boot.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in Documentation/virtual/lguest/lguest.c) is called the
  11. * Launcher.
  12. *
  13. * Secondly, we only run specially modified Guests, not normal kernels: setting
  14. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  15. * how to be a Guest at boot time. This means that you can use the same kernel
  16. * you boot normally (ie. as a Host) as a Guest.
  17. *
  18. * These Guests know that they cannot do privileged operations, such as disable
  19. * interrupts, and that they have to ask the Host to do such things explicitly.
  20. * This file consists of all the replacements for such low-level native
  21. * hardware operations: these special Guest versions call the Host.
  22. *
  23. * So how does the kernel know it's a Guest? We'll see that later, but let's
  24. * just say that we end up here where we replace the native functions various
  25. * "paravirt" structures with our Guest versions, then boot like normal.
  26. :*/
  27. /*
  28. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful, but
  36. * WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  38. * NON INFRINGEMENT. See the GNU General Public License for more
  39. * details.
  40. *
  41. * You should have received a copy of the GNU General Public License
  42. * along with this program; if not, write to the Free Software
  43. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/start_kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/console.h>
  49. #include <linux/screen_info.h>
  50. #include <linux/irq.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/clocksource.h>
  53. #include <linux/clockchips.h>
  54. #include <linux/lguest.h>
  55. #include <linux/lguest_launcher.h>
  56. #include <linux/virtio_console.h>
  57. #include <linux/pm.h>
  58. #include <asm/apic.h>
  59. #include <asm/lguest.h>
  60. #include <asm/paravirt.h>
  61. #include <asm/param.h>
  62. #include <asm/page.h>
  63. #include <asm/pgtable.h>
  64. #include <asm/desc.h>
  65. #include <asm/setup.h>
  66. #include <asm/e820.h>
  67. #include <asm/mce.h>
  68. #include <asm/io.h>
  69. #include <asm/i387.h>
  70. #include <asm/stackprotector.h>
  71. #include <asm/reboot.h> /* for struct machine_ops */
  72. /*G:010
  73. * Welcome to the Guest!
  74. *
  75. * The Guest in our tale is a simple creature: identical to the Host but
  76. * behaving in simplified but equivalent ways. In particular, the Guest is the
  77. * same kernel as the Host (or at least, built from the same source code).
  78. :*/
  79. struct lguest_data lguest_data = {
  80. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  81. .noirq_start = (u32)lguest_noirq_start,
  82. .noirq_end = (u32)lguest_noirq_end,
  83. .kernel_address = PAGE_OFFSET,
  84. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  85. .syscall_vec = SYSCALL_VECTOR,
  86. };
  87. /*G:037
  88. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  89. * ring buffer of stored hypercalls which the Host will run though next time we
  90. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  91. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  92. * and 255 once the Host has finished with it.
  93. *
  94. * If we come around to a slot which hasn't been finished, then the table is
  95. * full and we just make the hypercall directly. This has the nice side
  96. * effect of causing the Host to run all the stored calls in the ring buffer
  97. * which empties it for next time!
  98. */
  99. static void async_hcall(unsigned long call, unsigned long arg1,
  100. unsigned long arg2, unsigned long arg3,
  101. unsigned long arg4)
  102. {
  103. /* Note: This code assumes we're uniprocessor. */
  104. static unsigned int next_call;
  105. unsigned long flags;
  106. /*
  107. * Disable interrupts if not already disabled: we don't want an
  108. * interrupt handler making a hypercall while we're already doing
  109. * one!
  110. */
  111. local_irq_save(flags);
  112. if (lguest_data.hcall_status[next_call] != 0xFF) {
  113. /* Table full, so do normal hcall which will flush table. */
  114. hcall(call, arg1, arg2, arg3, arg4);
  115. } else {
  116. lguest_data.hcalls[next_call].arg0 = call;
  117. lguest_data.hcalls[next_call].arg1 = arg1;
  118. lguest_data.hcalls[next_call].arg2 = arg2;
  119. lguest_data.hcalls[next_call].arg3 = arg3;
  120. lguest_data.hcalls[next_call].arg4 = arg4;
  121. /* Arguments must all be written before we mark it to go */
  122. wmb();
  123. lguest_data.hcall_status[next_call] = 0;
  124. if (++next_call == LHCALL_RING_SIZE)
  125. next_call = 0;
  126. }
  127. local_irq_restore(flags);
  128. }
  129. /*G:035
  130. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  131. * optimization trick!
  132. *
  133. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  134. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  135. * are reasonably expensive, batching them up makes sense. For example, a
  136. * large munmap might update dozens of page table entries: that code calls
  137. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  138. * lguest_leave_lazy_mode().
  139. *
  140. * So, when we're in lazy mode, we call async_hcall() to store the call for
  141. * future processing:
  142. */
  143. static void lazy_hcall1(unsigned long call, unsigned long arg1)
  144. {
  145. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  146. hcall(call, arg1, 0, 0, 0);
  147. else
  148. async_hcall(call, arg1, 0, 0, 0);
  149. }
  150. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  151. static void lazy_hcall2(unsigned long call,
  152. unsigned long arg1,
  153. unsigned long arg2)
  154. {
  155. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  156. hcall(call, arg1, arg2, 0, 0);
  157. else
  158. async_hcall(call, arg1, arg2, 0, 0);
  159. }
  160. static void lazy_hcall3(unsigned long call,
  161. unsigned long arg1,
  162. unsigned long arg2,
  163. unsigned long arg3)
  164. {
  165. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  166. hcall(call, arg1, arg2, arg3, 0);
  167. else
  168. async_hcall(call, arg1, arg2, arg3, 0);
  169. }
  170. #ifdef CONFIG_X86_PAE
  171. static void lazy_hcall4(unsigned long call,
  172. unsigned long arg1,
  173. unsigned long arg2,
  174. unsigned long arg3,
  175. unsigned long arg4)
  176. {
  177. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  178. hcall(call, arg1, arg2, arg3, arg4);
  179. else
  180. async_hcall(call, arg1, arg2, arg3, arg4);
  181. }
  182. #endif
  183. /*G:036
  184. * When lazy mode is turned off, we issue the do-nothing hypercall to
  185. * flush any stored calls, and call the generic helper to reset the
  186. * per-cpu lazy mode variable.
  187. */
  188. static void lguest_leave_lazy_mmu_mode(void)
  189. {
  190. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  191. paravirt_leave_lazy_mmu();
  192. }
  193. /*
  194. * We also catch the end of context switch; we enter lazy mode for much of
  195. * that too, so again we need to flush here.
  196. *
  197. * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
  198. * mode, but unlike Xen, lguest doesn't care about the difference).
  199. */
  200. static void lguest_end_context_switch(struct task_struct *next)
  201. {
  202. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  203. paravirt_end_context_switch(next);
  204. }
  205. /*G:032
  206. * After that diversion we return to our first native-instruction
  207. * replacements: four functions for interrupt control.
  208. *
  209. * The simplest way of implementing these would be to have "turn interrupts
  210. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  211. * these are by far the most commonly called functions of those we override.
  212. *
  213. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  214. * which the Guest can update with a single instruction. The Host knows to
  215. * check there before it tries to deliver an interrupt.
  216. */
  217. /*
  218. * save_flags() is expected to return the processor state (ie. "flags"). The
  219. * flags word contains all kind of stuff, but in practice Linux only cares
  220. * about the interrupt flag. Our "save_flags()" just returns that.
  221. */
  222. static unsigned long save_fl(void)
  223. {
  224. return lguest_data.irq_enabled;
  225. }
  226. /* Interrupts go off... */
  227. static void irq_disable(void)
  228. {
  229. lguest_data.irq_enabled = 0;
  230. }
  231. /*
  232. * Let's pause a moment. Remember how I said these are called so often?
  233. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  234. * break some rules. In particular, these functions are assumed to save their
  235. * own registers if they need to: normal C functions assume they can trash the
  236. * eax register. To use normal C functions, we use
  237. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  238. * C function, then restores it.
  239. */
  240. PV_CALLEE_SAVE_REGS_THUNK(save_fl);
  241. PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
  242. /*:*/
  243. /* These are in i386_head.S */
  244. extern void lg_irq_enable(void);
  245. extern void lg_restore_fl(unsigned long flags);
  246. /*M:003
  247. * We could be more efficient in our checking of outstanding interrupts, rather
  248. * than using a branch. One way would be to put the "irq_enabled" field in a
  249. * page by itself, and have the Host write-protect it when an interrupt comes
  250. * in when irqs are disabled. There will then be a page fault as soon as
  251. * interrupts are re-enabled.
  252. *
  253. * A better method is to implement soft interrupt disable generally for x86:
  254. * instead of disabling interrupts, we set a flag. If an interrupt does come
  255. * in, we then disable them for real. This is uncommon, so we could simply use
  256. * a hypercall for interrupt control and not worry about efficiency.
  257. :*/
  258. /*G:034
  259. * The Interrupt Descriptor Table (IDT).
  260. *
  261. * The IDT tells the processor what to do when an interrupt comes in. Each
  262. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  263. * address of the handler, and... well, who cares? The Guest just asks the
  264. * Host to make the change anyway, because the Host controls the real IDT.
  265. */
  266. static void lguest_write_idt_entry(gate_desc *dt,
  267. int entrynum, const gate_desc *g)
  268. {
  269. /*
  270. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  271. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  272. * around like this; typesafety wasn't a big concern in Linux's early
  273. * years.
  274. */
  275. u32 *desc = (u32 *)g;
  276. /* Keep the local copy up to date. */
  277. native_write_idt_entry(dt, entrynum, g);
  278. /* Tell Host about this new entry. */
  279. hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
  280. }
  281. /*
  282. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  283. * time it is written, so we can simply loop through all entries and tell the
  284. * Host about them.
  285. */
  286. static void lguest_load_idt(const struct desc_ptr *desc)
  287. {
  288. unsigned int i;
  289. struct desc_struct *idt = (void *)desc->address;
  290. for (i = 0; i < (desc->size+1)/8; i++)
  291. hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
  292. }
  293. /*
  294. * The Global Descriptor Table.
  295. *
  296. * The Intel architecture defines another table, called the Global Descriptor
  297. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  298. * instruction, and then several other instructions refer to entries in the
  299. * table. There are three entries which the Switcher needs, so the Host simply
  300. * controls the entire thing and the Guest asks it to make changes using the
  301. * LOAD_GDT hypercall.
  302. *
  303. * This is the exactly like the IDT code.
  304. */
  305. static void lguest_load_gdt(const struct desc_ptr *desc)
  306. {
  307. unsigned int i;
  308. struct desc_struct *gdt = (void *)desc->address;
  309. for (i = 0; i < (desc->size+1)/8; i++)
  310. hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
  311. }
  312. /*
  313. * For a single GDT entry which changes, we simply change our copy and
  314. * then tell the host about it.
  315. */
  316. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  317. const void *desc, int type)
  318. {
  319. native_write_gdt_entry(dt, entrynum, desc, type);
  320. /* Tell Host about this new entry. */
  321. hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
  322. dt[entrynum].a, dt[entrynum].b, 0);
  323. }
  324. /*
  325. * There are three "thread local storage" GDT entries which change
  326. * on every context switch (these three entries are how glibc implements
  327. * __thread variables). As an optimization, we have a hypercall
  328. * specifically for this case.
  329. *
  330. * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
  331. * which took a range of entries?
  332. */
  333. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  334. {
  335. /*
  336. * There's one problem which normal hardware doesn't have: the Host
  337. * can't handle us removing entries we're currently using. So we clear
  338. * the GS register here: if it's needed it'll be reloaded anyway.
  339. */
  340. lazy_load_gs(0);
  341. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  342. }
  343. /*G:038
  344. * That's enough excitement for now, back to ploughing through each of the
  345. * different pv_ops structures (we're about 1/3 of the way through).
  346. *
  347. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  348. * uses this for some strange applications like Wine. We don't do anything
  349. * here, so they'll get an informative and friendly Segmentation Fault.
  350. */
  351. static void lguest_set_ldt(const void *addr, unsigned entries)
  352. {
  353. }
  354. /*
  355. * This loads a GDT entry into the "Task Register": that entry points to a
  356. * structure called the Task State Segment. Some comments scattered though the
  357. * kernel code indicate that this used for task switching in ages past, along
  358. * with blood sacrifice and astrology.
  359. *
  360. * Now there's nothing interesting in here that we don't get told elsewhere.
  361. * But the native version uses the "ltr" instruction, which makes the Host
  362. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  363. * override the native version with a do-nothing version.
  364. */
  365. static void lguest_load_tr_desc(void)
  366. {
  367. }
  368. /*
  369. * The "cpuid" instruction is a way of querying both the CPU identity
  370. * (manufacturer, model, etc) and its features. It was introduced before the
  371. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  372. * As you might imagine, after a decade and a half this treatment, it is now a
  373. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  374. *
  375. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  376. * has been translated into 6 languages. I am not making this up!
  377. *
  378. * We could get funky here and identify ourselves as "GenuineLguest", but
  379. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  380. * off feature bits until the Guest booted. (Don't say that: you'll damage
  381. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  382. * hardly future proof.) No one's listening! They don't like you anyway,
  383. * parenthetic weirdo!
  384. *
  385. * Replacing the cpuid so we can turn features off is great for the kernel, but
  386. * anyone (including userspace) can just use the raw "cpuid" instruction and
  387. * the Host won't even notice since it isn't privileged. So we try not to get
  388. * too worked up about it.
  389. */
  390. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  391. unsigned int *cx, unsigned int *dx)
  392. {
  393. int function = *ax;
  394. native_cpuid(ax, bx, cx, dx);
  395. switch (function) {
  396. /*
  397. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  398. * We futureproof our code a little by sticking to known CPUID values.
  399. */
  400. case 0:
  401. if (*ax > 5)
  402. *ax = 5;
  403. break;
  404. /*
  405. * CPUID 1 is a basic feature request.
  406. *
  407. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  408. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  409. */
  410. case 1:
  411. *cx &= 0x00002201;
  412. *dx &= 0x07808151;
  413. /*
  414. * The Host can do a nice optimization if it knows that the
  415. * kernel mappings (addresses above 0xC0000000 or whatever
  416. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  417. * flush_tlb_user() for both user and kernel mappings unless
  418. * the Page Global Enable (PGE) feature bit is set.
  419. */
  420. *dx |= 0x00002000;
  421. /*
  422. * We also lie, and say we're family id 5. 6 or greater
  423. * leads to a rdmsr in early_init_intel which we can't handle.
  424. * Family ID is returned as bits 8-12 in ax.
  425. */
  426. *ax &= 0xFFFFF0FF;
  427. *ax |= 0x00000500;
  428. break;
  429. /*
  430. * 0x80000000 returns the highest Extended Function, so we futureproof
  431. * like we do above by limiting it to known fields.
  432. */
  433. case 0x80000000:
  434. if (*ax > 0x80000008)
  435. *ax = 0x80000008;
  436. break;
  437. /*
  438. * PAE systems can mark pages as non-executable. Linux calls this the
  439. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  440. * Virus Protection). We just switch it off here, since we don't
  441. * support it.
  442. */
  443. case 0x80000001:
  444. *dx &= ~(1 << 20);
  445. break;
  446. }
  447. }
  448. /*
  449. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  450. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  451. * it. The Host needs to know when the Guest wants to change them, so we have
  452. * a whole series of functions like read_cr0() and write_cr0().
  453. *
  454. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  455. * features, but Linux only really cares about one: the horrifically-named Task
  456. * Switched (TS) bit at bit 3 (ie. 8)
  457. *
  458. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  459. * the floating point unit is used. Which allows us to restore FPU state
  460. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  461. * name like "FPUTRAP bit" be a little less cryptic?
  462. *
  463. * We store cr0 locally because the Host never changes it. The Guest sometimes
  464. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  465. */
  466. static unsigned long current_cr0;
  467. static void lguest_write_cr0(unsigned long val)
  468. {
  469. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  470. current_cr0 = val;
  471. }
  472. static unsigned long lguest_read_cr0(void)
  473. {
  474. return current_cr0;
  475. }
  476. /*
  477. * Intel provided a special instruction to clear the TS bit for people too cool
  478. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  479. * the vowels have been optimized out.
  480. */
  481. static void lguest_clts(void)
  482. {
  483. lazy_hcall1(LHCALL_TS, 0);
  484. current_cr0 &= ~X86_CR0_TS;
  485. }
  486. /*
  487. * cr2 is the virtual address of the last page fault, which the Guest only ever
  488. * reads. The Host kindly writes this into our "struct lguest_data", so we
  489. * just read it out of there.
  490. */
  491. static unsigned long lguest_read_cr2(void)
  492. {
  493. return lguest_data.cr2;
  494. }
  495. /* See lguest_set_pte() below. */
  496. static bool cr3_changed = false;
  497. static unsigned long current_cr3;
  498. /*
  499. * cr3 is the current toplevel pagetable page: the principle is the same as
  500. * cr0. Keep a local copy, and tell the Host when it changes.
  501. */
  502. static void lguest_write_cr3(unsigned long cr3)
  503. {
  504. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  505. current_cr3 = cr3;
  506. /* These two page tables are simple, linear, and used during boot */
  507. if (cr3 != __pa(swapper_pg_dir) && cr3 != __pa(initial_page_table))
  508. cr3_changed = true;
  509. }
  510. static unsigned long lguest_read_cr3(void)
  511. {
  512. return current_cr3;
  513. }
  514. /* cr4 is used to enable and disable PGE, but we don't care. */
  515. static unsigned long lguest_read_cr4(void)
  516. {
  517. return 0;
  518. }
  519. static void lguest_write_cr4(unsigned long val)
  520. {
  521. }
  522. /*
  523. * Page Table Handling.
  524. *
  525. * Now would be a good time to take a rest and grab a coffee or similarly
  526. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  527. * winds uphill from here.
  528. *
  529. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  530. * maps virtual addresses to physical addresses using "page tables". We could
  531. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  532. * 1024 pages just to hold the page tables. But since most virtual addresses
  533. * are unused, we use a two level index which saves space. The cr3 register
  534. * contains the physical address of the top level "page directory" page, which
  535. * contains physical addresses of up to 1024 second-level pages. Each of these
  536. * second level pages contains up to 1024 physical addresses of actual pages,
  537. * or Page Table Entries (PTEs).
  538. *
  539. * Here's a diagram, where arrows indicate physical addresses:
  540. *
  541. * cr3 ---> +---------+
  542. * | --------->+---------+
  543. * | | | PADDR1 |
  544. * Mid-level | | PADDR2 |
  545. * (PMD) page | | |
  546. * | | Lower-level |
  547. * | | (PTE) page |
  548. * | | | |
  549. * .... ....
  550. *
  551. * So to convert a virtual address to a physical address, we look up the top
  552. * level, which points us to the second level, which gives us the physical
  553. * address of that page. If the top level entry was not present, or the second
  554. * level entry was not present, then the virtual address is invalid (we
  555. * say "the page was not mapped").
  556. *
  557. * Put another way, a 32-bit virtual address is divided up like so:
  558. *
  559. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  560. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  561. * Index into top Index into second Offset within page
  562. * page directory page pagetable page
  563. *
  564. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  565. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  566. * These are held in 64-bit page table entries, so we can now only fit 512
  567. * entries in a page, and the neat three-level tree breaks down.
  568. *
  569. * The result is a four level page table:
  570. *
  571. * cr3 --> [ 4 Upper ]
  572. * [ Level ]
  573. * [ Entries ]
  574. * [(PUD Page)]---> +---------+
  575. * | --------->+---------+
  576. * | | | PADDR1 |
  577. * Mid-level | | PADDR2 |
  578. * (PMD) page | | |
  579. * | | Lower-level |
  580. * | | (PTE) page |
  581. * | | | |
  582. * .... ....
  583. *
  584. *
  585. * And the virtual address is decoded as:
  586. *
  587. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  588. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  589. * Index into Index into mid Index into lower Offset within page
  590. * top entries directory page pagetable page
  591. *
  592. * It's too hard to switch between these two formats at runtime, so Linux only
  593. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  594. * distributions turn it on, and not just for people with silly amounts of
  595. * memory: the larger PTE entries allow room for the NX bit, which lets the
  596. * kernel disable execution of pages and increase security.
  597. *
  598. * This was a problem for lguest, which couldn't run on these distributions;
  599. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  600. * handful of puppies were crushed in the process!
  601. *
  602. * Back to our point: the kernel spends a lot of time changing both the
  603. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  604. * know physical addresses, so while it maintains these page tables exactly
  605. * like normal, it also needs to keep the Host informed whenever it makes a
  606. * change: the Host will create the real page tables based on the Guests'.
  607. */
  608. /*
  609. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  610. * a page into a process' address space. We tell the Host the toplevel and
  611. * address this corresponds to. The Guest uses one pagetable per process, so
  612. * we need to tell the Host which one we're changing (mm->pgd).
  613. */
  614. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  615. pte_t *ptep)
  616. {
  617. #ifdef CONFIG_X86_PAE
  618. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  619. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  620. ptep->pte_low, ptep->pte_high);
  621. #else
  622. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  623. #endif
  624. }
  625. /* This is the "set and update" combo-meal-deal version. */
  626. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  627. pte_t *ptep, pte_t pteval)
  628. {
  629. native_set_pte(ptep, pteval);
  630. lguest_pte_update(mm, addr, ptep);
  631. }
  632. /*
  633. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  634. * to set a middle-level entry when PAE is activated.
  635. *
  636. * Again, we set the entry then tell the Host which page we changed,
  637. * and the index of the entry we changed.
  638. */
  639. #ifdef CONFIG_X86_PAE
  640. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  641. {
  642. native_set_pud(pudp, pudval);
  643. /* 32 bytes aligned pdpt address and the index. */
  644. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  645. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  646. }
  647. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  648. {
  649. native_set_pmd(pmdp, pmdval);
  650. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  651. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  652. }
  653. #else
  654. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  655. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  656. {
  657. native_set_pmd(pmdp, pmdval);
  658. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  659. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  660. }
  661. #endif
  662. /*
  663. * There are a couple of legacy places where the kernel sets a PTE, but we
  664. * don't know the top level any more. This is useless for us, since we don't
  665. * know which pagetable is changing or what address, so we just tell the Host
  666. * to forget all of them. Fortunately, this is very rare.
  667. *
  668. * ... except in early boot when the kernel sets up the initial pagetables,
  669. * which makes booting astonishingly slow: 48 seconds! So we don't even tell
  670. * the Host anything changed until we've done the first real page table switch,
  671. * which brings boot back to 4.3 seconds.
  672. */
  673. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  674. {
  675. native_set_pte(ptep, pteval);
  676. if (cr3_changed)
  677. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  678. }
  679. #ifdef CONFIG_X86_PAE
  680. /*
  681. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  682. * bits at a time, the hardware could see a weird half-set entry. These
  683. * versions ensure we update all 64 bits at once.
  684. */
  685. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  686. {
  687. native_set_pte_atomic(ptep, pte);
  688. if (cr3_changed)
  689. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  690. }
  691. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  692. pte_t *ptep)
  693. {
  694. native_pte_clear(mm, addr, ptep);
  695. lguest_pte_update(mm, addr, ptep);
  696. }
  697. static void lguest_pmd_clear(pmd_t *pmdp)
  698. {
  699. lguest_set_pmd(pmdp, __pmd(0));
  700. }
  701. #endif
  702. /*
  703. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  704. * native page table operations. On native hardware you can set a new page
  705. * table entry whenever you want, but if you want to remove one you have to do
  706. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  707. *
  708. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  709. * called when a valid entry is written, not when it's removed (ie. marked not
  710. * present). Instead, this is where we come when the Guest wants to remove a
  711. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  712. * bit is zero).
  713. */
  714. static void lguest_flush_tlb_single(unsigned long addr)
  715. {
  716. /* Simply set it to zero: if it was not, it will fault back in. */
  717. lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
  718. }
  719. /*
  720. * This is what happens after the Guest has removed a large number of entries.
  721. * This tells the Host that any of the page table entries for userspace might
  722. * have changed, ie. virtual addresses below PAGE_OFFSET.
  723. */
  724. static void lguest_flush_tlb_user(void)
  725. {
  726. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  727. }
  728. /*
  729. * This is called when the kernel page tables have changed. That's not very
  730. * common (unless the Guest is using highmem, which makes the Guest extremely
  731. * slow), so it's worth separating this from the user flushing above.
  732. */
  733. static void lguest_flush_tlb_kernel(void)
  734. {
  735. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  736. }
  737. /*
  738. * The Unadvanced Programmable Interrupt Controller.
  739. *
  740. * This is an attempt to implement the simplest possible interrupt controller.
  741. * I spent some time looking though routines like set_irq_chip_and_handler,
  742. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  743. * I *think* this is as simple as it gets.
  744. *
  745. * We can tell the Host what interrupts we want blocked ready for using the
  746. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  747. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  748. * just mask and unmask them. I wonder if we should be cleverer?
  749. */
  750. static void disable_lguest_irq(struct irq_data *data)
  751. {
  752. set_bit(data->irq, lguest_data.blocked_interrupts);
  753. }
  754. static void enable_lguest_irq(struct irq_data *data)
  755. {
  756. clear_bit(data->irq, lguest_data.blocked_interrupts);
  757. }
  758. /* This structure describes the lguest IRQ controller. */
  759. static struct irq_chip lguest_irq_controller = {
  760. .name = "lguest",
  761. .irq_mask = disable_lguest_irq,
  762. .irq_mask_ack = disable_lguest_irq,
  763. .irq_unmask = enable_lguest_irq,
  764. };
  765. /*
  766. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  767. * interrupt (except 128, which is used for system calls), and then tells the
  768. * Linux infrastructure that each interrupt is controlled by our level-based
  769. * lguest interrupt controller.
  770. */
  771. static void __init lguest_init_IRQ(void)
  772. {
  773. unsigned int i;
  774. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  775. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  776. __this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
  777. if (i != SYSCALL_VECTOR)
  778. set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
  779. }
  780. /*
  781. * This call is required to set up for 4k stacks, where we have
  782. * separate stacks for hard and soft interrupts.
  783. */
  784. irq_ctx_init(smp_processor_id());
  785. }
  786. /*
  787. * With CONFIG_SPARSE_IRQ, interrupt descriptors are allocated as-needed, so
  788. * rather than set them in lguest_init_IRQ we are called here every time an
  789. * lguest device needs an interrupt.
  790. *
  791. * FIXME: irq_alloc_desc_at() can fail due to lack of memory, we should
  792. * pass that up!
  793. */
  794. void lguest_setup_irq(unsigned int irq)
  795. {
  796. irq_alloc_desc_at(irq, 0);
  797. irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
  798. handle_level_irq, "level");
  799. }
  800. /*
  801. * Time.
  802. *
  803. * It would be far better for everyone if the Guest had its own clock, but
  804. * until then the Host gives us the time on every interrupt.
  805. */
  806. static unsigned long lguest_get_wallclock(void)
  807. {
  808. return lguest_data.time.tv_sec;
  809. }
  810. /*
  811. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  812. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  813. * This matches what we want here: if we return 0 from this function, the x86
  814. * TSC clock will give up and not register itself.
  815. */
  816. static unsigned long lguest_tsc_khz(void)
  817. {
  818. return lguest_data.tsc_khz;
  819. }
  820. /*
  821. * If we can't use the TSC, the kernel falls back to our lower-priority
  822. * "lguest_clock", where we read the time value given to us by the Host.
  823. */
  824. static cycle_t lguest_clock_read(struct clocksource *cs)
  825. {
  826. unsigned long sec, nsec;
  827. /*
  828. * Since the time is in two parts (seconds and nanoseconds), we risk
  829. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  830. * and getting 99 and 0. As Linux tends to come apart under the stress
  831. * of time travel, we must be careful:
  832. */
  833. do {
  834. /* First we read the seconds part. */
  835. sec = lguest_data.time.tv_sec;
  836. /*
  837. * This read memory barrier tells the compiler and the CPU that
  838. * this can't be reordered: we have to complete the above
  839. * before going on.
  840. */
  841. rmb();
  842. /* Now we read the nanoseconds part. */
  843. nsec = lguest_data.time.tv_nsec;
  844. /* Make sure we've done that. */
  845. rmb();
  846. /* Now if the seconds part has changed, try again. */
  847. } while (unlikely(lguest_data.time.tv_sec != sec));
  848. /* Our lguest clock is in real nanoseconds. */
  849. return sec*1000000000ULL + nsec;
  850. }
  851. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  852. static struct clocksource lguest_clock = {
  853. .name = "lguest",
  854. .rating = 200,
  855. .read = lguest_clock_read,
  856. .mask = CLOCKSOURCE_MASK(64),
  857. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  858. };
  859. /*
  860. * We also need a "struct clock_event_device": Linux asks us to set it to go
  861. * off some time in the future. Actually, James Morris figured all this out, I
  862. * just applied the patch.
  863. */
  864. static int lguest_clockevent_set_next_event(unsigned long delta,
  865. struct clock_event_device *evt)
  866. {
  867. /* FIXME: I don't think this can ever happen, but James tells me he had
  868. * to put this code in. Maybe we should remove it now. Anyone? */
  869. if (delta < LG_CLOCK_MIN_DELTA) {
  870. if (printk_ratelimit())
  871. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  872. __func__, delta);
  873. return -ETIME;
  874. }
  875. /* Please wake us this far in the future. */
  876. hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
  877. return 0;
  878. }
  879. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  880. struct clock_event_device *evt)
  881. {
  882. switch (mode) {
  883. case CLOCK_EVT_MODE_UNUSED:
  884. case CLOCK_EVT_MODE_SHUTDOWN:
  885. /* A 0 argument shuts the clock down. */
  886. hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
  887. break;
  888. case CLOCK_EVT_MODE_ONESHOT:
  889. /* This is what we expect. */
  890. break;
  891. case CLOCK_EVT_MODE_PERIODIC:
  892. BUG();
  893. case CLOCK_EVT_MODE_RESUME:
  894. break;
  895. }
  896. }
  897. /* This describes our primitive timer chip. */
  898. static struct clock_event_device lguest_clockevent = {
  899. .name = "lguest",
  900. .features = CLOCK_EVT_FEAT_ONESHOT,
  901. .set_next_event = lguest_clockevent_set_next_event,
  902. .set_mode = lguest_clockevent_set_mode,
  903. .rating = INT_MAX,
  904. .mult = 1,
  905. .shift = 0,
  906. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  907. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  908. };
  909. /*
  910. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  911. * call the clockevent infrastructure and it does whatever needs doing.
  912. */
  913. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  914. {
  915. unsigned long flags;
  916. /* Don't interrupt us while this is running. */
  917. local_irq_save(flags);
  918. lguest_clockevent.event_handler(&lguest_clockevent);
  919. local_irq_restore(flags);
  920. }
  921. /*
  922. * At some point in the boot process, we get asked to set up our timing
  923. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  924. * we cleverly initialized the "blocked_interrupts" field of "struct
  925. * lguest_data" so that timer interrupts were blocked until now.
  926. */
  927. static void lguest_time_init(void)
  928. {
  929. /* Set up the timer interrupt (0) to go to our simple timer routine */
  930. lguest_setup_irq(0);
  931. irq_set_handler(0, lguest_time_irq);
  932. clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
  933. /* We can't set cpumask in the initializer: damn C limitations! Set it
  934. * here and register our timer device. */
  935. lguest_clockevent.cpumask = cpumask_of(0);
  936. clockevents_register_device(&lguest_clockevent);
  937. /* Finally, we unblock the timer interrupt. */
  938. clear_bit(0, lguest_data.blocked_interrupts);
  939. }
  940. /*
  941. * Miscellaneous bits and pieces.
  942. *
  943. * Here is an oddball collection of functions which the Guest needs for things
  944. * to work. They're pretty simple.
  945. */
  946. /*
  947. * The Guest needs to tell the Host what stack it expects traps to use. For
  948. * native hardware, this is part of the Task State Segment mentioned above in
  949. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  950. *
  951. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  952. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  953. * will not tolerate us trying to use that), the stack pointer, and the number
  954. * of pages in the stack.
  955. */
  956. static void lguest_load_sp0(struct tss_struct *tss,
  957. struct thread_struct *thread)
  958. {
  959. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  960. THREAD_SIZE / PAGE_SIZE);
  961. }
  962. /* Let's just say, I wouldn't do debugging under a Guest. */
  963. static void lguest_set_debugreg(int regno, unsigned long value)
  964. {
  965. /* FIXME: Implement */
  966. }
  967. /*
  968. * There are times when the kernel wants to make sure that no memory writes are
  969. * caught in the cache (that they've all reached real hardware devices). This
  970. * doesn't matter for the Guest which has virtual hardware.
  971. *
  972. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  973. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  974. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  975. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  976. * ignore clflush, but replace wbinvd.
  977. */
  978. static void lguest_wbinvd(void)
  979. {
  980. }
  981. /*
  982. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  983. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  984. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  985. * code qualifies for Advanced. It will also never interrupt anything. It
  986. * does, however, allow us to get through the Linux boot code.
  987. */
  988. #ifdef CONFIG_X86_LOCAL_APIC
  989. static void lguest_apic_write(u32 reg, u32 v)
  990. {
  991. }
  992. static u32 lguest_apic_read(u32 reg)
  993. {
  994. return 0;
  995. }
  996. static u64 lguest_apic_icr_read(void)
  997. {
  998. return 0;
  999. }
  1000. static void lguest_apic_icr_write(u32 low, u32 id)
  1001. {
  1002. /* Warn to see if there's any stray references */
  1003. WARN_ON(1);
  1004. }
  1005. static void lguest_apic_wait_icr_idle(void)
  1006. {
  1007. return;
  1008. }
  1009. static u32 lguest_apic_safe_wait_icr_idle(void)
  1010. {
  1011. return 0;
  1012. }
  1013. static void set_lguest_basic_apic_ops(void)
  1014. {
  1015. apic->read = lguest_apic_read;
  1016. apic->write = lguest_apic_write;
  1017. apic->icr_read = lguest_apic_icr_read;
  1018. apic->icr_write = lguest_apic_icr_write;
  1019. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1020. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1021. };
  1022. #endif
  1023. /* STOP! Until an interrupt comes in. */
  1024. static void lguest_safe_halt(void)
  1025. {
  1026. hcall(LHCALL_HALT, 0, 0, 0, 0);
  1027. }
  1028. /*
  1029. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1030. * an argument which says whether this to restart (reboot) the Guest or not.
  1031. *
  1032. * Note that the Host always prefers that the Guest speak in physical addresses
  1033. * rather than virtual addresses, so we use __pa() here.
  1034. */
  1035. static void lguest_power_off(void)
  1036. {
  1037. hcall(LHCALL_SHUTDOWN, __pa("Power down"),
  1038. LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1039. }
  1040. /*
  1041. * Panicing.
  1042. *
  1043. * Don't. But if you did, this is what happens.
  1044. */
  1045. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1046. {
  1047. hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1048. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1049. return NOTIFY_DONE;
  1050. }
  1051. static struct notifier_block paniced = {
  1052. .notifier_call = lguest_panic
  1053. };
  1054. /* Setting up memory is fairly easy. */
  1055. static __init char *lguest_memory_setup(void)
  1056. {
  1057. /*
  1058. * The Linux bootloader header contains an "e820" memory map: the
  1059. * Launcher populated the first entry with our memory limit.
  1060. */
  1061. e820_add_region(boot_params.e820_map[0].addr,
  1062. boot_params.e820_map[0].size,
  1063. boot_params.e820_map[0].type);
  1064. /* This string is for the boot messages. */
  1065. return "LGUEST";
  1066. }
  1067. /*
  1068. * We will eventually use the virtio console device to produce console output,
  1069. * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
  1070. * console output.
  1071. */
  1072. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1073. {
  1074. char scratch[17];
  1075. unsigned int len = count;
  1076. /* We use a nul-terminated string, so we make a copy. Icky, huh? */
  1077. if (len > sizeof(scratch) - 1)
  1078. len = sizeof(scratch) - 1;
  1079. scratch[len] = '\0';
  1080. memcpy(scratch, buf, len);
  1081. hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0, 0);
  1082. /* This routine returns the number of bytes actually written. */
  1083. return len;
  1084. }
  1085. /*
  1086. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1087. * Launcher to reboot us.
  1088. */
  1089. static void lguest_restart(char *reason)
  1090. {
  1091. hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
  1092. }
  1093. /*G:050
  1094. * Patching (Powerfully Placating Performance Pedants)
  1095. *
  1096. * We have already seen that pv_ops structures let us replace simple native
  1097. * instructions with calls to the appropriate back end all throughout the
  1098. * kernel. This allows the same kernel to run as a Guest and as a native
  1099. * kernel, but it's slow because of all the indirect branches.
  1100. *
  1101. * Remember that David Wheeler quote about "Any problem in computer science can
  1102. * be solved with another layer of indirection"? The rest of that quote is
  1103. * "... But that usually will create another problem." This is the first of
  1104. * those problems.
  1105. *
  1106. * Our current solution is to allow the paravirt back end to optionally patch
  1107. * over the indirect calls to replace them with something more efficient. We
  1108. * patch two of the simplest of the most commonly called functions: disable
  1109. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1110. * into: the Guest versions of these operations are small enough that we can
  1111. * fit comfortably.
  1112. *
  1113. * First we need assembly templates of each of the patchable Guest operations,
  1114. * and these are in i386_head.S.
  1115. */
  1116. /*G:060 We construct a table from the assembler templates: */
  1117. static const struct lguest_insns
  1118. {
  1119. const char *start, *end;
  1120. } lguest_insns[] = {
  1121. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1122. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1123. };
  1124. /*
  1125. * Now our patch routine is fairly simple (based on the native one in
  1126. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1127. * the available space we used.
  1128. */
  1129. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1130. unsigned long addr, unsigned len)
  1131. {
  1132. unsigned int insn_len;
  1133. /* Don't do anything special if we don't have a replacement */
  1134. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1135. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1136. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1137. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1138. if (len < insn_len)
  1139. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1140. /* Copy in our instructions. */
  1141. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1142. return insn_len;
  1143. }
  1144. /*G:029
  1145. * Once we get to lguest_init(), we know we're a Guest. The various
  1146. * pv_ops structures in the kernel provide points for (almost) every routine we
  1147. * have to override to avoid privileged instructions.
  1148. */
  1149. __init void lguest_init(void)
  1150. {
  1151. /* We're under lguest. */
  1152. pv_info.name = "lguest";
  1153. /* Paravirt is enabled. */
  1154. pv_info.paravirt_enabled = 1;
  1155. /* We're running at privilege level 1, not 0 as normal. */
  1156. pv_info.kernel_rpl = 1;
  1157. /* Everyone except Xen runs with this set. */
  1158. pv_info.shared_kernel_pmd = 1;
  1159. /*
  1160. * We set up all the lguest overrides for sensitive operations. These
  1161. * are detailed with the operations themselves.
  1162. */
  1163. /* Interrupt-related operations */
  1164. pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
  1165. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1166. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
  1167. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1168. pv_irq_ops.safe_halt = lguest_safe_halt;
  1169. /* Setup operations */
  1170. pv_init_ops.patch = lguest_patch;
  1171. /* Intercepts of various CPU instructions */
  1172. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1173. pv_cpu_ops.cpuid = lguest_cpuid;
  1174. pv_cpu_ops.load_idt = lguest_load_idt;
  1175. pv_cpu_ops.iret = lguest_iret;
  1176. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1177. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1178. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1179. pv_cpu_ops.load_tls = lguest_load_tls;
  1180. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1181. pv_cpu_ops.clts = lguest_clts;
  1182. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1183. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1184. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1185. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1186. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1187. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1188. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1189. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1190. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1191. /* Pagetable management */
  1192. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1193. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1194. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1195. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1196. pv_mmu_ops.set_pte = lguest_set_pte;
  1197. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1198. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1199. #ifdef CONFIG_X86_PAE
  1200. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1201. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1202. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1203. pv_mmu_ops.set_pud = lguest_set_pud;
  1204. #endif
  1205. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1206. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1207. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1208. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1209. pv_mmu_ops.pte_update = lguest_pte_update;
  1210. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1211. #ifdef CONFIG_X86_LOCAL_APIC
  1212. /* APIC read/write intercepts */
  1213. set_lguest_basic_apic_ops();
  1214. #endif
  1215. x86_init.resources.memory_setup = lguest_memory_setup;
  1216. x86_init.irqs.intr_init = lguest_init_IRQ;
  1217. x86_init.timers.timer_init = lguest_time_init;
  1218. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1219. x86_platform.get_wallclock = lguest_get_wallclock;
  1220. /*
  1221. * Now is a good time to look at the implementations of these functions
  1222. * before returning to the rest of lguest_init().
  1223. */
  1224. /*G:070
  1225. * Now we've seen all the paravirt_ops, we return to
  1226. * lguest_init() where the rest of the fairly chaotic boot setup
  1227. * occurs.
  1228. */
  1229. /*
  1230. * The stack protector is a weird thing where gcc places a canary
  1231. * value on the stack and then checks it on return. This file is
  1232. * compiled with -fno-stack-protector it, so we got this far without
  1233. * problems. The value of the canary is kept at offset 20 from the
  1234. * %gs register, so we need to set that up before calling C functions
  1235. * in other files.
  1236. */
  1237. setup_stack_canary_segment(0);
  1238. /*
  1239. * We could just call load_stack_canary_segment(), but we might as well
  1240. * call switch_to_new_gdt() which loads the whole table and sets up the
  1241. * per-cpu segment descriptor register %fs as well.
  1242. */
  1243. switch_to_new_gdt(0);
  1244. /*
  1245. * The Host<->Guest Switcher lives at the top of our address space, and
  1246. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1247. * it put the answer in lguest_data.reserve_mem
  1248. */
  1249. reserve_top_address(lguest_data.reserve_mem);
  1250. /*
  1251. * If we don't initialize the lock dependency checker now, it crashes
  1252. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1253. */
  1254. lockdep_init();
  1255. /* Hook in our special panic hypercall code. */
  1256. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1257. /*
  1258. * The IDE code spends about 3 seconds probing for disks: if we reserve
  1259. * all the I/O ports up front it can't get them and so doesn't probe.
  1260. * Other device drivers are similar (but less severe). This cuts the
  1261. * kernel boot time on my machine from 4.1 seconds to 0.45 seconds.
  1262. */
  1263. paravirt_disable_iospace();
  1264. /*
  1265. * This is messy CPU setup stuff which the native boot code does before
  1266. * start_kernel, so we have to do, too:
  1267. */
  1268. cpu_detect(&new_cpu_data);
  1269. /* head.S usually sets up the first capability word, so do it here. */
  1270. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1271. /* Math is always hard! */
  1272. new_cpu_data.hard_math = 1;
  1273. /* We don't have features. We have puppies! Puppies! */
  1274. #ifdef CONFIG_X86_MCE
  1275. mce_disabled = 1;
  1276. #endif
  1277. #ifdef CONFIG_ACPI
  1278. acpi_disabled = 1;
  1279. #endif
  1280. /*
  1281. * We set the preferred console to "hvc". This is the "hypervisor
  1282. * virtual console" driver written by the PowerPC people, which we also
  1283. * adapted for lguest's use.
  1284. */
  1285. add_preferred_console("hvc", 0, NULL);
  1286. /* Register our very early console. */
  1287. virtio_cons_early_init(early_put_chars);
  1288. /*
  1289. * Last of all, we set the power management poweroff hook to point to
  1290. * the Guest routine to power off, and the reboot hook to our restart
  1291. * routine.
  1292. */
  1293. pm_power_off = lguest_power_off;
  1294. machine_ops.restart = lguest_restart;
  1295. /*
  1296. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1297. * to boot as normal. It never returns.
  1298. */
  1299. i386_start_kernel();
  1300. }
  1301. /*
  1302. * This marks the end of stage II of our journey, The Guest.
  1303. *
  1304. * It is now time for us to explore the layer of virtual drivers and complete
  1305. * our understanding of the Guest in "make Drivers".
  1306. */