bpf_jit_comp.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. /* bpf_jit_comp.c : BPF JIT compiler
  2. *
  3. * Copyright (C) 2011 Eric Dumazet (eric.dumazet@gmail.com)
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; version 2
  8. * of the License.
  9. */
  10. #include <linux/moduleloader.h>
  11. #include <asm/cacheflush.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/filter.h>
  14. /*
  15. * Conventions :
  16. * EAX : BPF A accumulator
  17. * EBX : BPF X accumulator
  18. * RDI : pointer to skb (first argument given to JIT function)
  19. * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
  20. * ECX,EDX,ESI : scratch registers
  21. * r9d : skb->len - skb->data_len (headlen)
  22. * r8 : skb->data
  23. * -8(RBP) : saved RBX value
  24. * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
  25. */
  26. int bpf_jit_enable __read_mostly;
  27. /*
  28. * assembly code in arch/x86/net/bpf_jit.S
  29. */
  30. extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
  31. extern u8 sk_load_word_ind[], sk_load_half_ind[], sk_load_byte_ind[];
  32. static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  33. {
  34. if (len == 1)
  35. *ptr = bytes;
  36. else if (len == 2)
  37. *(u16 *)ptr = bytes;
  38. else {
  39. *(u32 *)ptr = bytes;
  40. barrier();
  41. }
  42. return ptr + len;
  43. }
  44. #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
  45. #define EMIT1(b1) EMIT(b1, 1)
  46. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  47. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  48. #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  49. #define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
  50. #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
  51. #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
  52. static inline bool is_imm8(int value)
  53. {
  54. return value <= 127 && value >= -128;
  55. }
  56. static inline bool is_near(int offset)
  57. {
  58. return offset <= 127 && offset >= -128;
  59. }
  60. #define EMIT_JMP(offset) \
  61. do { \
  62. if (offset) { \
  63. if (is_near(offset)) \
  64. EMIT2(0xeb, offset); /* jmp .+off8 */ \
  65. else \
  66. EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
  67. } \
  68. } while (0)
  69. /* list of x86 cond jumps opcodes (. + s8)
  70. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  71. */
  72. #define X86_JB 0x72
  73. #define X86_JAE 0x73
  74. #define X86_JE 0x74
  75. #define X86_JNE 0x75
  76. #define X86_JBE 0x76
  77. #define X86_JA 0x77
  78. #define EMIT_COND_JMP(op, offset) \
  79. do { \
  80. if (is_near(offset)) \
  81. EMIT2(op, offset); /* jxx .+off8 */ \
  82. else { \
  83. EMIT2(0x0f, op + 0x10); \
  84. EMIT(offset, 4); /* jxx .+off32 */ \
  85. } \
  86. } while (0)
  87. #define COND_SEL(CODE, TOP, FOP) \
  88. case CODE: \
  89. t_op = TOP; \
  90. f_op = FOP; \
  91. goto cond_branch
  92. #define SEEN_DATAREF 1 /* might call external helpers */
  93. #define SEEN_XREG 2 /* ebx is used */
  94. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  95. static inline void bpf_flush_icache(void *start, void *end)
  96. {
  97. mm_segment_t old_fs = get_fs();
  98. set_fs(KERNEL_DS);
  99. smp_wmb();
  100. flush_icache_range((unsigned long)start, (unsigned long)end);
  101. set_fs(old_fs);
  102. }
  103. void bpf_jit_compile(struct sk_filter *fp)
  104. {
  105. u8 temp[64];
  106. u8 *prog;
  107. unsigned int proglen, oldproglen = 0;
  108. int ilen, i;
  109. int t_offset, f_offset;
  110. u8 t_op, f_op, seen = 0, pass;
  111. u8 *image = NULL;
  112. u8 *func;
  113. int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
  114. unsigned int cleanup_addr; /* epilogue code offset */
  115. unsigned int *addrs;
  116. const struct sock_filter *filter = fp->insns;
  117. int flen = fp->len;
  118. if (!bpf_jit_enable)
  119. return;
  120. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  121. if (addrs == NULL)
  122. return;
  123. /* Before first pass, make a rough estimation of addrs[]
  124. * each bpf instruction is translated to less than 64 bytes
  125. */
  126. for (proglen = 0, i = 0; i < flen; i++) {
  127. proglen += 64;
  128. addrs[i] = proglen;
  129. }
  130. cleanup_addr = proglen; /* epilogue address */
  131. for (pass = 0; pass < 10; pass++) {
  132. /* no prologue/epilogue for trivial filters (RET something) */
  133. proglen = 0;
  134. prog = temp;
  135. if (seen) {
  136. EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
  137. EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
  138. /* note : must save %rbx in case bpf_error is hit */
  139. if (seen & (SEEN_XREG | SEEN_DATAREF))
  140. EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
  141. if (seen & SEEN_XREG)
  142. CLEAR_X(); /* make sure we dont leek kernel memory */
  143. /*
  144. * If this filter needs to access skb data,
  145. * loads r9 and r8 with :
  146. * r9 = skb->len - skb->data_len
  147. * r8 = skb->data
  148. */
  149. if (seen & SEEN_DATAREF) {
  150. if (offsetof(struct sk_buff, len) <= 127)
  151. /* mov off8(%rdi),%r9d */
  152. EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
  153. else {
  154. /* mov off32(%rdi),%r9d */
  155. EMIT3(0x44, 0x8b, 0x8f);
  156. EMIT(offsetof(struct sk_buff, len), 4);
  157. }
  158. if (is_imm8(offsetof(struct sk_buff, data_len)))
  159. /* sub off8(%rdi),%r9d */
  160. EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
  161. else {
  162. EMIT3(0x44, 0x2b, 0x8f);
  163. EMIT(offsetof(struct sk_buff, data_len), 4);
  164. }
  165. if (is_imm8(offsetof(struct sk_buff, data)))
  166. /* mov off8(%rdi),%r8 */
  167. EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
  168. else {
  169. /* mov off32(%rdi),%r8 */
  170. EMIT3(0x4c, 0x8b, 0x87);
  171. EMIT(offsetof(struct sk_buff, data), 4);
  172. }
  173. }
  174. }
  175. switch (filter[0].code) {
  176. case BPF_S_RET_K:
  177. case BPF_S_LD_W_LEN:
  178. case BPF_S_ANC_PROTOCOL:
  179. case BPF_S_ANC_IFINDEX:
  180. case BPF_S_ANC_MARK:
  181. case BPF_S_ANC_RXHASH:
  182. case BPF_S_ANC_CPU:
  183. case BPF_S_ANC_QUEUE:
  184. case BPF_S_LD_W_ABS:
  185. case BPF_S_LD_H_ABS:
  186. case BPF_S_LD_B_ABS:
  187. /* first instruction sets A register (or is RET 'constant') */
  188. break;
  189. default:
  190. /* make sure we dont leak kernel information to user */
  191. CLEAR_A(); /* A = 0 */
  192. }
  193. for (i = 0; i < flen; i++) {
  194. unsigned int K = filter[i].k;
  195. switch (filter[i].code) {
  196. case BPF_S_ALU_ADD_X: /* A += X; */
  197. seen |= SEEN_XREG;
  198. EMIT2(0x01, 0xd8); /* add %ebx,%eax */
  199. break;
  200. case BPF_S_ALU_ADD_K: /* A += K; */
  201. if (!K)
  202. break;
  203. if (is_imm8(K))
  204. EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
  205. else
  206. EMIT1_off32(0x05, K); /* add imm32,%eax */
  207. break;
  208. case BPF_S_ALU_SUB_X: /* A -= X; */
  209. seen |= SEEN_XREG;
  210. EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
  211. break;
  212. case BPF_S_ALU_SUB_K: /* A -= K */
  213. if (!K)
  214. break;
  215. if (is_imm8(K))
  216. EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
  217. else
  218. EMIT1_off32(0x2d, K); /* sub imm32,%eax */
  219. break;
  220. case BPF_S_ALU_MUL_X: /* A *= X; */
  221. seen |= SEEN_XREG;
  222. EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
  223. break;
  224. case BPF_S_ALU_MUL_K: /* A *= K */
  225. if (is_imm8(K))
  226. EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
  227. else {
  228. EMIT2(0x69, 0xc0); /* imul imm32,%eax */
  229. EMIT(K, 4);
  230. }
  231. break;
  232. case BPF_S_ALU_DIV_X: /* A /= X; */
  233. seen |= SEEN_XREG;
  234. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  235. if (pc_ret0 != -1)
  236. EMIT_COND_JMP(X86_JE, addrs[pc_ret0] - (addrs[i] - 4));
  237. else {
  238. EMIT_COND_JMP(X86_JNE, 2 + 5);
  239. CLEAR_A();
  240. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
  241. }
  242. EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
  243. break;
  244. case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
  245. EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
  246. EMIT(K, 4);
  247. EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
  248. break;
  249. case BPF_S_ALU_AND_X:
  250. seen |= SEEN_XREG;
  251. EMIT2(0x21, 0xd8); /* and %ebx,%eax */
  252. break;
  253. case BPF_S_ALU_AND_K:
  254. if (K >= 0xFFFFFF00) {
  255. EMIT2(0x24, K & 0xFF); /* and imm8,%al */
  256. } else if (K >= 0xFFFF0000) {
  257. EMIT2(0x66, 0x25); /* and imm16,%ax */
  258. EMIT2(K, 2);
  259. } else {
  260. EMIT1_off32(0x25, K); /* and imm32,%eax */
  261. }
  262. break;
  263. case BPF_S_ALU_OR_X:
  264. seen |= SEEN_XREG;
  265. EMIT2(0x09, 0xd8); /* or %ebx,%eax */
  266. break;
  267. case BPF_S_ALU_OR_K:
  268. if (is_imm8(K))
  269. EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
  270. else
  271. EMIT1_off32(0x0d, K); /* or imm32,%eax */
  272. break;
  273. case BPF_S_ALU_LSH_X: /* A <<= X; */
  274. seen |= SEEN_XREG;
  275. EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
  276. break;
  277. case BPF_S_ALU_LSH_K:
  278. if (K == 0)
  279. break;
  280. else if (K == 1)
  281. EMIT2(0xd1, 0xe0); /* shl %eax */
  282. else
  283. EMIT3(0xc1, 0xe0, K);
  284. break;
  285. case BPF_S_ALU_RSH_X: /* A >>= X; */
  286. seen |= SEEN_XREG;
  287. EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
  288. break;
  289. case BPF_S_ALU_RSH_K: /* A >>= K; */
  290. if (K == 0)
  291. break;
  292. else if (K == 1)
  293. EMIT2(0xd1, 0xe8); /* shr %eax */
  294. else
  295. EMIT3(0xc1, 0xe8, K);
  296. break;
  297. case BPF_S_ALU_NEG:
  298. EMIT2(0xf7, 0xd8); /* neg %eax */
  299. break;
  300. case BPF_S_RET_K:
  301. if (!K) {
  302. if (pc_ret0 == -1)
  303. pc_ret0 = i;
  304. CLEAR_A();
  305. } else {
  306. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  307. }
  308. /* fallinto */
  309. case BPF_S_RET_A:
  310. if (seen) {
  311. if (i != flen - 1) {
  312. EMIT_JMP(cleanup_addr - addrs[i]);
  313. break;
  314. }
  315. if (seen & SEEN_XREG)
  316. EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
  317. EMIT1(0xc9); /* leaveq */
  318. }
  319. EMIT1(0xc3); /* ret */
  320. break;
  321. case BPF_S_MISC_TAX: /* X = A */
  322. seen |= SEEN_XREG;
  323. EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
  324. break;
  325. case BPF_S_MISC_TXA: /* A = X */
  326. seen |= SEEN_XREG;
  327. EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
  328. break;
  329. case BPF_S_LD_IMM: /* A = K */
  330. if (!K)
  331. CLEAR_A();
  332. else
  333. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  334. break;
  335. case BPF_S_LDX_IMM: /* X = K */
  336. seen |= SEEN_XREG;
  337. if (!K)
  338. CLEAR_X();
  339. else
  340. EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
  341. break;
  342. case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
  343. seen |= SEEN_MEM;
  344. EMIT3(0x8b, 0x45, 0xf0 - K*4);
  345. break;
  346. case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
  347. seen |= SEEN_XREG | SEEN_MEM;
  348. EMIT3(0x8b, 0x5d, 0xf0 - K*4);
  349. break;
  350. case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
  351. seen |= SEEN_MEM;
  352. EMIT3(0x89, 0x45, 0xf0 - K*4);
  353. break;
  354. case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
  355. seen |= SEEN_XREG | SEEN_MEM;
  356. EMIT3(0x89, 0x5d, 0xf0 - K*4);
  357. break;
  358. case BPF_S_LD_W_LEN: /* A = skb->len; */
  359. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
  360. if (is_imm8(offsetof(struct sk_buff, len)))
  361. /* mov off8(%rdi),%eax */
  362. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
  363. else {
  364. EMIT2(0x8b, 0x87);
  365. EMIT(offsetof(struct sk_buff, len), 4);
  366. }
  367. break;
  368. case BPF_S_LDX_W_LEN: /* X = skb->len; */
  369. seen |= SEEN_XREG;
  370. if (is_imm8(offsetof(struct sk_buff, len)))
  371. /* mov off8(%rdi),%ebx */
  372. EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
  373. else {
  374. EMIT2(0x8b, 0x9f);
  375. EMIT(offsetof(struct sk_buff, len), 4);
  376. }
  377. break;
  378. case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
  379. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
  380. if (is_imm8(offsetof(struct sk_buff, protocol))) {
  381. /* movzwl off8(%rdi),%eax */
  382. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
  383. } else {
  384. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  385. EMIT(offsetof(struct sk_buff, protocol), 4);
  386. }
  387. EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
  388. break;
  389. case BPF_S_ANC_IFINDEX:
  390. if (is_imm8(offsetof(struct sk_buff, dev))) {
  391. /* movq off8(%rdi),%rax */
  392. EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
  393. } else {
  394. EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
  395. EMIT(offsetof(struct sk_buff, dev), 4);
  396. }
  397. EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
  398. EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
  399. BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
  400. EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
  401. EMIT(offsetof(struct net_device, ifindex), 4);
  402. break;
  403. case BPF_S_ANC_MARK:
  404. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
  405. if (is_imm8(offsetof(struct sk_buff, mark))) {
  406. /* mov off8(%rdi),%eax */
  407. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
  408. } else {
  409. EMIT2(0x8b, 0x87);
  410. EMIT(offsetof(struct sk_buff, mark), 4);
  411. }
  412. break;
  413. case BPF_S_ANC_RXHASH:
  414. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
  415. if (is_imm8(offsetof(struct sk_buff, rxhash))) {
  416. /* mov off8(%rdi),%eax */
  417. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
  418. } else {
  419. EMIT2(0x8b, 0x87);
  420. EMIT(offsetof(struct sk_buff, rxhash), 4);
  421. }
  422. break;
  423. case BPF_S_ANC_QUEUE:
  424. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
  425. if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
  426. /* movzwl off8(%rdi),%eax */
  427. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
  428. } else {
  429. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  430. EMIT(offsetof(struct sk_buff, queue_mapping), 4);
  431. }
  432. break;
  433. case BPF_S_ANC_CPU:
  434. #ifdef CONFIG_SMP
  435. EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
  436. EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
  437. #else
  438. CLEAR_A();
  439. #endif
  440. break;
  441. case BPF_S_LD_W_ABS:
  442. func = sk_load_word;
  443. common_load: seen |= SEEN_DATAREF;
  444. if ((int)K < 0)
  445. goto out;
  446. t_offset = func - (image + addrs[i]);
  447. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  448. EMIT1_off32(0xe8, t_offset); /* call */
  449. break;
  450. case BPF_S_LD_H_ABS:
  451. func = sk_load_half;
  452. goto common_load;
  453. case BPF_S_LD_B_ABS:
  454. func = sk_load_byte;
  455. goto common_load;
  456. case BPF_S_LDX_B_MSH:
  457. if ((int)K < 0) {
  458. if (pc_ret0 != -1) {
  459. EMIT_JMP(addrs[pc_ret0] - addrs[i]);
  460. break;
  461. }
  462. CLEAR_A();
  463. EMIT_JMP(cleanup_addr - addrs[i]);
  464. break;
  465. }
  466. seen |= SEEN_DATAREF | SEEN_XREG;
  467. t_offset = sk_load_byte_msh - (image + addrs[i]);
  468. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  469. EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
  470. break;
  471. case BPF_S_LD_W_IND:
  472. func = sk_load_word_ind;
  473. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  474. t_offset = func - (image + addrs[i]);
  475. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  476. EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
  477. break;
  478. case BPF_S_LD_H_IND:
  479. func = sk_load_half_ind;
  480. goto common_load_ind;
  481. case BPF_S_LD_B_IND:
  482. func = sk_load_byte_ind;
  483. goto common_load_ind;
  484. case BPF_S_JMP_JA:
  485. t_offset = addrs[i + K] - addrs[i];
  486. EMIT_JMP(t_offset);
  487. break;
  488. COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
  489. COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
  490. COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
  491. COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
  492. COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
  493. COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
  494. COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
  495. COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
  496. cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
  497. t_offset = addrs[i + filter[i].jt] - addrs[i];
  498. /* same targets, can avoid doing the test :) */
  499. if (filter[i].jt == filter[i].jf) {
  500. EMIT_JMP(t_offset);
  501. break;
  502. }
  503. switch (filter[i].code) {
  504. case BPF_S_JMP_JGT_X:
  505. case BPF_S_JMP_JGE_X:
  506. case BPF_S_JMP_JEQ_X:
  507. seen |= SEEN_XREG;
  508. EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
  509. break;
  510. case BPF_S_JMP_JSET_X:
  511. seen |= SEEN_XREG;
  512. EMIT2(0x85, 0xd8); /* test %ebx,%eax */
  513. break;
  514. case BPF_S_JMP_JEQ_K:
  515. if (K == 0) {
  516. EMIT2(0x85, 0xc0); /* test %eax,%eax */
  517. break;
  518. }
  519. case BPF_S_JMP_JGT_K:
  520. case BPF_S_JMP_JGE_K:
  521. if (K <= 127)
  522. EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
  523. else
  524. EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
  525. break;
  526. case BPF_S_JMP_JSET_K:
  527. if (K <= 0xFF)
  528. EMIT2(0xa8, K); /* test imm8,%al */
  529. else if (!(K & 0xFFFF00FF))
  530. EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
  531. else if (K <= 0xFFFF) {
  532. EMIT2(0x66, 0xa9); /* test imm16,%ax */
  533. EMIT(K, 2);
  534. } else {
  535. EMIT1_off32(0xa9, K); /* test imm32,%eax */
  536. }
  537. break;
  538. }
  539. if (filter[i].jt != 0) {
  540. if (filter[i].jf)
  541. t_offset += is_near(f_offset) ? 2 : 6;
  542. EMIT_COND_JMP(t_op, t_offset);
  543. if (filter[i].jf)
  544. EMIT_JMP(f_offset);
  545. break;
  546. }
  547. EMIT_COND_JMP(f_op, f_offset);
  548. break;
  549. default:
  550. /* hmm, too complex filter, give up with jit compiler */
  551. goto out;
  552. }
  553. ilen = prog - temp;
  554. if (image) {
  555. if (unlikely(proglen + ilen > oldproglen)) {
  556. pr_err("bpb_jit_compile fatal error\n");
  557. kfree(addrs);
  558. module_free(NULL, image);
  559. return;
  560. }
  561. memcpy(image + proglen, temp, ilen);
  562. }
  563. proglen += ilen;
  564. addrs[i] = proglen;
  565. prog = temp;
  566. }
  567. /* last bpf instruction is always a RET :
  568. * use it to give the cleanup instruction(s) addr
  569. */
  570. cleanup_addr = proglen - 1; /* ret */
  571. if (seen)
  572. cleanup_addr -= 1; /* leaveq */
  573. if (seen & SEEN_XREG)
  574. cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
  575. if (image) {
  576. WARN_ON(proglen != oldproglen);
  577. break;
  578. }
  579. if (proglen == oldproglen) {
  580. image = module_alloc(max_t(unsigned int,
  581. proglen,
  582. sizeof(struct work_struct)));
  583. if (!image)
  584. goto out;
  585. }
  586. oldproglen = proglen;
  587. }
  588. if (bpf_jit_enable > 1)
  589. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  590. flen, proglen, pass, image);
  591. if (image) {
  592. if (bpf_jit_enable > 1)
  593. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  594. 16, 1, image, proglen, false);
  595. bpf_flush_icache(image, image + proglen);
  596. fp->bpf_func = (void *)image;
  597. }
  598. out:
  599. kfree(addrs);
  600. return;
  601. }
  602. static void jit_free_defer(struct work_struct *arg)
  603. {
  604. module_free(NULL, arg);
  605. }
  606. /* run from softirq, we must use a work_struct to call
  607. * module_free() from process context
  608. */
  609. void bpf_jit_free(struct sk_filter *fp)
  610. {
  611. if (fp->bpf_func != sk_run_filter) {
  612. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  613. INIT_WORK(work, jit_free_defer);
  614. schedule_work(work);
  615. }
  616. }