i2c-eg20t.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/errno.h>
  22. #include <linux/i2c.h>
  23. #include <linux/fs.h>
  24. #include <linux/io.h>
  25. #include <linux/types.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/pci.h>
  29. #include <linux/mutex.h>
  30. #include <linux/ktime.h>
  31. #include <linux/slab.h>
  32. #define PCH_EVENT_SET 0 /* I2C Interrupt Event Set Status */
  33. #define PCH_EVENT_NONE 1 /* I2C Interrupt Event Clear Status */
  34. #define PCH_MAX_CLK 100000 /* Maximum Clock speed in MHz */
  35. #define PCH_BUFFER_MODE_ENABLE 0x0002 /* flag for Buffer mode enable */
  36. #define PCH_EEPROM_SW_RST_MODE_ENABLE 0x0008 /* EEPROM SW RST enable flag */
  37. #define PCH_I2CSADR 0x00 /* I2C slave address register */
  38. #define PCH_I2CCTL 0x04 /* I2C control register */
  39. #define PCH_I2CSR 0x08 /* I2C status register */
  40. #define PCH_I2CDR 0x0C /* I2C data register */
  41. #define PCH_I2CMON 0x10 /* I2C bus monitor register */
  42. #define PCH_I2CBC 0x14 /* I2C bus transfer rate setup counter */
  43. #define PCH_I2CMOD 0x18 /* I2C mode register */
  44. #define PCH_I2CBUFSLV 0x1C /* I2C buffer mode slave address register */
  45. #define PCH_I2CBUFSUB 0x20 /* I2C buffer mode subaddress register */
  46. #define PCH_I2CBUFFOR 0x24 /* I2C buffer mode format register */
  47. #define PCH_I2CBUFCTL 0x28 /* I2C buffer mode control register */
  48. #define PCH_I2CBUFMSK 0x2C /* I2C buffer mode interrupt mask register */
  49. #define PCH_I2CBUFSTA 0x30 /* I2C buffer mode status register */
  50. #define PCH_I2CBUFLEV 0x34 /* I2C buffer mode level register */
  51. #define PCH_I2CESRFOR 0x38 /* EEPROM software reset mode format register */
  52. #define PCH_I2CESRCTL 0x3C /* EEPROM software reset mode ctrl register */
  53. #define PCH_I2CESRMSK 0x40 /* EEPROM software reset mode */
  54. #define PCH_I2CESRSTA 0x44 /* EEPROM software reset mode status register */
  55. #define PCH_I2CTMR 0x48 /* I2C timer register */
  56. #define PCH_I2CSRST 0xFC /* I2C reset register */
  57. #define PCH_I2CNF 0xF8 /* I2C noise filter register */
  58. #define BUS_IDLE_TIMEOUT 20
  59. #define PCH_I2CCTL_I2CMEN 0x0080
  60. #define TEN_BIT_ADDR_DEFAULT 0xF000
  61. #define TEN_BIT_ADDR_MASK 0xF0
  62. #define PCH_START 0x0020
  63. #define PCH_ESR_START 0x0001
  64. #define PCH_BUFF_START 0x1
  65. #define PCH_REPSTART 0x0004
  66. #define PCH_ACK 0x0008
  67. #define PCH_GETACK 0x0001
  68. #define CLR_REG 0x0
  69. #define I2C_RD 0x1
  70. #define I2CMCF_BIT 0x0080
  71. #define I2CMIF_BIT 0x0002
  72. #define I2CMAL_BIT 0x0010
  73. #define I2CBMFI_BIT 0x0001
  74. #define I2CBMAL_BIT 0x0002
  75. #define I2CBMNA_BIT 0x0004
  76. #define I2CBMTO_BIT 0x0008
  77. #define I2CBMIS_BIT 0x0010
  78. #define I2CESRFI_BIT 0X0001
  79. #define I2CESRTO_BIT 0x0002
  80. #define I2CESRFIIE_BIT 0x1
  81. #define I2CESRTOIE_BIT 0x2
  82. #define I2CBMDZ_BIT 0x0040
  83. #define I2CBMAG_BIT 0x0020
  84. #define I2CMBB_BIT 0x0020
  85. #define BUFFER_MODE_MASK (I2CBMFI_BIT | I2CBMAL_BIT | I2CBMNA_BIT | \
  86. I2CBMTO_BIT | I2CBMIS_BIT)
  87. #define I2C_ADDR_MSK 0xFF
  88. #define I2C_MSB_2B_MSK 0x300
  89. #define FAST_MODE_CLK 400
  90. #define FAST_MODE_EN 0x0001
  91. #define SUB_ADDR_LEN_MAX 4
  92. #define BUF_LEN_MAX 32
  93. #define PCH_BUFFER_MODE 0x1
  94. #define EEPROM_SW_RST_MODE 0x0002
  95. #define NORMAL_INTR_ENBL 0x0300
  96. #define EEPROM_RST_INTR_ENBL (I2CESRFIIE_BIT | I2CESRTOIE_BIT)
  97. #define EEPROM_RST_INTR_DISBL 0x0
  98. #define BUFFER_MODE_INTR_ENBL 0x001F
  99. #define BUFFER_MODE_INTR_DISBL 0x0
  100. #define NORMAL_MODE 0x0
  101. #define BUFFER_MODE 0x1
  102. #define EEPROM_SR_MODE 0x2
  103. #define I2C_TX_MODE 0x0010
  104. #define PCH_BUF_TX 0xFFF7
  105. #define PCH_BUF_RD 0x0008
  106. #define I2C_ERROR_MASK (I2CESRTO_EVENT | I2CBMIS_EVENT | I2CBMTO_EVENT | \
  107. I2CBMNA_EVENT | I2CBMAL_EVENT | I2CMAL_EVENT)
  108. #define I2CMAL_EVENT 0x0001
  109. #define I2CMCF_EVENT 0x0002
  110. #define I2CBMFI_EVENT 0x0004
  111. #define I2CBMAL_EVENT 0x0008
  112. #define I2CBMNA_EVENT 0x0010
  113. #define I2CBMTO_EVENT 0x0020
  114. #define I2CBMIS_EVENT 0x0040
  115. #define I2CESRFI_EVENT 0x0080
  116. #define I2CESRTO_EVENT 0x0100
  117. #define PCI_DEVICE_ID_PCH_I2C 0x8817
  118. #define pch_dbg(adap, fmt, arg...) \
  119. dev_dbg(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  120. #define pch_err(adap, fmt, arg...) \
  121. dev_err(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  122. #define pch_pci_err(pdev, fmt, arg...) \
  123. dev_err(&pdev->dev, "%s :" fmt, __func__, ##arg)
  124. #define pch_pci_dbg(pdev, fmt, arg...) \
  125. dev_dbg(&pdev->dev, "%s :" fmt, __func__, ##arg)
  126. /*
  127. Set the number of I2C instance max
  128. Intel EG20T PCH : 1ch
  129. OKI SEMICONDUCTOR ML7213 IOH : 2ch
  130. */
  131. #define PCH_I2C_MAX_DEV 2
  132. /**
  133. * struct i2c_algo_pch_data - for I2C driver functionalities
  134. * @pch_adapter: stores the reference to i2c_adapter structure
  135. * @p_adapter_info: stores the reference to adapter_info structure
  136. * @pch_base_address: specifies the remapped base address
  137. * @pch_buff_mode_en: specifies if buffer mode is enabled
  138. * @pch_event_flag: specifies occurrence of interrupt events
  139. * @pch_i2c_xfer_in_progress: specifies whether the transfer is completed
  140. */
  141. struct i2c_algo_pch_data {
  142. struct i2c_adapter pch_adapter;
  143. struct adapter_info *p_adapter_info;
  144. void __iomem *pch_base_address;
  145. int pch_buff_mode_en;
  146. u32 pch_event_flag;
  147. bool pch_i2c_xfer_in_progress;
  148. };
  149. /**
  150. * struct adapter_info - This structure holds the adapter information for the
  151. PCH i2c controller
  152. * @pch_data: stores a list of i2c_algo_pch_data
  153. * @pch_i2c_suspended: specifies whether the system is suspended or not
  154. * perhaps with more lines and words.
  155. * @ch_num: specifies the number of i2c instance
  156. *
  157. * pch_data has as many elements as maximum I2C channels
  158. */
  159. struct adapter_info {
  160. struct i2c_algo_pch_data pch_data[PCH_I2C_MAX_DEV];
  161. bool pch_i2c_suspended;
  162. int ch_num;
  163. };
  164. static int pch_i2c_speed = 100; /* I2C bus speed in Kbps */
  165. static int pch_clk = 50000; /* specifies I2C clock speed in KHz */
  166. static wait_queue_head_t pch_event;
  167. static DEFINE_MUTEX(pch_mutex);
  168. /* Definition for ML7213 by OKI SEMICONDUCTOR */
  169. #define PCI_VENDOR_ID_ROHM 0x10DB
  170. #define PCI_DEVICE_ID_ML7213_I2C 0x802D
  171. #define PCI_DEVICE_ID_ML7223_I2C 0x8010
  172. static struct pci_device_id __devinitdata pch_pcidev_id[] = {
  173. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_I2C), 1, },
  174. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_I2C), 2, },
  175. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_I2C), 1, },
  176. {0,}
  177. };
  178. static irqreturn_t pch_i2c_handler(int irq, void *pData);
  179. static inline void pch_setbit(void __iomem *addr, u32 offset, u32 bitmask)
  180. {
  181. u32 val;
  182. val = ioread32(addr + offset);
  183. val |= bitmask;
  184. iowrite32(val, addr + offset);
  185. }
  186. static inline void pch_clrbit(void __iomem *addr, u32 offset, u32 bitmask)
  187. {
  188. u32 val;
  189. val = ioread32(addr + offset);
  190. val &= (~bitmask);
  191. iowrite32(val, addr + offset);
  192. }
  193. /**
  194. * pch_i2c_init() - hardware initialization of I2C module
  195. * @adap: Pointer to struct i2c_algo_pch_data.
  196. */
  197. static void pch_i2c_init(struct i2c_algo_pch_data *adap)
  198. {
  199. void __iomem *p = adap->pch_base_address;
  200. u32 pch_i2cbc;
  201. u32 pch_i2ctmr;
  202. u32 reg_value;
  203. /* reset I2C controller */
  204. iowrite32(0x01, p + PCH_I2CSRST);
  205. msleep(20);
  206. iowrite32(0x0, p + PCH_I2CSRST);
  207. /* Initialize I2C registers */
  208. iowrite32(0x21, p + PCH_I2CNF);
  209. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_I2CCTL_I2CMEN);
  210. if (pch_i2c_speed != 400)
  211. pch_i2c_speed = 100;
  212. reg_value = PCH_I2CCTL_I2CMEN;
  213. if (pch_i2c_speed == FAST_MODE_CLK) {
  214. reg_value |= FAST_MODE_EN;
  215. pch_dbg(adap, "Fast mode enabled\n");
  216. }
  217. if (pch_clk > PCH_MAX_CLK)
  218. pch_clk = 62500;
  219. pch_i2cbc = (pch_clk + (pch_i2c_speed * 4)) / pch_i2c_speed * 8;
  220. /* Set transfer speed in I2CBC */
  221. iowrite32(pch_i2cbc, p + PCH_I2CBC);
  222. pch_i2ctmr = (pch_clk) / 8;
  223. iowrite32(pch_i2ctmr, p + PCH_I2CTMR);
  224. reg_value |= NORMAL_INTR_ENBL; /* Enable interrupts in normal mode */
  225. iowrite32(reg_value, p + PCH_I2CCTL);
  226. pch_dbg(adap,
  227. "I2CCTL=%x pch_i2cbc=%x pch_i2ctmr=%x Enable interrupts\n",
  228. ioread32(p + PCH_I2CCTL), pch_i2cbc, pch_i2ctmr);
  229. init_waitqueue_head(&pch_event);
  230. }
  231. static inline bool ktime_lt(const ktime_t cmp1, const ktime_t cmp2)
  232. {
  233. return cmp1.tv64 < cmp2.tv64;
  234. }
  235. /**
  236. * pch_i2c_wait_for_bus_idle() - check the status of bus.
  237. * @adap: Pointer to struct i2c_algo_pch_data.
  238. * @timeout: waiting time counter (us).
  239. */
  240. static s32 pch_i2c_wait_for_bus_idle(struct i2c_algo_pch_data *adap,
  241. s32 timeout)
  242. {
  243. void __iomem *p = adap->pch_base_address;
  244. /* MAX timeout value is timeout*1000*1000nsec */
  245. ktime_t ns_val = ktime_add_ns(ktime_get(), timeout*1000*1000);
  246. do {
  247. if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
  248. break;
  249. msleep(20);
  250. } while (ktime_lt(ktime_get(), ns_val));
  251. pch_dbg(adap, "I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  252. if (timeout == 0) {
  253. pch_err(adap, "%s: Timeout Error.return%d\n", __func__, -ETIME);
  254. return -ETIME;
  255. }
  256. return 0;
  257. }
  258. /**
  259. * pch_i2c_start() - Generate I2C start condition in normal mode.
  260. * @adap: Pointer to struct i2c_algo_pch_data.
  261. *
  262. * Generate I2C start condition in normal mode by setting I2CCTL.I2CMSTA to 1.
  263. */
  264. static void pch_i2c_start(struct i2c_algo_pch_data *adap)
  265. {
  266. void __iomem *p = adap->pch_base_address;
  267. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  268. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  269. }
  270. /**
  271. * pch_i2c_wait_for_xfer_complete() - initiates a wait for the tx complete event
  272. * @adap: Pointer to struct i2c_algo_pch_data.
  273. */
  274. static s32 pch_i2c_wait_for_xfer_complete(struct i2c_algo_pch_data *adap)
  275. {
  276. s32 ret;
  277. ret = wait_event_timeout(pch_event,
  278. (adap->pch_event_flag != 0), msecs_to_jiffies(50));
  279. if (ret < 0) {
  280. pch_err(adap, "timeout: %x\n", adap->pch_event_flag);
  281. return ret;
  282. }
  283. if (ret == 0) {
  284. pch_err(adap, "timeout: %x\n", adap->pch_event_flag);
  285. return -ETIMEDOUT;
  286. }
  287. if (adap->pch_event_flag & I2C_ERROR_MASK) {
  288. pch_err(adap, "error bits set: %x\n", adap->pch_event_flag);
  289. return -EIO;
  290. }
  291. adap->pch_event_flag = 0;
  292. return 0;
  293. }
  294. /**
  295. * pch_i2c_getack() - to confirm ACK/NACK
  296. * @adap: Pointer to struct i2c_algo_pch_data.
  297. */
  298. static s32 pch_i2c_getack(struct i2c_algo_pch_data *adap)
  299. {
  300. u32 reg_val;
  301. void __iomem *p = adap->pch_base_address;
  302. reg_val = ioread32(p + PCH_I2CSR) & PCH_GETACK;
  303. if (reg_val != 0) {
  304. pch_err(adap, "return%d\n", -EPROTO);
  305. return -EPROTO;
  306. }
  307. return 0;
  308. }
  309. /**
  310. * pch_i2c_stop() - generate stop condition in normal mode.
  311. * @adap: Pointer to struct i2c_algo_pch_data.
  312. */
  313. static void pch_i2c_stop(struct i2c_algo_pch_data *adap)
  314. {
  315. void __iomem *p = adap->pch_base_address;
  316. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  317. /* clear the start bit */
  318. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  319. }
  320. /**
  321. * pch_i2c_repstart() - generate repeated start condition in normal mode
  322. * @adap: Pointer to struct i2c_algo_pch_data.
  323. */
  324. static void pch_i2c_repstart(struct i2c_algo_pch_data *adap)
  325. {
  326. void __iomem *p = adap->pch_base_address;
  327. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  328. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_REPSTART);
  329. }
  330. /**
  331. * pch_i2c_writebytes() - write data to I2C bus in normal mode
  332. * @i2c_adap: Pointer to the struct i2c_adapter.
  333. * @last: specifies whether last message or not.
  334. * In the case of compound mode it will be 1 for last message,
  335. * otherwise 0.
  336. * @first: specifies whether first message or not.
  337. * 1 for first message otherwise 0.
  338. */
  339. static s32 pch_i2c_writebytes(struct i2c_adapter *i2c_adap,
  340. struct i2c_msg *msgs, u32 last, u32 first)
  341. {
  342. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  343. u8 *buf;
  344. u32 length;
  345. u32 addr;
  346. u32 addr_2_msb;
  347. u32 addr_8_lsb;
  348. s32 wrcount;
  349. void __iomem *p = adap->pch_base_address;
  350. length = msgs->len;
  351. buf = msgs->buf;
  352. addr = msgs->addr;
  353. /* enable master tx */
  354. pch_setbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  355. pch_dbg(adap, "I2CCTL = %x msgs->len = %d\n", ioread32(p + PCH_I2CCTL),
  356. length);
  357. if (first) {
  358. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  359. return -ETIME;
  360. }
  361. if (msgs->flags & I2C_M_TEN) {
  362. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7);
  363. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  364. if (first)
  365. pch_i2c_start(adap);
  366. if (pch_i2c_wait_for_xfer_complete(adap) == 0 &&
  367. pch_i2c_getack(adap) == 0) {
  368. addr_8_lsb = (addr & I2C_ADDR_MSK);
  369. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  370. } else {
  371. pch_i2c_stop(adap);
  372. return -ETIME;
  373. }
  374. } else {
  375. /* set 7 bit slave address and R/W bit as 0 */
  376. iowrite32(addr << 1, p + PCH_I2CDR);
  377. if (first)
  378. pch_i2c_start(adap);
  379. }
  380. if ((pch_i2c_wait_for_xfer_complete(adap) == 0) &&
  381. (pch_i2c_getack(adap) == 0)) {
  382. for (wrcount = 0; wrcount < length; ++wrcount) {
  383. /* write buffer value to I2C data register */
  384. iowrite32(buf[wrcount], p + PCH_I2CDR);
  385. pch_dbg(adap, "writing %x to Data register\n",
  386. buf[wrcount]);
  387. if (pch_i2c_wait_for_xfer_complete(adap) != 0)
  388. return -ETIME;
  389. if (pch_i2c_getack(adap))
  390. return -EIO;
  391. }
  392. /* check if this is the last message */
  393. if (last)
  394. pch_i2c_stop(adap);
  395. else
  396. pch_i2c_repstart(adap);
  397. } else {
  398. pch_i2c_stop(adap);
  399. return -EIO;
  400. }
  401. pch_dbg(adap, "return=%d\n", wrcount);
  402. return wrcount;
  403. }
  404. /**
  405. * pch_i2c_sendack() - send ACK
  406. * @adap: Pointer to struct i2c_algo_pch_data.
  407. */
  408. static void pch_i2c_sendack(struct i2c_algo_pch_data *adap)
  409. {
  410. void __iomem *p = adap->pch_base_address;
  411. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  412. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  413. }
  414. /**
  415. * pch_i2c_sendnack() - send NACK
  416. * @adap: Pointer to struct i2c_algo_pch_data.
  417. */
  418. static void pch_i2c_sendnack(struct i2c_algo_pch_data *adap)
  419. {
  420. void __iomem *p = adap->pch_base_address;
  421. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  422. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  423. }
  424. /**
  425. * pch_i2c_readbytes() - read data from I2C bus in normal mode.
  426. * @i2c_adap: Pointer to the struct i2c_adapter.
  427. * @msgs: Pointer to i2c_msg structure.
  428. * @last: specifies whether last message or not.
  429. * @first: specifies whether first message or not.
  430. */
  431. static s32 pch_i2c_readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs,
  432. u32 last, u32 first)
  433. {
  434. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  435. u8 *buf;
  436. u32 count;
  437. u32 length;
  438. u32 addr;
  439. u32 addr_2_msb;
  440. void __iomem *p = adap->pch_base_address;
  441. length = msgs->len;
  442. buf = msgs->buf;
  443. addr = msgs->addr;
  444. /* enable master reception */
  445. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  446. if (first) {
  447. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  448. return -ETIME;
  449. }
  450. if (msgs->flags & I2C_M_TEN) {
  451. addr_2_msb = (((addr & I2C_MSB_2B_MSK) >> 7) | (I2C_RD));
  452. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  453. } else {
  454. /* 7 address bits + R/W bit */
  455. addr = (((addr) << 1) | (I2C_RD));
  456. iowrite32(addr, p + PCH_I2CDR);
  457. }
  458. /* check if it is the first message */
  459. if (first)
  460. pch_i2c_start(adap);
  461. if ((pch_i2c_wait_for_xfer_complete(adap) == 0) &&
  462. (pch_i2c_getack(adap) == 0)) {
  463. pch_dbg(adap, "return %d\n", 0);
  464. if (length == 0) {
  465. pch_i2c_stop(adap);
  466. ioread32(p + PCH_I2CDR); /* Dummy read needs */
  467. count = length;
  468. } else {
  469. int read_index;
  470. int loop;
  471. pch_i2c_sendack(adap);
  472. /* Dummy read */
  473. for (loop = 1, read_index = 0; loop < length; loop++) {
  474. buf[read_index] = ioread32(p + PCH_I2CDR);
  475. if (loop != 1)
  476. read_index++;
  477. if (pch_i2c_wait_for_xfer_complete(adap) != 0) {
  478. pch_i2c_stop(adap);
  479. return -ETIME;
  480. }
  481. } /* end for */
  482. pch_i2c_sendnack(adap);
  483. buf[read_index] = ioread32(p + PCH_I2CDR);
  484. if (length != 1)
  485. read_index++;
  486. if (pch_i2c_wait_for_xfer_complete(adap) == 0) {
  487. if (last)
  488. pch_i2c_stop(adap);
  489. else
  490. pch_i2c_repstart(adap);
  491. buf[read_index++] = ioread32(p + PCH_I2CDR);
  492. count = read_index;
  493. } else {
  494. count = -ETIME;
  495. }
  496. }
  497. } else {
  498. count = -ETIME;
  499. pch_i2c_stop(adap);
  500. }
  501. return count;
  502. }
  503. /**
  504. * pch_i2c_cb() - Interrupt handler Call back function
  505. * @adap: Pointer to struct i2c_algo_pch_data.
  506. */
  507. static void pch_i2c_cb(struct i2c_algo_pch_data *adap)
  508. {
  509. u32 sts;
  510. void __iomem *p = adap->pch_base_address;
  511. sts = ioread32(p + PCH_I2CSR);
  512. sts &= (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT);
  513. if (sts & I2CMAL_BIT)
  514. adap->pch_event_flag |= I2CMAL_EVENT;
  515. if (sts & I2CMCF_BIT)
  516. adap->pch_event_flag |= I2CMCF_EVENT;
  517. /* clear the applicable bits */
  518. pch_clrbit(adap->pch_base_address, PCH_I2CSR, sts);
  519. pch_dbg(adap, "PCH_I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  520. wake_up(&pch_event);
  521. }
  522. /**
  523. * pch_i2c_handler() - interrupt handler for the PCH I2C controller
  524. * @irq: irq number.
  525. * @pData: cookie passed back to the handler function.
  526. */
  527. static irqreturn_t pch_i2c_handler(int irq, void *pData)
  528. {
  529. u32 reg_val;
  530. int flag;
  531. int i;
  532. struct adapter_info *adap_info = pData;
  533. void __iomem *p;
  534. u32 mode;
  535. for (i = 0, flag = 0; i < adap_info->ch_num; i++) {
  536. p = adap_info->pch_data[i].pch_base_address;
  537. mode = ioread32(p + PCH_I2CMOD);
  538. mode &= BUFFER_MODE | EEPROM_SR_MODE;
  539. if (mode != NORMAL_MODE) {
  540. pch_err(adap_info->pch_data,
  541. "I2C-%d mode(%d) is not supported\n", mode, i);
  542. continue;
  543. }
  544. reg_val = ioread32(p + PCH_I2CSR);
  545. if (reg_val & (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT)) {
  546. pch_i2c_cb(&adap_info->pch_data[i]);
  547. flag = 1;
  548. }
  549. }
  550. return flag ? IRQ_HANDLED : IRQ_NONE;
  551. }
  552. /**
  553. * pch_i2c_xfer() - Reading adnd writing data through I2C bus
  554. * @i2c_adap: Pointer to the struct i2c_adapter.
  555. * @msgs: Pointer to i2c_msg structure.
  556. * @num: number of messages.
  557. */
  558. static s32 pch_i2c_xfer(struct i2c_adapter *i2c_adap,
  559. struct i2c_msg *msgs, s32 num)
  560. {
  561. struct i2c_msg *pmsg;
  562. u32 i = 0;
  563. u32 status;
  564. u32 msglen;
  565. u32 subaddrlen;
  566. s32 ret;
  567. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  568. ret = mutex_lock_interruptible(&pch_mutex);
  569. if (ret)
  570. return -ERESTARTSYS;
  571. if (adap->p_adapter_info->pch_i2c_suspended) {
  572. mutex_unlock(&pch_mutex);
  573. return -EBUSY;
  574. }
  575. pch_dbg(adap, "adap->p_adapter_info->pch_i2c_suspended is %d\n",
  576. adap->p_adapter_info->pch_i2c_suspended);
  577. /* transfer not completed */
  578. adap->pch_i2c_xfer_in_progress = true;
  579. for (i = 0; i < num && ret >= 0; i++) {
  580. pmsg = &msgs[i];
  581. pmsg->flags |= adap->pch_buff_mode_en;
  582. status = pmsg->flags;
  583. pch_dbg(adap,
  584. "After invoking I2C_MODE_SEL :flag= 0x%x\n", status);
  585. /* calculate sub address length and message length */
  586. /* these are applicable only for buffer mode */
  587. subaddrlen = pmsg->buf[0];
  588. /* calculate actual message length excluding
  589. * the sub address fields */
  590. msglen = (pmsg->len) - (subaddrlen + 1);
  591. if ((status & (I2C_M_RD)) != false) {
  592. ret = pch_i2c_readbytes(i2c_adap, pmsg, (i + 1 == num),
  593. (i == 0));
  594. } else {
  595. ret = pch_i2c_writebytes(i2c_adap, pmsg, (i + 1 == num),
  596. (i == 0));
  597. }
  598. }
  599. adap->pch_i2c_xfer_in_progress = false; /* transfer completed */
  600. mutex_unlock(&pch_mutex);
  601. return (ret < 0) ? ret : num;
  602. }
  603. /**
  604. * pch_i2c_func() - return the functionality of the I2C driver
  605. * @adap: Pointer to struct i2c_algo_pch_data.
  606. */
  607. static u32 pch_i2c_func(struct i2c_adapter *adap)
  608. {
  609. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
  610. }
  611. static struct i2c_algorithm pch_algorithm = {
  612. .master_xfer = pch_i2c_xfer,
  613. .functionality = pch_i2c_func
  614. };
  615. /**
  616. * pch_i2c_disbl_int() - Disable PCH I2C interrupts
  617. * @adap: Pointer to struct i2c_algo_pch_data.
  618. */
  619. static void pch_i2c_disbl_int(struct i2c_algo_pch_data *adap)
  620. {
  621. void __iomem *p = adap->pch_base_address;
  622. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, NORMAL_INTR_ENBL);
  623. iowrite32(EEPROM_RST_INTR_DISBL, p + PCH_I2CESRMSK);
  624. iowrite32(BUFFER_MODE_INTR_DISBL, p + PCH_I2CBUFMSK);
  625. }
  626. static int __devinit pch_i2c_probe(struct pci_dev *pdev,
  627. const struct pci_device_id *id)
  628. {
  629. void __iomem *base_addr;
  630. int ret;
  631. int i, j;
  632. struct adapter_info *adap_info;
  633. struct i2c_adapter *pch_adap;
  634. pch_pci_dbg(pdev, "Entered.\n");
  635. adap_info = kzalloc((sizeof(struct adapter_info)), GFP_KERNEL);
  636. if (adap_info == NULL) {
  637. pch_pci_err(pdev, "Memory allocation FAILED\n");
  638. return -ENOMEM;
  639. }
  640. ret = pci_enable_device(pdev);
  641. if (ret) {
  642. pch_pci_err(pdev, "pci_enable_device FAILED\n");
  643. goto err_pci_enable;
  644. }
  645. ret = pci_request_regions(pdev, KBUILD_MODNAME);
  646. if (ret) {
  647. pch_pci_err(pdev, "pci_request_regions FAILED\n");
  648. goto err_pci_req;
  649. }
  650. base_addr = pci_iomap(pdev, 1, 0);
  651. if (base_addr == NULL) {
  652. pch_pci_err(pdev, "pci_iomap FAILED\n");
  653. ret = -ENOMEM;
  654. goto err_pci_iomap;
  655. }
  656. /* Set the number of I2C channel instance */
  657. adap_info->ch_num = id->driver_data;
  658. for (i = 0; i < adap_info->ch_num; i++) {
  659. pch_adap = &adap_info->pch_data[i].pch_adapter;
  660. adap_info->pch_i2c_suspended = false;
  661. adap_info->pch_data[i].p_adapter_info = adap_info;
  662. pch_adap->owner = THIS_MODULE;
  663. pch_adap->class = I2C_CLASS_HWMON;
  664. strcpy(pch_adap->name, KBUILD_MODNAME);
  665. pch_adap->algo = &pch_algorithm;
  666. pch_adap->algo_data = &adap_info->pch_data[i];
  667. /* base_addr + offset; */
  668. adap_info->pch_data[i].pch_base_address = base_addr + 0x100 * i;
  669. pch_adap->dev.parent = &pdev->dev;
  670. ret = i2c_add_adapter(pch_adap);
  671. if (ret) {
  672. pch_pci_err(pdev, "i2c_add_adapter[ch:%d] FAILED\n", i);
  673. goto err_i2c_add_adapter;
  674. }
  675. pch_i2c_init(&adap_info->pch_data[i]);
  676. }
  677. ret = request_irq(pdev->irq, pch_i2c_handler, IRQF_SHARED,
  678. KBUILD_MODNAME, adap_info);
  679. if (ret) {
  680. pch_pci_err(pdev, "request_irq FAILED\n");
  681. goto err_i2c_add_adapter;
  682. }
  683. pci_set_drvdata(pdev, adap_info);
  684. pch_pci_dbg(pdev, "returns %d.\n", ret);
  685. return 0;
  686. err_i2c_add_adapter:
  687. for (j = 0; j < i; j++)
  688. i2c_del_adapter(&adap_info->pch_data[j].pch_adapter);
  689. pci_iounmap(pdev, base_addr);
  690. err_pci_iomap:
  691. pci_release_regions(pdev);
  692. err_pci_req:
  693. pci_disable_device(pdev);
  694. err_pci_enable:
  695. kfree(adap_info);
  696. return ret;
  697. }
  698. static void __devexit pch_i2c_remove(struct pci_dev *pdev)
  699. {
  700. int i;
  701. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  702. free_irq(pdev->irq, adap_info);
  703. for (i = 0; i < adap_info->ch_num; i++) {
  704. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  705. i2c_del_adapter(&adap_info->pch_data[i].pch_adapter);
  706. }
  707. if (adap_info->pch_data[0].pch_base_address)
  708. pci_iounmap(pdev, adap_info->pch_data[0].pch_base_address);
  709. for (i = 0; i < adap_info->ch_num; i++)
  710. adap_info->pch_data[i].pch_base_address = 0;
  711. pci_set_drvdata(pdev, NULL);
  712. pci_release_regions(pdev);
  713. pci_disable_device(pdev);
  714. kfree(adap_info);
  715. }
  716. #ifdef CONFIG_PM
  717. static int pch_i2c_suspend(struct pci_dev *pdev, pm_message_t state)
  718. {
  719. int ret;
  720. int i;
  721. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  722. void __iomem *p = adap_info->pch_data[0].pch_base_address;
  723. adap_info->pch_i2c_suspended = true;
  724. for (i = 0; i < adap_info->ch_num; i++) {
  725. while ((adap_info->pch_data[i].pch_i2c_xfer_in_progress)) {
  726. /* Wait until all channel transfers are completed */
  727. msleep(20);
  728. }
  729. }
  730. /* Disable the i2c interrupts */
  731. for (i = 0; i < adap_info->ch_num; i++)
  732. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  733. pch_pci_dbg(pdev, "I2CSR = %x I2CBUFSTA = %x I2CESRSTA = %x "
  734. "invoked function pch_i2c_disbl_int successfully\n",
  735. ioread32(p + PCH_I2CSR), ioread32(p + PCH_I2CBUFSTA),
  736. ioread32(p + PCH_I2CESRSTA));
  737. ret = pci_save_state(pdev);
  738. if (ret) {
  739. pch_pci_err(pdev, "pci_save_state\n");
  740. return ret;
  741. }
  742. pci_enable_wake(pdev, PCI_D3hot, 0);
  743. pci_disable_device(pdev);
  744. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  745. return 0;
  746. }
  747. static int pch_i2c_resume(struct pci_dev *pdev)
  748. {
  749. int i;
  750. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  751. pci_set_power_state(pdev, PCI_D0);
  752. pci_restore_state(pdev);
  753. if (pci_enable_device(pdev) < 0) {
  754. pch_pci_err(pdev, "pch_i2c_resume:pci_enable_device FAILED\n");
  755. return -EIO;
  756. }
  757. pci_enable_wake(pdev, PCI_D3hot, 0);
  758. for (i = 0; i < adap_info->ch_num; i++)
  759. pch_i2c_init(&adap_info->pch_data[i]);
  760. adap_info->pch_i2c_suspended = false;
  761. return 0;
  762. }
  763. #else
  764. #define pch_i2c_suspend NULL
  765. #define pch_i2c_resume NULL
  766. #endif
  767. static struct pci_driver pch_pcidriver = {
  768. .name = KBUILD_MODNAME,
  769. .id_table = pch_pcidev_id,
  770. .probe = pch_i2c_probe,
  771. .remove = __devexit_p(pch_i2c_remove),
  772. .suspend = pch_i2c_suspend,
  773. .resume = pch_i2c_resume
  774. };
  775. static int __init pch_pci_init(void)
  776. {
  777. return pci_register_driver(&pch_pcidriver);
  778. }
  779. module_init(pch_pci_init);
  780. static void __exit pch_pci_exit(void)
  781. {
  782. pci_unregister_driver(&pch_pcidriver);
  783. }
  784. module_exit(pch_pci_exit);
  785. MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7213 IOH I2C Driver");
  786. MODULE_LICENSE("GPL");
  787. MODULE_AUTHOR("Tomoya MORINAGA. <tomoya-linux@dsn.okisemi.com>");
  788. module_param(pch_i2c_speed, int, (S_IRUSR | S_IWUSR));
  789. module_param(pch_clk, int, (S_IRUSR | S_IWUSR));