disks);
  3095. return sprintf(page, "%d\n", mddev->raid_disks);
  3096. }
  3097. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  3098. static ssize_t
  3099. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  3100. {
  3101. char *e;
  3102. int rv = 0;
  3103. unsigned long n = simple_strtoul(buf, &e, 10);
  3104. if (!*buf || (*e && *e != '\n'))
  3105. return -EINVAL;
  3106. if (mddev->pers)
  3107. rv = update_raid_disks(mddev, n);
  3108. else if (mddev->reshape_position != MaxSector) {
  3109. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3110. mddev->delta_disks = n - olddisks;
  3111. mddev->raid_disks = n;
  3112. } else
  3113. mddev->raid_disks = n;
  3114. return rv ? rv : len;
  3115. }
  3116. static struct md_sysfs_entry md_raid_disks =
  3117. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3118. static ssize_t
  3119. chunk_size_show(mddev_t *mddev, char *page)
  3120. {
  3121. if (mddev->reshape_position != MaxSector &&
  3122. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3123. return sprintf(page, "%d (%d)\n",
  3124. mddev->new_chunk_sectors << 9,
  3125. mddev->chunk_sectors << 9);
  3126. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3127. }
  3128. static ssize_t
  3129. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  3130. {
  3131. char *e;
  3132. unsigned long n = simple_strtoul(buf, &e, 10);
  3133. if (!*buf || (*e && *e != '\n'))
  3134. return -EINVAL;
  3135. if (mddev->pers) {
  3136. int err;
  3137. if (mddev->pers->check_reshape == NULL)
  3138. return -EBUSY;
  3139. mddev->new_chunk_sectors = n >> 9;
  3140. err = mddev->pers->check_reshape(mddev);
  3141. if (err) {
  3142. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3143. return err;
  3144. }
  3145. } else {
  3146. mddev->new_chunk_sectors = n >> 9;
  3147. if (mddev->reshape_position == MaxSector)
  3148. mddev->chunk_sectors = n >> 9;
  3149. }
  3150. return len;
  3151. }
  3152. static struct md_sysfs_entry md_chunk_size =
  3153. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3154. static ssize_t
  3155. resync_start_show(mddev_t *mddev, char *page)
  3156. {
  3157. if (mddev->recovery_cp == MaxSector)
  3158. return sprintf(page, "none\n");
  3159. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3160. }
  3161. static ssize_t
  3162. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  3163. {
  3164. char *e;
  3165. unsigned long long n = simple_strtoull(buf, &e, 10);
  3166. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3167. return -EBUSY;
  3168. if (cmd_match(buf, "none"))
  3169. n = MaxSector;
  3170. else if (!*buf || (*e && *e != '\n'))
  3171. return -EINVAL;
  3172. mddev->recovery_cp = n;
  3173. return len;
  3174. }
  3175. static struct md_sysfs_entry md_resync_start =
  3176. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3177. /*
  3178. * The array state can be:
  3179. *
  3180. * clear
  3181. * No devices, no size, no level
  3182. * Equivalent to STOP_ARRAY ioctl
  3183. * inactive
  3184. * May have some settings, but array is not active
  3185. * all IO results in error
  3186. * When written, doesn't tear down array, but just stops it
  3187. * suspended (not supported yet)
  3188. * All IO requests will block. The array can be reconfigured.
  3189. * Writing this, if accepted, will block until array is quiescent
  3190. * readonly
  3191. * no resync can happen. no superblocks get written.
  3192. * write requests fail
  3193. * read-auto
  3194. * like readonly, but behaves like 'clean' on a write request.
  3195. *
  3196. * clean - no pending writes, but otherwise active.
  3197. * When written to inactive array, starts without resync
  3198. * If a write request arrives then
  3199. * if metadata is known, mark 'dirty' and switch to 'active'.
  3200. * if not known, block and switch to write-pending
  3201. * If written to an active array that has pending writes, then fails.
  3202. * active
  3203. * fully active: IO and resync can be happening.
  3204. * When written to inactive array, starts with resync
  3205. *
  3206. * write-pending
  3207. * clean, but writes are blocked waiting for 'active' to be written.
  3208. *
  3209. * active-idle
  3210. * like active, but no writes have been seen for a while (100msec).
  3211. *
  3212. */
  3213. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3214. write_pending, active_idle, bad_word};
  3215. static char *array_states[] = {
  3216. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3217. "write-pending", "active-idle", NULL };
  3218. static int match_word(const char *word, char **list)
  3219. {
  3220. int n;
  3221. for (n=0; list[n]; n++)
  3222. if (cmd_match(word, list[n]))
  3223. break;
  3224. return n;
  3225. }
  3226. static ssize_t
  3227. array_state_show(mddev_t *mddev, char *page)
  3228. {
  3229. enum array_state st = inactive;
  3230. if (mddev->pers)
  3231. switch(mddev->ro) {
  3232. case 1:
  3233. st = readonly;
  3234. break;
  3235. case 2:
  3236. st = read_auto;
  3237. break;
  3238. case 0:
  3239. if (mddev->in_sync)
  3240. st = clean;
  3241. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3242. st = write_pending;
  3243. else if (mddev->safemode)
  3244. st = active_idle;
  3245. else
  3246. st = active;
  3247. }
  3248. else {
  3249. if (list_empty(&mddev->disks) &&
  3250. mddev->raid_disks == 0 &&
  3251. mddev->dev_sectors == 0)
  3252. st = clear;
  3253. else
  3254. st = inactive;
  3255. }
  3256. return sprintf(page, "%s\n", array_states[st]);
  3257. }
  3258. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  3259. static int md_set_readonly(mddev_t * mddev, int is_open);
  3260. static int do_md_run(mddev_t * mddev);
  3261. static int restart_array(mddev_t *mddev);
  3262. static ssize_t
  3263. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  3264. {
  3265. int err = -EINVAL;
  3266. enum array_state st = match_word(buf, array_states);
  3267. switch(st) {
  3268. case bad_word:
  3269. break;
  3270. case clear:
  3271. /* stopping an active array */
  3272. if (atomic_read(&mddev->openers) > 0)
  3273. return -EBUSY;
  3274. err = do_md_stop(mddev, 0, 0);
  3275. break;
  3276. case inactive:
  3277. /* stopping an active array */
  3278. if (mddev->pers) {
  3279. if (atomic_read(&mddev->openers) > 0)
  3280. return -EBUSY;
  3281. err = do_md_stop(mddev, 2, 0);
  3282. } else
  3283. err = 0; /* already inactive */
  3284. break;
  3285. case suspended:
  3286. break; /* not supported yet */
  3287. case readonly:
  3288. if (mddev->pers)
  3289. err = md_set_readonly(mddev, 0);
  3290. else {
  3291. mddev->ro = 1;
  3292. set_disk_ro(mddev->gendisk, 1);
  3293. err = do_md_run(mddev);
  3294. }
  3295. break;
  3296. case read_auto:
  3297. if (mddev->pers) {
  3298. if (mddev->ro == 0)
  3299. err = md_set_readonly(mddev, 0);
  3300. else if (mddev->ro == 1)
  3301. err = restart_array(mddev);
  3302. if (err == 0) {
  3303. mddev->ro = 2;
  3304. set_disk_ro(mddev->gendisk, 0);
  3305. }
  3306. } else {
  3307. mddev->ro = 2;
  3308. err = do_md_run(mddev);
  3309. }
  3310. break;
  3311. case clean:
  3312. if (mddev->pers) {
  3313. restart_array(mddev);
  3314. spin_lock_irq(&mddev->write_lock);
  3315. if (atomic_read(&mddev->writes_pending) == 0) {
  3316. if (mddev->in_sync == 0) {
  3317. mddev->in_sync = 1;
  3318. if (mddev->safemode == 1)
  3319. mddev->safemode = 0;
  3320. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3321. }
  3322. err = 0;
  3323. } else
  3324. err = -EBUSY;
  3325. spin_unlock_irq(&mddev->write_lock);
  3326. } else
  3327. err = -EINVAL;
  3328. break;
  3329. case active:
  3330. if (mddev->pers) {
  3331. restart_array(mddev);
  3332. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3333. wake_up(&mddev->sb_wait);
  3334. err = 0;
  3335. } else {
  3336. mddev->ro = 0;
  3337. set_disk_ro(mddev->gendisk, 0);
  3338. err = do_md_run(mddev);
  3339. }
  3340. break;
  3341. case write_pending:
  3342. case active_idle:
  3343. /* these cannot be set */
  3344. break;
  3345. }
  3346. if (err)
  3347. return err;
  3348. else {
  3349. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3350. return len;
  3351. }
  3352. }
  3353. static struct md_sysfs_entry md_array_state =
  3354. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3355. static ssize_t
  3356. max_corrected_read_errors_show(mddev_t *mddev, char *page) {
  3357. return sprintf(page, "%d\n",
  3358. atomic_read(&mddev->max_corr_read_errors));
  3359. }
  3360. static ssize_t
  3361. max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
  3362. {
  3363. char *e;
  3364. unsigned long n = simple_strtoul(buf, &e, 10);
  3365. if (*buf && (*e == 0 || *e == '\n')) {
  3366. atomic_set(&mddev->max_corr_read_errors, n);
  3367. return len;
  3368. }
  3369. return -EINVAL;
  3370. }
  3371. static struct md_sysfs_entry max_corr_read_errors =
  3372. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3373. max_corrected_read_errors_store);
  3374. static ssize_t
  3375. null_show(mddev_t *mddev, char *page)
  3376. {
  3377. return -EINVAL;
  3378. }
  3379. static ssize_t
  3380. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  3381. {
  3382. /* buf must be %d:%d\n? giving major and minor numbers */
  3383. /* The new device is added to the array.
  3384. * If the array has a persistent superblock, we read the
  3385. * superblock to initialise info and check validity.
  3386. * Otherwise, only checking done is that in bind_rdev_to_array,
  3387. * which mainly checks size.
  3388. */
  3389. char *e;
  3390. int major = simple_strtoul(buf, &e, 10);
  3391. int minor;
  3392. dev_t dev;
  3393. mdk_rdev_t *rdev;
  3394. int err;
  3395. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3396. return -EINVAL;
  3397. minor = simple_strtoul(e+1, &e, 10);
  3398. if (*e && *e != '\n')
  3399. return -EINVAL;
  3400. dev = MKDEV(major, minor);
  3401. if (major != MAJOR(dev) ||
  3402. minor != MINOR(dev))
  3403. return -EOVERFLOW;
  3404. if (mddev->persistent) {
  3405. rdev = md_import_device(dev, mddev->major_version,
  3406. mddev->minor_version);
  3407. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3408. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3409. mdk_rdev_t, same_set);
  3410. err = super_types[mddev->major_version]
  3411. .load_super(rdev, rdev0, mddev->minor_version);
  3412. if (err < 0)
  3413. goto out;
  3414. }
  3415. } else if (mddev->external)
  3416. rdev = md_import_device(dev, -2, -1);
  3417. else
  3418. rdev = md_import_device(dev, -1, -1);
  3419. if (IS_ERR(rdev))
  3420. return PTR_ERR(rdev);
  3421. err = bind_rdev_to_array(rdev, mddev);
  3422. out:
  3423. if (err)
  3424. export_rdev(rdev);
  3425. return err ? err : len;
  3426. }
  3427. static struct md_sysfs_entry md_new_device =
  3428. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3429. static ssize_t
  3430. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  3431. {
  3432. char *end;
  3433. unsigned long chunk, end_chunk;
  3434. if (!mddev->bitmap)
  3435. goto out;
  3436. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3437. while (*buf) {
  3438. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3439. if (buf == end) break;
  3440. if (*end == '-') { /* range */
  3441. buf = end + 1;
  3442. end_chunk = simple_strtoul(buf, &end, 0);
  3443. if (buf == end) break;
  3444. }
  3445. if (*end && !isspace(*end)) break;
  3446. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3447. buf = skip_spaces(end);
  3448. }
  3449. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3450. out:
  3451. return len;
  3452. }
  3453. static struct md_sysfs_entry md_bitmap =
  3454. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3455. static ssize_t
  3456. size_show(mddev_t *mddev, char *page)
  3457. {
  3458. return sprintf(page, "%llu\n",
  3459. (unsigned long long)mddev->dev_sectors / 2);
  3460. }
  3461. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3462. static ssize_t
  3463. size_store(mddev_t *mddev, const char *buf, size_t len)
  3464. {
  3465. /* If array is inactive, we can reduce the component size, but
  3466. * not increase it (except from 0).
  3467. * If array is active, we can try an on-line resize
  3468. */
  3469. sector_t sectors;
  3470. int err = strict_blocks_to_sectors(buf, &sectors);
  3471. if (err < 0)
  3472. return err;
  3473. if (mddev->pers) {
  3474. err = update_size(mddev, sectors);
  3475. md_update_sb(mddev, 1);
  3476. } else {
  3477. if (mddev->dev_sectors == 0 ||
  3478. mddev->dev_sectors > sectors)
  3479. mddev->dev_sectors = sectors;
  3480. else
  3481. err = -ENOSPC;
  3482. }
  3483. return err ? err : len;
  3484. }
  3485. static struct md_sysfs_entry md_size =
  3486. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3487. /* Metdata version.
  3488. * This is one of
  3489. * 'none' for arrays with no metadata (good luck...)
  3490. * 'external' for arrays with externally managed metadata,
  3491. * or N.M for internally known formats
  3492. */
  3493. static ssize_t
  3494. metadata_show(mddev_t *mddev, char *page)
  3495. {
  3496. if (mddev->persistent)
  3497. return sprintf(page, "%d.%d\n",
  3498. mddev->major_version, mddev->minor_version);
  3499. else if (mddev->external)
  3500. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3501. else
  3502. return sprintf(page, "none\n");
  3503. }
  3504. static ssize_t
  3505. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3506. {
  3507. int major, minor;
  3508. char *e;
  3509. /* Changing the details of 'external' metadata is
  3510. * always permitted. Otherwise there must be
  3511. * no devices attached to the array.
  3512. */
  3513. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3514. ;
  3515. else if (!list_empty(&mddev->disks))
  3516. return -EBUSY;
  3517. if (cmd_match(buf, "none")) {
  3518. mddev->persistent = 0;
  3519. mddev->external = 0;
  3520. mddev->major_version = 0;
  3521. mddev->minor_version = 90;
  3522. return len;
  3523. }
  3524. if (strncmp(buf, "external:", 9) == 0) {
  3525. size_t namelen = len-9;
  3526. if (namelen >= sizeof(mddev->metadata_type))
  3527. namelen = sizeof(mddev->metadata_type)-1;
  3528. strncpy(mddev->metadata_type, buf+9, namelen);
  3529. mddev->metadata_type[namelen] = 0;
  3530. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3531. mddev->metadata_type[--namelen] = 0;
  3532. mddev->persistent = 0;
  3533. mddev->external = 1;
  3534. mddev->major_version = 0;
  3535. mddev->minor_version = 90;
  3536. return len;
  3537. }
  3538. major = simple_strtoul(buf, &e, 10);
  3539. if (e==buf || *e != '.')
  3540. return -EINVAL;
  3541. buf = e+1;
  3542. minor = simple_strtoul(buf, &e, 10);
  3543. if (e==buf || (*e && *e != '\n') )
  3544. return -EINVAL;
  3545. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3546. return -ENOENT;
  3547. mddev->major_version = major;
  3548. mddev->minor_version = minor;
  3549. mddev->persistent = 1;
  3550. mddev->external = 0;
  3551. return len;
  3552. }
  3553. static struct md_sysfs_entry md_metadata =
  3554. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3555. static ssize_t
  3556. action_show(mddev_t *mddev, char *page)
  3557. {
  3558. char *type = "idle";
  3559. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3560. type = "frozen";
  3561. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3562. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3563. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3564. type = "reshape";
  3565. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3566. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3567. type = "resync";
  3568. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3569. type = "check";
  3570. else
  3571. type = "repair";
  3572. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3573. type = "recover";
  3574. }
  3575. return sprintf(page, "%s\n", type);
  3576. }
  3577. static void reap_sync_thread(mddev_t *mddev);
  3578. static ssize_t
  3579. action_store(mddev_t *mddev, const char *page, size_t len)
  3580. {
  3581. if (!mddev->pers || !mddev->pers->sync_request)
  3582. return -EINVAL;
  3583. if (cmd_match(page, "frozen"))
  3584. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3585. else
  3586. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3587. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3588. if (mddev->sync_thread) {
  3589. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3590. reap_sync_thread(mddev);
  3591. }
  3592. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3593. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3594. return -EBUSY;
  3595. else if (cmd_match(page, "resync"))
  3596. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3597. else if (cmd_match(page, "recover")) {
  3598. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3599. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3600. } else if (cmd_match(page, "reshape")) {
  3601. int err;
  3602. if (mddev->pers->start_reshape == NULL)
  3603. return -EINVAL;
  3604. err = mddev->pers->start_reshape(mddev);
  3605. if (err)
  3606. return err;
  3607. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3608. } else {
  3609. if (cmd_match(page, "check"))
  3610. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3611. else if (!cmd_match(page, "repair"))
  3612. return -EINVAL;
  3613. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3614. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3615. }
  3616. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3617. md_wakeup_thread(mddev->thread);
  3618. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3619. return len;
  3620. }
  3621. static ssize_t
  3622. mismatch_cnt_show(mddev_t *mddev, char *page)
  3623. {
  3624. return sprintf(page, "%llu\n",
  3625. (unsigned long long) mddev->resync_mismatches);
  3626. }
  3627. static struct md_sysfs_entry md_scan_mode =
  3628. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3629. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3630. static ssize_t
  3631. sync_min_show(mddev_t *mddev, char *page)
  3632. {
  3633. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3634. mddev->sync_speed_min ? "local": "system");
  3635. }
  3636. static ssize_t
  3637. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3638. {
  3639. int min;
  3640. char *e;
  3641. if (strncmp(buf, "system", 6)==0) {
  3642. mddev->sync_speed_min = 0;
  3643. return len;
  3644. }
  3645. min = simple_strtoul(buf, &e, 10);
  3646. if (buf == e || (*e && *e != '\n') || min <= 0)
  3647. return -EINVAL;
  3648. mddev->sync_speed_min = min;
  3649. return len;
  3650. }
  3651. static struct md_sysfs_entry md_sync_min =
  3652. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3653. static ssize_t
  3654. sync_max_show(mddev_t *mddev, char *page)
  3655. {
  3656. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3657. mddev->sync_speed_max ? "local": "system");
  3658. }
  3659. static ssize_t
  3660. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3661. {
  3662. int max;
  3663. char *e;
  3664. if (strncmp(buf, "system", 6)==0) {
  3665. mddev->sync_speed_max = 0;
  3666. return len;
  3667. }
  3668. max = simple_strtoul(buf, &e, 10);
  3669. if (buf == e || (*e && *e != '\n') || max <= 0)
  3670. return -EINVAL;
  3671. mddev->sync_speed_max = max;
  3672. return len;
  3673. }
  3674. static struct md_sysfs_entry md_sync_max =
  3675. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3676. static ssize_t
  3677. degraded_show(mddev_t *mddev, char *page)
  3678. {
  3679. return sprintf(page, "%d\n", mddev->degraded);
  3680. }
  3681. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3682. static ssize_t
  3683. sync_force_parallel_show(mddev_t *mddev, char *page)
  3684. {
  3685. return sprintf(page, "%d\n", mddev->parallel_resync);
  3686. }
  3687. static ssize_t
  3688. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3689. {
  3690. long n;
  3691. if (strict_strtol(buf, 10, &n))
  3692. return -EINVAL;
  3693. if (n != 0 && n != 1)
  3694. return -EINVAL;
  3695. mddev->parallel_resync = n;
  3696. if (mddev->sync_thread)
  3697. wake_up(&resync_wait);
  3698. return len;
  3699. }
  3700. /* force parallel resync, even with shared block devices */
  3701. static struct md_sysfs_entry md_sync_force_parallel =
  3702. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3703. sync_force_parallel_show, sync_force_parallel_store);
  3704. static ssize_t
  3705. sync_speed_show(mddev_t *mddev, char *page)
  3706. {
  3707. unsigned long resync, dt, db;
  3708. if (mddev->curr_resync == 0)
  3709. return sprintf(page, "none\n");
  3710. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3711. dt = (jiffies - mddev->resync_mark) / HZ;
  3712. if (!dt) dt++;
  3713. db = resync - mddev->resync_mark_cnt;
  3714. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3715. }
  3716. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3717. static ssize_t
  3718. sync_completed_show(mddev_t *mddev, char *page)
  3719. {
  3720. unsigned long long max_sectors, resync;
  3721. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3722. return sprintf(page, "none\n");
  3723. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3724. max_sectors = mddev->resync_max_sectors;
  3725. else
  3726. max_sectors = mddev->dev_sectors;
  3727. resync = mddev->curr_resync_completed;
  3728. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3729. }
  3730. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3731. static ssize_t
  3732. min_sync_show(mddev_t *mddev, char *page)
  3733. {
  3734. return sprintf(page, "%llu\n",
  3735. (unsigned long long)mddev->resync_min);
  3736. }
  3737. static ssize_t
  3738. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3739. {
  3740. unsigned long long min;
  3741. if (strict_strtoull(buf, 10, &min))
  3742. return -EINVAL;
  3743. if (min > mddev->resync_max)
  3744. return -EINVAL;
  3745. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3746. return -EBUSY;
  3747. /* Must be a multiple of chunk_size */
  3748. if (mddev->chunk_sectors) {
  3749. sector_t temp = min;
  3750. if (sector_div(temp, mddev->chunk_sectors))
  3751. return -EINVAL;
  3752. }
  3753. mddev->resync_min = min;
  3754. return len;
  3755. }
  3756. static struct md_sysfs_entry md_min_sync =
  3757. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3758. static ssize_t
  3759. max_sync_show(mddev_t *mddev, char *page)
  3760. {
  3761. if (mddev->resync_max == MaxSector)
  3762. return sprintf(page, "max\n");
  3763. else
  3764. return sprintf(page, "%llu\n",
  3765. (unsigned long long)mddev->resync_max);
  3766. }
  3767. static ssize_t
  3768. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3769. {
  3770. if (strncmp(buf, "max", 3) == 0)
  3771. mddev->resync_max = MaxSector;
  3772. else {
  3773. unsigned long long max;
  3774. if (strict_strtoull(buf, 10, &max))
  3775. return -EINVAL;
  3776. if (max < mddev->resync_min)
  3777. return -EINVAL;
  3778. if (max < mddev->resync_max &&
  3779. mddev->ro == 0 &&
  3780. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3781. return -EBUSY;
  3782. /* Must be a multiple of chunk_size */
  3783. if (mddev->chunk_sectors) {
  3784. sector_t temp = max;
  3785. if (sector_div(temp, mddev->chunk_sectors))
  3786. return -EINVAL;
  3787. }
  3788. mddev->resync_max = max;
  3789. }
  3790. wake_up(&mddev->recovery_wait);
  3791. return len;
  3792. }
  3793. static struct md_sysfs_entry md_max_sync =
  3794. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3795. static ssize_t
  3796. suspend_lo_show(mddev_t *mddev, char *page)
  3797. {
  3798. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3799. }
  3800. static ssize_t
  3801. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3802. {
  3803. char *e;
  3804. unsigned long long new = simple_strtoull(buf, &e, 10);
  3805. unsigned long long old = mddev->suspend_lo;
  3806. if (mddev->pers == NULL ||
  3807. mddev->pers->quiesce == NULL)
  3808. return -EINVAL;
  3809. if (buf == e || (*e && *e != '\n'))
  3810. return -EINVAL;
  3811. mddev->suspend_lo = new;
  3812. if (new >= old)
  3813. /* Shrinking suspended region */
  3814. mddev->pers->quiesce(mddev, 2);
  3815. else {
  3816. /* Expanding suspended region - need to wait */
  3817. mddev->pers->quiesce(mddev, 1);
  3818. mddev->pers->quiesce(mddev, 0);
  3819. }
  3820. return len;
  3821. }
  3822. static struct md_sysfs_entry md_suspend_lo =
  3823. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3824. static ssize_t
  3825. suspend_hi_show(mddev_t *mddev, char *page)
  3826. {
  3827. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3828. }
  3829. static ssize_t
  3830. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3831. {
  3832. char *e;
  3833. unsigned long long new = simple_strtoull(buf, &e, 10);
  3834. unsigned long long old = mddev->suspend_hi;
  3835. if (mddev->pers == NULL ||
  3836. mddev->pers->quiesce == NULL)
  3837. return -EINVAL;
  3838. if (buf == e || (*e && *e != '\n'))
  3839. return -EINVAL;
  3840. mddev->suspend_hi = new;
  3841. if (new <= old)
  3842. /* Shrinking suspended region */
  3843. mddev->pers->quiesce(mddev, 2);
  3844. else {
  3845. /* Expanding suspended region - need to wait */
  3846. mddev->pers->quiesce(mddev, 1);
  3847. mddev->pers->quiesce(mddev, 0);
  3848. }
  3849. return len;
  3850. }
  3851. static struct md_sysfs_entry md_suspend_hi =
  3852. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3853. static ssize_t
  3854. reshape_position_show(mddev_t *mddev, char *page)
  3855. {
  3856. if (mddev->reshape_position != MaxSector)
  3857. return sprintf(page, "%llu\n",
  3858. (unsigned long long)mddev->reshape_position);
  3859. strcpy(page, "none\n");
  3860. return 5;
  3861. }
  3862. static ssize_t
  3863. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3864. {
  3865. char *e;
  3866. unsigned long long new = simple_strtoull(buf, &e, 10);
  3867. if (mddev->pers)
  3868. return -EBUSY;
  3869. if (buf == e || (*e && *e != '\n'))
  3870. return -EINVAL;
  3871. mddev->reshape_position = new;
  3872. mddev->delta_disks = 0;
  3873. mddev->new_level = mddev->level;
  3874. mddev->new_layout = mddev->layout;
  3875. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3876. return len;
  3877. }
  3878. static struct md_sysfs_entry md_reshape_position =
  3879. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3880. reshape_position_store);
  3881. static ssize_t
  3882. array_size_show(mddev_t *mddev, char *page)
  3883. {
  3884. if (mddev->external_size)
  3885. return sprintf(page, "%llu\n",
  3886. (unsigned long long)mddev->array_sectors/2);
  3887. else
  3888. return sprintf(page, "default\n");
  3889. }
  3890. static ssize_t
  3891. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3892. {
  3893. sector_t sectors;
  3894. if (strncmp(buf, "default", 7) == 0) {
  3895. if (mddev->pers)
  3896. sectors = mddev->pers->size(mddev, 0, 0);
  3897. else
  3898. sectors = mddev->array_sectors;
  3899. mddev->external_size = 0;
  3900. } else {
  3901. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3902. return -EINVAL;
  3903. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3904. return -E2BIG;
  3905. mddev->external_size = 1;
  3906. }
  3907. mddev->array_sectors = sectors;
  3908. if (mddev->pers) {
  3909. set_capacity(mddev->gendisk, mddev->array_sectors);
  3910. revalidate_disk(mddev->gendisk);
  3911. }
  3912. return len;
  3913. }
  3914. static struct md_sysfs_entry md_array_size =
  3915. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3916. array_size_store);
  3917. static struct attribute *md_default_attrs[] = {
  3918. &md_level.attr,
  3919. &md_layout.attr,
  3920. &md_raid_disks.attr,
  3921. &md_chunk_size.attr,
  3922. &md_size.attr,
  3923. &md_resync_start.attr,
  3924. &md_metadata.attr,
  3925. &md_new_device.attr,
  3926. &md_safe_delay.attr,
  3927. &md_array_state.attr,
  3928. &md_reshape_position.attr,
  3929. &md_array_size.attr,
  3930. &max_corr_read_errors.attr,
  3931. NULL,
  3932. };
  3933. static struct attribute *md_redundancy_attrs[] = {
  3934. &md_scan_mode.attr,
  3935. &md_mismatches.attr,
  3936. &md_sync_min.attr,
  3937. &md_sync_max.attr,
  3938. &md_sync_speed.attr,
  3939. &md_sync_force_parallel.attr,
  3940. &md_sync_completed.attr,
  3941. &md_min_sync.attr,
  3942. &md_max_sync.attr,
  3943. &md_suspend_lo.attr,
  3944. &md_suspend_hi.attr,
  3945. &md_bitmap.attr,
  3946. &md_degraded.attr,
  3947. NULL,
  3948. };
  3949. static struct attribute_group md_redundancy_group = {
  3950. .name = NULL,
  3951. .attrs = md_redundancy_attrs,
  3952. };
  3953. static ssize_t
  3954. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3955. {
  3956. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3957. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3958. ssize_t rv;
  3959. if (!entry->show)
  3960. return -EIO;
  3961. rv = mddev_lock(mddev);
  3962. if (!rv) {
  3963. rv = entry->show(mddev, page);
  3964. mddev_unlock(mddev);
  3965. }
  3966. return rv;
  3967. }
  3968. static ssize_t
  3969. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3970. const char *page, size_t length)
  3971. {
  3972. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3973. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3974. ssize_t rv;
  3975. if (!entry->store)
  3976. return -EIO;
  3977. if (!capable(CAP_SYS_ADMIN))
  3978. return -EACCES;
  3979. rv = mddev_lock(mddev);
  3980. if (mddev->hold_active == UNTIL_IOCTL)
  3981. mddev->hold_active = 0;
  3982. if (!rv) {
  3983. rv = entry->store(mddev, page, length);
  3984. mddev_unlock(mddev);
  3985. }
  3986. return rv;
  3987. }
  3988. static void md_free(struct kobject *ko)
  3989. {
  3990. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3991. if (mddev->sysfs_state)
  3992. sysfs_put(mddev->sysfs_state);
  3993. if (mddev->gendisk) {
  3994. del_gendisk(mddev->gendisk);
  3995. put_disk(mddev->gendisk);
  3996. }
  3997. if (mddev->queue)
  3998. blk_cleanup_queue(mddev->queue);
  3999. kfree(mddev);
  4000. }
  4001. static const struct sysfs_ops md_sysfs_ops = {
  4002. .show = md_attr_show,
  4003. .store = md_attr_store,
  4004. };
  4005. static struct kobj_type md_ktype = {
  4006. .release = md_free,
  4007. .sysfs_ops = &md_sysfs_ops,
  4008. .default_attrs = md_default_attrs,
  4009. };
  4010. int mdp_major = 0;
  4011. static void mddev_delayed_delete(struct work_struct *ws)
  4012. {
  4013. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  4014. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4015. kobject_del(&mddev->kobj);
  4016. kobject_put(&mddev->kobj);
  4017. }
  4018. static int md_alloc(dev_t dev, char *name)
  4019. {
  4020. static DEFINE_MUTEX(disks_mutex);
  4021. mddev_t *mddev = mddev_find(dev);
  4022. struct gendisk *disk;
  4023. int partitioned;
  4024. int shift;
  4025. int unit;
  4026. int error;
  4027. if (!mddev)
  4028. return -ENODEV;
  4029. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4030. shift = partitioned ? MdpMinorShift : 0;
  4031. unit = MINOR(mddev->unit) >> shift;
  4032. /* wait for any previous instance of this device to be
  4033. * completely removed (mddev_delayed_delete).
  4034. */
  4035. flush_workqueue(md_misc_wq);
  4036. mutex_lock(&disks_mutex);
  4037. error = -EEXIST;
  4038. if (mddev->gendisk)
  4039. goto abort;
  4040. if (name) {
  4041. /* Need to ensure that 'name' is not a duplicate.
  4042. */
  4043. mddev_t *mddev2;
  4044. spin_lock(&all_mddevs_lock);
  4045. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4046. if (mddev2->gendisk &&
  4047. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4048. spin_unlock(&all_mddevs_lock);
  4049. goto abort;
  4050. }
  4051. spin_unlock(&all_mddevs_lock);
  4052. }
  4053. error = -ENOMEM;
  4054. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4055. if (!mddev->queue)
  4056. goto abort;
  4057. mddev->queue->queuedata = mddev;
  4058. blk_queue_make_request(mddev->queue, md_make_request);
  4059. disk = alloc_disk(1 << shift);
  4060. if (!disk) {
  4061. blk_cleanup_queue(mddev->queue);
  4062. mddev->queue = NULL;
  4063. goto abort;
  4064. }
  4065. disk->major = MAJOR(mddev->unit);
  4066. disk->first_minor = unit << shift;
  4067. if (name)
  4068. strcpy(disk->disk_name, name);
  4069. else if (partitioned)
  4070. sprintf(disk->disk_name, "md_d%d", unit);
  4071. else
  4072. sprintf(disk->disk_name, "md%d", unit);
  4073. disk->fops = &md_fops;
  4074. disk->private_data = mddev;
  4075. disk->queue = mddev->queue;
  4076. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4077. /* Allow extended partitions. This makes the
  4078. * 'mdp' device redundant, but we can't really
  4079. * remove it now.
  4080. */
  4081. disk->flags |= GENHD_FL_EXT_DEVT;
  4082. mddev->gendisk = disk;
  4083. /* As soon as we call add_disk(), another thread could get
  4084. * through to md_open, so make sure it doesn't get too far
  4085. */
  4086. mutex_lock(&mddev->open_mutex);
  4087. add_disk(disk);
  4088. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4089. &disk_to_dev(disk)->kobj, "%s", "md");
  4090. if (error) {
  4091. /* This isn't possible, but as kobject_init_and_add is marked
  4092. * __must_check, we must do something with the result
  4093. */
  4094. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4095. disk->disk_name);
  4096. error = 0;
  4097. }
  4098. if (mddev->kobj.sd &&
  4099. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4100. printk(KERN_DEBUG "pointless warning\n");
  4101. mutex_unlock(&mddev->open_mutex);
  4102. abort:
  4103. mutex_unlock(&disks_mutex);
  4104. if (!error && mddev->kobj.sd) {
  4105. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4106. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4107. }
  4108. mddev_put(mddev);
  4109. return error;
  4110. }
  4111. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4112. {
  4113. md_alloc(dev, NULL);
  4114. return NULL;
  4115. }
  4116. static int add_named_array(const char *val, struct kernel_param *kp)
  4117. {
  4118. /* val must be "md_*" where * is not all digits.
  4119. * We allocate an array with a large free minor number, and
  4120. * set the name to val. val must not already be an active name.
  4121. */
  4122. int len = strlen(val);
  4123. char buf[DISK_NAME_LEN];
  4124. while (len && val[len-1] == '\n')
  4125. len--;
  4126. if (len >= DISK_NAME_LEN)
  4127. return -E2BIG;
  4128. strlcpy(buf, val, len+1);
  4129. if (strncmp(buf, "md_", 3) != 0)
  4130. return -EINVAL;
  4131. return md_alloc(0, buf);
  4132. }
  4133. static void md_safemode_timeout(unsigned long data)
  4134. {
  4135. mddev_t *mddev = (mddev_t *) data;
  4136. if (!atomic_read(&mddev->writes_pending)) {
  4137. mddev->safemode = 1;
  4138. if (mddev->external)
  4139. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4140. }
  4141. md_wakeup_thread(mddev->thread);
  4142. }
  4143. static int start_dirty_degraded;
  4144. int md_run(mddev_t *mddev)
  4145. {
  4146. int err;
  4147. mdk_rdev_t *rdev;
  4148. struct mdk_personality *pers;
  4149. if (list_empty(&mddev->disks))
  4150. /* cannot run an array with no devices.. */
  4151. return -EINVAL;
  4152. if (mddev->pers)
  4153. return -EBUSY;
  4154. /* Cannot run until previous stop completes properly */
  4155. if (mddev->sysfs_active)
  4156. return -EBUSY;
  4157. /*
  4158. * Analyze all RAID superblock(s)
  4159. */
  4160. if (!mddev->raid_disks) {
  4161. if (!mddev->persistent)
  4162. return -EINVAL;
  4163. analyze_sbs(mddev);
  4164. }
  4165. if (mddev->level != LEVEL_NONE)
  4166. request_module("md-level-%d", mddev->level);
  4167. else if (mddev->clevel[0])
  4168. request_module("md-%s", mddev->clevel);
  4169. /*
  4170. * Drop all container device buffers, from now on
  4171. * the only valid external interface is through the md
  4172. * device.
  4173. */
  4174. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4175. if (test_bit(Faulty, &rdev->flags))
  4176. continue;
  4177. sync_blockdev(rdev->bdev);
  4178. invalidate_bdev(rdev->bdev);
  4179. /* perform some consistency tests on the device.
  4180. * We don't want the data to overlap the metadata,
  4181. * Internal Bitmap issues have been handled elsewhere.
  4182. */
  4183. if (rdev->meta_bdev) {
  4184. /* Nothing to check */;
  4185. } else if (rdev->data_offset < rdev->sb_start) {
  4186. if (mddev->dev_sectors &&
  4187. rdev->data_offset + mddev->dev_sectors
  4188. > rdev->sb_start) {
  4189. printk("md: %s: data overlaps metadata\n",
  4190. mdname(mddev));
  4191. return -EINVAL;
  4192. }
  4193. } else {
  4194. if (rdev->sb_start + rdev->sb_size/512
  4195. > rdev->data_offset) {
  4196. printk("md: %s: metadata overlaps data\n",
  4197. mdname(mddev));
  4198. return -EINVAL;
  4199. }
  4200. }
  4201. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4202. }
  4203. if (mddev->bio_set == NULL)
  4204. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4205. sizeof(mddev_t *));
  4206. spin_lock(&pers_lock);
  4207. pers = find_pers(mddev->level, mddev->clevel);
  4208. if (!pers || !try_module_get(pers->owner)) {
  4209. spin_unlock(&pers_lock);
  4210. if (mddev->level != LEVEL_NONE)
  4211. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4212. mddev->level);
  4213. else
  4214. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4215. mddev->clevel);
  4216. return -EINVAL;
  4217. }
  4218. mddev->pers = pers;
  4219. spin_unlock(&pers_lock);
  4220. if (mddev->level != pers->level) {
  4221. mddev->level = pers->level;
  4222. mddev->new_level = pers->level;
  4223. }
  4224. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4225. if (mddev->reshape_position != MaxSector &&
  4226. pers->start_reshape == NULL) {
  4227. /* This personality cannot handle reshaping... */
  4228. mddev->pers = NULL;
  4229. module_put(pers->owner);
  4230. return -EINVAL;
  4231. }
  4232. if (pers->sync_request) {
  4233. /* Warn if this is a potentially silly
  4234. * configuration.
  4235. */
  4236. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4237. mdk_rdev_t *rdev2;
  4238. int warned = 0;
  4239. list_for_each_entry(rdev, &mddev->disks, same_set)
  4240. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4241. if (rdev < rdev2 &&
  4242. rdev->bdev->bd_contains ==
  4243. rdev2->bdev->bd_contains) {
  4244. printk(KERN_WARNING
  4245. "%s: WARNING: %s appears to be"
  4246. " on the same physical disk as"
  4247. " %s.\n",
  4248. mdname(mddev),
  4249. bdevname(rdev->bdev,b),
  4250. bdevname(rdev2->bdev,b2));
  4251. warned = 1;
  4252. }
  4253. }
  4254. if (warned)
  4255. printk(KERN_WARNING
  4256. "True protection against single-disk"
  4257. " failure might be compromised.\n");
  4258. }
  4259. mddev->recovery = 0;
  4260. /* may be over-ridden by personality */
  4261. mddev->resync_max_sectors = mddev->dev_sectors;
  4262. mddev->ok_start_degraded = start_dirty_degraded;
  4263. if (start_readonly && mddev->ro == 0)
  4264. mddev->ro = 2; /* read-only, but switch on first write */
  4265. err = mddev->pers->run(mddev);
  4266. if (err)
  4267. printk(KERN_ERR "md: pers->run() failed ...\n");
  4268. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4269. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4270. " but 'external_size' not in effect?\n", __func__);
  4271. printk(KERN_ERR
  4272. "md: invalid array_size %llu > default size %llu\n",
  4273. (unsigned long long)mddev->array_sectors / 2,
  4274. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4275. err = -EINVAL;
  4276. mddev->pers->stop(mddev);
  4277. }
  4278. if (err == 0 && mddev->pers->sync_request) {
  4279. err = bitmap_create(mddev);
  4280. if (err) {
  4281. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4282. mdname(mddev), err);
  4283. mddev->pers->stop(mddev);
  4284. }
  4285. }
  4286. if (err) {
  4287. module_put(mddev->pers->owner);
  4288. mddev->pers = NULL;
  4289. bitmap_destroy(mddev);
  4290. return err;
  4291. }
  4292. if (mddev->pers->sync_request) {
  4293. if (mddev->kobj.sd &&
  4294. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4295. printk(KERN_WARNING
  4296. "md: cannot register extra attributes for %s\n",
  4297. mdname(mddev));
  4298. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4299. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4300. mddev->ro = 0;
  4301. atomic_set(&mddev->writes_pending,0);
  4302. atomic_set(&mddev->max_corr_read_errors,
  4303. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4304. mddev->safemode = 0;
  4305. mddev->safemode_timer.function = md_safemode_timeout;
  4306. mddev->safemode_timer.data = (unsigned long) mddev;
  4307. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4308. mddev->in_sync = 1;
  4309. smp_wmb();
  4310. mddev->ready = 1;
  4311. list_for_each_entry(rdev, &mddev->disks, same_set)
  4312. if (rdev->raid_disk >= 0)
  4313. if (sysfs_link_rdev(mddev, rdev))
  4314. /* failure here is OK */;
  4315. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4316. if (mddev->flags)
  4317. md_update_sb(mddev, 0);
  4318. md_new_event(mddev);
  4319. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4320. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4321. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4322. return 0;
  4323. }
  4324. EXPORT_SYMBOL_GPL(md_run);
  4325. static int do_md_run(mddev_t *mddev)
  4326. {
  4327. int err;
  4328. err = md_run(mddev);
  4329. if (err)
  4330. goto out;
  4331. err = bitmap_load(mddev);
  4332. if (err) {
  4333. bitmap_destroy(mddev);
  4334. goto out;
  4335. }
  4336. md_wakeup_thread(mddev->thread);
  4337. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4338. set_capacity(mddev->gendisk, mddev->array_sectors);
  4339. revalidate_disk(mddev->gendisk);
  4340. mddev->changed = 1;
  4341. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4342. out:
  4343. return err;
  4344. }
  4345. static int restart_array(mddev_t *mddev)
  4346. {
  4347. struct gendisk *disk = mddev->gendisk;
  4348. /* Complain if it has no devices */
  4349. if (list_empty(&mddev->disks))
  4350. return -ENXIO;
  4351. if (!mddev->pers)
  4352. return -EINVAL;
  4353. if (!mddev->ro)
  4354. return -EBUSY;
  4355. mddev->safemode = 0;
  4356. mddev->ro = 0;
  4357. set_disk_ro(disk, 0);
  4358. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4359. mdname(mddev));
  4360. /* Kick recovery or resync if necessary */
  4361. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4362. md_wakeup_thread(mddev->thread);
  4363. md_wakeup_thread(mddev->sync_thread);
  4364. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4365. return 0;
  4366. }
  4367. /* similar to deny_write_access, but accounts for our holding a reference
  4368. * to the file ourselves */
  4369. static int deny_bitmap_write_access(struct file * file)
  4370. {
  4371. struct inode *inode = file->f_mapping->host;
  4372. spin_lock(&inode->i_lock);
  4373. if (atomic_read(&inode->i_writecount) > 1) {
  4374. spin_unlock(&inode->i_lock);
  4375. return -ETXTBSY;
  4376. }
  4377. atomic_set(&inode->i_writecount, -1);
  4378. spin_unlock(&inode->i_lock);
  4379. return 0;
  4380. }
  4381. void restore_bitmap_write_access(struct file *file)
  4382. {
  4383. struct inode *inode = file->f_mapping->host;
  4384. spin_lock(&inode->i_lock);
  4385. atomic_set(&inode->i_writecount, 1);
  4386. spin_unlock(&inode->i_lock);
  4387. }
  4388. static void md_clean(mddev_t *mddev)
  4389. {
  4390. mddev->array_sectors = 0;
  4391. mddev->external_size = 0;
  4392. mddev->dev_sectors = 0;
  4393. mddev->raid_disks = 0;
  4394. mddev->recovery_cp = 0;
  4395. mddev->resync_min = 0;
  4396. mddev->resync_max = MaxSector;
  4397. mddev->reshape_position = MaxSector;
  4398. mddev->external = 0;
  4399. mddev->persistent = 0;
  4400. mddev->level = LEVEL_NONE;
  4401. mddev->clevel[0] = 0;
  4402. mddev->flags = 0;
  4403. mddev->ro = 0;
  4404. mddev->metadata_type[0] = 0;
  4405. mddev->chunk_sectors = 0;
  4406. mddev->ctime = mddev->utime = 0;
  4407. mddev->layout = 0;
  4408. mddev->max_disks = 0;
  4409. mddev->events = 0;
  4410. mddev->can_decrease_events = 0;
  4411. mddev->delta_disks = 0;
  4412. mddev->new_level = LEVEL_NONE;
  4413. mddev->new_layout = 0;
  4414. mddev->new_chunk_sectors = 0;
  4415. mddev->curr_resync = 0;
  4416. mddev->resync_mismatches = 0;
  4417. mddev->suspend_lo = mddev->suspend_hi = 0;
  4418. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4419. mddev->recovery = 0;
  4420. mddev->in_sync = 0;
  4421. mddev->changed = 0;
  4422. mddev->degraded = 0;
  4423. mddev->safemode = 0;
  4424. mddev->bitmap_info.offset = 0;
  4425. mddev->bitmap_info.default_offset = 0;
  4426. mddev->bitmap_info.chunksize = 0;
  4427. mddev->bitmap_info.daemon_sleep = 0;
  4428. mddev->bitmap_info.max_write_behind = 0;
  4429. }
  4430. static void __md_stop_writes(mddev_t *mddev)
  4431. {
  4432. if (mddev->sync_thread) {
  4433. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4434. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4435. reap_sync_thread(mddev);
  4436. }
  4437. del_timer_sync(&mddev->safemode_timer);
  4438. bitmap_flush(mddev);
  4439. md_super_wait(mddev);
  4440. if (!mddev->in_sync || mddev->flags) {
  4441. /* mark array as shutdown cleanly */
  4442. mddev->in_sync = 1;
  4443. md_update_sb(mddev, 1);
  4444. }
  4445. }
  4446. void md_stop_writes(mddev_t *mddev)
  4447. {
  4448. mddev_lock(mddev);
  4449. __md_stop_writes(mddev);
  4450. mddev_unlock(mddev);
  4451. }
  4452. EXPORT_SYMBOL_GPL(md_stop_writes);
  4453. void md_stop(mddev_t *mddev)
  4454. {
  4455. mddev->ready = 0;
  4456. mddev->pers->stop(mddev);
  4457. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4458. mddev->to_remove = &md_redundancy_group;
  4459. module_put(mddev->pers->owner);
  4460. mddev->pers = NULL;
  4461. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4462. }
  4463. EXPORT_SYMBOL_GPL(md_stop);
  4464. static int md_set_readonly(mddev_t *mddev, int is_open)
  4465. {
  4466. int err = 0;
  4467. mutex_lock(&mddev->open_mutex);
  4468. if (atomic_read(&mddev->openers) > is_open) {
  4469. printk("md: %s still in use.\n",mdname(mddev));
  4470. err = -EBUSY;
  4471. goto out;
  4472. }
  4473. if (mddev->pers) {
  4474. __md_stop_writes(mddev);
  4475. err = -ENXIO;
  4476. if (mddev->ro==1)
  4477. goto out;
  4478. mddev->ro = 1;
  4479. set_disk_ro(mddev->gendisk, 1);
  4480. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4481. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4482. err = 0;
  4483. }
  4484. out:
  4485. mutex_unlock(&mddev->open_mutex);
  4486. return err;
  4487. }
  4488. /* mode:
  4489. * 0 - completely stop and dis-assemble array
  4490. * 2 - stop but do not disassemble array
  4491. */
  4492. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  4493. {
  4494. struct gendisk *disk = mddev->gendisk;
  4495. mdk_rdev_t *rdev;
  4496. mutex_lock(&mddev->open_mutex);
  4497. if (atomic_read(&mddev->openers) > is_open ||
  4498. mddev->sysfs_active) {
  4499. printk("md: %s still in use.\n",mdname(mddev));
  4500. mutex_unlock(&mddev->open_mutex);
  4501. return -EBUSY;
  4502. }
  4503. if (mddev->pers) {
  4504. if (mddev->ro)
  4505. set_disk_ro(disk, 0);
  4506. __md_stop_writes(mddev);
  4507. md_stop(mddev);
  4508. mddev->queue->merge_bvec_fn = NULL;
  4509. mddev->queue->backing_dev_info.congested_fn = NULL;
  4510. /* tell userspace to handle 'inactive' */
  4511. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4512. list_for_each_entry(rdev, &mddev->disks, same_set)
  4513. if (rdev->raid_disk >= 0)
  4514. sysfs_unlink_rdev(mddev, rdev);
  4515. set_capacity(disk, 0);
  4516. mutex_unlock(&mddev->open_mutex);
  4517. mddev->changed = 1;
  4518. revalidate_disk(disk);
  4519. if (mddev->ro)
  4520. mddev->ro = 0;
  4521. } else
  4522. mutex_unlock(&mddev->open_mutex);
  4523. /*
  4524. * Free resources if final stop
  4525. */
  4526. if (mode == 0) {
  4527. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4528. bitmap_destroy(mddev);
  4529. if (mddev->bitmap_info.file) {
  4530. restore_bitmap_write_access(mddev->bitmap_info.file);
  4531. fput(mddev->bitmap_info.file);
  4532. mddev->bitmap_info.file = NULL;
  4533. }
  4534. mddev->bitmap_info.offset = 0;
  4535. export_array(mddev);
  4536. md_clean(mddev);
  4537. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4538. if (mddev->hold_active == UNTIL_STOP)
  4539. mddev->hold_active = 0;
  4540. }
  4541. blk_integrity_unregister(disk);
  4542. md_new_event(mddev);
  4543. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4544. return 0;
  4545. }
  4546. #ifndef MODULE
  4547. static void autorun_array(mddev_t *mddev)
  4548. {
  4549. mdk_rdev_t *rdev;
  4550. int err;
  4551. if (list_empty(&mddev->disks))
  4552. return;
  4553. printk(KERN_INFO "md: running: ");
  4554. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4555. char b[BDEVNAME_SIZE];
  4556. printk("<%s>", bdevname(rdev->bdev,b));
  4557. }
  4558. printk("\n");
  4559. err = do_md_run(mddev);
  4560. if (err) {
  4561. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4562. do_md_stop(mddev, 0, 0);
  4563. }
  4564. }
  4565. /*
  4566. * lets try to run arrays based on all disks that have arrived
  4567. * until now. (those are in pending_raid_disks)
  4568. *
  4569. * the method: pick the first pending disk, collect all disks with
  4570. * the same UUID, remove all from the pending list and put them into
  4571. * the 'same_array' list. Then order this list based on superblock
  4572. * update time (freshest comes first), kick out 'old' disks and
  4573. * compare superblocks. If everything's fine then run it.
  4574. *
  4575. * If "unit" is allocated, then bump its reference count
  4576. */
  4577. static void autorun_devices(int part)
  4578. {
  4579. mdk_rdev_t *rdev0, *rdev, *tmp;
  4580. mddev_t *mddev;
  4581. char b[BDEVNAME_SIZE];
  4582. printk(KERN_INFO "md: autorun ...\n");
  4583. while (!list_empty(&pending_raid_disks)) {
  4584. int unit;
  4585. dev_t dev;
  4586. LIST_HEAD(candidates);
  4587. rdev0 = list_entry(pending_raid_disks.next,
  4588. mdk_rdev_t, same_set);
  4589. printk(KERN_INFO "md: considering %s ...\n",
  4590. bdevname(rdev0->bdev,b));
  4591. INIT_LIST_HEAD(&candidates);
  4592. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4593. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4594. printk(KERN_INFO "md: adding %s ...\n",
  4595. bdevname(rdev->bdev,b));
  4596. list_move(&rdev->same_set, &candidates);
  4597. }
  4598. /*
  4599. * now we have a set of devices, with all of them having
  4600. * mostly sane superblocks. It's time to allocate the
  4601. * mddev.
  4602. */
  4603. if (part) {
  4604. dev = MKDEV(mdp_major,
  4605. rdev0->preferred_minor << MdpMinorShift);
  4606. unit = MINOR(dev) >> MdpMinorShift;
  4607. } else {
  4608. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4609. unit = MINOR(dev);
  4610. }
  4611. if (rdev0->preferred_minor != unit) {
  4612. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4613. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4614. break;
  4615. }
  4616. md_probe(dev, NULL, NULL);
  4617. mddev = mddev_find(dev);
  4618. if (!mddev || !mddev->gendisk) {
  4619. if (mddev)
  4620. mddev_put(mddev);
  4621. printk(KERN_ERR
  4622. "md: cannot allocate memory for md drive.\n");
  4623. break;
  4624. }
  4625. if (mddev_lock(mddev))
  4626. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4627. mdname(mddev));
  4628. else if (mddev->raid_disks || mddev->major_version
  4629. || !list_empty(&mddev->disks)) {
  4630. printk(KERN_WARNING
  4631. "md: %s already running, cannot run %s\n",
  4632. mdname(mddev), bdevname(rdev0->bdev,b));
  4633. mddev_unlock(mddev);
  4634. } else {
  4635. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4636. mddev->persistent = 1;
  4637. rdev_for_each_list(rdev, tmp, &candidates) {
  4638. list_del_init(&rdev->same_set);
  4639. if (bind_rdev_to_array(rdev, mddev))
  4640. export_rdev(rdev);
  4641. }
  4642. autorun_array(mddev);
  4643. mddev_unlock(mddev);
  4644. }
  4645. /* on success, candidates will be empty, on error
  4646. * it won't...
  4647. */
  4648. rdev_for_each_list(rdev, tmp, &candidates) {
  4649. list_del_init(&rdev->same_set);
  4650. export_rdev(rdev);
  4651. }
  4652. mddev_put(mddev);
  4653. }
  4654. printk(KERN_INFO "md: ... autorun DONE.\n");
  4655. }
  4656. #endif /* !MODULE */
  4657. static int get_version(void __user * arg)
  4658. {
  4659. mdu_version_t ver;
  4660. ver.major = MD_MAJOR_VERSION;
  4661. ver.minor = MD_MINOR_VERSION;
  4662. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4663. if (copy_to_user(arg, &ver, sizeof(ver)))
  4664. return -EFAULT;
  4665. return 0;
  4666. }
  4667. static int get_array_info(mddev_t * mddev, void __user * arg)
  4668. {
  4669. mdu_array_info_t info;
  4670. int nr,working,insync,failed,spare;
  4671. mdk_rdev_t *rdev;
  4672. nr=working=insync=failed=spare=0;
  4673. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4674. nr++;
  4675. if (test_bit(Faulty, &rdev->flags))
  4676. failed++;
  4677. else {
  4678. working++;
  4679. if (test_bit(In_sync, &rdev->flags))
  4680. insync++;
  4681. else
  4682. spare++;
  4683. }
  4684. }
  4685. info.major_version = mddev->major_version;
  4686. info.minor_version = mddev->minor_version;
  4687. info.patch_version = MD_PATCHLEVEL_VERSION;
  4688. info.ctime = mddev->ctime;
  4689. info.level = mddev->level;
  4690. info.size = mddev->dev_sectors / 2;
  4691. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4692. info.size = -1;
  4693. info.nr_disks = nr;
  4694. info.raid_disks = mddev->raid_disks;
  4695. info.md_minor = mddev->md_minor;
  4696. info.not_persistent= !mddev->persistent;
  4697. info.utime = mddev->utime;
  4698. info.state = 0;
  4699. if (mddev->in_sync)
  4700. info.state = (1<<MD_SB_CLEAN);
  4701. if (mddev->bitmap && mddev->bitmap_info.offset)
  4702. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4703. info.active_disks = insync;
  4704. info.working_disks = working;
  4705. info.failed_disks = failed;
  4706. info.spare_disks = spare;
  4707. info.layout = mddev->layout;
  4708. info.chunk_size = mddev->chunk_sectors << 9;
  4709. if (copy_to_user(arg, &info, sizeof(info)))
  4710. return -EFAULT;
  4711. return 0;
  4712. }
  4713. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4714. {
  4715. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4716. char *ptr, *buf = NULL;
  4717. int err = -ENOMEM;
  4718. if (md_allow_write(mddev))
  4719. file = kmalloc(sizeof(*file), GFP_NOIO);
  4720. else
  4721. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4722. if (!file)
  4723. goto out;
  4724. /* bitmap disabled, zero the first byte and copy out */
  4725. if (!mddev->bitmap || !mddev->bitmap->file) {
  4726. file->pathname[0] = '\0';
  4727. goto copy_out;
  4728. }
  4729. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4730. if (!buf)
  4731. goto out;
  4732. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4733. if (IS_ERR(ptr))
  4734. goto out;
  4735. strcpy(file->pathname, ptr);
  4736. copy_out:
  4737. err = 0;
  4738. if (copy_to_user(arg, file, sizeof(*file)))
  4739. err = -EFAULT;
  4740. out:
  4741. kfree(buf);
  4742. kfree(file);
  4743. return err;
  4744. }
  4745. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4746. {
  4747. mdu_disk_info_t info;
  4748. mdk_rdev_t *rdev;
  4749. if (copy_from_user(&info, arg, sizeof(info)))
  4750. return -EFAULT;
  4751. rdev = find_rdev_nr(mddev, info.number);
  4752. if (rdev) {
  4753. info.major = MAJOR(rdev->bdev->bd_dev);
  4754. info.minor = MINOR(rdev->bdev->bd_dev);
  4755. info.raid_disk = rdev->raid_disk;
  4756. info.state = 0;
  4757. if (test_bit(Faulty, &rdev->flags))
  4758. info.state |= (1<<MD_DISK_FAULTY);
  4759. else if (test_bit(In_sync, &rdev->flags)) {
  4760. info.state |= (1<<MD_DISK_ACTIVE);
  4761. info.state |= (1<<MD_DISK_SYNC);
  4762. }
  4763. if (test_bit(WriteMostly, &rdev->flags))
  4764. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4765. } else {
  4766. info.major = info.minor = 0;
  4767. info.raid_disk = -1;
  4768. info.state = (1<<MD_DISK_REMOVED);
  4769. }
  4770. if (copy_to_user(arg, &info, sizeof(info)))
  4771. return -EFAULT;
  4772. return 0;
  4773. }
  4774. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4775. {
  4776. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4777. mdk_rdev_t *rdev;
  4778. dev_t dev = MKDEV(info->major,info->minor);
  4779. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4780. return -EOVERFLOW;
  4781. if (!mddev->raid_disks) {
  4782. int err;
  4783. /* expecting a device which has a superblock */
  4784. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4785. if (IS_ERR(rdev)) {
  4786. printk(KERN_WARNING
  4787. "md: md_import_device returned %ld\n",
  4788. PTR_ERR(rdev));
  4789. return PTR_ERR(rdev);
  4790. }
  4791. if (!list_empty(&mddev->disks)) {
  4792. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4793. mdk_rdev_t, same_set);
  4794. err = super_types[mddev->major_version]
  4795. .load_super(rdev, rdev0, mddev->minor_version);
  4796. if (err < 0) {
  4797. printk(KERN_WARNING
  4798. "md: %s has different UUID to %s\n",
  4799. bdevname(rdev->bdev,b),
  4800. bdevname(rdev0->bdev,b2));
  4801. export_rdev(rdev);
  4802. return -EINVAL;
  4803. }
  4804. }
  4805. err = bind_rdev_to_array(rdev, mddev);
  4806. if (err)
  4807. export_rdev(rdev);
  4808. return err;
  4809. }
  4810. /*
  4811. * add_new_disk can be used once the array is assembled
  4812. * to add "hot spares". They must already have a superblock
  4813. * written
  4814. */
  4815. if (mddev->pers) {
  4816. int err;
  4817. if (!mddev->pers->hot_add_disk) {
  4818. printk(KERN_WARNING
  4819. "%s: personality does not support diskops!\n",
  4820. mdname(mddev));
  4821. return -EINVAL;
  4822. }
  4823. if (mddev->persistent)
  4824. rdev = md_import_device(dev, mddev->major_version,
  4825. mddev->minor_version);
  4826. else
  4827. rdev = md_import_device(dev, -1, -1);
  4828. if (IS_ERR(rdev)) {
  4829. printk(KERN_WARNING
  4830. "md: md_import_device returned %ld\n",
  4831. PTR_ERR(rdev));
  4832. return PTR_ERR(rdev);
  4833. }
  4834. /* set saved_raid_disk if appropriate */
  4835. if (!mddev->persistent) {
  4836. if (info->state & (1<<MD_DISK_SYNC) &&
  4837. info->raid_disk < mddev->raid_disks) {
  4838. rdev->raid_disk = info->raid_disk;
  4839. set_bit(In_sync, &rdev->flags);
  4840. } else
  4841. rdev->raid_disk = -1;
  4842. } else
  4843. super_types[mddev->major_version].
  4844. validate_super(mddev, rdev);
  4845. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4846. (!test_bit(In_sync, &rdev->flags) ||
  4847. rdev->raid_disk != info->raid_disk)) {
  4848. /* This was a hot-add request, but events doesn't
  4849. * match, so reject it.
  4850. */
  4851. export_rdev(rdev);
  4852. return -EINVAL;
  4853. }
  4854. if (test_bit(In_sync, &rdev->flags))
  4855. rdev->saved_raid_disk = rdev->raid_disk;
  4856. else
  4857. rdev->saved_raid_disk = -1;
  4858. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4859. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4860. set_bit(WriteMostly, &rdev->flags);
  4861. else
  4862. clear_bit(WriteMostly, &rdev->flags);
  4863. rdev->raid_disk = -1;
  4864. err = bind_rdev_to_array(rdev, mddev);
  4865. if (!err && !mddev->pers->hot_remove_disk) {
  4866. /* If there is hot_add_disk but no hot_remove_disk
  4867. * then added disks for geometry changes,
  4868. * and should be added immediately.
  4869. */
  4870. super_types[mddev->major_version].
  4871. validate_super(mddev, rdev);
  4872. err = mddev->pers->hot_add_disk(mddev, rdev);
  4873. if (err)
  4874. unbind_rdev_from_array(rdev);
  4875. }
  4876. if (err)
  4877. export_rdev(rdev);
  4878. else
  4879. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4880. md_update_sb(mddev, 1);
  4881. if (mddev->degraded)
  4882. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4883. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4884. if (!err)
  4885. md_new_event(mddev);
  4886. md_wakeup_thread(mddev->thread);
  4887. return err;
  4888. }
  4889. /* otherwise, add_new_disk is only allowed
  4890. * for major_version==0 superblocks
  4891. */
  4892. if (mddev->major_version != 0) {
  4893. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4894. mdname(mddev));
  4895. return -EINVAL;
  4896. }
  4897. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4898. int err;
  4899. rdev = md_import_device(dev, -1, 0);
  4900. if (IS_ERR(rdev)) {
  4901. printk(KERN_WARNING
  4902. "md: error, md_import_device() returned %ld\n",
  4903. PTR_ERR(rdev));
  4904. return PTR_ERR(rdev);
  4905. }
  4906. rdev->desc_nr = info->number;
  4907. if (info->raid_disk < mddev->raid_disks)
  4908. rdev->raid_disk = info->raid_disk;
  4909. else
  4910. rdev->raid_disk = -1;
  4911. if (rdev->raid_disk < mddev->raid_disks)
  4912. if (info->state & (1<<MD_DISK_SYNC))
  4913. set_bit(In_sync, &rdev->flags);
  4914. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4915. set_bit(WriteMostly, &rdev->flags);
  4916. if (!mddev->persistent) {
  4917. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4918. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4919. } else
  4920. rdev->sb_start = calc_dev_sboffset(rdev);
  4921. rdev->sectors = rdev->sb_start;
  4922. err = bind_rdev_to_array(rdev, mddev);
  4923. if (err) {
  4924. export_rdev(rdev);
  4925. return err;
  4926. }
  4927. }
  4928. return 0;
  4929. }
  4930. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4931. {
  4932. char b[BDEVNAME_SIZE];
  4933. mdk_rdev_t *rdev;
  4934. rdev = find_rdev(mddev, dev);
  4935. if (!rdev)
  4936. return -ENXIO;
  4937. if (rdev->raid_disk >= 0)
  4938. goto busy;
  4939. kick_rdev_from_array(rdev);
  4940. md_update_sb(mddev, 1);
  4941. md_new_event(mddev);
  4942. return 0;
  4943. busy:
  4944. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4945. bdevname(rdev->bdev,b), mdname(mddev));
  4946. return -EBUSY;
  4947. }
  4948. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4949. {
  4950. char b[BDEVNAME_SIZE];
  4951. int err;
  4952. mdk_rdev_t *rdev;
  4953. if (!mddev->pers)
  4954. return -ENODEV;
  4955. if (mddev->major_version != 0) {
  4956. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4957. " version-0 superblocks.\n",
  4958. mdname(mddev));
  4959. return -EINVAL;
  4960. }
  4961. if (!mddev->pers->hot_add_disk) {
  4962. printk(KERN_WARNING
  4963. "%s: personality does not support diskops!\n",
  4964. mdname(mddev));
  4965. return -EINVAL;
  4966. }
  4967. rdev = md_import_device(dev, -1, 0);
  4968. if (IS_ERR(rdev)) {
  4969. printk(KERN_WARNING
  4970. "md: error, md_import_device() returned %ld\n",
  4971. PTR_ERR(rdev));
  4972. return -EINVAL;
  4973. }
  4974. if (mddev->persistent)
  4975. rdev->sb_start = calc_dev_sboffset(rdev);
  4976. else
  4977. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4978. rdev->sectors = rdev->sb_start;
  4979. if (test_bit(Faulty, &rdev->flags)) {
  4980. printk(KERN_WARNING
  4981. "md: can not hot-add faulty %s disk to %s!\n",
  4982. bdevname(rdev->bdev,b), mdname(mddev));
  4983. err = -EINVAL;
  4984. goto abort_export;
  4985. }
  4986. clear_bit(In_sync, &rdev->flags);
  4987. rdev->desc_nr = -1;
  4988. rdev->saved_raid_disk = -1;
  4989. err = bind_rdev_to_array(rdev, mddev);
  4990. if (err)
  4991. goto abort_export;
  4992. /*
  4993. * The rest should better be atomic, we can have disk failures
  4994. * noticed in interrupt contexts ...
  4995. */
  4996. rdev->raid_disk = -1;
  4997. md_update_sb(mddev, 1);
  4998. /*
  4999. * Kick recovery, maybe this spare has to be added to the
  5000. * array immediately.
  5001. */
  5002. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5003. md_wakeup_thread(mddev->thread);
  5004. md_new_event(mddev);
  5005. return 0;
  5006. abort_export:
  5007. export_rdev(rdev);
  5008. return err;
  5009. }
  5010. static int set_bitmap_file(mddev_t *mddev, int fd)
  5011. {
  5012. int err;
  5013. if (mddev->pers) {
  5014. if (!mddev->pers->quiesce)
  5015. return -EBUSY;
  5016. if (mddev->recovery || mddev->sync_thread)
  5017. return -EBUSY;
  5018. /* we should be able to change the bitmap.. */
  5019. }
  5020. if (fd >= 0) {
  5021. if (mddev->bitmap)
  5022. return -EEXIST; /* cannot add when bitmap is present */
  5023. mddev->bitmap_info.file = fget(fd);
  5024. if (mddev->bitmap_info.file == NULL) {
  5025. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5026. mdname(mddev));
  5027. return -EBADF;
  5028. }
  5029. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5030. if (err) {
  5031. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5032. mdname(mddev));
  5033. fput(mddev->bitmap_info.file);
  5034. mddev->bitmap_info.file = NULL;
  5035. return err;
  5036. }
  5037. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5038. } else if (mddev->bitmap == NULL)
  5039. return -ENOENT; /* cannot remove what isn't there */
  5040. err = 0;
  5041. if (mddev->pers) {
  5042. mddev->pers->quiesce(mddev, 1);
  5043. if (fd >= 0) {
  5044. err = bitmap_create(mddev);
  5045. if (!err)
  5046. err = bitmap_load(mddev);
  5047. }
  5048. if (fd < 0 || err) {
  5049. bitmap_destroy(mddev);
  5050. fd = -1; /* make sure to put the file */
  5051. }
  5052. mddev->pers->quiesce(mddev, 0);
  5053. }
  5054. if (fd < 0) {
  5055. if (mddev->bitmap_info.file) {
  5056. restore_bitmap_write_access(mddev->bitmap_info.file);
  5057. fput(mddev->bitmap_info.file);
  5058. }
  5059. mddev->bitmap_info.file = NULL;
  5060. }
  5061. return err;
  5062. }
  5063. /*
  5064. * set_array_info is used two different ways
  5065. * The original usage is when creating a new array.
  5066. * In this usage, raid_disks is > 0 and it together with
  5067. * level, size, not_persistent,layout,chunksize determine the
  5068. * shape of the array.
  5069. * This will always create an array with a type-0.90.0 superblock.
  5070. * The newer usage is when assembling an array.
  5071. * In this case raid_disks will be 0, and the major_version field is
  5072. * use to determine which style super-blocks are to be found on the devices.
  5073. * The minor and patch _version numbers are also kept incase the
  5074. * super_block handler wishes to interpret them.
  5075. */
  5076. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  5077. {
  5078. if (info->raid_disks == 0) {
  5079. /* just setting version number for superblock loading */
  5080. if (info->major_version < 0 ||
  5081. info->major_version >= ARRAY_SIZE(super_types) ||
  5082. super_types[info->major_version].name == NULL) {
  5083. /* maybe try to auto-load a module? */
  5084. printk(KERN_INFO
  5085. "md: superblock version %d not known\n",
  5086. info->major_version);
  5087. return -EINVAL;
  5088. }
  5089. mddev->major_version = info->major_version;
  5090. mddev->minor_version = info->minor_version;
  5091. mddev->patch_version = info->patch_version;
  5092. mddev->persistent = !info->not_persistent;
  5093. /* ensure mddev_put doesn't delete this now that there
  5094. * is some minimal configuration.
  5095. */
  5096. mddev->ctime = get_seconds();
  5097. return 0;
  5098. }
  5099. mddev->major_version = MD_MAJOR_VERSION;
  5100. mddev->minor_version = MD_MINOR_VERSION;
  5101. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5102. mddev->ctime = get_seconds();
  5103. mddev->level = info->level;
  5104. mddev->clevel[0] = 0;
  5105. mddev->dev_sectors = 2 * (sector_t)info->size;
  5106. mddev->raid_disks = info->raid_disks;
  5107. /* don't set md_minor, it is determined by which /dev/md* was
  5108. * openned
  5109. */
  5110. if (info->state & (1<<MD_SB_CLEAN))
  5111. mddev->recovery_cp = MaxSector;
  5112. else
  5113. mddev->recovery_cp = 0;
  5114. mddev->persistent = ! info->not_persistent;
  5115. mddev->external = 0;
  5116. mddev->layout = info->layout;
  5117. mddev->chunk_sectors = info->chunk_size >> 9;
  5118. mddev->max_disks = MD_SB_DISKS;
  5119. if (mddev->persistent)
  5120. mddev->flags = 0;
  5121. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5122. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5123. mddev->bitmap_info.offset = 0;
  5124. mddev->reshape_position = MaxSector;
  5125. /*
  5126. * Generate a 128 bit UUID
  5127. */
  5128. get_random_bytes(mddev->uuid, 16);
  5129. mddev->new_level = mddev->level;
  5130. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5131. mddev->new_layout = mddev->layout;
  5132. mddev->delta_disks = 0;
  5133. return 0;
  5134. }
  5135. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  5136. {
  5137. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5138. if (mddev->external_size)
  5139. return;
  5140. mddev->array_sectors = array_sectors;
  5141. }
  5142. EXPORT_SYMBOL(md_set_array_sectors);
  5143. static int update_size(mddev_t *mddev, sector_t num_sectors)
  5144. {
  5145. mdk_rdev_t *rdev;
  5146. int rv;
  5147. int fit = (num_sectors == 0);
  5148. if (mddev->pers->resize == NULL)
  5149. return -EINVAL;
  5150. /* The "num_sectors" is the number of sectors of each device that
  5151. * is used. This can only make sense for arrays with redundancy.
  5152. * linear and raid0 always use whatever space is available. We can only
  5153. * consider changing this number if no resync or reconstruction is
  5154. * happening, and if the new size is acceptable. It must fit before the
  5155. * sb_start or, if that is <data_offset, it must fit before the size
  5156. * of each device. If num_sectors is zero, we find the largest size
  5157. * that fits.
  5158. */
  5159. if (mddev->sync_thread)
  5160. return -EBUSY;
  5161. if (mddev->bitmap)
  5162. /* Sorry, cannot grow a bitmap yet, just remove it,
  5163. * grow, and re-add.
  5164. */
  5165. return -EBUSY;
  5166. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5167. sector_t avail = rdev->sectors;
  5168. if (fit && (num_sectors == 0 || num_sectors > avail))
  5169. num_sectors = avail;
  5170. if (avail < num_sectors)
  5171. return -ENOSPC;
  5172. }
  5173. rv = mddev->pers->resize(mddev, num_sectors);
  5174. if (!rv)
  5175. revalidate_disk(mddev->gendisk);
  5176. return rv;
  5177. }
  5178. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  5179. {
  5180. int rv;
  5181. /* change the number of raid disks */
  5182. if (mddev->pers->check_reshape == NULL)
  5183. return -EINVAL;
  5184. if (raid_disks <= 0 ||
  5185. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5186. return -EINVAL;
  5187. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5188. return -EBUSY;
  5189. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5190. rv = mddev->pers->check_reshape(mddev);
  5191. if (rv < 0)
  5192. mddev->delta_disks = 0;
  5193. return rv;
  5194. }
  5195. /*
  5196. * update_array_info is used to change the configuration of an
  5197. * on-line array.
  5198. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5199. * fields in the info are checked against the array.
  5200. * Any differences that cannot be handled will cause an error.
  5201. * Normally, only one change can be managed at a time.
  5202. */
  5203. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  5204. {
  5205. int rv = 0;
  5206. int cnt = 0;
  5207. int state = 0;
  5208. /* calculate expected state,ignoring low bits */
  5209. if (mddev->bitmap && mddev->bitmap_info.offset)
  5210. state |= (1 << MD_SB_BITMAP_PRESENT);
  5211. if (mddev->major_version != info->major_version ||
  5212. mddev->minor_version != info->minor_version ||
  5213. /* mddev->patch_version != info->patch_version || */
  5214. mddev->ctime != info->ctime ||
  5215. mddev->level != info->level ||
  5216. /* mddev->layout != info->layout || */
  5217. !mddev->persistent != info->not_persistent||
  5218. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5219. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5220. ((state^info->state) & 0xfffffe00)
  5221. )
  5222. return -EINVAL;
  5223. /* Check there is only one change */
  5224. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5225. cnt++;
  5226. if (mddev->raid_disks != info->raid_disks)
  5227. cnt++;
  5228. if (mddev->layout != info->layout)
  5229. cnt++;
  5230. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5231. cnt++;
  5232. if (cnt == 0)
  5233. return 0;
  5234. if (cnt > 1)
  5235. return -EINVAL;
  5236. if (mddev->layout != info->layout) {
  5237. /* Change layout
  5238. * we don't need to do anything at the md level, the
  5239. * personality will take care of it all.
  5240. */
  5241. if (mddev->pers->check_reshape == NULL)
  5242. return -EINVAL;
  5243. else {
  5244. mddev->new_layout = info->layout;
  5245. rv = mddev->pers->check_reshape(mddev);
  5246. if (rv)
  5247. mddev->new_layout = mddev->layout;
  5248. return rv;
  5249. }
  5250. }
  5251. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5252. rv = update_size(mddev, (sector_t)info->size * 2);
  5253. if (mddev->raid_disks != info->raid_disks)
  5254. rv = update_raid_disks(mddev, info->raid_disks);
  5255. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5256. if (mddev->pers->quiesce == NULL)
  5257. return -EINVAL;
  5258. if (mddev->recovery || mddev->sync_thread)
  5259. return -EBUSY;
  5260. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5261. /* add the bitmap */
  5262. if (mddev->bitmap)
  5263. return -EEXIST;
  5264. if (mddev->bitmap_info.default_offset == 0)
  5265. return -EINVAL;
  5266. mddev->bitmap_info.offset =
  5267. mddev->bitmap_info.default_offset;
  5268. mddev->pers->quiesce(mddev, 1);
  5269. rv = bitmap_create(mddev);
  5270. if (!rv)
  5271. rv = bitmap_load(mddev);
  5272. if (rv)
  5273. bitmap_destroy(mddev);
  5274. mddev->pers->quiesce(mddev, 0);
  5275. } else {
  5276. /* remove the bitmap */
  5277. if (!mddev->bitmap)
  5278. return -ENOENT;
  5279. if (mddev->bitmap->file)
  5280. return -EINVAL;
  5281. mddev->pers->quiesce(mddev, 1);
  5282. bitmap_destroy(mddev);
  5283. mddev->pers->quiesce(mddev, 0);
  5284. mddev->bitmap_info.offset = 0;
  5285. }
  5286. }
  5287. md_update_sb(mddev, 1);
  5288. return rv;
  5289. }
  5290. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  5291. {
  5292. mdk_rdev_t *rdev;
  5293. if (mddev->pers == NULL)
  5294. return -ENODEV;
  5295. rdev = find_rdev(mddev, dev);
  5296. if (!rdev)
  5297. return -ENODEV;
  5298. md_error(mddev, rdev);
  5299. return 0;
  5300. }
  5301. /*
  5302. * We have a problem here : there is no easy way to give a CHS
  5303. * virtual geometry. We currently pretend that we have a 2 heads
  5304. * 4 sectors (with a BIG number of cylinders...). This drives
  5305. * dosfs just mad... ;-)
  5306. */
  5307. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5308. {
  5309. mddev_t *mddev = bdev->bd_disk->private_data;
  5310. geo->heads = 2;
  5311. geo->sectors = 4;
  5312. geo->cylinders = mddev->array_sectors / 8;
  5313. return 0;
  5314. }
  5315. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5316. unsigned int cmd, unsigned long arg)
  5317. {
  5318. int err = 0;
  5319. void __user *argp = (void __user *)arg;
  5320. mddev_t *mddev = NULL;
  5321. int ro;
  5322. if (!capable(CAP_SYS_ADMIN))
  5323. return -EACCES;
  5324. /*
  5325. * Commands dealing with the RAID driver but not any
  5326. * particular array:
  5327. */
  5328. switch (cmd)
  5329. {
  5330. case RAID_VERSION:
  5331. err = get_version(argp);
  5332. goto done;
  5333. case PRINT_RAID_DEBUG:
  5334. err = 0;
  5335. md_print_devices();
  5336. goto done;
  5337. #ifndef MODULE
  5338. case RAID_AUTORUN:
  5339. err = 0;
  5340. autostart_arrays(arg);
  5341. goto done;
  5342. #endif
  5343. default:;
  5344. }
  5345. /*
  5346. * Commands creating/starting a new array:
  5347. */
  5348. mddev = bdev->bd_disk->private_data;
  5349. if (!mddev) {
  5350. BUG();
  5351. goto abort;
  5352. }
  5353. err = mddev_lock(mddev);
  5354. if (err) {
  5355. printk(KERN_INFO
  5356. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5357. err, cmd);
  5358. goto abort;
  5359. }
  5360. switch (cmd)
  5361. {
  5362. case SET_ARRAY_INFO:
  5363. {
  5364. mdu_array_info_t info;
  5365. if (!arg)
  5366. memset(&info, 0, sizeof(info));
  5367. else if (copy_from_user(&info, argp, sizeof(info))) {
  5368. err = -EFAULT;
  5369. goto abort_unlock;
  5370. }
  5371. if (mddev->pers) {
  5372. err = update_array_info(mddev, &info);
  5373. if (err) {
  5374. printk(KERN_WARNING "md: couldn't update"
  5375. " array info. %d\n", err);
  5376. goto abort_unlock;
  5377. }
  5378. goto done_unlock;
  5379. }
  5380. if (!list_empty(&mddev->disks)) {
  5381. printk(KERN_WARNING
  5382. "md: array %s already has disks!\n",
  5383. mdname(mddev));
  5384. err = -EBUSY;
  5385. goto abort_unlock;
  5386. }
  5387. if (mddev->raid_disks) {
  5388. printk(KERN_WARNING
  5389. "md: array %s already initialised!\n",
  5390. mdname(mddev));
  5391. err = -EBUSY;
  5392. goto abort_unlock;
  5393. }
  5394. err = set_array_info(mddev, &info);
  5395. if (err) {
  5396. printk(KERN_WARNING "md: couldn't set"
  5397. " array info. %d\n", err);
  5398. goto abort_unlock;
  5399. }
  5400. }
  5401. goto done_unlock;
  5402. default:;
  5403. }
  5404. /*
  5405. * Commands querying/configuring an existing array:
  5406. */
  5407. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5408. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5409. if ((!mddev->raid_disks && !mddev->external)
  5410. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5411. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5412. && cmd != GET_BITMAP_FILE) {
  5413. err = -ENODEV;
  5414. goto abort_unlock;
  5415. }
  5416. /*
  5417. * Commands even a read-only array can execute:
  5418. */
  5419. switch (cmd)
  5420. {
  5421. case GET_ARRAY_INFO:
  5422. err = get_array_info(mddev, argp);
  5423. goto done_unlock;
  5424. case GET_BITMAP_FILE:
  5425. err = get_bitmap_file(mddev, argp);
  5426. goto done_unlock;
  5427. case GET_DISK_INFO:
  5428. err = get_disk_info(mddev, argp);
  5429. goto done_unlock;
  5430. case RESTART_ARRAY_RW:
  5431. err = restart_array(mddev);
  5432. goto done_unlock;
  5433. case STOP_ARRAY:
  5434. err = do_md_stop(mddev, 0, 1);
  5435. goto done_unlock;
  5436. case STOP_ARRAY_RO:
  5437. err = md_set_readonly(mddev, 1);
  5438. goto done_unlock;
  5439. case BLKROSET:
  5440. if (get_user(ro, (int __user *)(arg))) {
  5441. err = -EFAULT;
  5442. goto done_unlock;
  5443. }
  5444. err = -EINVAL;
  5445. /* if the bdev is going readonly the value of mddev->ro
  5446. * does not matter, no writes are coming
  5447. */
  5448. if (ro)
  5449. goto done_unlock;
  5450. /* are we are already prepared for writes? */
  5451. if (mddev->ro != 1)
  5452. goto done_unlock;
  5453. /* transitioning to readauto need only happen for
  5454. * arrays that call md_write_start
  5455. */
  5456. if (mddev->pers) {
  5457. err = restart_array(mddev);
  5458. if (err == 0) {
  5459. mddev->ro = 2;
  5460. set_disk_ro(mddev->gendisk, 0);
  5461. }
  5462. }
  5463. goto done_unlock;
  5464. }
  5465. /*
  5466. * The remaining ioctls are changing the state of the
  5467. * superblock, so we do not allow them on read-only arrays.
  5468. * However non-MD ioctls (e.g. get-size) will still come through
  5469. * here and hit the 'default' below, so only disallow
  5470. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5471. */
  5472. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5473. if (mddev->ro == 2) {
  5474. mddev->ro = 0;
  5475. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5476. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5477. md_wakeup_thread(mddev->thread);
  5478. } else {
  5479. err = -EROFS;
  5480. goto abort_unlock;
  5481. }
  5482. }
  5483. switch (cmd)
  5484. {
  5485. case ADD_NEW_DISK:
  5486. {
  5487. mdu_disk_info_t info;
  5488. if (copy_from_user(&info, argp, sizeof(info)))
  5489. err = -EFAULT;
  5490. else
  5491. err = add_new_disk(mddev, &info);
  5492. goto done_unlock;
  5493. }
  5494. case HOT_REMOVE_DISK:
  5495. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5496. goto done_unlock;
  5497. case HOT_ADD_DISK:
  5498. err = hot_add_disk(mddev, new_decode_dev(arg));
  5499. goto done_unlock;
  5500. case SET_DISK_FAULTY:
  5501. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5502. goto done_unlock;
  5503. case RUN_ARRAY:
  5504. err = do_md_run(mddev);
  5505. goto done_unlock;
  5506. case SET_BITMAP_FILE:
  5507. err = set_bitmap_file(mddev, (int)arg);
  5508. goto done_unlock;
  5509. default:
  5510. err = -EINVAL;
  5511. goto abort_unlock;
  5512. }
  5513. done_unlock:
  5514. abort_unlock:
  5515. if (mddev->hold_active == UNTIL_IOCTL &&
  5516. err != -EINVAL)
  5517. mddev->hold_active = 0;
  5518. mddev_unlock(mddev);
  5519. return err;
  5520. done:
  5521. if (err)
  5522. MD_BUG();
  5523. abort:
  5524. return err;
  5525. }
  5526. #ifdef CONFIG_COMPAT
  5527. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5528. unsigned int cmd, unsigned long arg)
  5529. {
  5530. switch (cmd) {
  5531. case HOT_REMOVE_DISK:
  5532. case HOT_ADD_DISK:
  5533. case SET_DISK_FAULTY:
  5534. case SET_BITMAP_FILE:
  5535. /* These take in integer arg, do not convert */
  5536. break;
  5537. default:
  5538. arg = (unsigned long)compat_ptr(arg);
  5539. break;
  5540. }
  5541. return md_ioctl(bdev, mode, cmd, arg);
  5542. }
  5543. #endif /* CONFIG_COMPAT */
  5544. static int md_open(struct block_device *bdev, fmode_t mode)
  5545. {
  5546. /*
  5547. * Succeed if we can lock the mddev, which confirms that
  5548. * it isn't being stopped right now.
  5549. */
  5550. mddev_t *mddev = mddev_find(bdev->bd_dev);
  5551. int err;
  5552. if (mddev->gendisk != bdev->bd_disk) {
  5553. /* we are racing with mddev_put which is discarding this
  5554. * bd_disk.
  5555. */
  5556. mddev_put(mddev);
  5557. /* Wait until bdev->bd_disk is definitely gone */
  5558. flush_workqueue(md_misc_wq);
  5559. /* Then retry the open from the top */
  5560. return -ERESTARTSYS;
  5561. }
  5562. BUG_ON(mddev != bdev->bd_disk->private_data);
  5563. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5564. goto out;
  5565. err = 0;
  5566. atomic_inc(&mddev->openers);
  5567. mutex_unlock(&mddev->open_mutex);
  5568. check_disk_change(bdev);
  5569. out:
  5570. return err;
  5571. }
  5572. static int md_release(struct gendisk *disk, fmode_t mode)
  5573. {
  5574. mddev_t *mddev = disk->private_data;
  5575. BUG_ON(!mddev);
  5576. atomic_dec(&mddev->openers);
  5577. mddev_put(mddev);
  5578. return 0;
  5579. }
  5580. static int md_media_changed(struct gendisk *disk)
  5581. {
  5582. mddev_t *mddev = disk->private_data;
  5583. return mddev->changed;
  5584. }
  5585. static int md_revalidate(struct gendisk *disk)
  5586. {
  5587. mddev_t *mddev = disk->private_data;
  5588. mddev->changed = 0;
  5589. return 0;
  5590. }
  5591. static const struct block_device_operations md_fops =
  5592. {
  5593. .owner = THIS_MODULE,
  5594. .open = md_open,
  5595. .release = md_release,
  5596. .ioctl = md_ioctl,
  5597. #ifdef CONFIG_COMPAT
  5598. .compat_ioctl = md_compat_ioctl,
  5599. #endif
  5600. .getgeo = md_getgeo,
  5601. .media_changed = md_media_changed,
  5602. .revalidate_disk= md_revalidate,
  5603. };
  5604. static int md_thread(void * arg)
  5605. {
  5606. mdk_thread_t *thread = arg;
  5607. /*
  5608. * md_thread is a 'system-thread', it's priority should be very
  5609. * high. We avoid resource deadlocks individually in each
  5610. * raid personality. (RAID5 does preallocation) We also use RR and
  5611. * the very same RT priority as kswapd, thus we will never get
  5612. * into a priority inversion deadlock.
  5613. *
  5614. * we definitely have to have equal or higher priority than
  5615. * bdflush, otherwise bdflush will deadlock if there are too
  5616. * many dirty RAID5 blocks.
  5617. */
  5618. allow_signal(SIGKILL);
  5619. while (!kthread_should_stop()) {
  5620. /* We need to wait INTERRUPTIBLE so that
  5621. * we don't add to the load-average.
  5622. * That means we need to be sure no signals are
  5623. * pending
  5624. */
  5625. if (signal_pending(current))
  5626. flush_signals(current);
  5627. wait_event_interruptible_timeout
  5628. (thread->wqueue,
  5629. test_bit(THREAD_WAKEUP, &thread->flags)
  5630. || kthread_should_stop(),
  5631. thread->timeout);
  5632. clear_bit(THREAD_WAKEUP, &thread->flags);
  5633. if (!kthread_should_stop())
  5634. thread->run(thread->mddev);
  5635. }
  5636. return 0;
  5637. }
  5638. void md_wakeup_thread(mdk_thread_t *thread)
  5639. {
  5640. if (thread) {
  5641. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  5642. set_bit(THREAD_WAKEUP, &thread->flags);
  5643. wake_up(&thread->wqueue);
  5644. }
  5645. }
  5646. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5647. const char *name)
  5648. {
  5649. mdk_thread_t *thread;
  5650. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5651. if (!thread)
  5652. return NULL;
  5653. init_waitqueue_head(&thread->wqueue);
  5654. thread->run = run;
  5655. thread->mddev = mddev;
  5656. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5657. thread->tsk = kthread_run(md_thread, thread,
  5658. "%s_%s",
  5659. mdname(thread->mddev),
  5660. name ?: mddev->pers->name);
  5661. if (IS_ERR(thread->tsk)) {
  5662. kfree(thread);
  5663. return NULL;
  5664. }
  5665. return thread;
  5666. }
  5667. void md_unregister_thread(mdk_thread_t *thread)
  5668. {
  5669. if (!thread)
  5670. return;
  5671. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5672. kthread_stop(thread->tsk);
  5673. kfree(thread);
  5674. }
  5675. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5676. {
  5677. if (!mddev) {
  5678. MD_BUG();
  5679. return;
  5680. }
  5681. if (!rdev || test_bit(Faulty, &rdev->flags))
  5682. return;
  5683. if (!mddev->pers || !mddev->pers->error_handler)
  5684. return;
  5685. mddev->pers->error_handler(mddev,rdev);
  5686. if (mddev->degraded)
  5687. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5688. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5689. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5690. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5691. md_wakeup_thread(mddev->thread);
  5692. if (mddev->event_work.func)
  5693. queue_work(md_misc_wq, &mddev->event_work);
  5694. md_new_event_inintr(mddev);
  5695. }
  5696. /* seq_file implementation /proc/mdstat */
  5697. static void status_unused(struct seq_file *seq)
  5698. {
  5699. int i = 0;
  5700. mdk_rdev_t *rdev;
  5701. seq_printf(seq, "unused devices: ");
  5702. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5703. char b[BDEVNAME_SIZE];
  5704. i++;
  5705. seq_printf(seq, "%s ",
  5706. bdevname(rdev->bdev,b));
  5707. }
  5708. if (!i)
  5709. seq_printf(seq, "<none>");
  5710. seq_printf(seq, "\n");
  5711. }
  5712. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5713. {
  5714. sector_t max_sectors, resync, res;
  5715. unsigned long dt, db;
  5716. sector_t rt;
  5717. int scale;
  5718. unsigned int per_milli;
  5719. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5720. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5721. max_sectors = mddev->resync_max_sectors;
  5722. else
  5723. max_sectors = mddev->dev_sectors;
  5724. /*
  5725. * Should not happen.
  5726. */
  5727. if (!max_sectors) {
  5728. MD_BUG();
  5729. return;
  5730. }
  5731. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5732. * in a sector_t, and (max_sectors>>scale) will fit in a
  5733. * u32, as those are the requirements for sector_div.
  5734. * Thus 'scale' must be at least 10
  5735. */
  5736. scale = 10;
  5737. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5738. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5739. scale++;
  5740. }
  5741. res = (resync>>scale)*1000;
  5742. sector_div(res, (u32)((max_sectors>>scale)+1));
  5743. per_milli = res;
  5744. {
  5745. int i, x = per_milli/50, y = 20-x;
  5746. seq_printf(seq, "[");
  5747. for (i = 0; i < x; i++)
  5748. seq_printf(seq, "=");
  5749. seq_printf(seq, ">");
  5750. for (i = 0; i < y; i++)
  5751. seq_printf(seq, ".");
  5752. seq_printf(seq, "] ");
  5753. }
  5754. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5755. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5756. "reshape" :
  5757. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5758. "check" :
  5759. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5760. "resync" : "recovery"))),
  5761. per_milli/10, per_milli % 10,
  5762. (unsigned long long) resync/2,
  5763. (unsigned long long) max_sectors/2);
  5764. /*
  5765. * dt: time from mark until now
  5766. * db: blocks written from mark until now
  5767. * rt: remaining time
  5768. *
  5769. * rt is a sector_t, so could be 32bit or 64bit.
  5770. * So we divide before multiply in case it is 32bit and close
  5771. * to the limit.
  5772. * We scale the divisor (db) by 32 to avoid losing precision
  5773. * near the end of resync when the number of remaining sectors
  5774. * is close to 'db'.
  5775. * We then divide rt by 32 after multiplying by db to compensate.
  5776. * The '+1' avoids division by zero if db is very small.
  5777. */
  5778. dt = ((jiffies - mddev->resync_mark) / HZ);
  5779. if (!dt) dt++;
  5780. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5781. - mddev->resync_mark_cnt;
  5782. rt = max_sectors - resync; /* number of remaining sectors */
  5783. sector_div(rt, db/32+1);
  5784. rt *= dt;
  5785. rt >>= 5;
  5786. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5787. ((unsigned long)rt % 60)/6);
  5788. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5789. }
  5790. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5791. {
  5792. struct list_head *tmp;
  5793. loff_t l = *pos;
  5794. mddev_t *mddev;
  5795. if (l >= 0x10000)
  5796. return NULL;
  5797. if (!l--)
  5798. /* header */
  5799. return (void*)1;
  5800. spin_lock(&all_mddevs_lock);
  5801. list_for_each(tmp,&all_mddevs)
  5802. if (!l--) {
  5803. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5804. mddev_get(mddev);
  5805. spin_unlock(&all_mddevs_lock);
  5806. return mddev;
  5807. }
  5808. spin_unlock(&all_mddevs_lock);
  5809. if (!l--)
  5810. return (void*)2;/* tail */
  5811. return NULL;
  5812. }
  5813. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5814. {
  5815. struct list_head *tmp;
  5816. mddev_t *next_mddev, *mddev = v;
  5817. ++*pos;
  5818. if (v == (void*)2)
  5819. return NULL;
  5820. spin_lock(&all_mddevs_lock);
  5821. if (v == (void*)1)
  5822. tmp = all_mddevs.next;
  5823. else
  5824. tmp = mddev->all_mddevs.next;
  5825. if (tmp != &all_mddevs)
  5826. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5827. else {
  5828. next_mddev = (void*)2;
  5829. *pos = 0x10000;
  5830. }
  5831. spin_unlock(&all_mddevs_lock);
  5832. if (v != (void*)1)
  5833. mddev_put(mddev);
  5834. return next_mddev;
  5835. }
  5836. static void md_seq_stop(struct seq_file *seq, void *v)
  5837. {
  5838. mddev_t *mddev = v;
  5839. if (mddev && v != (void*)1 && v != (void*)2)
  5840. mddev_put(mddev);
  5841. }
  5842. static int md_seq_show(struct seq_file *seq, void *v)
  5843. {
  5844. mddev_t *mddev = v;
  5845. sector_t sectors;
  5846. mdk_rdev_t *rdev;
  5847. struct bitmap *bitmap;
  5848. if (v == (void*)1) {
  5849. struct mdk_personality *pers;
  5850. seq_printf(seq, "Personalities : ");
  5851. spin_lock(&pers_lock);
  5852. list_for_each_entry(pers, &pers_list, list)
  5853. seq_printf(seq, "[%s] ", pers->name);
  5854. spin_unlock(&pers_lock);
  5855. seq_printf(seq, "\n");
  5856. seq->poll_event = atomic_read(&md_event_count);
  5857. return 0;
  5858. }
  5859. if (v == (void*)2) {
  5860. status_unused(seq);
  5861. return 0;
  5862. }
  5863. if (mddev_lock(mddev) < 0)
  5864. return -EINTR;
  5865. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5866. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5867. mddev->pers ? "" : "in");
  5868. if (mddev->pers) {
  5869. if (mddev->ro==1)
  5870. seq_printf(seq, " (read-only)");
  5871. if (mddev->ro==2)
  5872. seq_printf(seq, " (auto-read-only)");
  5873. seq_printf(seq, " %s", mddev->pers->name);
  5874. }
  5875. sectors = 0;
  5876. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5877. char b[BDEVNAME_SIZE];
  5878. seq_printf(seq, " %s[%d]",
  5879. bdevname(rdev->bdev,b), rdev->desc_nr);
  5880. if (test_bit(WriteMostly, &rdev->flags))
  5881. seq_printf(seq, "(W)");
  5882. if (test_bit(Faulty, &rdev->flags)) {
  5883. seq_printf(seq, "(F)");
  5884. continue;
  5885. } else if (rdev->raid_disk < 0)
  5886. seq_printf(seq, "(S)"); /* spare */
  5887. sectors += rdev->sectors;
  5888. }
  5889. if (!list_empty(&mddev->disks)) {
  5890. if (mddev->pers)
  5891. seq_printf(seq, "\n %llu blocks",
  5892. (unsigned long long)
  5893. mddev->array_sectors / 2);
  5894. else
  5895. seq_printf(seq, "\n %llu blocks",
  5896. (unsigned long long)sectors / 2);
  5897. }
  5898. if (mddev->persistent) {
  5899. if (mddev->major_version != 0 ||
  5900. mddev->minor_version != 90) {
  5901. seq_printf(seq," super %d.%d",
  5902. mddev->major_version,
  5903. mddev->minor_version);
  5904. }
  5905. } else if (mddev->external)
  5906. seq_printf(seq, " super external:%s",
  5907. mddev->metadata_type);
  5908. else
  5909. seq_printf(seq, " super non-persistent");
  5910. if (mddev->pers) {
  5911. mddev->pers->status(seq, mddev);
  5912. seq_printf(seq, "\n ");
  5913. if (mddev->pers->sync_request) {
  5914. if (mddev->curr_resync > 2) {
  5915. status_resync(seq, mddev);
  5916. seq_printf(seq, "\n ");
  5917. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5918. seq_printf(seq, "\tresync=DELAYED\n ");
  5919. else if (mddev->recovery_cp < MaxSector)
  5920. seq_printf(seq, "\tresync=PENDING\n ");
  5921. }
  5922. } else
  5923. seq_printf(seq, "\n ");
  5924. if ((bitmap = mddev->bitmap)) {
  5925. unsigned long chunk_kb;
  5926. unsigned long flags;
  5927. spin_lock_irqsave(&bitmap->lock, flags);
  5928. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5929. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5930. "%lu%s chunk",
  5931. bitmap->pages - bitmap->missing_pages,
  5932. bitmap->pages,
  5933. (bitmap->pages - bitmap->missing_pages)
  5934. << (PAGE_SHIFT - 10),
  5935. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5936. chunk_kb ? "KB" : "B");
  5937. if (bitmap->file) {
  5938. seq_printf(seq, ", file: ");
  5939. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5940. }
  5941. seq_printf(seq, "\n");
  5942. spin_unlock_irqrestore(&bitmap->lock, flags);
  5943. }
  5944. seq_printf(seq, "\n");
  5945. }
  5946. mddev_unlock(mddev);
  5947. return 0;
  5948. }
  5949. static const struct seq_operations md_seq_ops = {
  5950. .start = md_seq_start,
  5951. .next = md_seq_next,
  5952. .stop = md_seq_stop,
  5953. .show = md_seq_show,
  5954. };
  5955. static int md_seq_open(struct inode *inode, struct file *file)
  5956. {
  5957. struct seq_file *seq;
  5958. int error;
  5959. error = seq_open(file, &md_seq_ops);
  5960. if (error)
  5961. return error;
  5962. seq = file->private_data;
  5963. seq->poll_event = atomic_read(&md_event_count);
  5964. return error;
  5965. }
  5966. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5967. {
  5968. struct seq_file *seq = filp->private_data;
  5969. int mask;
  5970. poll_wait(filp, &md_event_waiters, wait);
  5971. /* always allow read */
  5972. mask = POLLIN | POLLRDNORM;
  5973. if (seq->poll_event != atomic_read(&md_event_count))
  5974. mask |= POLLERR | POLLPRI;
  5975. return mask;
  5976. }
  5977. static const struct file_operations md_seq_fops = {
  5978. .owner = THIS_MODULE,
  5979. .open = md_seq_open,
  5980. .read = seq_read,
  5981. .llseek = seq_lseek,
  5982. .release = seq_release_private,
  5983. .poll = mdstat_poll,
  5984. };
  5985. int register_md_personality(struct mdk_personality *p)
  5986. {
  5987. spin_lock(&pers_lock);
  5988. list_add_tail(&p->list, &pers_list);
  5989. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5990. spin_unlock(&pers_lock);
  5991. return 0;
  5992. }
  5993. int unregister_md_personality(struct mdk_personality *p)
  5994. {
  5995. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5996. spin_lock(&pers_lock);
  5997. list_del_init(&p->list);
  5998. spin_unlock(&pers_lock);
  5999. return 0;
  6000. }
  6001. static int is_mddev_idle(mddev_t *mddev, int init)
  6002. {
  6003. mdk_rdev_t * rdev;
  6004. int idle;
  6005. int curr_events;
  6006. idle = 1;
  6007. rcu_read_lock();
  6008. rdev_for_each_rcu(rdev, mddev) {
  6009. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6010. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6011. (int)part_stat_read(&disk->part0, sectors[1]) -
  6012. atomic_read(&disk->sync_io);
  6013. /* sync IO will cause sync_io to increase before the disk_stats
  6014. * as sync_io is counted when a request starts, and
  6015. * disk_stats is counted when it completes.
  6016. * So resync activity will cause curr_events to be smaller than
  6017. * when there was no such activity.
  6018. * non-sync IO will cause disk_stat to increase without
  6019. * increasing sync_io so curr_events will (eventually)
  6020. * be larger than it was before. Once it becomes
  6021. * substantially larger, the test below will cause
  6022. * the array to appear non-idle, and resync will slow
  6023. * down.
  6024. * If there is a lot of outstanding resync activity when
  6025. * we set last_event to curr_events, then all that activity
  6026. * completing might cause the array to appear non-idle
  6027. * and resync will be slowed down even though there might
  6028. * not have been non-resync activity. This will only
  6029. * happen once though. 'last_events' will soon reflect
  6030. * the state where there is little or no outstanding
  6031. * resync requests, and further resync activity will
  6032. * always make curr_events less than last_events.
  6033. *
  6034. */
  6035. if (init || curr_events - rdev->last_events > 64) {
  6036. rdev->last_events = curr_events;
  6037. idle = 0;
  6038. }
  6039. }
  6040. rcu_read_unlock();
  6041. return idle;
  6042. }
  6043. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  6044. {
  6045. /* another "blocks" (512byte) blocks have been synced */
  6046. atomic_sub(blocks, &mddev->recovery_active);
  6047. wake_up(&mddev->recovery_wait);
  6048. if (!ok) {
  6049. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6050. md_wakeup_thread(mddev->thread);
  6051. // stop recovery, signal do_sync ....
  6052. }
  6053. }
  6054. /* md_write_start(mddev, bi)
  6055. * If we need to update some array metadata (e.g. 'active' flag
  6056. * in superblock) before writing, schedule a superblock update
  6057. * and wait for it to complete.
  6058. */
  6059. void md_write_start(mddev_t *mddev, struct bio *bi)
  6060. {
  6061. int did_change = 0;
  6062. if (bio_data_dir(bi) != WRITE)
  6063. return;
  6064. BUG_ON(mddev->ro == 1);
  6065. if (mddev->ro == 2) {
  6066. /* need to switch to read/write */
  6067. mddev->ro = 0;
  6068. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6069. md_wakeup_thread(mddev->thread);
  6070. md_wakeup_thread(mddev->sync_thread);
  6071. did_change = 1;
  6072. }
  6073. atomic_inc(&mddev->writes_pending);
  6074. if (mddev->safemode == 1)
  6075. mddev->safemode = 0;
  6076. if (mddev->in_sync) {
  6077. spin_lock_irq(&mddev->write_lock);
  6078. if (mddev->in_sync) {
  6079. mddev->in_sync = 0;
  6080. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6081. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6082. md_wakeup_thread(mddev->thread);
  6083. did_change = 1;
  6084. }
  6085. spin_unlock_irq(&mddev->write_lock);
  6086. }
  6087. if (did_change)
  6088. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6089. wait_event(mddev->sb_wait,
  6090. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6091. }
  6092. void md_write_end(mddev_t *mddev)
  6093. {
  6094. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6095. if (mddev->safemode == 2)
  6096. md_wakeup_thread(mddev->thread);
  6097. else if (mddev->safemode_delay)
  6098. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6099. }
  6100. }
  6101. /* md_allow_write(mddev)
  6102. * Calling this ensures that the array is marked 'active' so that writes
  6103. * may proceed without blocking. It is important to call this before
  6104. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6105. * Must be called with mddev_lock held.
  6106. *
  6107. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6108. * is dropped, so return -EAGAIN after notifying userspace.
  6109. */
  6110. int md_allow_write(mddev_t *mddev)
  6111. {
  6112. if (!mddev->pers)
  6113. return 0;
  6114. if (mddev->ro)
  6115. return 0;
  6116. if (!mddev->pers->sync_request)
  6117. return 0;
  6118. spin_lock_irq(&mddev->write_lock);
  6119. if (mddev->in_sync) {
  6120. mddev->in_sync = 0;
  6121. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6122. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6123. if (mddev->safemode_delay &&
  6124. mddev->safemode == 0)
  6125. mddev->safemode = 1;
  6126. spin_unlock_irq(&mddev->write_lock);
  6127. md_update_sb(mddev, 0);
  6128. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6129. } else
  6130. spin_unlock_irq(&mddev->write_lock);
  6131. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6132. return -EAGAIN;
  6133. else
  6134. return 0;
  6135. }
  6136. EXPORT_SYMBOL_GPL(md_allow_write);
  6137. #define SYNC_MARKS 10
  6138. #define SYNC_MARK_STEP (3*HZ)
  6139. void md_do_sync(mddev_t *mddev)
  6140. {
  6141. mddev_t *mddev2;
  6142. unsigned int currspeed = 0,
  6143. window;
  6144. sector_t max_sectors,j, io_sectors;
  6145. unsigned long mark[SYNC_MARKS];
  6146. sector_t mark_cnt[SYNC_MARKS];
  6147. int last_mark,m;
  6148. struct list_head *tmp;
  6149. sector_t last_check;
  6150. int skipped = 0;
  6151. mdk_rdev_t *rdev;
  6152. char *desc;
  6153. /* just incase thread restarts... */
  6154. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6155. return;
  6156. if (mddev->ro) /* never try to sync a read-only array */
  6157. return;
  6158. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6159. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6160. desc = "data-check";
  6161. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6162. desc = "requested-resync";
  6163. else
  6164. desc = "resync";
  6165. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6166. desc = "reshape";
  6167. else
  6168. desc = "recovery";
  6169. /* we overload curr_resync somewhat here.
  6170. * 0 == not engaged in resync at all
  6171. * 2 == checking that there is no conflict with another sync
  6172. * 1 == like 2, but have yielded to allow conflicting resync to
  6173. * commense
  6174. * other == active in resync - this many blocks
  6175. *
  6176. * Before starting a resync we must have set curr_resync to
  6177. * 2, and then checked that every "conflicting" array has curr_resync
  6178. * less than ours. When we find one that is the same or higher
  6179. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6180. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6181. * This will mean we have to start checking from the beginning again.
  6182. *
  6183. */
  6184. do {
  6185. mddev->curr_resync = 2;
  6186. try_again:
  6187. if (kthread_should_stop())
  6188. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6189. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6190. goto skip;
  6191. for_each_mddev(mddev2, tmp) {
  6192. if (mddev2 == mddev)
  6193. continue;
  6194. if (!mddev->parallel_resync
  6195. && mddev2->curr_resync
  6196. && match_mddev_units(mddev, mddev2)) {
  6197. DEFINE_WAIT(wq);
  6198. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6199. /* arbitrarily yield */
  6200. mddev->curr_resync = 1;
  6201. wake_up(&resync_wait);
  6202. }
  6203. if (mddev > mddev2 && mddev->curr_resync == 1)
  6204. /* no need to wait here, we can wait the next
  6205. * time 'round when curr_resync == 2
  6206. */
  6207. continue;
  6208. /* We need to wait 'interruptible' so as not to
  6209. * contribute to the load average, and not to
  6210. * be caught by 'softlockup'
  6211. */
  6212. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6213. if (!kthread_should_stop() &&
  6214. mddev2->curr_resync >= mddev->curr_resync) {
  6215. printk(KERN_INFO "md: delaying %s of %s"
  6216. " until %s has finished (they"
  6217. " share one or more physical units)\n",
  6218. desc, mdname(mddev), mdname(mddev2));
  6219. mddev_put(mddev2);
  6220. if (signal_pending(current))
  6221. flush_signals(current);
  6222. schedule();
  6223. finish_wait(&resync_wait, &wq);
  6224. goto try_again;
  6225. }
  6226. finish_wait(&resync_wait, &wq);
  6227. }
  6228. }
  6229. } while (mddev->curr_resync < 2);
  6230. j = 0;
  6231. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6232. /* resync follows the size requested by the personality,
  6233. * which defaults to physical size, but can be virtual size
  6234. */
  6235. max_sectors = mddev->resync_max_sectors;
  6236. mddev->resync_mismatches = 0;
  6237. /* we don't use the checkpoint if there's a bitmap */
  6238. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6239. j = mddev->resync_min;
  6240. else if (!mddev->bitmap)
  6241. j = mddev->recovery_cp;
  6242. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6243. max_sectors = mddev->dev_sectors;
  6244. else {
  6245. /* recovery follows the physical size of devices */
  6246. max_sectors = mddev->dev_sectors;
  6247. j = MaxSector;
  6248. rcu_read_lock();
  6249. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6250. if (rdev->raid_disk >= 0 &&
  6251. !test_bit(Faulty, &rdev->flags) &&
  6252. !test_bit(In_sync, &rdev->flags) &&
  6253. rdev->recovery_offset < j)
  6254. j = rdev->recovery_offset;
  6255. rcu_read_unlock();
  6256. }
  6257. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6258. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6259. " %d KB/sec/disk.\n", speed_min(mddev));
  6260. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6261. "(but not more than %d KB/sec) for %s.\n",
  6262. speed_max(mddev), desc);
  6263. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6264. io_sectors = 0;
  6265. for (m = 0; m < SYNC_MARKS; m++) {
  6266. mark[m] = jiffies;
  6267. mark_cnt[m] = io_sectors;
  6268. }
  6269. last_mark = 0;
  6270. mddev->resync_mark = mark[last_mark];
  6271. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6272. /*
  6273. * Tune reconstruction:
  6274. */
  6275. window = 32*(PAGE_SIZE/512);
  6276. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6277. window/2, (unsigned long long)max_sectors/2);
  6278. atomic_set(&mddev->recovery_active, 0);
  6279. last_check = 0;
  6280. if (j>2) {
  6281. printk(KERN_INFO
  6282. "md: resuming %s of %s from checkpoint.\n",
  6283. desc, mdname(mddev));
  6284. mddev->curr_resync = j;
  6285. }
  6286. mddev->curr_resync_completed = j;
  6287. while (j < max_sectors) {
  6288. sector_t sectors;
  6289. skipped = 0;
  6290. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6291. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6292. (mddev->curr_resync - mddev->curr_resync_completed)
  6293. > (max_sectors >> 4)) ||
  6294. (j - mddev->curr_resync_completed)*2
  6295. >= mddev->resync_max - mddev->curr_resync_completed
  6296. )) {
  6297. /* time to update curr_resync_completed */
  6298. wait_event(mddev->recovery_wait,
  6299. atomic_read(&mddev->recovery_active) == 0);
  6300. mddev->curr_resync_completed = j;
  6301. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6302. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6303. }
  6304. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6305. /* As this condition is controlled by user-space,
  6306. * we can block indefinitely, so use '_interruptible'
  6307. * to avoid triggering warnings.
  6308. */
  6309. flush_signals(current); /* just in case */
  6310. wait_event_interruptible(mddev->recovery_wait,
  6311. mddev->resync_max > j
  6312. || kthread_should_stop());
  6313. }
  6314. if (kthread_should_stop())
  6315. goto interrupted;
  6316. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6317. currspeed < speed_min(mddev));
  6318. if (sectors == 0) {
  6319. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6320. goto out;
  6321. }
  6322. if (!skipped) { /* actual IO requested */
  6323. io_sectors += sectors;
  6324. atomic_add(sectors, &mddev->recovery_active);
  6325. }
  6326. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6327. break;
  6328. j += sectors;
  6329. if (j>1) mddev->curr_resync = j;
  6330. mddev->curr_mark_cnt = io_sectors;
  6331. if (last_check == 0)
  6332. /* this is the earliest that rebuild will be
  6333. * visible in /proc/mdstat
  6334. */
  6335. md_new_event(mddev);
  6336. if (last_check + window > io_sectors || j == max_sectors)
  6337. continue;
  6338. last_check = io_sectors;
  6339. repeat:
  6340. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6341. /* step marks */
  6342. int next = (last_mark+1) % SYNC_MARKS;
  6343. mddev->resync_mark = mark[next];
  6344. mddev->resync_mark_cnt = mark_cnt[next];
  6345. mark[next] = jiffies;
  6346. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6347. last_mark = next;
  6348. }
  6349. if (kthread_should_stop())
  6350. goto interrupted;
  6351. /*
  6352. * this loop exits only if either when we are slower than
  6353. * the 'hard' speed limit, or the system was IO-idle for
  6354. * a jiffy.
  6355. * the system might be non-idle CPU-wise, but we only care
  6356. * about not overloading the IO subsystem. (things like an
  6357. * e2fsck being done on the RAID array should execute fast)
  6358. */
  6359. cond_resched();
  6360. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6361. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6362. if (currspeed > speed_min(mddev)) {
  6363. if ((currspeed > speed_max(mddev)) ||
  6364. !is_mddev_idle(mddev, 0)) {
  6365. msleep(500);
  6366. goto repeat;
  6367. }
  6368. }
  6369. }
  6370. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6371. /*
  6372. * this also signals 'finished resyncing' to md_stop
  6373. */
  6374. out:
  6375. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6376. /* tell personality that we are finished */
  6377. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6378. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6379. mddev->curr_resync > 2) {
  6380. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6381. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6382. if (mddev->curr_resync >= mddev->recovery_cp) {
  6383. printk(KERN_INFO
  6384. "md: checkpointing %s of %s.\n",
  6385. desc, mdname(mddev));
  6386. mddev->recovery_cp = mddev->curr_resync;
  6387. }
  6388. } else
  6389. mddev->recovery_cp = MaxSector;
  6390. } else {
  6391. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6392. mddev->curr_resync = MaxSector;
  6393. rcu_read_lock();
  6394. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6395. if (rdev->raid_disk >= 0 &&
  6396. mddev->delta_disks >= 0 &&
  6397. !test_bit(Faulty, &rdev->flags) &&
  6398. !test_bit(In_sync, &rdev->flags) &&
  6399. rdev->recovery_offset < mddev->curr_resync)
  6400. rdev->recovery_offset = mddev->curr_resync;
  6401. rcu_read_unlock();
  6402. }
  6403. }
  6404. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6405. skip:
  6406. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6407. /* We completed so min/max setting can be forgotten if used. */
  6408. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6409. mddev->resync_min = 0;
  6410. mddev->resync_max = MaxSector;
  6411. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6412. mddev->resync_min = mddev->curr_resync_completed;
  6413. mddev->curr_resync = 0;
  6414. wake_up(&resync_wait);
  6415. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6416. md_wakeup_thread(mddev->thread);
  6417. return;
  6418. interrupted:
  6419. /*
  6420. * got a signal, exit.
  6421. */
  6422. printk(KERN_INFO
  6423. "md: md_do_sync() got signal ... exiting\n");
  6424. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6425. goto out;
  6426. }
  6427. EXPORT_SYMBOL_GPL(md_do_sync);
  6428. static int remove_and_add_spares(mddev_t *mddev)
  6429. {
  6430. mdk_rdev_t *rdev;
  6431. int spares = 0;
  6432. mddev->curr_resync_completed = 0;
  6433. list_for_each_entry(rdev, &mddev->disks, same_set)
  6434. if (rdev->raid_disk >= 0 &&
  6435. !test_bit(Blocked, &rdev->flags) &&
  6436. (test_bit(Faulty, &rdev->flags) ||
  6437. ! test_bit(In_sync, &rdev->flags)) &&
  6438. atomic_read(&rdev->nr_pending)==0) {
  6439. if (mddev->pers->hot_remove_disk(
  6440. mddev, rdev->raid_disk)==0) {
  6441. sysfs_unlink_rdev(mddev, rdev);
  6442. rdev->raid_disk = -1;
  6443. }
  6444. }
  6445. if (mddev->degraded) {
  6446. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6447. if (rdev->raid_disk >= 0 &&
  6448. !test_bit(In_sync, &rdev->flags) &&
  6449. !test_bit(Faulty, &rdev->flags))
  6450. spares++;
  6451. if (rdev->raid_disk < 0
  6452. && !test_bit(Faulty, &rdev->flags)) {
  6453. rdev->recovery_offset = 0;
  6454. if (mddev->pers->
  6455. hot_add_disk(mddev, rdev) == 0) {
  6456. if (sysfs_link_rdev(mddev, rdev))
  6457. /* failure here is OK */;
  6458. spares++;
  6459. md_new_event(mddev);
  6460. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6461. } else
  6462. break;
  6463. }
  6464. }
  6465. }
  6466. return spares;
  6467. }
  6468. static void reap_sync_thread(mddev_t *mddev)
  6469. {
  6470. mdk_rdev_t *rdev;
  6471. /* resync has finished, collect result */
  6472. md_unregister_thread(mddev->sync_thread);
  6473. mddev->sync_thread = NULL;
  6474. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6475. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6476. /* success...*/
  6477. /* activate any spares */
  6478. if (mddev->pers->spare_active(mddev))
  6479. sysfs_notify(&mddev->kobj, NULL,
  6480. "degraded");
  6481. }
  6482. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6483. mddev->pers->finish_reshape)
  6484. mddev->pers->finish_reshape(mddev);
  6485. md_update_sb(mddev, 1);
  6486. /* if array is no-longer degraded, then any saved_raid_disk
  6487. * information must be scrapped
  6488. */
  6489. if (!mddev->degraded)
  6490. list_for_each_entry(rdev, &mddev->disks, same_set)
  6491. rdev->saved_raid_disk = -1;
  6492. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6493. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6494. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6495. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6496. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6497. /* flag recovery needed just to double check */
  6498. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6499. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6500. md_new_event(mddev);
  6501. if (mddev->event_work.func)
  6502. queue_work(md_misc_wq, &mddev->event_work);
  6503. }
  6504. /*
  6505. * This routine is regularly called by all per-raid-array threads to
  6506. * deal with generic issues like resync and super-block update.
  6507. * Raid personalities that don't have a thread (linear/raid0) do not
  6508. * need this as they never do any recovery or update the superblock.
  6509. *
  6510. * It does not do any resync itself, but rather "forks" off other threads
  6511. * to do that as needed.
  6512. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6513. * "->recovery" and create a thread at ->sync_thread.
  6514. * When the thread finishes it sets MD_RECOVERY_DONE
  6515. * and wakeups up this thread which will reap the thread and finish up.
  6516. * This thread also removes any faulty devices (with nr_pending == 0).
  6517. *
  6518. * The overall approach is:
  6519. * 1/ if the superblock needs updating, update it.
  6520. * 2/ If a recovery thread is running, don't do anything else.
  6521. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6522. * 4/ If there are any faulty devices, remove them.
  6523. * 5/ If array is degraded, try to add spares devices
  6524. * 6/ If array has spares or is not in-sync, start a resync thread.
  6525. */
  6526. void md_check_recovery(mddev_t *mddev)
  6527. {
  6528. if (mddev->suspended)
  6529. return;
  6530. if (mddev->bitmap)
  6531. bitmap_daemon_work(mddev);
  6532. if (signal_pending(current)) {
  6533. if (mddev->pers->sync_request && !mddev->external) {
  6534. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6535. mdname(mddev));
  6536. mddev->safemode = 2;
  6537. }
  6538. flush_signals(current);
  6539. }
  6540. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6541. return;
  6542. if ( ! (
  6543. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6544. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6545. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6546. (mddev->external == 0 && mddev->safemode == 1) ||
  6547. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6548. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6549. ))
  6550. return;
  6551. if (mddev_trylock(mddev)) {
  6552. int spares = 0;
  6553. if (mddev->ro) {
  6554. /* Only thing we do on a ro array is remove
  6555. * failed devices.
  6556. */
  6557. mdk_rdev_t *rdev;
  6558. list_for_each_entry(rdev, &mddev->disks, same_set)
  6559. if (rdev->raid_disk >= 0 &&
  6560. !test_bit(Blocked, &rdev->flags) &&
  6561. test_bit(Faulty, &rdev->flags) &&
  6562. atomic_read(&rdev->nr_pending)==0) {
  6563. if (mddev->pers->hot_remove_disk(
  6564. mddev, rdev->raid_disk)==0) {
  6565. sysfs_unlink_rdev(mddev, rdev);
  6566. rdev->raid_disk = -1;
  6567. }
  6568. }
  6569. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6570. goto unlock;
  6571. }
  6572. if (!mddev->external) {
  6573. int did_change = 0;
  6574. spin_lock_irq(&mddev->write_lock);
  6575. if (mddev->safemode &&
  6576. !atomic_read(&mddev->writes_pending) &&
  6577. !mddev->in_sync &&
  6578. mddev->recovery_cp == MaxSector) {
  6579. mddev->in_sync = 1;
  6580. did_change = 1;
  6581. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6582. }
  6583. if (mddev->safemode == 1)
  6584. mddev->safemode = 0;
  6585. spin_unlock_irq(&mddev->write_lock);
  6586. if (did_change)
  6587. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6588. }
  6589. if (mddev->flags)
  6590. md_update_sb(mddev, 0);
  6591. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6592. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6593. /* resync/recovery still happening */
  6594. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6595. goto unlock;
  6596. }
  6597. if (mddev->sync_thread) {
  6598. reap_sync_thread(mddev);
  6599. goto unlock;
  6600. }
  6601. /* Set RUNNING before clearing NEEDED to avoid
  6602. * any transients in the value of "sync_action".
  6603. */
  6604. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6605. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6606. /* Clear some bits that don't mean anything, but
  6607. * might be left set
  6608. */
  6609. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6610. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6611. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6612. goto unlock;
  6613. /* no recovery is running.
  6614. * remove any failed drives, then
  6615. * add spares if possible.
  6616. * Spare are also removed and re-added, to allow
  6617. * the personality to fail the re-add.
  6618. */
  6619. if (mddev->reshape_position != MaxSector) {
  6620. if (mddev->pers->check_reshape == NULL ||
  6621. mddev->pers->check_reshape(mddev) != 0)
  6622. /* Cannot proceed */
  6623. goto unlock;
  6624. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6625. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6626. } else if ((spares = remove_and_add_spares(mddev))) {
  6627. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6628. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6629. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6630. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6631. } else if (mddev->recovery_cp < MaxSector) {
  6632. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6633. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6634. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6635. /* nothing to be done ... */
  6636. goto unlock;
  6637. if (mddev->pers->sync_request) {
  6638. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6639. /* We are adding a device or devices to an array
  6640. * which has the bitmap stored on all devices.
  6641. * So make sure all bitmap pages get written
  6642. */
  6643. bitmap_write_all(mddev->bitmap);
  6644. }
  6645. mddev->sync_thread = md_register_thread(md_do_sync,
  6646. mddev,
  6647. "resync");
  6648. if (!mddev->sync_thread) {
  6649. printk(KERN_ERR "%s: could not start resync"
  6650. " thread...\n",
  6651. mdname(mddev));
  6652. /* leave the spares where they are, it shouldn't hurt */
  6653. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6654. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6655. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6656. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6657. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6658. } else
  6659. md_wakeup_thread(mddev->sync_thread);
  6660. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6661. md_new_event(mddev);
  6662. }
  6663. unlock:
  6664. if (!mddev->sync_thread) {
  6665. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6666. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6667. &mddev->recovery))
  6668. if (mddev->sysfs_action)
  6669. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6670. }
  6671. mddev_unlock(mddev);
  6672. }
  6673. }
  6674. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6675. {
  6676. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6677. wait_event_timeout(rdev->blocked_wait,
  6678. !test_bit(Blocked, &rdev->flags) &&
  6679. !test_bit(BlockedBadBlocks, &rdev->flags),
  6680. msecs_to_jiffies(5000));
  6681. rdev_dec_pending(rdev, mddev);
  6682. }
  6683. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6684. /* Bad block management.
  6685. * We can record which blocks on each device are 'bad' and so just
  6686. * fail those blocks, or that stripe, rather than the whole device.
  6687. * Entries in the bad-block table are 64bits wide. This comprises:
  6688. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6689. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6690. * A 'shift' can be set so that larger blocks are tracked and
  6691. * consequently larger devices can be covered.
  6692. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6693. *
  6694. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6695. * might need to retry if it is very unlucky.
  6696. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6697. * so we use the write_seqlock_irq variant.
  6698. *
  6699. * When looking for a bad block we specify a range and want to
  6700. * know if any block in the range is bad. So we binary-search
  6701. * to the last range that starts at-or-before the given endpoint,
  6702. * (or "before the sector after the target range")
  6703. * then see if it ends after the given start.
  6704. * We return
  6705. * 0 if there are no known bad blocks in the range
  6706. * 1 if there are known bad block which are all acknowledged
  6707. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6708. * plus the start/length of the first bad section we overlap.
  6709. */
  6710. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6711. sector_t *first_bad, int *bad_sectors)
  6712. {
  6713. int hi;
  6714. int lo = 0;
  6715. u64 *p = bb->page;
  6716. int rv = 0;
  6717. sector_t target = s + sectors;
  6718. unsigned seq;
  6719. if (bb->shift > 0) {
  6720. /* round the start down, and the end up */
  6721. s >>= bb->shift;
  6722. target += (1<<bb->shift) - 1;
  6723. target >>= bb->shift;
  6724. sectors = target - s;
  6725. }
  6726. /* 'target' is now the first block after the bad range */
  6727. retry:
  6728. seq = read_seqbegin(&bb->lock);
  6729. hi = bb->count;
  6730. /* Binary search between lo and hi for 'target'
  6731. * i.e. for the last range that starts before 'target'
  6732. */
  6733. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6734. * are known not to be the last range before target.
  6735. * VARIANT: hi-lo is the number of possible
  6736. * ranges, and decreases until it reaches 1
  6737. */
  6738. while (hi - lo > 1) {
  6739. int mid = (lo + hi) / 2;
  6740. sector_t a = BB_OFFSET(p[mid]);
  6741. if (a < target)
  6742. /* This could still be the one, earlier ranges
  6743. * could not. */
  6744. lo = mid;
  6745. else
  6746. /* This and later ranges are definitely out. */
  6747. hi = mid;
  6748. }
  6749. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6750. if (hi > lo) {
  6751. /* need to check all range that end after 's' to see if
  6752. * any are unacknowledged.
  6753. */
  6754. while (lo >= 0 &&
  6755. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6756. if (BB_OFFSET(p[lo]) < target) {
  6757. /* starts before the end, and finishes after
  6758. * the start, so they must overlap
  6759. */
  6760. if (rv != -1 && BB_ACK(p[lo]))
  6761. rv = 1;
  6762. else
  6763. rv = -1;
  6764. *first_bad = BB_OFFSET(p[lo]);
  6765. *bad_sectors = BB_LEN(p[lo]);
  6766. }
  6767. lo--;
  6768. }
  6769. }
  6770. if (read_seqretry(&bb->lock, seq))
  6771. goto retry;
  6772. return rv;
  6773. }
  6774. EXPORT_SYMBOL_GPL(md_is_badblock);
  6775. /*
  6776. * Add a range of bad blocks to the table.
  6777. * This might extend the table, or might contract it
  6778. * if two adjacent ranges can be merged.
  6779. * We binary-search to find the 'insertion' point, then
  6780. * decide how best to handle it.
  6781. */
  6782. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6783. int acknowledged)
  6784. {
  6785. u64 *p;
  6786. int lo, hi;
  6787. int rv = 1;
  6788. if (bb->shift < 0)
  6789. /* badblocks are disabled */
  6790. return 0;
  6791. if (bb->shift) {
  6792. /* round the start down, and the end up */
  6793. sector_t next = s + sectors;
  6794. s >>= bb->shift;
  6795. next += (1<<bb->shift) - 1;
  6796. next >>= bb->shift;
  6797. sectors = next - s;
  6798. }
  6799. write_seqlock_irq(&bb->lock);
  6800. p = bb->page;
  6801. lo = 0;
  6802. hi = bb->count;
  6803. /* Find the last range that starts at-or-before 's' */
  6804. while (hi - lo > 1) {
  6805. int mid = (lo + hi) / 2;
  6806. sector_t a = BB_OFFSET(p[mid]);
  6807. if (a <= s)
  6808. lo = mid;
  6809. else
  6810. hi = mid;
  6811. }
  6812. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6813. hi = lo;
  6814. if (hi > lo) {
  6815. /* we found a range that might merge with the start
  6816. * of our new range
  6817. */
  6818. sector_t a = BB_OFFSET(p[lo]);
  6819. sector_t e = a + BB_LEN(p[lo]);
  6820. int ack = BB_ACK(p[lo]);
  6821. if (e >= s) {
  6822. /* Yes, we can merge with a previous range */
  6823. if (s == a && s + sectors >= e)
  6824. /* new range covers old */
  6825. ack = acknowledged;
  6826. else
  6827. ack = ack && acknowledged;
  6828. if (e < s + sectors)
  6829. e = s + sectors;
  6830. if (e - a <= BB_MAX_LEN) {
  6831. p[lo] = BB_MAKE(a, e-a, ack);
  6832. s = e;
  6833. } else {
  6834. /* does not all fit in one range,
  6835. * make p[lo] maximal
  6836. */
  6837. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6838. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6839. s = a + BB_MAX_LEN;
  6840. }
  6841. sectors = e - s;
  6842. }
  6843. }
  6844. if (sectors && hi < bb->count) {
  6845. /* 'hi' points to the first range that starts after 's'.
  6846. * Maybe we can merge with the start of that range */
  6847. sector_t a = BB_OFFSET(p[hi]);
  6848. sector_t e = a + BB_LEN(p[hi]);
  6849. int ack = BB_ACK(p[hi]);
  6850. if (a <= s + sectors) {
  6851. /* merging is possible */
  6852. if (e <= s + sectors) {
  6853. /* full overlap */
  6854. e = s + sectors;
  6855. ack = acknowledged;
  6856. } else
  6857. ack = ack && acknowledged;
  6858. a = s;
  6859. if (e - a <= BB_MAX_LEN) {
  6860. p[hi] = BB_MAKE(a, e-a, ack);
  6861. s = e;
  6862. } else {
  6863. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6864. s = a + BB_MAX_LEN;
  6865. }
  6866. sectors = e - s;
  6867. lo = hi;
  6868. hi++;
  6869. }
  6870. }
  6871. if (sectors == 0 && hi < bb->count) {
  6872. /* we might be able to combine lo and hi */
  6873. /* Note: 's' is at the end of 'lo' */
  6874. sector_t a = BB_OFFSET(p[hi]);
  6875. int lolen = BB_LEN(p[lo]);
  6876. int hilen = BB_LEN(p[hi]);
  6877. int newlen = lolen + hilen - (s - a);
  6878. if (s >= a && newlen < BB_MAX_LEN) {
  6879. /* yes, we can combine them */
  6880. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6881. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6882. memmove(p + hi, p + hi + 1,
  6883. (bb->count - hi - 1) * 8);
  6884. bb->count--;
  6885. }
  6886. }
  6887. while (sectors) {
  6888. /* didn't merge (it all).
  6889. * Need to add a range just before 'hi' */
  6890. if (bb->count >= MD_MAX_BADBLOCKS) {
  6891. /* No room for more */
  6892. rv = 0;
  6893. break;
  6894. } else {
  6895. int this_sectors = sectors;
  6896. memmove(p + hi + 1, p + hi,
  6897. (bb->count - hi) * 8);
  6898. bb->count++;
  6899. if (this_sectors > BB_MAX_LEN)
  6900. this_sectors = BB_MAX_LEN;
  6901. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6902. sectors -= this_sectors;
  6903. s += this_sectors;
  6904. }
  6905. }
  6906. bb->changed = 1;
  6907. if (!acknowledged)
  6908. bb->unacked_exist = 1;
  6909. write_sequnlock_irq(&bb->lock);
  6910. return rv;
  6911. }
  6912. int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
  6913. int acknowledged)
  6914. {
  6915. int rv = md_set_badblocks(&rdev->badblocks,
  6916. s + rdev->data_offset, sectors, acknowledged);
  6917. if (rv) {
  6918. /* Make sure they get written out promptly */
  6919. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6920. md_wakeup_thread(rdev->mddev->thread);
  6921. }
  6922. return rv;
  6923. }
  6924. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6925. /*
  6926. * Remove a range of bad blocks from the table.
  6927. * This may involve extending the table if we spilt a region,
  6928. * but it must not fail. So if the table becomes full, we just
  6929. * drop the remove request.
  6930. */
  6931. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6932. {
  6933. u64 *p;
  6934. int lo, hi;
  6935. sector_t target = s + sectors;
  6936. int rv = 0;
  6937. if (bb->shift > 0) {
  6938. /* When clearing we round the start up and the end down.
  6939. * This should not matter as the shift should align with
  6940. * the block size and no rounding should ever be needed.
  6941. * However it is better the think a block is bad when it
  6942. * isn't than to think a block is not bad when it is.
  6943. */
  6944. s += (1<<bb->shift) - 1;
  6945. s >>= bb->shift;
  6946. target >>= bb->shift;
  6947. sectors = target - s;
  6948. }
  6949. write_seqlock_irq(&bb->lock);
  6950. p = bb->page;
  6951. lo = 0;
  6952. hi = bb->count;
  6953. /* Find the last range that starts before 'target' */
  6954. while (hi - lo > 1) {
  6955. int mid = (lo + hi) / 2;
  6956. sector_t a = BB_OFFSET(p[mid]);
  6957. if (a < target)
  6958. lo = mid;
  6959. else
  6960. hi = mid;
  6961. }
  6962. if (hi > lo) {
  6963. /* p[lo] is the last range that could overlap the
  6964. * current range. Earlier ranges could also overlap,
  6965. * but only this one can overlap the end of the range.
  6966. */
  6967. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  6968. /* Partial overlap, leave the tail of this range */
  6969. int ack = BB_ACK(p[lo]);
  6970. sector_t a = BB_OFFSET(p[lo]);
  6971. sector_t end = a + BB_LEN(p[lo]);
  6972. if (a < s) {
  6973. /* we need to split this range */
  6974. if (bb->count >= MD_MAX_BADBLOCKS) {
  6975. rv = 0;
  6976. goto out;
  6977. }
  6978. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  6979. bb->count++;
  6980. p[lo] = BB_MAKE(a, s-a, ack);
  6981. lo++;
  6982. }
  6983. p[lo] = BB_MAKE(target, end - target, ack);
  6984. /* there is no longer an overlap */
  6985. hi = lo;
  6986. lo--;
  6987. }
  6988. while (lo >= 0 &&
  6989. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6990. /* This range does overlap */
  6991. if (BB_OFFSET(p[lo]) < s) {
  6992. /* Keep the early parts of this range. */
  6993. int ack = BB_ACK(p[lo]);
  6994. sector_t start = BB_OFFSET(p[lo]);
  6995. p[lo] = BB_MAKE(start, s - start, ack);
  6996. /* now low doesn't overlap, so.. */
  6997. break;
  6998. }
  6999. lo--;
  7000. }
  7001. /* 'lo' is strictly before, 'hi' is strictly after,
  7002. * anything between needs to be discarded
  7003. */
  7004. if (hi - lo > 1) {
  7005. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7006. bb->count -= (hi - lo - 1);
  7007. }
  7008. }
  7009. bb->changed = 1;
  7010. out:
  7011. write_sequnlock_irq(&bb->lock);
  7012. return rv;
  7013. }
  7014. int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
  7015. {
  7016. return md_clear_badblocks(&rdev->badblocks,
  7017. s + rdev->data_offset,
  7018. sectors);
  7019. }
  7020. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7021. /*
  7022. * Acknowledge all bad blocks in a list.
  7023. * This only succeeds if ->changed is clear. It is used by
  7024. * in-kernel metadata updates
  7025. */
  7026. void md_ack_all_badblocks(struct badblocks *bb)
  7027. {
  7028. if (bb->page == NULL || bb->changed)
  7029. /* no point even trying */
  7030. return;
  7031. write_seqlock_irq(&bb->lock);
  7032. if (bb->changed == 0) {
  7033. u64 *p = bb->page;
  7034. int i;
  7035. for (i = 0; i < bb->count ; i++) {
  7036. if (!BB_ACK(p[i])) {
  7037. sector_t start = BB_OFFSET(p[i]);
  7038. int len = BB_LEN(p[i]);
  7039. p[i] = BB_MAKE(start, len, 1);
  7040. }
  7041. }
  7042. bb->unacked_exist = 0;
  7043. }
  7044. write_sequnlock_irq(&bb->lock);
  7045. }
  7046. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7047. /* sysfs access to bad-blocks list.
  7048. * We present two files.
  7049. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7050. * are recorded as bad. The list is truncated to fit within
  7051. * the one-page limit of sysfs.
  7052. * Writing "sector length" to this file adds an acknowledged
  7053. * bad block list.
  7054. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7055. * been acknowledged. Writing to this file adds bad blocks
  7056. * without acknowledging them. This is largely for testing.
  7057. */
  7058. static ssize_t
  7059. badblocks_show(struct badblocks *bb, char *page, int unack)
  7060. {
  7061. size_t len;
  7062. int i;
  7063. u64 *p = bb->page;
  7064. unsigned seq;
  7065. if (bb->shift < 0)
  7066. return 0;
  7067. retry:
  7068. seq = read_seqbegin(&bb->lock);
  7069. len = 0;
  7070. i = 0;
  7071. while (len < PAGE_SIZE && i < bb->count) {
  7072. sector_t s = BB_OFFSET(p[i]);
  7073. unsigned int length = BB_LEN(p[i]);
  7074. int ack = BB_ACK(p[i]);
  7075. i++;
  7076. if (unack && ack)
  7077. continue;
  7078. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7079. (unsigned long long)s << bb->shift,
  7080. length << bb->shift);
  7081. }
  7082. if (unack && len == 0)
  7083. bb->unacked_exist = 0;
  7084. if (read_seqretry(&bb->lock, seq))
  7085. goto retry;
  7086. return len;
  7087. }
  7088. #define DO_DEBUG 1
  7089. static ssize_t
  7090. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7091. {
  7092. unsigned long long sector;
  7093. int length;
  7094. char newline;
  7095. #ifdef DO_DEBUG
  7096. /* Allow clearing via sysfs *only* for testing/debugging.
  7097. * Normally only a successful write may clear a badblock
  7098. */
  7099. int clear = 0;
  7100. if (page[0] == '-') {
  7101. clear = 1;
  7102. page++;
  7103. }
  7104. #endif /* DO_DEBUG */
  7105. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7106. case 3:
  7107. if (newline != '\n')
  7108. return -EINVAL;
  7109. case 2:
  7110. if (length <= 0)
  7111. return -EINVAL;
  7112. break;
  7113. default:
  7114. return -EINVAL;
  7115. }
  7116. #ifdef DO_DEBUG
  7117. if (clear) {
  7118. md_clear_badblocks(bb, sector, length);
  7119. return len;
  7120. }
  7121. #endif /* DO_DEBUG */
  7122. if (md_set_badblocks(bb, sector, length, !unack))
  7123. return len;
  7124. else
  7125. return -ENOSPC;
  7126. }
  7127. static int md_notify_reboot(struct notifier_block *this,
  7128. unsigned long code, void *x)
  7129. {
  7130. struct list_head *tmp;
  7131. mddev_t *mddev;
  7132. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7133. printk(KERN_INFO "md: stopping all md devices.\n");
  7134. for_each_mddev(mddev, tmp)
  7135. if (mddev_trylock(mddev)) {
  7136. /* Force a switch to readonly even array
  7137. * appears to still be in use. Hence
  7138. * the '100'.
  7139. */
  7140. md_set_readonly(mddev, 100);
  7141. mddev_unlock(mddev);
  7142. }
  7143. /*
  7144. * certain more exotic SCSI devices are known to be
  7145. * volatile wrt too early system reboots. While the
  7146. * right place to handle this issue is the given
  7147. * driver, we do want to have a safe RAID driver ...
  7148. */
  7149. mdelay(1000*1);
  7150. }
  7151. return NOTIFY_DONE;
  7152. }
  7153. static struct notifier_block md_notifier = {
  7154. .notifier_call = md_notify_reboot,
  7155. .next = NULL,
  7156. .priority = INT_MAX, /* before any real devices */
  7157. };
  7158. static void md_geninit(void)
  7159. {
  7160. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7161. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7162. }
  7163. static int __init md_init(void)
  7164. {
  7165. int ret = -ENOMEM;
  7166. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7167. if (!md_wq)
  7168. goto err_wq;
  7169. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7170. if (!md_misc_wq)
  7171. goto err_misc_wq;
  7172. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7173. goto err_md;
  7174. if ((ret = register_blkdev(0, "mdp")) < 0)
  7175. goto err_mdp;
  7176. mdp_major = ret;
  7177. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7178. md_probe, NULL, NULL);
  7179. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7180. md_probe, NULL, NULL);
  7181. register_reboot_notifier(&md_notifier);
  7182. raid_table_header = register_sysctl_table(raid_root_table);
  7183. md_geninit();
  7184. return 0;
  7185. err_mdp:
  7186. unregister_blkdev(MD_MAJOR, "md");
  7187. err_md:
  7188. destroy_workqueue(md_misc_wq);
  7189. err_misc_wq:
  7190. destroy_workqueue(md_wq);
  7191. err_wq:
  7192. return ret;
  7193. }
  7194. #ifndef MODULE
  7195. /*
  7196. * Searches all registered partitions for autorun RAID arrays
  7197. * at boot time.
  7198. */
  7199. static LIST_HEAD(all_detected_devices);
  7200. struct detected_devices_node {
  7201. struct list_head list;
  7202. dev_t dev;
  7203. };
  7204. void md_autodetect_dev(dev_t dev)
  7205. {
  7206. struct detected_devices_node *node_detected_dev;
  7207. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7208. if (node_detected_dev) {
  7209. node_detected_dev->dev = dev;
  7210. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7211. } else {
  7212. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7213. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7214. }
  7215. }
  7216. static void autostart_arrays(int part)
  7217. {
  7218. mdk_rdev_t *rdev;
  7219. struct detected_devices_node *node_detected_dev;
  7220. dev_t dev;
  7221. int i_scanned, i_passed;
  7222. i_scanned = 0;
  7223. i_passed = 0;
  7224. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7225. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7226. i_scanned++;
  7227. node_detected_dev = list_entry(all_detected_devices.next,
  7228. struct detected_devices_node, list);
  7229. list_del(&node_detected_dev->list);
  7230. dev = node_detected_dev->dev;
  7231. kfree(node_detected_dev);
  7232. rdev = md_import_device(dev,0, 90);
  7233. if (IS_ERR(rdev))
  7234. continue;
  7235. if (test_bit(Faulty, &rdev->flags)) {
  7236. MD_BUG();
  7237. continue;
  7238. }
  7239. set_bit(AutoDetected, &rdev->flags);
  7240. list_add(&rdev->same_set, &pending_raid_disks);
  7241. i_passed++;
  7242. }
  7243. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7244. i_scanned, i_passed);
  7245. autorun_devices(part);
  7246. }
  7247. #endif /* !MODULE */
  7248. static __exit void md_exit(void)
  7249. {
  7250. mddev_t *mddev;
  7251. struct list_head *tmp;
  7252. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7253. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7254. unregister_blkdev(MD_MAJOR,"md");
  7255. unregister_blkdev(mdp_major, "mdp");
  7256. unregister_reboot_notifier(&md_notifier);
  7257. unregister_sysctl_table(raid_table_header);
  7258. remove_proc_entry("mdstat", NULL);
  7259. for_each_mddev(mddev, tmp) {
  7260. export_array(mddev);
  7261. mddev->hold_active = 0;
  7262. }
  7263. destroy_workqueue(md_misc_wq);
  7264. destroy_workqueue(md_wq);
  7265. }
  7266. subsys_initcall(md_init);
  7267. module_exit(md_exit)
  7268. static int get_ro(char *buffer, struct kernel_param *kp)
  7269. {
  7270. return sprintf(buffer, "%d", start_readonly);
  7271. }
  7272. static int set_ro(const char *val, struct kernel_param *kp)
  7273. {
  7274. char *e;
  7275. int num = simple_strtoul(val, &e, 10);
  7276. if (*val && (*e == '\0' || *e == '\n')) {
  7277. start_readonly = num;
  7278. return 0;
  7279. }
  7280. return -EINVAL;
  7281. }
  7282. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7283. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7284. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7285. EXPORT_SYMBOL(register_md_personality);
  7286. EXPORT_SYMBOL(unregister_md_personality);
  7287. EXPORT_SYMBOL(md_error);
  7288. EXPORT_SYMBOL(md_done_sync);
  7289. EXPORT_SYMBOL(md_write_start);
  7290. EXPORT_SYMBOL(md_write_end);
  7291. EXPORT_SYMBOL(md_register_thread);
  7292. EXPORT_SYMBOL(md_unregister_thread);
  7293. EXPORT_SYMBOL(md_wakeup_thread);
  7294. EXPORT_SYMBOL(md_check_recovery);
  7295. MODULE_LICENSE("GPL");
  7296. MODULE_DESCRIPTION("MD RAID framework");
  7297. MODULE_ALIAS("md");
  7298. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);