input.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  12. #include <linux/init.h>
  13. #include <linux/types.h>
  14. #include <linux/input/mt.h>
  15. #include <linux/module.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/major.h>
  19. #include <linux/proc_fs.h>
  20. #include <linux/sched.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/poll.h>
  23. #include <linux/device.h>
  24. #include <linux/mutex.h>
  25. #include <linux/rcupdate.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
  149. if (!is_mt_event) {
  150. pold = &dev->absinfo[code].value;
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multi-touch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absinfo[code].fuzz);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
  170. input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_alloc_absinfo - allocates array of input_absinfo structs
  323. * @dev: the input device emitting absolute events
  324. *
  325. * If the absinfo struct the caller asked for is already allocated, this
  326. * functions will not do anything.
  327. */
  328. void input_alloc_absinfo(struct input_dev *dev)
  329. {
  330. if (!dev->absinfo)
  331. dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
  332. GFP_KERNEL);
  333. WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
  334. }
  335. EXPORT_SYMBOL(input_alloc_absinfo);
  336. void input_set_abs_params(struct input_dev *dev, unsigned int axis,
  337. int min, int max, int fuzz, int flat)
  338. {
  339. struct input_absinfo *absinfo;
  340. input_alloc_absinfo(dev);
  341. if (!dev->absinfo)
  342. return;
  343. absinfo = &dev->absinfo[axis];
  344. absinfo->minimum = min;
  345. absinfo->maximum = max;
  346. absinfo->fuzz = fuzz;
  347. absinfo->flat = flat;
  348. dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
  349. }
  350. EXPORT_SYMBOL(input_set_abs_params);
  351. /**
  352. * input_grab_device - grabs device for exclusive use
  353. * @handle: input handle that wants to own the device
  354. *
  355. * When a device is grabbed by an input handle all events generated by
  356. * the device are delivered only to this handle. Also events injected
  357. * by other input handles are ignored while device is grabbed.
  358. */
  359. int input_grab_device(struct input_handle *handle)
  360. {
  361. struct input_dev *dev = handle->dev;
  362. int retval;
  363. retval = mutex_lock_interruptible(&dev->mutex);
  364. if (retval)
  365. return retval;
  366. if (dev->grab) {
  367. retval = -EBUSY;
  368. goto out;
  369. }
  370. rcu_assign_pointer(dev->grab, handle);
  371. out:
  372. mutex_unlock(&dev->mutex);
  373. return retval;
  374. }
  375. EXPORT_SYMBOL(input_grab_device);
  376. static void __input_release_device(struct input_handle *handle)
  377. {
  378. struct input_dev *dev = handle->dev;
  379. if (dev->grab == handle) {
  380. rcu_assign_pointer(dev->grab, NULL);
  381. /* Make sure input_pass_event() notices that grab is gone */
  382. synchronize_rcu();
  383. list_for_each_entry(handle, &dev->h_list, d_node)
  384. if (handle->open && handle->handler->start)
  385. handle->handler->start(handle);
  386. }
  387. }
  388. /**
  389. * input_release_device - release previously grabbed device
  390. * @handle: input handle that owns the device
  391. *
  392. * Releases previously grabbed device so that other input handles can
  393. * start receiving input events. Upon release all handlers attached
  394. * to the device have their start() method called so they have a change
  395. * to synchronize device state with the rest of the system.
  396. */
  397. void input_release_device(struct input_handle *handle)
  398. {
  399. struct input_dev *dev = handle->dev;
  400. mutex_lock(&dev->mutex);
  401. __input_release_device(handle);
  402. mutex_unlock(&dev->mutex);
  403. }
  404. EXPORT_SYMBOL(input_release_device);
  405. /**
  406. * input_open_device - open input device
  407. * @handle: handle through which device is being accessed
  408. *
  409. * This function should be called by input handlers when they
  410. * want to start receive events from given input device.
  411. */
  412. int input_open_device(struct input_handle *handle)
  413. {
  414. struct input_dev *dev = handle->dev;
  415. int retval;
  416. retval = mutex_lock_interruptible(&dev->mutex);
  417. if (retval)
  418. return retval;
  419. if (dev->going_away) {
  420. retval = -ENODEV;
  421. goto out;
  422. }
  423. handle->open++;
  424. if (!dev->users++ && dev->open)
  425. retval = dev->open(dev);
  426. if (retval) {
  427. dev->users--;
  428. if (!--handle->open) {
  429. /*
  430. * Make sure we are not delivering any more events
  431. * through this handle
  432. */
  433. synchronize_rcu();
  434. }
  435. }
  436. out:
  437. mutex_unlock(&dev->mutex);
  438. return retval;
  439. }
  440. EXPORT_SYMBOL(input_open_device);
  441. int input_flush_device(struct input_handle *handle, struct file *file)
  442. {
  443. struct input_dev *dev = handle->dev;
  444. int retval;
  445. retval = mutex_lock_interruptible(&dev->mutex);
  446. if (retval)
  447. return retval;
  448. if (dev->flush)
  449. retval = dev->flush(dev, file);
  450. mutex_unlock(&dev->mutex);
  451. return retval;
  452. }
  453. EXPORT_SYMBOL(input_flush_device);
  454. /**
  455. * input_close_device - close input device
  456. * @handle: handle through which device is being accessed
  457. *
  458. * This function should be called by input handlers when they
  459. * want to stop receive events from given input device.
  460. */
  461. void input_close_device(struct input_handle *handle)
  462. {
  463. struct input_dev *dev = handle->dev;
  464. mutex_lock(&dev->mutex);
  465. __input_release_device(handle);
  466. if (!--dev->users && dev->close)
  467. dev->close(dev);
  468. if (!--handle->open) {
  469. /*
  470. * synchronize_rcu() makes sure that input_pass_event()
  471. * completed and that no more input events are delivered
  472. * through this handle
  473. */
  474. synchronize_rcu();
  475. }
  476. mutex_unlock(&dev->mutex);
  477. }
  478. EXPORT_SYMBOL(input_close_device);
  479. /*
  480. * Simulate keyup events for all keys that are marked as pressed.
  481. * The function must be called with dev->event_lock held.
  482. */
  483. static void input_dev_release_keys(struct input_dev *dev)
  484. {
  485. int code;
  486. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  487. for (code = 0; code <= KEY_MAX; code++) {
  488. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  489. __test_and_clear_bit(code, dev->key)) {
  490. input_pass_event(dev, EV_KEY, code, 0);
  491. }
  492. }
  493. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  494. }
  495. }
  496. /*
  497. * Prepare device for unregistering
  498. */
  499. static void input_disconnect_device(struct input_dev *dev)
  500. {
  501. struct input_handle *handle;
  502. /*
  503. * Mark device as going away. Note that we take dev->mutex here
  504. * not to protect access to dev->going_away but rather to ensure
  505. * that there are no threads in the middle of input_open_device()
  506. */
  507. mutex_lock(&dev->mutex);
  508. dev->going_away = true;
  509. mutex_unlock(&dev->mutex);
  510. spin_lock_irq(&dev->event_lock);
  511. /*
  512. * Simulate keyup events for all pressed keys so that handlers
  513. * are not left with "stuck" keys. The driver may continue
  514. * generate events even after we done here but they will not
  515. * reach any handlers.
  516. */
  517. input_dev_release_keys(dev);
  518. list_for_each_entry(handle, &dev->h_list, d_node)
  519. handle->open = 0;
  520. spin_unlock_irq(&dev->event_lock);
  521. }
  522. /**
  523. * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
  524. * @ke: keymap entry containing scancode to be converted.
  525. * @scancode: pointer to the location where converted scancode should
  526. * be stored.
  527. *
  528. * This function is used to convert scancode stored in &struct keymap_entry
  529. * into scalar form understood by legacy keymap handling methods. These
  530. * methods expect scancodes to be represented as 'unsigned int'.
  531. */
  532. int input_scancode_to_scalar(const struct input_keymap_entry *ke,
  533. unsigned int *scancode)
  534. {
  535. switch (ke->len) {
  536. case 1:
  537. *scancode = *((u8 *)ke->scancode);
  538. break;
  539. case 2:
  540. *scancode = *((u16 *)ke->scancode);
  541. break;
  542. case 4:
  543. *scancode = *((u32 *)ke->scancode);
  544. break;
  545. default:
  546. return -EINVAL;
  547. }
  548. return 0;
  549. }
  550. EXPORT_SYMBOL(input_scancode_to_scalar);
  551. /*
  552. * Those routines handle the default case where no [gs]etkeycode() is
  553. * defined. In this case, an array indexed by the scancode is used.
  554. */
  555. static unsigned int input_fetch_keycode(struct input_dev *dev,
  556. unsigned int index)
  557. {
  558. switch (dev->keycodesize) {
  559. case 1:
  560. return ((u8 *)dev->keycode)[index];
  561. case 2:
  562. return ((u16 *)dev->keycode)[index];
  563. default:
  564. return ((u32 *)dev->keycode)[index];
  565. }
  566. }
  567. static int input_default_getkeycode(struct input_dev *dev,
  568. struct input_keymap_entry *ke)
  569. {
  570. unsigned int index;
  571. int error;
  572. if (!dev->keycodesize)
  573. return -EINVAL;
  574. if (ke->flags & INPUT_KEYMAP_BY_INDEX)
  575. index = ke->index;
  576. else {
  577. error = input_scancode_to_scalar(ke, &index);
  578. if (error)
  579. return error;
  580. }
  581. if (index >= dev->keycodemax)
  582. return -EINVAL;
  583. ke->keycode = input_fetch_keycode(dev, index);
  584. ke->index = index;
  585. ke->len = sizeof(index);
  586. memcpy(ke->scancode, &index, sizeof(index));
  587. return 0;
  588. }
  589. static int input_default_setkeycode(struct input_dev *dev,
  590. const struct input_keymap_entry *ke,
  591. unsigned int *old_keycode)
  592. {
  593. unsigned int index;
  594. int error;
  595. int i;
  596. if (!dev->keycodesize)
  597. return -EINVAL;
  598. if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
  599. index = ke->index;
  600. } else {
  601. error = input_scancode_to_scalar(ke, &index);
  602. if (error)
  603. return error;
  604. }
  605. if (index >= dev->keycodemax)
  606. return -EINVAL;
  607. if (dev->keycodesize < sizeof(ke->keycode) &&
  608. (ke->keycode >> (dev->keycodesize * 8)))
  609. return -EINVAL;
  610. switch (dev->keycodesize) {
  611. case 1: {
  612. u8 *k = (u8 *)dev->keycode;
  613. *old_keycode = k[index];
  614. k[index] = ke->keycode;
  615. break;
  616. }
  617. case 2: {
  618. u16 *k = (u16 *)dev->keycode;
  619. *old_keycode = k[index];
  620. k[index] = ke->keycode;
  621. break;
  622. }
  623. default: {
  624. u32 *k = (u32 *)dev->keycode;
  625. *old_keycode = k[index];
  626. k[index] = ke->keycode;
  627. break;
  628. }
  629. }
  630. __clear_bit(*old_keycode, dev->keybit);
  631. __set_bit(ke->keycode, dev->keybit);
  632. for (i = 0; i < dev->keycodemax; i++) {
  633. if (input_fetch_keycode(dev, i) == *old_keycode) {
  634. __set_bit(*old_keycode, dev->keybit);
  635. break; /* Setting the bit twice is useless, so break */
  636. }
  637. }
  638. return 0;
  639. }
  640. /**
  641. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  642. * @dev: input device which keymap is being queried
  643. * @ke: keymap entry
  644. *
  645. * This function should be called by anyone interested in retrieving current
  646. * keymap. Presently evdev handlers use it.
  647. */
  648. int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
  649. {
  650. unsigned long flags;
  651. int retval;
  652. spin_lock_irqsave(&dev->event_lock, flags);
  653. retval = dev->getkeycode(dev, ke);
  654. spin_unlock_irqrestore(&dev->event_lock, flags);
  655. return retval;
  656. }
  657. EXPORT_SYMBOL(input_get_keycode);
  658. /**
  659. * input_set_keycode - attribute a keycode to a given scancode
  660. * @dev: input device which keymap is being updated
  661. * @ke: new keymap entry
  662. *
  663. * This function should be called by anyone needing to update current
  664. * keymap. Presently keyboard and evdev handlers use it.
  665. */
  666. int input_set_keycode(struct input_dev *dev,
  667. const struct input_keymap_entry *ke)
  668. {
  669. unsigned long flags;
  670. unsigned int old_keycode;
  671. int retval;
  672. if (ke->keycode > KEY_MAX)
  673. return -EINVAL;
  674. spin_lock_irqsave(&dev->event_lock, flags);
  675. retval = dev->setkeycode(dev, ke, &old_keycode);
  676. if (retval)
  677. goto out;
  678. /* Make sure KEY_RESERVED did not get enabled. */
  679. __clear_bit(KEY_RESERVED, dev->keybit);
  680. /*
  681. * Simulate keyup event if keycode is not present
  682. * in the keymap anymore
  683. */
  684. if (test_bit(EV_KEY, dev->evbit) &&
  685. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  686. __test_and_clear_bit(old_keycode, dev->key)) {
  687. input_pass_event(dev, EV_KEY, old_keycode, 0);
  688. if (dev->sync)
  689. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  690. }
  691. out:
  692. spin_unlock_irqrestore(&dev->event_lock, flags);
  693. return retval;
  694. }
  695. EXPORT_SYMBOL(input_set_keycode);
  696. #define MATCH_BIT(bit, max) \
  697. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  698. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  699. break; \
  700. if (i != BITS_TO_LONGS(max)) \
  701. continue;
  702. static const struct input_device_id *input_match_device(struct input_handler *handler,
  703. struct input_dev *dev)
  704. {
  705. const struct input_device_id *id;
  706. int i;
  707. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  708. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  709. if (id->bustype != dev->id.bustype)
  710. continue;
  711. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  712. if (id->vendor != dev->id.vendor)
  713. continue;
  714. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  715. if (id->product != dev->id.product)
  716. continue;
  717. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  718. if (id->version != dev->id.version)
  719. continue;
  720. MATCH_BIT(evbit, EV_MAX);
  721. MATCH_BIT(keybit, KEY_MAX);
  722. MATCH_BIT(relbit, REL_MAX);
  723. MATCH_BIT(absbit, ABS_MAX);
  724. MATCH_BIT(mscbit, MSC_MAX);
  725. MATCH_BIT(ledbit, LED_MAX);
  726. MATCH_BIT(sndbit, SND_MAX);
  727. MATCH_BIT(ffbit, FF_MAX);
  728. MATCH_BIT(swbit, SW_MAX);
  729. if (!handler->match || handler->match(handler, dev))
  730. return id;
  731. }
  732. return NULL;
  733. }
  734. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  735. {
  736. const struct input_device_id *id;
  737. int error;
  738. id = input_match_device(handler, dev);
  739. if (!id)
  740. return -ENODEV;
  741. error = handler->connect(handler, dev, id);
  742. if (error && error != -ENODEV)
  743. pr_err("failed to attach handler %s to device %s, error: %d\n",
  744. handler->name, kobject_name(&dev->dev.kobj), error);
  745. return error;
  746. }
  747. #ifdef CONFIG_COMPAT
  748. static int input_bits_to_string(char *buf, int buf_size,
  749. unsigned long bits, bool skip_empty)
  750. {
  751. int len = 0;
  752. if (INPUT_COMPAT_TEST) {
  753. u32 dword = bits >> 32;
  754. if (dword || !skip_empty)
  755. len += snprintf(buf, buf_size, "%x ", dword);
  756. dword = bits & 0xffffffffUL;
  757. if (dword || !skip_empty || len)
  758. len += snprintf(buf + len, max(buf_size - len, 0),
  759. "%x", dword);
  760. } else {
  761. if (bits || !skip_empty)
  762. len += snprintf(buf, buf_size, "%lx", bits);
  763. }
  764. return len;
  765. }
  766. #else /* !CONFIG_COMPAT */
  767. static int input_bits_to_string(char *buf, int buf_size,
  768. unsigned long bits, bool skip_empty)
  769. {
  770. return bits || !skip_empty ?
  771. snprintf(buf, buf_size, "%lx", bits) : 0;
  772. }
  773. #endif
  774. #ifdef CONFIG_PROC_FS
  775. static struct proc_dir_entry *proc_bus_input_dir;
  776. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  777. static int input_devices_state;
  778. static inline void input_wakeup_procfs_readers(void)
  779. {
  780. input_devices_state++;
  781. wake_up(&input_devices_poll_wait);
  782. }
  783. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  784. {
  785. poll_wait(file, &input_devices_poll_wait, wait);
  786. if (file->f_version != input_devices_state) {
  787. file->f_version = input_devices_state;
  788. return POLLIN | POLLRDNORM;
  789. }
  790. return 0;
  791. }
  792. union input_seq_state {
  793. struct {
  794. unsigned short pos;
  795. bool mutex_acquired;
  796. };
  797. void *p;
  798. };
  799. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  800. {
  801. union input_seq_state *state = (union input_seq_state *)&seq->private;
  802. int error;
  803. /* We need to fit into seq->private pointer */
  804. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  805. error = mutex_lock_interruptible(&input_mutex);
  806. if (error) {
  807. state->mutex_acquired = false;
  808. return ERR_PTR(error);
  809. }
  810. state->mutex_acquired = true;
  811. return seq_list_start(&input_dev_list, *pos);
  812. }
  813. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  814. {
  815. return seq_list_next(v, &input_dev_list, pos);
  816. }
  817. static void input_seq_stop(struct seq_file *seq, void *v)
  818. {
  819. union input_seq_state *state = (union input_seq_state *)&seq->private;
  820. if (state->mutex_acquired)
  821. mutex_unlock(&input_mutex);
  822. }
  823. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  824. unsigned long *bitmap, int max)
  825. {
  826. int i;
  827. bool skip_empty = true;
  828. char buf[18];
  829. seq_printf(seq, "B: %s=", name);
  830. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  831. if (input_bits_to_string(buf, sizeof(buf),
  832. bitmap[i], skip_empty)) {
  833. skip_empty = false;
  834. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  835. }
  836. }
  837. /*
  838. * If no output was produced print a single 0.
  839. */
  840. if (skip_empty)
  841. seq_puts(seq, "0");
  842. seq_putc(seq, '\n');
  843. }
  844. static int input_devices_seq_show(struct seq_file *seq, void *v)
  845. {
  846. struct input_dev *dev = container_of(v, struct input_dev, node);
  847. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  848. struct input_handle *handle;
  849. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  850. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  851. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  852. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  853. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  854. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  855. seq_printf(seq, "H: Handlers=");
  856. list_for_each_entry(handle, &dev->h_list, d_node)
  857. seq_printf(seq, "%s ", handle->name);
  858. seq_putc(seq, '\n');
  859. input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
  860. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  861. if (test_bit(EV_KEY, dev->evbit))
  862. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  863. if (test_bit(EV_REL, dev->evbit))
  864. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  865. if (test_bit(EV_ABS, dev->evbit))
  866. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  867. if (test_bit(EV_MSC, dev->evbit))
  868. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  869. if (test_bit(EV_LED, dev->evbit))
  870. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  871. if (test_bit(EV_SND, dev->evbit))
  872. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  873. if (test_bit(EV_FF, dev->evbit))
  874. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  875. if (test_bit(EV_SW, dev->evbit))
  876. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  877. seq_putc(seq, '\n');
  878. kfree(path);
  879. return 0;
  880. }
  881. static const struct seq_operations input_devices_seq_ops = {
  882. .start = input_devices_seq_start,
  883. .next = input_devices_seq_next,
  884. .stop = input_seq_stop,
  885. .show = input_devices_seq_show,
  886. };
  887. static int input_proc_devices_open(struct inode *inode, struct file *file)
  888. {
  889. return seq_open(file, &input_devices_seq_ops);
  890. }
  891. static const struct file_operations input_devices_fileops = {
  892. .owner = THIS_MODULE,
  893. .open = input_proc_devices_open,
  894. .poll = input_proc_devices_poll,
  895. .read = seq_read,
  896. .llseek = seq_lseek,
  897. .release = seq_release,
  898. };
  899. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  900. {
  901. union input_seq_state *state = (union input_seq_state *)&seq->private;
  902. int error;
  903. /* We need to fit into seq->private pointer */
  904. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  905. error = mutex_lock_interruptible(&input_mutex);
  906. if (error) {
  907. state->mutex_acquired = false;
  908. return ERR_PTR(error);
  909. }
  910. state->mutex_acquired = true;
  911. state->pos = *pos;
  912. return seq_list_start(&input_handler_list, *pos);
  913. }
  914. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  915. {
  916. union input_seq_state *state = (union input_seq_state *)&seq->private;
  917. state->pos = *pos + 1;
  918. return seq_list_next(v, &input_handler_list, pos);
  919. }
  920. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  921. {
  922. struct input_handler *handler = container_of(v, struct input_handler, node);
  923. union input_seq_state *state = (union input_seq_state *)&seq->private;
  924. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  925. if (handler->filter)
  926. seq_puts(seq, " (filter)");
  927. if (handler->fops)
  928. seq_printf(seq, " Minor=%d", handler->minor);
  929. seq_putc(seq, '\n');
  930. return 0;
  931. }
  932. static const struct seq_operations input_handlers_seq_ops = {
  933. .start = input_handlers_seq_start,
  934. .next = input_handlers_seq_next,
  935. .stop = input_seq_stop,
  936. .show = input_handlers_seq_show,
  937. };
  938. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  939. {
  940. return seq_open(file, &input_handlers_seq_ops);
  941. }
  942. static const struct file_operations input_handlers_fileops = {
  943. .owner = THIS_MODULE,
  944. .open = input_proc_handlers_open,
  945. .read = seq_read,
  946. .llseek = seq_lseek,
  947. .release = seq_release,
  948. };
  949. static int __init input_proc_init(void)
  950. {
  951. struct proc_dir_entry *entry;
  952. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  953. if (!proc_bus_input_dir)
  954. return -ENOMEM;
  955. entry = proc_create("devices", 0, proc_bus_input_dir,
  956. &input_devices_fileops);
  957. if (!entry)
  958. goto fail1;
  959. entry = proc_create("handlers", 0, proc_bus_input_dir,
  960. &input_handlers_fileops);
  961. if (!entry)
  962. goto fail2;
  963. return 0;
  964. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  965. fail1: remove_proc_entry("bus/input", NULL);
  966. return -ENOMEM;
  967. }
  968. static void input_proc_exit(void)
  969. {
  970. remove_proc_entry("devices", proc_bus_input_dir);
  971. remove_proc_entry("handlers", proc_bus_input_dir);
  972. remove_proc_entry("bus/input", NULL);
  973. }
  974. #else /* !CONFIG_PROC_FS */
  975. static inline void input_wakeup_procfs_readers(void) { }
  976. static inline int input_proc_init(void) { return 0; }
  977. static inline void input_proc_exit(void) { }
  978. #endif
  979. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  980. static ssize_t input_dev_show_##name(struct device *dev, \
  981. struct device_attribute *attr, \
  982. char *buf) \
  983. { \
  984. struct input_dev *input_dev = to_input_dev(dev); \
  985. \
  986. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  987. input_dev->name ? input_dev->name : ""); \
  988. } \
  989. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  990. INPUT_DEV_STRING_ATTR_SHOW(name);
  991. INPUT_DEV_STRING_ATTR_SHOW(phys);
  992. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  993. static int input_print_modalias_bits(char *buf, int size,
  994. char name, unsigned long *bm,
  995. unsigned int min_bit, unsigned int max_bit)
  996. {
  997. int len = 0, i;
  998. len += snprintf(buf, max(size, 0), "%c", name);
  999. for (i = min_bit; i < max_bit; i++)
  1000. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  1001. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  1002. return len;
  1003. }
  1004. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  1005. int add_cr)
  1006. {
  1007. int len;
  1008. len = snprintf(buf, max(size, 0),
  1009. "input:b%04Xv%04Xp%04Xe%04X-",
  1010. id->id.bustype, id->id.vendor,
  1011. id->id.product, id->id.version);
  1012. len += input_print_modalias_bits(buf + len, size - len,
  1013. 'e', id->evbit, 0, EV_MAX);
  1014. len += input_print_modalias_bits(buf + len, size - len,
  1015. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  1016. len += input_print_modalias_bits(buf + len, size - len,
  1017. 'r', id->relbit, 0, REL_MAX);
  1018. len += input_print_modalias_bits(buf + len, size - len,
  1019. 'a', id->absbit, 0, ABS_MAX);
  1020. len += input_print_modalias_bits(buf + len, size - len,
  1021. 'm', id->mscbit, 0, MSC_MAX);
  1022. len += input_print_modalias_bits(buf + len, size - len,
  1023. 'l', id->ledbit, 0, LED_MAX);
  1024. len += input_print_modalias_bits(buf + len, size - len,
  1025. 's', id->sndbit, 0, SND_MAX);
  1026. len += input_print_modalias_bits(buf + len, size - len,
  1027. 'f', id->ffbit, 0, FF_MAX);
  1028. len += input_print_modalias_bits(buf + len, size - len,
  1029. 'w', id->swbit, 0, SW_MAX);
  1030. if (add_cr)
  1031. len += snprintf(buf + len, max(size - len, 0), "\n");
  1032. return len;
  1033. }
  1034. static ssize_t input_dev_show_modalias(struct device *dev,
  1035. struct device_attribute *attr,
  1036. char *buf)
  1037. {
  1038. struct input_dev *id = to_input_dev(dev);
  1039. ssize_t len;
  1040. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  1041. return min_t(int, len, PAGE_SIZE);
  1042. }
  1043. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  1044. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1045. int max, int add_cr);
  1046. static ssize_t input_dev_show_properties(struct device *dev,
  1047. struct device_attribute *attr,
  1048. char *buf)
  1049. {
  1050. struct input_dev *input_dev = to_input_dev(dev);
  1051. int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
  1052. INPUT_PROP_MAX, true);
  1053. return min_t(int, len, PAGE_SIZE);
  1054. }
  1055. static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
  1056. static struct attribute *input_dev_attrs[] = {
  1057. &dev_attr_name.attr,
  1058. &dev_attr_phys.attr,
  1059. &dev_attr_uniq.attr,
  1060. &dev_attr_modalias.attr,
  1061. &dev_attr_properties.attr,
  1062. NULL
  1063. };
  1064. static struct attribute_group input_dev_attr_group = {
  1065. .attrs = input_dev_attrs,
  1066. };
  1067. #define INPUT_DEV_ID_ATTR(name) \
  1068. static ssize_t input_dev_show_id_##name(struct device *dev, \
  1069. struct device_attribute *attr, \
  1070. char *buf) \
  1071. { \
  1072. struct input_dev *input_dev = to_input_dev(dev); \
  1073. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  1074. } \
  1075. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  1076. INPUT_DEV_ID_ATTR(bustype);
  1077. INPUT_DEV_ID_ATTR(vendor);
  1078. INPUT_DEV_ID_ATTR(product);
  1079. INPUT_DEV_ID_ATTR(version);
  1080. static struct attribute *input_dev_id_attrs[] = {
  1081. &dev_attr_bustype.attr,
  1082. &dev_attr_vendor.attr,
  1083. &dev_attr_product.attr,
  1084. &dev_attr_version.attr,
  1085. NULL
  1086. };
  1087. static struct attribute_group input_dev_id_attr_group = {
  1088. .name = "id",
  1089. .attrs = input_dev_id_attrs,
  1090. };
  1091. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1092. int max, int add_cr)
  1093. {
  1094. int i;
  1095. int len = 0;
  1096. bool skip_empty = true;
  1097. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1098. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1099. bitmap[i], skip_empty);
  1100. if (len) {
  1101. skip_empty = false;
  1102. if (i > 0)
  1103. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1104. }
  1105. }
  1106. /*
  1107. * If no output was produced print a single 0.
  1108. */
  1109. if (len == 0)
  1110. len = snprintf(buf, buf_size, "%d", 0);
  1111. if (add_cr)
  1112. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1113. return len;
  1114. }
  1115. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1116. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1117. struct device_attribute *attr, \
  1118. char *buf) \
  1119. { \
  1120. struct input_dev *input_dev = to_input_dev(dev); \
  1121. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1122. input_dev->bm##bit, ev##_MAX, \
  1123. true); \
  1124. return min_t(int, len, PAGE_SIZE); \
  1125. } \
  1126. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1127. INPUT_DEV_CAP_ATTR(EV, ev);
  1128. INPUT_DEV_CAP_ATTR(KEY, key);
  1129. INPUT_DEV_CAP_ATTR(REL, rel);
  1130. INPUT_DEV_CAP_ATTR(ABS, abs);
  1131. INPUT_DEV_CAP_ATTR(MSC, msc);
  1132. INPUT_DEV_CAP_ATTR(LED, led);
  1133. INPUT_DEV_CAP_ATTR(SND, snd);
  1134. INPUT_DEV_CAP_ATTR(FF, ff);
  1135. INPUT_DEV_CAP_ATTR(SW, sw);
  1136. static struct attribute *input_dev_caps_attrs[] = {
  1137. &dev_attr_ev.attr,
  1138. &dev_attr_key.attr,
  1139. &dev_attr_rel.attr,
  1140. &dev_attr_abs.attr,
  1141. &dev_attr_msc.attr,
  1142. &dev_attr_led.attr,
  1143. &dev_attr_snd.attr,
  1144. &dev_attr_ff.attr,
  1145. &dev_attr_sw.attr,
  1146. NULL
  1147. };
  1148. static struct attribute_group input_dev_caps_attr_group = {
  1149. .name = "capabilities",
  1150. .attrs = input_dev_caps_attrs,
  1151. };
  1152. static const struct attribute_group *input_dev_attr_groups[] = {
  1153. &input_dev_attr_group,
  1154. &input_dev_id_attr_group,
  1155. &input_dev_caps_attr_group,
  1156. NULL
  1157. };
  1158. static void input_dev_release(struct device *device)
  1159. {
  1160. struct input_dev *dev = to_input_dev(device);
  1161. input_ff_destroy(dev);
  1162. input_mt_destroy_slots(dev);
  1163. kfree(dev->absinfo);
  1164. kfree(dev);
  1165. module_put(THIS_MODULE);
  1166. }
  1167. /*
  1168. * Input uevent interface - loading event handlers based on
  1169. * device bitfields.
  1170. */
  1171. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1172. const char *name, unsigned long *bitmap, int max)
  1173. {
  1174. int len;
  1175. if (add_uevent_var(env, "%s", name))
  1176. return -ENOMEM;
  1177. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1178. sizeof(env->buf) - env->buflen,
  1179. bitmap, max, false);
  1180. if (len >= (sizeof(env->buf) - env->buflen))
  1181. return -ENOMEM;
  1182. env->buflen += len;
  1183. return 0;
  1184. }
  1185. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1186. struct input_dev *dev)
  1187. {
  1188. int len;
  1189. if (add_uevent_var(env, "MODALIAS="))
  1190. return -ENOMEM;
  1191. len = input_print_modalias(&env->buf[env->buflen - 1],
  1192. sizeof(env->buf) - env->buflen,
  1193. dev, 0);
  1194. if (len >= (sizeof(env->buf) - env->buflen))
  1195. return -ENOMEM;
  1196. env->buflen += len;
  1197. return 0;
  1198. }
  1199. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1200. do { \
  1201. int err = add_uevent_var(env, fmt, val); \
  1202. if (err) \
  1203. return err; \
  1204. } while (0)
  1205. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1206. do { \
  1207. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1208. if (err) \
  1209. return err; \
  1210. } while (0)
  1211. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1212. do { \
  1213. int err = input_add_uevent_modalias_var(env, dev); \
  1214. if (err) \
  1215. return err; \
  1216. } while (0)
  1217. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1218. {
  1219. struct input_dev *dev = to_input_dev(device);
  1220. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1221. dev->id.bustype, dev->id.vendor,
  1222. dev->id.product, dev->id.version);
  1223. if (dev->name)
  1224. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1225. if (dev->phys)
  1226. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1227. if (dev->uniq)
  1228. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1229. INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
  1230. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1231. if (test_bit(EV_KEY, dev->evbit))
  1232. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1233. if (test_bit(EV_REL, dev->evbit))
  1234. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1235. if (test_bit(EV_ABS, dev->evbit))
  1236. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1237. if (test_bit(EV_MSC, dev->evbit))
  1238. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1239. if (test_bit(EV_LED, dev->evbit))
  1240. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1241. if (test_bit(EV_SND, dev->evbit))
  1242. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1243. if (test_bit(EV_FF, dev->evbit))
  1244. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1245. if (test_bit(EV_SW, dev->evbit))
  1246. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1247. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1248. return 0;
  1249. }
  1250. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1251. do { \
  1252. int i; \
  1253. bool active; \
  1254. \
  1255. if (!test_bit(EV_##type, dev->evbit)) \
  1256. break; \
  1257. \
  1258. for (i = 0; i < type##_MAX; i++) { \
  1259. if (!test_bit(i, dev->bits##bit)) \
  1260. continue; \
  1261. \
  1262. active = test_bit(i, dev->bits); \
  1263. if (!active && !on) \
  1264. continue; \
  1265. \
  1266. dev->event(dev, EV_##type, i, on ? active : 0); \
  1267. } \
  1268. } while (0)
  1269. static void input_dev_toggle(struct input_dev *dev, bool activate)
  1270. {
  1271. if (!dev->event)
  1272. return;
  1273. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1274. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1275. if (activate && test_bit(EV_REP, dev->evbit)) {
  1276. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1277. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1278. }
  1279. }
  1280. /**
  1281. * input_reset_device() - reset/restore the state of input device
  1282. * @dev: input device whose state needs to be reset
  1283. *
  1284. * This function tries to reset the state of an opened input device and
  1285. * bring internal state and state if the hardware in sync with each other.
  1286. * We mark all keys as released, restore LED state, repeat rate, etc.
  1287. */
  1288. void input_reset_device(struct input_dev *dev)
  1289. {
  1290. mutex_lock(&dev->mutex);
  1291. if (dev->users) {
  1292. input_dev_toggle(dev, true);
  1293. /*
  1294. * Keys that have been pressed at suspend time are unlikely
  1295. * to be still pressed when we resume.
  1296. */
  1297. spin_lock_irq(&dev->event_lock);
  1298. input_dev_release_keys(dev);
  1299. spin_unlock_irq(&dev->event_lock);
  1300. }
  1301. mutex_unlock(&dev->mutex);
  1302. }
  1303. EXPORT_SYMBOL(input_reset_device);
  1304. #ifdef CONFIG_PM
  1305. static int input_dev_suspend(struct device *dev)
  1306. {
  1307. struct input_dev *input_dev = to_input_dev(dev);
  1308. mutex_lock(&input_dev->mutex);
  1309. if (input_dev->users)
  1310. input_dev_toggle(input_dev, false);
  1311. mutex_unlock(&input_dev->mutex);
  1312. return 0;
  1313. }
  1314. static int input_dev_resume(struct device *dev)
  1315. {
  1316. struct input_dev *input_dev = to_input_dev(dev);
  1317. input_reset_device(input_dev);
  1318. return 0;
  1319. }
  1320. static const struct dev_pm_ops input_dev_pm_ops = {
  1321. .suspend = input_dev_suspend,
  1322. .resume = input_dev_resume,
  1323. .poweroff = input_dev_suspend,
  1324. .restore = input_dev_resume,
  1325. };
  1326. #endif /* CONFIG_PM */
  1327. static struct device_type input_dev_type = {
  1328. .groups = input_dev_attr_groups,
  1329. .release = input_dev_release,
  1330. .uevent = input_dev_uevent,
  1331. #ifdef CONFIG_PM
  1332. .pm = &input_dev_pm_ops,
  1333. #endif
  1334. };
  1335. static char *input_devnode(struct device *dev, mode_t *mode)
  1336. {
  1337. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1338. }
  1339. struct class input_class = {
  1340. .name = "input",
  1341. .devnode = input_devnode,
  1342. };
  1343. EXPORT_SYMBOL_GPL(input_class);
  1344. /**
  1345. * input_allocate_device - allocate memory for new input device
  1346. *
  1347. * Returns prepared struct input_dev or NULL.
  1348. *
  1349. * NOTE: Use input_free_device() to free devices that have not been
  1350. * registered; input_unregister_device() should be used for already
  1351. * registered devices.
  1352. */
  1353. struct input_dev *input_allocate_device(void)
  1354. {
  1355. struct input_dev *dev;
  1356. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1357. if (dev) {
  1358. dev->dev.type = &input_dev_type;
  1359. dev->dev.class = &input_class;
  1360. device_initialize(&dev->dev);
  1361. mutex_init(&dev->mutex);
  1362. spin_lock_init(&dev->event_lock);
  1363. INIT_LIST_HEAD(&dev->h_list);
  1364. INIT_LIST_HEAD(&dev->node);
  1365. __module_get(THIS_MODULE);
  1366. }
  1367. return dev;
  1368. }
  1369. EXPORT_SYMBOL(input_allocate_device);
  1370. /**
  1371. * input_free_device - free memory occupied by input_dev structure
  1372. * @dev: input device to free
  1373. *
  1374. * This function should only be used if input_register_device()
  1375. * was not called yet or if it failed. Once device was registered
  1376. * use input_unregister_device() and memory will be freed once last
  1377. * reference to the device is dropped.
  1378. *
  1379. * Device should be allocated by input_allocate_device().
  1380. *
  1381. * NOTE: If there are references to the input device then memory
  1382. * will not be freed until last reference is dropped.
  1383. */
  1384. void input_free_device(struct input_dev *dev)
  1385. {
  1386. if (dev)
  1387. input_put_device(dev);
  1388. }
  1389. EXPORT_SYMBOL(input_free_device);
  1390. /**
  1391. * input_set_capability - mark device as capable of a certain event
  1392. * @dev: device that is capable of emitting or accepting event
  1393. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1394. * @code: event code
  1395. *
  1396. * In addition to setting up corresponding bit in appropriate capability
  1397. * bitmap the function also adjusts dev->evbit.
  1398. */
  1399. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1400. {
  1401. switch (type) {
  1402. case EV_KEY:
  1403. __set_bit(code, dev->keybit);
  1404. break;
  1405. case EV_REL:
  1406. __set_bit(code, dev->relbit);
  1407. break;
  1408. case EV_ABS:
  1409. __set_bit(code, dev->absbit);
  1410. break;
  1411. case EV_MSC:
  1412. __set_bit(code, dev->mscbit);
  1413. break;
  1414. case EV_SW:
  1415. __set_bit(code, dev->swbit);
  1416. break;
  1417. case EV_LED:
  1418. __set_bit(code, dev->ledbit);
  1419. break;
  1420. case EV_SND:
  1421. __set_bit(code, dev->sndbit);
  1422. break;
  1423. case EV_FF:
  1424. __set_bit(code, dev->ffbit);
  1425. break;
  1426. case EV_PWR:
  1427. /* do nothing */
  1428. break;
  1429. default:
  1430. pr_err("input_set_capability: unknown type %u (code %u)\n",
  1431. type, code);
  1432. dump_stack();
  1433. return;
  1434. }
  1435. __set_bit(type, dev->evbit);
  1436. }
  1437. EXPORT_SYMBOL(input_set_capability);
  1438. static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
  1439. {
  1440. int mt_slots;
  1441. int i;
  1442. unsigned int events;
  1443. if (dev->mtsize) {
  1444. mt_slots = dev->mtsize;
  1445. } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
  1446. mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
  1447. dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
  1448. mt_slots = clamp(mt_slots, 2, 32);
  1449. } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
  1450. mt_slots = 2;
  1451. } else {
  1452. mt_slots = 0;
  1453. }
  1454. events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
  1455. for (i = 0; i < ABS_CNT; i++) {
  1456. if (test_bit(i, dev->absbit)) {
  1457. if (input_is_mt_axis(i))
  1458. events += mt_slots;
  1459. else
  1460. events++;
  1461. }
  1462. }
  1463. for (i = 0; i < REL_CNT; i++)
  1464. if (test_bit(i, dev->relbit))
  1465. events++;
  1466. return events;
  1467. }
  1468. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1469. do { \
  1470. if (!test_bit(EV_##type, dev->evbit)) \
  1471. memset(dev->bits##bit, 0, \
  1472. sizeof(dev->bits##bit)); \
  1473. } while (0)
  1474. static void input_cleanse_bitmasks(struct input_dev *dev)
  1475. {
  1476. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1477. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1478. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1479. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1480. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1481. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1482. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1483. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1484. }
  1485. /**
  1486. * input_register_device - register device with input core
  1487. * @dev: device to be registered
  1488. *
  1489. * This function registers device with input core. The device must be
  1490. * allocated with input_allocate_device() and all it's capabilities
  1491. * set up before registering.
  1492. * If function fails the device must be freed with input_free_device().
  1493. * Once device has been successfully registered it can be unregistered
  1494. * with input_unregister_device(); input_free_device() should not be
  1495. * called in this case.
  1496. */
  1497. int input_register_device(struct input_dev *dev)
  1498. {
  1499. static atomic_t input_no = ATOMIC_INIT(0);
  1500. struct input_handler *handler;
  1501. const char *path;
  1502. int error;
  1503. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1504. __set_bit(EV_SYN, dev->evbit);
  1505. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1506. __clear_bit(KEY_RESERVED, dev->keybit);
  1507. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1508. input_cleanse_bitmasks(dev);
  1509. if (!dev->hint_events_per_packet)
  1510. dev->hint_events_per_packet =
  1511. input_estimate_events_per_packet(dev);
  1512. /*
  1513. * If delay and period are pre-set by the driver, then autorepeating
  1514. * is handled by the driver itself and we don't do it in input.c.
  1515. */
  1516. init_timer(&dev->timer);
  1517. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1518. dev->timer.data = (long) dev;
  1519. dev->timer.function = input_repeat_key;
  1520. dev->rep[REP_DELAY] = 250;
  1521. dev->rep[REP_PERIOD] = 33;
  1522. }
  1523. if (!dev->getkeycode)
  1524. dev->getkeycode = input_default_getkeycode;
  1525. if (!dev->setkeycode)
  1526. dev->setkeycode = input_default_setkeycode;
  1527. dev_set_name(&dev->dev, "input%ld",
  1528. (unsigned long) atomic_inc_return(&input_no) - 1);
  1529. error = device_add(&dev->dev);
  1530. if (error)
  1531. return error;
  1532. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1533. pr_info("%s as %s\n",
  1534. dev->name ? dev->name : "Unspecified device",
  1535. path ? path : "N/A");
  1536. kfree(path);
  1537. error = mutex_lock_interruptible(&input_mutex);
  1538. if (error) {
  1539. device_del(&dev->dev);
  1540. return error;
  1541. }
  1542. list_add_tail(&dev->node, &input_dev_list);
  1543. list_for_each_entry(handler, &input_handler_list, node)
  1544. input_attach_handler(dev, handler);
  1545. input_wakeup_procfs_readers();
  1546. mutex_unlock(&input_mutex);
  1547. return 0;
  1548. }
  1549. EXPORT_SYMBOL(input_register_device);
  1550. /**
  1551. * input_unregister_device - unregister previously registered device
  1552. * @dev: device to be unregistered
  1553. *
  1554. * This function unregisters an input device. Once device is unregistered
  1555. * the caller should not try to access it as it may get freed at any moment.
  1556. */
  1557. void input_unregister_device(struct input_dev *dev)
  1558. {
  1559. struct input_handle *handle, *next;
  1560. input_disconnect_device(dev);
  1561. mutex_lock(&input_mutex);
  1562. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1563. handle->handler->disconnect(handle);
  1564. WARN_ON(!list_empty(&dev->h_list));
  1565. del_timer_sync(&dev->timer);
  1566. list_del_init(&dev->node);
  1567. input_wakeup_procfs_readers();
  1568. mutex_unlock(&input_mutex);
  1569. device_unregister(&dev->dev);
  1570. }
  1571. EXPORT_SYMBOL(input_unregister_device);
  1572. /**
  1573. * input_register_handler - register a new input handler
  1574. * @handler: handler to be registered
  1575. *
  1576. * This function registers a new input handler (interface) for input
  1577. * devices in the system and attaches it to all input devices that
  1578. * are compatible with the handler.
  1579. */
  1580. int input_register_handler(struct input_handler *handler)
  1581. {
  1582. struct input_dev *dev;
  1583. int retval;
  1584. retval = mutex_lock_interruptible(&input_mutex);
  1585. if (retval)
  1586. return retval;
  1587. INIT_LIST_HEAD(&handler->h_list);
  1588. if (handler->fops != NULL) {
  1589. if (input_table[handler->minor >> 5]) {
  1590. retval = -EBUSY;
  1591. goto out;
  1592. }
  1593. input_table[handler->minor >> 5] = handler;
  1594. }
  1595. list_add_tail(&handler->node, &input_handler_list);
  1596. list_for_each_entry(dev, &input_dev_list, node)
  1597. input_attach_handler(dev, handler);
  1598. input_wakeup_procfs_readers();
  1599. out:
  1600. mutex_unlock(&input_mutex);
  1601. return retval;
  1602. }
  1603. EXPORT_SYMBOL(input_register_handler);
  1604. /**
  1605. * input_unregister_handler - unregisters an input handler
  1606. * @handler: handler to be unregistered
  1607. *
  1608. * This function disconnects a handler from its input devices and
  1609. * removes it from lists of known handlers.
  1610. */
  1611. void input_unregister_handler(struct input_handler *handler)
  1612. {
  1613. struct input_handle *handle, *next;
  1614. mutex_lock(&input_mutex);
  1615. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1616. handler->disconnect(handle);
  1617. WARN_ON(!list_empty(&handler->h_list));
  1618. list_del_init(&handler->node);
  1619. if (handler->fops != NULL)
  1620. input_table[handler->minor >> 5] = NULL;
  1621. input_wakeup_procfs_readers();
  1622. mutex_unlock(&input_mutex);
  1623. }
  1624. EXPORT_SYMBOL(input_unregister_handler);
  1625. /**
  1626. * input_handler_for_each_handle - handle iterator
  1627. * @handler: input handler to iterate
  1628. * @data: data for the callback
  1629. * @fn: function to be called for each handle
  1630. *
  1631. * Iterate over @bus's list of devices, and call @fn for each, passing
  1632. * it @data and stop when @fn returns a non-zero value. The function is
  1633. * using RCU to traverse the list and therefore may be usind in atonic
  1634. * contexts. The @fn callback is invoked from RCU critical section and
  1635. * thus must not sleep.
  1636. */
  1637. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1638. int (*fn)(struct input_handle *, void *))
  1639. {
  1640. struct input_handle *handle;
  1641. int retval = 0;
  1642. rcu_read_lock();
  1643. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1644. retval = fn(handle, data);
  1645. if (retval)
  1646. break;
  1647. }
  1648. rcu_read_unlock();
  1649. return retval;
  1650. }
  1651. EXPORT_SYMBOL(input_handler_for_each_handle);
  1652. /**
  1653. * input_register_handle - register a new input handle
  1654. * @handle: handle to register
  1655. *
  1656. * This function puts a new input handle onto device's
  1657. * and handler's lists so that events can flow through
  1658. * it once it is opened using input_open_device().
  1659. *
  1660. * This function is supposed to be called from handler's
  1661. * connect() method.
  1662. */
  1663. int input_register_handle(struct input_handle *handle)
  1664. {
  1665. struct input_handler *handler = handle->handler;
  1666. struct input_dev *dev = handle->dev;
  1667. int error;
  1668. /*
  1669. * We take dev->mutex here to prevent race with
  1670. * input_release_device().
  1671. */
  1672. error = mutex_lock_interruptible(&dev->mutex);
  1673. if (error)
  1674. return error;
  1675. /*
  1676. * Filters go to the head of the list, normal handlers
  1677. * to the tail.
  1678. */
  1679. if (handler->filter)
  1680. list_add_rcu(&handle->d_node, &dev->h_list);
  1681. else
  1682. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1683. mutex_unlock(&dev->mutex);
  1684. /*
  1685. * Since we are supposed to be called from ->connect()
  1686. * which is mutually exclusive with ->disconnect()
  1687. * we can't be racing with input_unregister_handle()
  1688. * and so separate lock is not needed here.
  1689. */
  1690. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1691. if (handler->start)
  1692. handler->start(handle);
  1693. return 0;
  1694. }
  1695. EXPORT_SYMBOL(input_register_handle);
  1696. /**
  1697. * input_unregister_handle - unregister an input handle
  1698. * @handle: handle to unregister
  1699. *
  1700. * This function removes input handle from device's
  1701. * and handler's lists.
  1702. *
  1703. * This function is supposed to be called from handler's
  1704. * disconnect() method.
  1705. */
  1706. void input_unregister_handle(struct input_handle *handle)
  1707. {
  1708. struct input_dev *dev = handle->dev;
  1709. list_del_rcu(&handle->h_node);
  1710. /*
  1711. * Take dev->mutex to prevent race with input_release_device().
  1712. */
  1713. mutex_lock(&dev->mutex);
  1714. list_del_rcu(&handle->d_node);
  1715. mutex_unlock(&dev->mutex);
  1716. synchronize_rcu();
  1717. }
  1718. EXPORT_SYMBOL(input_unregister_handle);
  1719. static int input_open_file(struct inode *inode, struct file *file)
  1720. {
  1721. struct input_handler *handler;
  1722. const struct file_operations *old_fops, *new_fops = NULL;
  1723. int err;
  1724. err = mutex_lock_interruptible(&input_mutex);
  1725. if (err)
  1726. return err;
  1727. /* No load-on-demand here? */
  1728. handler = input_table[iminor(inode) >> 5];
  1729. if (handler)
  1730. new_fops = fops_get(handler->fops);
  1731. mutex_unlock(&input_mutex);
  1732. /*
  1733. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1734. * not "no device". Oh, well...
  1735. */
  1736. if (!new_fops || !new_fops->open) {
  1737. fops_put(new_fops);
  1738. err = -ENODEV;
  1739. goto out;
  1740. }
  1741. old_fops = file->f_op;
  1742. file->f_op = new_fops;
  1743. err = new_fops->open(inode, file);
  1744. if (err) {
  1745. fops_put(file->f_op);
  1746. file->f_op = fops_get(old_fops);
  1747. }
  1748. fops_put(old_fops);
  1749. out:
  1750. return err;
  1751. }
  1752. static const struct file_operations input_fops = {
  1753. .owner = THIS_MODULE,
  1754. .open = input_open_file,
  1755. .llseek = noop_llseek,
  1756. };
  1757. static int __init input_init(void)
  1758. {
  1759. int err;
  1760. err = class_register(&input_class);
  1761. if (err) {
  1762. pr_err("unable to register input_dev class\n");
  1763. return err;
  1764. }
  1765. err = input_proc_init();
  1766. if (err)
  1767. goto fail1;
  1768. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1769. if (err) {
  1770. pr_err("unable to register char major %d", INPUT_MAJOR);
  1771. goto fail2;
  1772. }
  1773. return 0;
  1774. fail2: input_proc_exit();
  1775. fail1: class_unregister(&input_class);
  1776. return err;
  1777. }
  1778. static void __exit input_exit(void)
  1779. {
  1780. input_proc_exit();
  1781. unregister_chrdev(INPUT_MAJOR, "input");
  1782. class_unregister(&input_class);
  1783. }
  1784. subsys_initcall(input_init);
  1785. module_exit(input_exit);