vmx.c 203 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly enable_vpid = 1;
  46. module_param_named(vpid, enable_vpid, bool, 0444);
  47. static int __read_mostly flexpriority_enabled = 1;
  48. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  49. static int __read_mostly enable_ept = 1;
  50. module_param_named(ept, enable_ept, bool, S_IRUGO);
  51. static int __read_mostly enable_unrestricted_guest = 1;
  52. module_param_named(unrestricted_guest,
  53. enable_unrestricted_guest, bool, S_IRUGO);
  54. static int __read_mostly emulate_invalid_guest_state = 0;
  55. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  56. static int __read_mostly vmm_exclusive = 1;
  57. module_param(vmm_exclusive, bool, S_IRUGO);
  58. static int __read_mostly yield_on_hlt = 1;
  59. module_param(yield_on_hlt, bool, S_IRUGO);
  60. /*
  61. * If nested=1, nested virtualization is supported, i.e., guests may use
  62. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  63. * use VMX instructions.
  64. */
  65. static int __read_mostly nested = 0;
  66. module_param(nested, bool, S_IRUGO);
  67. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  68. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  69. #define KVM_GUEST_CR0_MASK \
  70. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  71. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  72. (X86_CR0_WP | X86_CR0_NE)
  73. #define KVM_VM_CR0_ALWAYS_ON \
  74. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  75. #define KVM_CR4_GUEST_OWNED_BITS \
  76. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  77. | X86_CR4_OSXMMEXCPT)
  78. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  79. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  80. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  81. /*
  82. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  83. * ple_gap: upper bound on the amount of time between two successive
  84. * executions of PAUSE in a loop. Also indicate if ple enabled.
  85. * According to test, this time is usually smaller than 128 cycles.
  86. * ple_window: upper bound on the amount of time a guest is allowed to execute
  87. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  88. * less than 2^12 cycles
  89. * Time is measured based on a counter that runs at the same rate as the TSC,
  90. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  91. */
  92. #define KVM_VMX_DEFAULT_PLE_GAP 128
  93. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  94. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  95. module_param(ple_gap, int, S_IRUGO);
  96. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  97. module_param(ple_window, int, S_IRUGO);
  98. #define NR_AUTOLOAD_MSRS 1
  99. #define VMCS02_POOL_SIZE 1
  100. struct vmcs {
  101. u32 revision_id;
  102. u32 abort;
  103. char data[0];
  104. };
  105. /*
  106. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  107. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  108. * loaded on this CPU (so we can clear them if the CPU goes down).
  109. */
  110. struct loaded_vmcs {
  111. struct vmcs *vmcs;
  112. int cpu;
  113. int launched;
  114. struct list_head loaded_vmcss_on_cpu_link;
  115. };
  116. struct shared_msr_entry {
  117. unsigned index;
  118. u64 data;
  119. u64 mask;
  120. };
  121. /*
  122. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  123. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  124. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  125. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  126. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  127. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  128. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  129. * underlying hardware which will be used to run L2.
  130. * This structure is packed to ensure that its layout is identical across
  131. * machines (necessary for live migration).
  132. * If there are changes in this struct, VMCS12_REVISION must be changed.
  133. */
  134. typedef u64 natural_width;
  135. struct __packed vmcs12 {
  136. /* According to the Intel spec, a VMCS region must start with the
  137. * following two fields. Then follow implementation-specific data.
  138. */
  139. u32 revision_id;
  140. u32 abort;
  141. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  142. u32 padding[7]; /* room for future expansion */
  143. u64 io_bitmap_a;
  144. u64 io_bitmap_b;
  145. u64 msr_bitmap;
  146. u64 vm_exit_msr_store_addr;
  147. u64 vm_exit_msr_load_addr;
  148. u64 vm_entry_msr_load_addr;
  149. u64 tsc_offset;
  150. u64 virtual_apic_page_addr;
  151. u64 apic_access_addr;
  152. u64 ept_pointer;
  153. u64 guest_physical_address;
  154. u64 vmcs_link_pointer;
  155. u64 guest_ia32_debugctl;
  156. u64 guest_ia32_pat;
  157. u64 guest_ia32_efer;
  158. u64 guest_ia32_perf_global_ctrl;
  159. u64 guest_pdptr0;
  160. u64 guest_pdptr1;
  161. u64 guest_pdptr2;
  162. u64 guest_pdptr3;
  163. u64 host_ia32_pat;
  164. u64 host_ia32_efer;
  165. u64 host_ia32_perf_global_ctrl;
  166. u64 padding64[8]; /* room for future expansion */
  167. /*
  168. * To allow migration of L1 (complete with its L2 guests) between
  169. * machines of different natural widths (32 or 64 bit), we cannot have
  170. * unsigned long fields with no explict size. We use u64 (aliased
  171. * natural_width) instead. Luckily, x86 is little-endian.
  172. */
  173. natural_width cr0_guest_host_mask;
  174. natural_width cr4_guest_host_mask;
  175. natural_width cr0_read_shadow;
  176. natural_width cr4_read_shadow;
  177. natural_width cr3_target_value0;
  178. natural_width cr3_target_value1;
  179. natural_width cr3_target_value2;
  180. natural_width cr3_target_value3;
  181. natural_width exit_qualification;
  182. natural_width guest_linear_address;
  183. natural_width guest_cr0;
  184. natural_width guest_cr3;
  185. natural_width guest_cr4;
  186. natural_width guest_es_base;
  187. natural_width guest_cs_base;
  188. natural_width guest_ss_base;
  189. natural_width guest_ds_base;
  190. natural_width guest_fs_base;
  191. natural_width guest_gs_base;
  192. natural_width guest_ldtr_base;
  193. natural_width guest_tr_base;
  194. natural_width guest_gdtr_base;
  195. natural_width guest_idtr_base;
  196. natural_width guest_dr7;
  197. natural_width guest_rsp;
  198. natural_width guest_rip;
  199. natural_width guest_rflags;
  200. natural_width guest_pending_dbg_exceptions;
  201. natural_width guest_sysenter_esp;
  202. natural_width guest_sysenter_eip;
  203. natural_width host_cr0;
  204. natural_width host_cr3;
  205. natural_width host_cr4;
  206. natural_width host_fs_base;
  207. natural_width host_gs_base;
  208. natural_width host_tr_base;
  209. natural_width host_gdtr_base;
  210. natural_width host_idtr_base;
  211. natural_width host_ia32_sysenter_esp;
  212. natural_width host_ia32_sysenter_eip;
  213. natural_width host_rsp;
  214. natural_width host_rip;
  215. natural_width paddingl[8]; /* room for future expansion */
  216. u32 pin_based_vm_exec_control;
  217. u32 cpu_based_vm_exec_control;
  218. u32 exception_bitmap;
  219. u32 page_fault_error_code_mask;
  220. u32 page_fault_error_code_match;
  221. u32 cr3_target_count;
  222. u32 vm_exit_controls;
  223. u32 vm_exit_msr_store_count;
  224. u32 vm_exit_msr_load_count;
  225. u32 vm_entry_controls;
  226. u32 vm_entry_msr_load_count;
  227. u32 vm_entry_intr_info_field;
  228. u32 vm_entry_exception_error_code;
  229. u32 vm_entry_instruction_len;
  230. u32 tpr_threshold;
  231. u32 secondary_vm_exec_control;
  232. u32 vm_instruction_error;
  233. u32 vm_exit_reason;
  234. u32 vm_exit_intr_info;
  235. u32 vm_exit_intr_error_code;
  236. u32 idt_vectoring_info_field;
  237. u32 idt_vectoring_error_code;
  238. u32 vm_exit_instruction_len;
  239. u32 vmx_instruction_info;
  240. u32 guest_es_limit;
  241. u32 guest_cs_limit;
  242. u32 guest_ss_limit;
  243. u32 guest_ds_limit;
  244. u32 guest_fs_limit;
  245. u32 guest_gs_limit;
  246. u32 guest_ldtr_limit;
  247. u32 guest_tr_limit;
  248. u32 guest_gdtr_limit;
  249. u32 guest_idtr_limit;
  250. u32 guest_es_ar_bytes;
  251. u32 guest_cs_ar_bytes;
  252. u32 guest_ss_ar_bytes;
  253. u32 guest_ds_ar_bytes;
  254. u32 guest_fs_ar_bytes;
  255. u32 guest_gs_ar_bytes;
  256. u32 guest_ldtr_ar_bytes;
  257. u32 guest_tr_ar_bytes;
  258. u32 guest_interruptibility_info;
  259. u32 guest_activity_state;
  260. u32 guest_sysenter_cs;
  261. u32 host_ia32_sysenter_cs;
  262. u32 padding32[8]; /* room for future expansion */
  263. u16 virtual_processor_id;
  264. u16 guest_es_selector;
  265. u16 guest_cs_selector;
  266. u16 guest_ss_selector;
  267. u16 guest_ds_selector;
  268. u16 guest_fs_selector;
  269. u16 guest_gs_selector;
  270. u16 guest_ldtr_selector;
  271. u16 guest_tr_selector;
  272. u16 host_es_selector;
  273. u16 host_cs_selector;
  274. u16 host_ss_selector;
  275. u16 host_ds_selector;
  276. u16 host_fs_selector;
  277. u16 host_gs_selector;
  278. u16 host_tr_selector;
  279. };
  280. /*
  281. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  282. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  283. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  284. */
  285. #define VMCS12_REVISION 0x11e57ed0
  286. /*
  287. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  288. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  289. * current implementation, 4K are reserved to avoid future complications.
  290. */
  291. #define VMCS12_SIZE 0x1000
  292. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  293. struct vmcs02_list {
  294. struct list_head list;
  295. gpa_t vmptr;
  296. struct loaded_vmcs vmcs02;
  297. };
  298. /*
  299. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  300. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  301. */
  302. struct nested_vmx {
  303. /* Has the level1 guest done vmxon? */
  304. bool vmxon;
  305. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  306. gpa_t current_vmptr;
  307. /* The host-usable pointer to the above */
  308. struct page *current_vmcs12_page;
  309. struct vmcs12 *current_vmcs12;
  310. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  311. struct list_head vmcs02_pool;
  312. int vmcs02_num;
  313. u64 vmcs01_tsc_offset;
  314. /* L2 must run next, and mustn't decide to exit to L1. */
  315. bool nested_run_pending;
  316. /*
  317. * Guest pages referred to in vmcs02 with host-physical pointers, so
  318. * we must keep them pinned while L2 runs.
  319. */
  320. struct page *apic_access_page;
  321. };
  322. struct vcpu_vmx {
  323. struct kvm_vcpu vcpu;
  324. unsigned long host_rsp;
  325. u8 fail;
  326. u8 cpl;
  327. bool nmi_known_unmasked;
  328. u32 exit_intr_info;
  329. u32 idt_vectoring_info;
  330. ulong rflags;
  331. struct shared_msr_entry *guest_msrs;
  332. int nmsrs;
  333. int save_nmsrs;
  334. #ifdef CONFIG_X86_64
  335. u64 msr_host_kernel_gs_base;
  336. u64 msr_guest_kernel_gs_base;
  337. #endif
  338. /*
  339. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  340. * non-nested (L1) guest, it always points to vmcs01. For a nested
  341. * guest (L2), it points to a different VMCS.
  342. */
  343. struct loaded_vmcs vmcs01;
  344. struct loaded_vmcs *loaded_vmcs;
  345. bool __launched; /* temporary, used in vmx_vcpu_run */
  346. struct msr_autoload {
  347. unsigned nr;
  348. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  349. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  350. } msr_autoload;
  351. struct {
  352. int loaded;
  353. u16 fs_sel, gs_sel, ldt_sel;
  354. int gs_ldt_reload_needed;
  355. int fs_reload_needed;
  356. } host_state;
  357. struct {
  358. int vm86_active;
  359. ulong save_rflags;
  360. struct kvm_save_segment {
  361. u16 selector;
  362. unsigned long base;
  363. u32 limit;
  364. u32 ar;
  365. } tr, es, ds, fs, gs;
  366. } rmode;
  367. struct {
  368. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  369. struct kvm_save_segment seg[8];
  370. } segment_cache;
  371. int vpid;
  372. bool emulation_required;
  373. /* Support for vnmi-less CPUs */
  374. int soft_vnmi_blocked;
  375. ktime_t entry_time;
  376. s64 vnmi_blocked_time;
  377. u32 exit_reason;
  378. bool rdtscp_enabled;
  379. /* Support for a guest hypervisor (nested VMX) */
  380. struct nested_vmx nested;
  381. };
  382. enum segment_cache_field {
  383. SEG_FIELD_SEL = 0,
  384. SEG_FIELD_BASE = 1,
  385. SEG_FIELD_LIMIT = 2,
  386. SEG_FIELD_AR = 3,
  387. SEG_FIELD_NR = 4
  388. };
  389. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  390. {
  391. return container_of(vcpu, struct vcpu_vmx, vcpu);
  392. }
  393. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  394. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  395. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  396. [number##_HIGH] = VMCS12_OFFSET(name)+4
  397. static unsigned short vmcs_field_to_offset_table[] = {
  398. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  399. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  400. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  401. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  402. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  403. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  404. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  405. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  406. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  407. FIELD(HOST_ES_SELECTOR, host_es_selector),
  408. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  409. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  410. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  411. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  412. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  413. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  414. FIELD64(IO_BITMAP_A, io_bitmap_a),
  415. FIELD64(IO_BITMAP_B, io_bitmap_b),
  416. FIELD64(MSR_BITMAP, msr_bitmap),
  417. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  418. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  419. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  420. FIELD64(TSC_OFFSET, tsc_offset),
  421. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  422. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  423. FIELD64(EPT_POINTER, ept_pointer),
  424. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  425. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  426. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  427. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  428. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  429. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  430. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  431. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  432. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  433. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  434. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  435. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  436. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  437. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  438. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  439. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  440. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  441. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  442. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  443. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  444. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  445. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  446. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  447. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  448. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  449. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  450. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  451. FIELD(TPR_THRESHOLD, tpr_threshold),
  452. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  453. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  454. FIELD(VM_EXIT_REASON, vm_exit_reason),
  455. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  456. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  457. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  458. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  459. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  460. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  461. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  462. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  463. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  464. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  465. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  466. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  467. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  468. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  469. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  470. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  471. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  472. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  473. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  474. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  475. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  476. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  477. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  478. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  479. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  480. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  481. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  482. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  483. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  484. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  485. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  486. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  487. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  488. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  489. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  490. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  491. FIELD(EXIT_QUALIFICATION, exit_qualification),
  492. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  493. FIELD(GUEST_CR0, guest_cr0),
  494. FIELD(GUEST_CR3, guest_cr3),
  495. FIELD(GUEST_CR4, guest_cr4),
  496. FIELD(GUEST_ES_BASE, guest_es_base),
  497. FIELD(GUEST_CS_BASE, guest_cs_base),
  498. FIELD(GUEST_SS_BASE, guest_ss_base),
  499. FIELD(GUEST_DS_BASE, guest_ds_base),
  500. FIELD(GUEST_FS_BASE, guest_fs_base),
  501. FIELD(GUEST_GS_BASE, guest_gs_base),
  502. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  503. FIELD(GUEST_TR_BASE, guest_tr_base),
  504. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  505. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  506. FIELD(GUEST_DR7, guest_dr7),
  507. FIELD(GUEST_RSP, guest_rsp),
  508. FIELD(GUEST_RIP, guest_rip),
  509. FIELD(GUEST_RFLAGS, guest_rflags),
  510. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  511. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  512. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  513. FIELD(HOST_CR0, host_cr0),
  514. FIELD(HOST_CR3, host_cr3),
  515. FIELD(HOST_CR4, host_cr4),
  516. FIELD(HOST_FS_BASE, host_fs_base),
  517. FIELD(HOST_GS_BASE, host_gs_base),
  518. FIELD(HOST_TR_BASE, host_tr_base),
  519. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  520. FIELD(HOST_IDTR_BASE, host_idtr_base),
  521. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  522. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  523. FIELD(HOST_RSP, host_rsp),
  524. FIELD(HOST_RIP, host_rip),
  525. };
  526. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  527. static inline short vmcs_field_to_offset(unsigned long field)
  528. {
  529. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  530. return -1;
  531. return vmcs_field_to_offset_table[field];
  532. }
  533. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  534. {
  535. return to_vmx(vcpu)->nested.current_vmcs12;
  536. }
  537. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  538. {
  539. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  540. if (is_error_page(page)) {
  541. kvm_release_page_clean(page);
  542. return NULL;
  543. }
  544. return page;
  545. }
  546. static void nested_release_page(struct page *page)
  547. {
  548. kvm_release_page_dirty(page);
  549. }
  550. static void nested_release_page_clean(struct page *page)
  551. {
  552. kvm_release_page_clean(page);
  553. }
  554. static u64 construct_eptp(unsigned long root_hpa);
  555. static void kvm_cpu_vmxon(u64 addr);
  556. static void kvm_cpu_vmxoff(void);
  557. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  558. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  559. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  560. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  561. /*
  562. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  563. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  564. */
  565. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  566. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  567. static unsigned long *vmx_io_bitmap_a;
  568. static unsigned long *vmx_io_bitmap_b;
  569. static unsigned long *vmx_msr_bitmap_legacy;
  570. static unsigned long *vmx_msr_bitmap_longmode;
  571. static bool cpu_has_load_ia32_efer;
  572. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  573. static DEFINE_SPINLOCK(vmx_vpid_lock);
  574. static struct vmcs_config {
  575. int size;
  576. int order;
  577. u32 revision_id;
  578. u32 pin_based_exec_ctrl;
  579. u32 cpu_based_exec_ctrl;
  580. u32 cpu_based_2nd_exec_ctrl;
  581. u32 vmexit_ctrl;
  582. u32 vmentry_ctrl;
  583. } vmcs_config;
  584. static struct vmx_capability {
  585. u32 ept;
  586. u32 vpid;
  587. } vmx_capability;
  588. #define VMX_SEGMENT_FIELD(seg) \
  589. [VCPU_SREG_##seg] = { \
  590. .selector = GUEST_##seg##_SELECTOR, \
  591. .base = GUEST_##seg##_BASE, \
  592. .limit = GUEST_##seg##_LIMIT, \
  593. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  594. }
  595. static struct kvm_vmx_segment_field {
  596. unsigned selector;
  597. unsigned base;
  598. unsigned limit;
  599. unsigned ar_bytes;
  600. } kvm_vmx_segment_fields[] = {
  601. VMX_SEGMENT_FIELD(CS),
  602. VMX_SEGMENT_FIELD(DS),
  603. VMX_SEGMENT_FIELD(ES),
  604. VMX_SEGMENT_FIELD(FS),
  605. VMX_SEGMENT_FIELD(GS),
  606. VMX_SEGMENT_FIELD(SS),
  607. VMX_SEGMENT_FIELD(TR),
  608. VMX_SEGMENT_FIELD(LDTR),
  609. };
  610. static u64 host_efer;
  611. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  612. /*
  613. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  614. * away by decrementing the array size.
  615. */
  616. static const u32 vmx_msr_index[] = {
  617. #ifdef CONFIG_X86_64
  618. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  619. #endif
  620. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  621. };
  622. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  623. static inline bool is_page_fault(u32 intr_info)
  624. {
  625. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  626. INTR_INFO_VALID_MASK)) ==
  627. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  628. }
  629. static inline bool is_no_device(u32 intr_info)
  630. {
  631. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  632. INTR_INFO_VALID_MASK)) ==
  633. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  634. }
  635. static inline bool is_invalid_opcode(u32 intr_info)
  636. {
  637. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  638. INTR_INFO_VALID_MASK)) ==
  639. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  640. }
  641. static inline bool is_external_interrupt(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  644. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  645. }
  646. static inline bool is_machine_check(u32 intr_info)
  647. {
  648. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  649. INTR_INFO_VALID_MASK)) ==
  650. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  651. }
  652. static inline bool cpu_has_vmx_msr_bitmap(void)
  653. {
  654. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  655. }
  656. static inline bool cpu_has_vmx_tpr_shadow(void)
  657. {
  658. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  659. }
  660. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  661. {
  662. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  663. }
  664. static inline bool cpu_has_secondary_exec_ctrls(void)
  665. {
  666. return vmcs_config.cpu_based_exec_ctrl &
  667. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  668. }
  669. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  670. {
  671. return vmcs_config.cpu_based_2nd_exec_ctrl &
  672. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  673. }
  674. static inline bool cpu_has_vmx_flexpriority(void)
  675. {
  676. return cpu_has_vmx_tpr_shadow() &&
  677. cpu_has_vmx_virtualize_apic_accesses();
  678. }
  679. static inline bool cpu_has_vmx_ept_execute_only(void)
  680. {
  681. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  682. }
  683. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  684. {
  685. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  686. }
  687. static inline bool cpu_has_vmx_eptp_writeback(void)
  688. {
  689. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  690. }
  691. static inline bool cpu_has_vmx_ept_2m_page(void)
  692. {
  693. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  694. }
  695. static inline bool cpu_has_vmx_ept_1g_page(void)
  696. {
  697. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  698. }
  699. static inline bool cpu_has_vmx_ept_4levels(void)
  700. {
  701. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  702. }
  703. static inline bool cpu_has_vmx_invept_individual_addr(void)
  704. {
  705. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  706. }
  707. static inline bool cpu_has_vmx_invept_context(void)
  708. {
  709. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  710. }
  711. static inline bool cpu_has_vmx_invept_global(void)
  712. {
  713. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  714. }
  715. static inline bool cpu_has_vmx_invvpid_single(void)
  716. {
  717. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  718. }
  719. static inline bool cpu_has_vmx_invvpid_global(void)
  720. {
  721. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  722. }
  723. static inline bool cpu_has_vmx_ept(void)
  724. {
  725. return vmcs_config.cpu_based_2nd_exec_ctrl &
  726. SECONDARY_EXEC_ENABLE_EPT;
  727. }
  728. static inline bool cpu_has_vmx_unrestricted_guest(void)
  729. {
  730. return vmcs_config.cpu_based_2nd_exec_ctrl &
  731. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  732. }
  733. static inline bool cpu_has_vmx_ple(void)
  734. {
  735. return vmcs_config.cpu_based_2nd_exec_ctrl &
  736. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  737. }
  738. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  739. {
  740. return flexpriority_enabled && irqchip_in_kernel(kvm);
  741. }
  742. static inline bool cpu_has_vmx_vpid(void)
  743. {
  744. return vmcs_config.cpu_based_2nd_exec_ctrl &
  745. SECONDARY_EXEC_ENABLE_VPID;
  746. }
  747. static inline bool cpu_has_vmx_rdtscp(void)
  748. {
  749. return vmcs_config.cpu_based_2nd_exec_ctrl &
  750. SECONDARY_EXEC_RDTSCP;
  751. }
  752. static inline bool cpu_has_virtual_nmis(void)
  753. {
  754. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  755. }
  756. static inline bool cpu_has_vmx_wbinvd_exit(void)
  757. {
  758. return vmcs_config.cpu_based_2nd_exec_ctrl &
  759. SECONDARY_EXEC_WBINVD_EXITING;
  760. }
  761. static inline bool report_flexpriority(void)
  762. {
  763. return flexpriority_enabled;
  764. }
  765. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  766. {
  767. return vmcs12->cpu_based_vm_exec_control & bit;
  768. }
  769. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  770. {
  771. return (vmcs12->cpu_based_vm_exec_control &
  772. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  773. (vmcs12->secondary_vm_exec_control & bit);
  774. }
  775. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  776. struct kvm_vcpu *vcpu)
  777. {
  778. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  779. }
  780. static inline bool is_exception(u32 intr_info)
  781. {
  782. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  783. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  784. }
  785. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  786. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  787. struct vmcs12 *vmcs12,
  788. u32 reason, unsigned long qualification);
  789. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  790. {
  791. int i;
  792. for (i = 0; i < vmx->nmsrs; ++i)
  793. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  794. return i;
  795. return -1;
  796. }
  797. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  798. {
  799. struct {
  800. u64 vpid : 16;
  801. u64 rsvd : 48;
  802. u64 gva;
  803. } operand = { vpid, 0, gva };
  804. asm volatile (__ex(ASM_VMX_INVVPID)
  805. /* CF==1 or ZF==1 --> rc = -1 */
  806. "; ja 1f ; ud2 ; 1:"
  807. : : "a"(&operand), "c"(ext) : "cc", "memory");
  808. }
  809. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  810. {
  811. struct {
  812. u64 eptp, gpa;
  813. } operand = {eptp, gpa};
  814. asm volatile (__ex(ASM_VMX_INVEPT)
  815. /* CF==1 or ZF==1 --> rc = -1 */
  816. "; ja 1f ; ud2 ; 1:\n"
  817. : : "a" (&operand), "c" (ext) : "cc", "memory");
  818. }
  819. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  820. {
  821. int i;
  822. i = __find_msr_index(vmx, msr);
  823. if (i >= 0)
  824. return &vmx->guest_msrs[i];
  825. return NULL;
  826. }
  827. static void vmcs_clear(struct vmcs *vmcs)
  828. {
  829. u64 phys_addr = __pa(vmcs);
  830. u8 error;
  831. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  832. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  833. : "cc", "memory");
  834. if (error)
  835. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  836. vmcs, phys_addr);
  837. }
  838. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  839. {
  840. vmcs_clear(loaded_vmcs->vmcs);
  841. loaded_vmcs->cpu = -1;
  842. loaded_vmcs->launched = 0;
  843. }
  844. static void vmcs_load(struct vmcs *vmcs)
  845. {
  846. u64 phys_addr = __pa(vmcs);
  847. u8 error;
  848. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  849. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  850. : "cc", "memory");
  851. if (error)
  852. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  853. vmcs, phys_addr);
  854. }
  855. static void __loaded_vmcs_clear(void *arg)
  856. {
  857. struct loaded_vmcs *loaded_vmcs = arg;
  858. int cpu = raw_smp_processor_id();
  859. if (loaded_vmcs->cpu != cpu)
  860. return; /* vcpu migration can race with cpu offline */
  861. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  862. per_cpu(current_vmcs, cpu) = NULL;
  863. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  864. loaded_vmcs_init(loaded_vmcs);
  865. }
  866. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  867. {
  868. if (loaded_vmcs->cpu != -1)
  869. smp_call_function_single(
  870. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  871. }
  872. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  873. {
  874. if (vmx->vpid == 0)
  875. return;
  876. if (cpu_has_vmx_invvpid_single())
  877. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  878. }
  879. static inline void vpid_sync_vcpu_global(void)
  880. {
  881. if (cpu_has_vmx_invvpid_global())
  882. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  883. }
  884. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  885. {
  886. if (cpu_has_vmx_invvpid_single())
  887. vpid_sync_vcpu_single(vmx);
  888. else
  889. vpid_sync_vcpu_global();
  890. }
  891. static inline void ept_sync_global(void)
  892. {
  893. if (cpu_has_vmx_invept_global())
  894. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  895. }
  896. static inline void ept_sync_context(u64 eptp)
  897. {
  898. if (enable_ept) {
  899. if (cpu_has_vmx_invept_context())
  900. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  901. else
  902. ept_sync_global();
  903. }
  904. }
  905. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  906. {
  907. if (enable_ept) {
  908. if (cpu_has_vmx_invept_individual_addr())
  909. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  910. eptp, gpa);
  911. else
  912. ept_sync_context(eptp);
  913. }
  914. }
  915. static __always_inline unsigned long vmcs_readl(unsigned long field)
  916. {
  917. unsigned long value;
  918. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  919. : "=a"(value) : "d"(field) : "cc");
  920. return value;
  921. }
  922. static __always_inline u16 vmcs_read16(unsigned long field)
  923. {
  924. return vmcs_readl(field);
  925. }
  926. static __always_inline u32 vmcs_read32(unsigned long field)
  927. {
  928. return vmcs_readl(field);
  929. }
  930. static __always_inline u64 vmcs_read64(unsigned long field)
  931. {
  932. #ifdef CONFIG_X86_64
  933. return vmcs_readl(field);
  934. #else
  935. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  936. #endif
  937. }
  938. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  939. {
  940. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  941. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  942. dump_stack();
  943. }
  944. static void vmcs_writel(unsigned long field, unsigned long value)
  945. {
  946. u8 error;
  947. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  948. : "=q"(error) : "a"(value), "d"(field) : "cc");
  949. if (unlikely(error))
  950. vmwrite_error(field, value);
  951. }
  952. static void vmcs_write16(unsigned long field, u16 value)
  953. {
  954. vmcs_writel(field, value);
  955. }
  956. static void vmcs_write32(unsigned long field, u32 value)
  957. {
  958. vmcs_writel(field, value);
  959. }
  960. static void vmcs_write64(unsigned long field, u64 value)
  961. {
  962. vmcs_writel(field, value);
  963. #ifndef CONFIG_X86_64
  964. asm volatile ("");
  965. vmcs_writel(field+1, value >> 32);
  966. #endif
  967. }
  968. static void vmcs_clear_bits(unsigned long field, u32 mask)
  969. {
  970. vmcs_writel(field, vmcs_readl(field) & ~mask);
  971. }
  972. static void vmcs_set_bits(unsigned long field, u32 mask)
  973. {
  974. vmcs_writel(field, vmcs_readl(field) | mask);
  975. }
  976. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  977. {
  978. vmx->segment_cache.bitmask = 0;
  979. }
  980. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  981. unsigned field)
  982. {
  983. bool ret;
  984. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  985. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  986. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  987. vmx->segment_cache.bitmask = 0;
  988. }
  989. ret = vmx->segment_cache.bitmask & mask;
  990. vmx->segment_cache.bitmask |= mask;
  991. return ret;
  992. }
  993. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  994. {
  995. u16 *p = &vmx->segment_cache.seg[seg].selector;
  996. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  997. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  998. return *p;
  999. }
  1000. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1001. {
  1002. ulong *p = &vmx->segment_cache.seg[seg].base;
  1003. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1004. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1005. return *p;
  1006. }
  1007. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1008. {
  1009. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1010. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1011. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1012. return *p;
  1013. }
  1014. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1015. {
  1016. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1017. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1018. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1019. return *p;
  1020. }
  1021. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1022. {
  1023. u32 eb;
  1024. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1025. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1026. if ((vcpu->guest_debug &
  1027. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1028. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1029. eb |= 1u << BP_VECTOR;
  1030. if (to_vmx(vcpu)->rmode.vm86_active)
  1031. eb = ~0;
  1032. if (enable_ept)
  1033. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1034. if (vcpu->fpu_active)
  1035. eb &= ~(1u << NM_VECTOR);
  1036. /* When we are running a nested L2 guest and L1 specified for it a
  1037. * certain exception bitmap, we must trap the same exceptions and pass
  1038. * them to L1. When running L2, we will only handle the exceptions
  1039. * specified above if L1 did not want them.
  1040. */
  1041. if (is_guest_mode(vcpu))
  1042. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1043. vmcs_write32(EXCEPTION_BITMAP, eb);
  1044. }
  1045. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1046. {
  1047. unsigned i;
  1048. struct msr_autoload *m = &vmx->msr_autoload;
  1049. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1050. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1051. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1052. return;
  1053. }
  1054. for (i = 0; i < m->nr; ++i)
  1055. if (m->guest[i].index == msr)
  1056. break;
  1057. if (i == m->nr)
  1058. return;
  1059. --m->nr;
  1060. m->guest[i] = m->guest[m->nr];
  1061. m->host[i] = m->host[m->nr];
  1062. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1063. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1064. }
  1065. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1066. u64 guest_val, u64 host_val)
  1067. {
  1068. unsigned i;
  1069. struct msr_autoload *m = &vmx->msr_autoload;
  1070. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1071. vmcs_write64(GUEST_IA32_EFER, guest_val);
  1072. vmcs_write64(HOST_IA32_EFER, host_val);
  1073. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1074. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1075. return;
  1076. }
  1077. for (i = 0; i < m->nr; ++i)
  1078. if (m->guest[i].index == msr)
  1079. break;
  1080. if (i == m->nr) {
  1081. ++m->nr;
  1082. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1083. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1084. }
  1085. m->guest[i].index = msr;
  1086. m->guest[i].value = guest_val;
  1087. m->host[i].index = msr;
  1088. m->host[i].value = host_val;
  1089. }
  1090. static void reload_tss(void)
  1091. {
  1092. /*
  1093. * VT restores TR but not its size. Useless.
  1094. */
  1095. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1096. struct desc_struct *descs;
  1097. descs = (void *)gdt->address;
  1098. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1099. load_TR_desc();
  1100. }
  1101. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1102. {
  1103. u64 guest_efer;
  1104. u64 ignore_bits;
  1105. guest_efer = vmx->vcpu.arch.efer;
  1106. /*
  1107. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1108. * outside long mode
  1109. */
  1110. ignore_bits = EFER_NX | EFER_SCE;
  1111. #ifdef CONFIG_X86_64
  1112. ignore_bits |= EFER_LMA | EFER_LME;
  1113. /* SCE is meaningful only in long mode on Intel */
  1114. if (guest_efer & EFER_LMA)
  1115. ignore_bits &= ~(u64)EFER_SCE;
  1116. #endif
  1117. guest_efer &= ~ignore_bits;
  1118. guest_efer |= host_efer & ignore_bits;
  1119. vmx->guest_msrs[efer_offset].data = guest_efer;
  1120. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1121. clear_atomic_switch_msr(vmx, MSR_EFER);
  1122. /* On ept, can't emulate nx, and must switch nx atomically */
  1123. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1124. guest_efer = vmx->vcpu.arch.efer;
  1125. if (!(guest_efer & EFER_LMA))
  1126. guest_efer &= ~EFER_LME;
  1127. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. static unsigned long segment_base(u16 selector)
  1133. {
  1134. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1135. struct desc_struct *d;
  1136. unsigned long table_base;
  1137. unsigned long v;
  1138. if (!(selector & ~3))
  1139. return 0;
  1140. table_base = gdt->address;
  1141. if (selector & 4) { /* from ldt */
  1142. u16 ldt_selector = kvm_read_ldt();
  1143. if (!(ldt_selector & ~3))
  1144. return 0;
  1145. table_base = segment_base(ldt_selector);
  1146. }
  1147. d = (struct desc_struct *)(table_base + (selector & ~7));
  1148. v = get_desc_base(d);
  1149. #ifdef CONFIG_X86_64
  1150. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1151. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1152. #endif
  1153. return v;
  1154. }
  1155. static inline unsigned long kvm_read_tr_base(void)
  1156. {
  1157. u16 tr;
  1158. asm("str %0" : "=g"(tr));
  1159. return segment_base(tr);
  1160. }
  1161. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1162. {
  1163. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1164. int i;
  1165. if (vmx->host_state.loaded)
  1166. return;
  1167. vmx->host_state.loaded = 1;
  1168. /*
  1169. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1170. * allow segment selectors with cpl > 0 or ti == 1.
  1171. */
  1172. vmx->host_state.ldt_sel = kvm_read_ldt();
  1173. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1174. savesegment(fs, vmx->host_state.fs_sel);
  1175. if (!(vmx->host_state.fs_sel & 7)) {
  1176. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1177. vmx->host_state.fs_reload_needed = 0;
  1178. } else {
  1179. vmcs_write16(HOST_FS_SELECTOR, 0);
  1180. vmx->host_state.fs_reload_needed = 1;
  1181. }
  1182. savesegment(gs, vmx->host_state.gs_sel);
  1183. if (!(vmx->host_state.gs_sel & 7))
  1184. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1185. else {
  1186. vmcs_write16(HOST_GS_SELECTOR, 0);
  1187. vmx->host_state.gs_ldt_reload_needed = 1;
  1188. }
  1189. #ifdef CONFIG_X86_64
  1190. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1191. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1192. #else
  1193. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1194. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1195. #endif
  1196. #ifdef CONFIG_X86_64
  1197. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1198. if (is_long_mode(&vmx->vcpu))
  1199. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1200. #endif
  1201. for (i = 0; i < vmx->save_nmsrs; ++i)
  1202. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1203. vmx->guest_msrs[i].data,
  1204. vmx->guest_msrs[i].mask);
  1205. }
  1206. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1207. {
  1208. if (!vmx->host_state.loaded)
  1209. return;
  1210. ++vmx->vcpu.stat.host_state_reload;
  1211. vmx->host_state.loaded = 0;
  1212. #ifdef CONFIG_X86_64
  1213. if (is_long_mode(&vmx->vcpu))
  1214. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1215. #endif
  1216. if (vmx->host_state.gs_ldt_reload_needed) {
  1217. kvm_load_ldt(vmx->host_state.ldt_sel);
  1218. #ifdef CONFIG_X86_64
  1219. load_gs_index(vmx->host_state.gs_sel);
  1220. #else
  1221. loadsegment(gs, vmx->host_state.gs_sel);
  1222. #endif
  1223. }
  1224. if (vmx->host_state.fs_reload_needed)
  1225. loadsegment(fs, vmx->host_state.fs_sel);
  1226. reload_tss();
  1227. #ifdef CONFIG_X86_64
  1228. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1229. #endif
  1230. if (current_thread_info()->status & TS_USEDFPU)
  1231. clts();
  1232. load_gdt(&__get_cpu_var(host_gdt));
  1233. }
  1234. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1235. {
  1236. preempt_disable();
  1237. __vmx_load_host_state(vmx);
  1238. preempt_enable();
  1239. }
  1240. /*
  1241. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1242. * vcpu mutex is already taken.
  1243. */
  1244. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1245. {
  1246. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1247. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1248. if (!vmm_exclusive)
  1249. kvm_cpu_vmxon(phys_addr);
  1250. else if (vmx->loaded_vmcs->cpu != cpu)
  1251. loaded_vmcs_clear(vmx->loaded_vmcs);
  1252. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1253. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1254. vmcs_load(vmx->loaded_vmcs->vmcs);
  1255. }
  1256. if (vmx->loaded_vmcs->cpu != cpu) {
  1257. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1258. unsigned long sysenter_esp;
  1259. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1260. local_irq_disable();
  1261. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1262. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1263. local_irq_enable();
  1264. /*
  1265. * Linux uses per-cpu TSS and GDT, so set these when switching
  1266. * processors.
  1267. */
  1268. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1269. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1270. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1271. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1272. vmx->loaded_vmcs->cpu = cpu;
  1273. }
  1274. }
  1275. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1276. {
  1277. __vmx_load_host_state(to_vmx(vcpu));
  1278. if (!vmm_exclusive) {
  1279. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1280. vcpu->cpu = -1;
  1281. kvm_cpu_vmxoff();
  1282. }
  1283. }
  1284. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1285. {
  1286. ulong cr0;
  1287. if (vcpu->fpu_active)
  1288. return;
  1289. vcpu->fpu_active = 1;
  1290. cr0 = vmcs_readl(GUEST_CR0);
  1291. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1292. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1293. vmcs_writel(GUEST_CR0, cr0);
  1294. update_exception_bitmap(vcpu);
  1295. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1296. if (is_guest_mode(vcpu))
  1297. vcpu->arch.cr0_guest_owned_bits &=
  1298. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1299. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1300. }
  1301. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1302. /*
  1303. * Return the cr0 value that a nested guest would read. This is a combination
  1304. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1305. * its hypervisor (cr0_read_shadow).
  1306. */
  1307. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1308. {
  1309. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1310. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1311. }
  1312. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1313. {
  1314. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1315. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1316. }
  1317. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1318. {
  1319. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1320. * set this *before* calling this function.
  1321. */
  1322. vmx_decache_cr0_guest_bits(vcpu);
  1323. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1324. update_exception_bitmap(vcpu);
  1325. vcpu->arch.cr0_guest_owned_bits = 0;
  1326. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1327. if (is_guest_mode(vcpu)) {
  1328. /*
  1329. * L1's specified read shadow might not contain the TS bit,
  1330. * so now that we turned on shadowing of this bit, we need to
  1331. * set this bit of the shadow. Like in nested_vmx_run we need
  1332. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1333. * up-to-date here because we just decached cr0.TS (and we'll
  1334. * only update vmcs12->guest_cr0 on nested exit).
  1335. */
  1336. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1337. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1338. (vcpu->arch.cr0 & X86_CR0_TS);
  1339. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1340. } else
  1341. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1342. }
  1343. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1344. {
  1345. unsigned long rflags, save_rflags;
  1346. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1347. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1348. rflags = vmcs_readl(GUEST_RFLAGS);
  1349. if (to_vmx(vcpu)->rmode.vm86_active) {
  1350. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1351. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1352. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1353. }
  1354. to_vmx(vcpu)->rflags = rflags;
  1355. }
  1356. return to_vmx(vcpu)->rflags;
  1357. }
  1358. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1359. {
  1360. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1361. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1362. to_vmx(vcpu)->rflags = rflags;
  1363. if (to_vmx(vcpu)->rmode.vm86_active) {
  1364. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1365. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1366. }
  1367. vmcs_writel(GUEST_RFLAGS, rflags);
  1368. }
  1369. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1370. {
  1371. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1372. int ret = 0;
  1373. if (interruptibility & GUEST_INTR_STATE_STI)
  1374. ret |= KVM_X86_SHADOW_INT_STI;
  1375. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1376. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1377. return ret & mask;
  1378. }
  1379. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1380. {
  1381. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1382. u32 interruptibility = interruptibility_old;
  1383. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1384. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1385. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1386. else if (mask & KVM_X86_SHADOW_INT_STI)
  1387. interruptibility |= GUEST_INTR_STATE_STI;
  1388. if ((interruptibility != interruptibility_old))
  1389. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1390. }
  1391. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1392. {
  1393. unsigned long rip;
  1394. rip = kvm_rip_read(vcpu);
  1395. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1396. kvm_rip_write(vcpu, rip);
  1397. /* skipping an emulated instruction also counts */
  1398. vmx_set_interrupt_shadow(vcpu, 0);
  1399. }
  1400. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1401. {
  1402. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1403. * explicitly skip the instruction because if the HLT state is set, then
  1404. * the instruction is already executing and RIP has already been
  1405. * advanced. */
  1406. if (!yield_on_hlt &&
  1407. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1408. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1409. }
  1410. /*
  1411. * KVM wants to inject page-faults which it got to the guest. This function
  1412. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1413. * This function assumes it is called with the exit reason in vmcs02 being
  1414. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1415. * is running).
  1416. */
  1417. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1418. {
  1419. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1420. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1421. if (!(vmcs12->exception_bitmap & PF_VECTOR))
  1422. return 0;
  1423. nested_vmx_vmexit(vcpu);
  1424. return 1;
  1425. }
  1426. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1427. bool has_error_code, u32 error_code,
  1428. bool reinject)
  1429. {
  1430. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1431. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1432. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1433. nested_pf_handled(vcpu))
  1434. return;
  1435. if (has_error_code) {
  1436. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1437. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1438. }
  1439. if (vmx->rmode.vm86_active) {
  1440. int inc_eip = 0;
  1441. if (kvm_exception_is_soft(nr))
  1442. inc_eip = vcpu->arch.event_exit_inst_len;
  1443. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1444. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1445. return;
  1446. }
  1447. if (kvm_exception_is_soft(nr)) {
  1448. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1449. vmx->vcpu.arch.event_exit_inst_len);
  1450. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1451. } else
  1452. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1453. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1454. vmx_clear_hlt(vcpu);
  1455. }
  1456. static bool vmx_rdtscp_supported(void)
  1457. {
  1458. return cpu_has_vmx_rdtscp();
  1459. }
  1460. /*
  1461. * Swap MSR entry in host/guest MSR entry array.
  1462. */
  1463. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1464. {
  1465. struct shared_msr_entry tmp;
  1466. tmp = vmx->guest_msrs[to];
  1467. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1468. vmx->guest_msrs[from] = tmp;
  1469. }
  1470. /*
  1471. * Set up the vmcs to automatically save and restore system
  1472. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1473. * mode, as fiddling with msrs is very expensive.
  1474. */
  1475. static void setup_msrs(struct vcpu_vmx *vmx)
  1476. {
  1477. int save_nmsrs, index;
  1478. unsigned long *msr_bitmap;
  1479. vmx_load_host_state(vmx);
  1480. save_nmsrs = 0;
  1481. #ifdef CONFIG_X86_64
  1482. if (is_long_mode(&vmx->vcpu)) {
  1483. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1484. if (index >= 0)
  1485. move_msr_up(vmx, index, save_nmsrs++);
  1486. index = __find_msr_index(vmx, MSR_LSTAR);
  1487. if (index >= 0)
  1488. move_msr_up(vmx, index, save_nmsrs++);
  1489. index = __find_msr_index(vmx, MSR_CSTAR);
  1490. if (index >= 0)
  1491. move_msr_up(vmx, index, save_nmsrs++);
  1492. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1493. if (index >= 0 && vmx->rdtscp_enabled)
  1494. move_msr_up(vmx, index, save_nmsrs++);
  1495. /*
  1496. * MSR_STAR is only needed on long mode guests, and only
  1497. * if efer.sce is enabled.
  1498. */
  1499. index = __find_msr_index(vmx, MSR_STAR);
  1500. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1501. move_msr_up(vmx, index, save_nmsrs++);
  1502. }
  1503. #endif
  1504. index = __find_msr_index(vmx, MSR_EFER);
  1505. if (index >= 0 && update_transition_efer(vmx, index))
  1506. move_msr_up(vmx, index, save_nmsrs++);
  1507. vmx->save_nmsrs = save_nmsrs;
  1508. if (cpu_has_vmx_msr_bitmap()) {
  1509. if (is_long_mode(&vmx->vcpu))
  1510. msr_bitmap = vmx_msr_bitmap_longmode;
  1511. else
  1512. msr_bitmap = vmx_msr_bitmap_legacy;
  1513. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1514. }
  1515. }
  1516. /*
  1517. * reads and returns guest's timestamp counter "register"
  1518. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1519. */
  1520. static u64 guest_read_tsc(void)
  1521. {
  1522. u64 host_tsc, tsc_offset;
  1523. rdtscll(host_tsc);
  1524. tsc_offset = vmcs_read64(TSC_OFFSET);
  1525. return host_tsc + tsc_offset;
  1526. }
  1527. /*
  1528. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1529. * ioctl. In this case the call-back should update internal vmx state to make
  1530. * the changes effective.
  1531. */
  1532. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1533. {
  1534. /* Nothing to do here */
  1535. }
  1536. /*
  1537. * writes 'offset' into guest's timestamp counter offset register
  1538. */
  1539. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1540. {
  1541. vmcs_write64(TSC_OFFSET, offset);
  1542. if (is_guest_mode(vcpu))
  1543. /*
  1544. * We're here if L1 chose not to trap the TSC MSR. Since
  1545. * prepare_vmcs12() does not copy tsc_offset, we need to also
  1546. * set the vmcs12 field here.
  1547. */
  1548. get_vmcs12(vcpu)->tsc_offset = offset -
  1549. to_vmx(vcpu)->nested.vmcs01_tsc_offset;
  1550. }
  1551. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1552. {
  1553. u64 offset = vmcs_read64(TSC_OFFSET);
  1554. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1555. if (is_guest_mode(vcpu)) {
  1556. /* Even when running L2, the adjustment needs to apply to L1 */
  1557. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1558. }
  1559. }
  1560. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1561. {
  1562. return target_tsc - native_read_tsc();
  1563. }
  1564. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1565. {
  1566. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1567. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1568. }
  1569. /*
  1570. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1571. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1572. * all guests if the "nested" module option is off, and can also be disabled
  1573. * for a single guest by disabling its VMX cpuid bit.
  1574. */
  1575. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1576. {
  1577. return nested && guest_cpuid_has_vmx(vcpu);
  1578. }
  1579. /*
  1580. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1581. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1582. * The same values should also be used to verify that vmcs12 control fields are
  1583. * valid during nested entry from L1 to L2.
  1584. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1585. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1586. * bit in the high half is on if the corresponding bit in the control field
  1587. * may be on. See also vmx_control_verify().
  1588. * TODO: allow these variables to be modified (downgraded) by module options
  1589. * or other means.
  1590. */
  1591. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1592. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1593. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1594. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1595. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1596. static __init void nested_vmx_setup_ctls_msrs(void)
  1597. {
  1598. /*
  1599. * Note that as a general rule, the high half of the MSRs (bits in
  1600. * the control fields which may be 1) should be initialized by the
  1601. * intersection of the underlying hardware's MSR (i.e., features which
  1602. * can be supported) and the list of features we want to expose -
  1603. * because they are known to be properly supported in our code.
  1604. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1605. * be set to 0, meaning that L1 may turn off any of these bits. The
  1606. * reason is that if one of these bits is necessary, it will appear
  1607. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1608. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1609. * nested_vmx_exit_handled() will not pass related exits to L1.
  1610. * These rules have exceptions below.
  1611. */
  1612. /* pin-based controls */
  1613. /*
  1614. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1615. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1616. */
  1617. nested_vmx_pinbased_ctls_low = 0x16 ;
  1618. nested_vmx_pinbased_ctls_high = 0x16 |
  1619. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1620. PIN_BASED_VIRTUAL_NMIS;
  1621. /* exit controls */
  1622. nested_vmx_exit_ctls_low = 0;
  1623. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1624. #ifdef CONFIG_X86_64
  1625. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1626. #else
  1627. nested_vmx_exit_ctls_high = 0;
  1628. #endif
  1629. /* entry controls */
  1630. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1631. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1632. nested_vmx_entry_ctls_low = 0;
  1633. nested_vmx_entry_ctls_high &=
  1634. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1635. /* cpu-based controls */
  1636. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1637. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1638. nested_vmx_procbased_ctls_low = 0;
  1639. nested_vmx_procbased_ctls_high &=
  1640. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1641. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1642. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1643. CPU_BASED_CR3_STORE_EXITING |
  1644. #ifdef CONFIG_X86_64
  1645. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1646. #endif
  1647. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1648. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1649. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1650. /*
  1651. * We can allow some features even when not supported by the
  1652. * hardware. For example, L1 can specify an MSR bitmap - and we
  1653. * can use it to avoid exits to L1 - even when L0 runs L2
  1654. * without MSR bitmaps.
  1655. */
  1656. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1657. /* secondary cpu-based controls */
  1658. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1659. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1660. nested_vmx_secondary_ctls_low = 0;
  1661. nested_vmx_secondary_ctls_high &=
  1662. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1663. }
  1664. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1665. {
  1666. /*
  1667. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1668. */
  1669. return ((control & high) | low) == control;
  1670. }
  1671. static inline u64 vmx_control_msr(u32 low, u32 high)
  1672. {
  1673. return low | ((u64)high << 32);
  1674. }
  1675. /*
  1676. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1677. * also let it use VMX-specific MSRs.
  1678. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1679. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1680. * like all other MSRs).
  1681. */
  1682. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1683. {
  1684. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1685. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1686. /*
  1687. * According to the spec, processors which do not support VMX
  1688. * should throw a #GP(0) when VMX capability MSRs are read.
  1689. */
  1690. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1691. return 1;
  1692. }
  1693. switch (msr_index) {
  1694. case MSR_IA32_FEATURE_CONTROL:
  1695. *pdata = 0;
  1696. break;
  1697. case MSR_IA32_VMX_BASIC:
  1698. /*
  1699. * This MSR reports some information about VMX support. We
  1700. * should return information about the VMX we emulate for the
  1701. * guest, and the VMCS structure we give it - not about the
  1702. * VMX support of the underlying hardware.
  1703. */
  1704. *pdata = VMCS12_REVISION |
  1705. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1706. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1707. break;
  1708. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1709. case MSR_IA32_VMX_PINBASED_CTLS:
  1710. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1711. nested_vmx_pinbased_ctls_high);
  1712. break;
  1713. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1714. case MSR_IA32_VMX_PROCBASED_CTLS:
  1715. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1716. nested_vmx_procbased_ctls_high);
  1717. break;
  1718. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1719. case MSR_IA32_VMX_EXIT_CTLS:
  1720. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1721. nested_vmx_exit_ctls_high);
  1722. break;
  1723. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1724. case MSR_IA32_VMX_ENTRY_CTLS:
  1725. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1726. nested_vmx_entry_ctls_high);
  1727. break;
  1728. case MSR_IA32_VMX_MISC:
  1729. *pdata = 0;
  1730. break;
  1731. /*
  1732. * These MSRs specify bits which the guest must keep fixed (on or off)
  1733. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1734. * We picked the standard core2 setting.
  1735. */
  1736. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1737. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1738. case MSR_IA32_VMX_CR0_FIXED0:
  1739. *pdata = VMXON_CR0_ALWAYSON;
  1740. break;
  1741. case MSR_IA32_VMX_CR0_FIXED1:
  1742. *pdata = -1ULL;
  1743. break;
  1744. case MSR_IA32_VMX_CR4_FIXED0:
  1745. *pdata = VMXON_CR4_ALWAYSON;
  1746. break;
  1747. case MSR_IA32_VMX_CR4_FIXED1:
  1748. *pdata = -1ULL;
  1749. break;
  1750. case MSR_IA32_VMX_VMCS_ENUM:
  1751. *pdata = 0x1f;
  1752. break;
  1753. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1754. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1755. nested_vmx_secondary_ctls_high);
  1756. break;
  1757. case MSR_IA32_VMX_EPT_VPID_CAP:
  1758. /* Currently, no nested ept or nested vpid */
  1759. *pdata = 0;
  1760. break;
  1761. default:
  1762. return 0;
  1763. }
  1764. return 1;
  1765. }
  1766. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1767. {
  1768. if (!nested_vmx_allowed(vcpu))
  1769. return 0;
  1770. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1771. /* TODO: the right thing. */
  1772. return 1;
  1773. /*
  1774. * No need to treat VMX capability MSRs specially: If we don't handle
  1775. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1776. */
  1777. return 0;
  1778. }
  1779. /*
  1780. * Reads an msr value (of 'msr_index') into 'pdata'.
  1781. * Returns 0 on success, non-0 otherwise.
  1782. * Assumes vcpu_load() was already called.
  1783. */
  1784. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1785. {
  1786. u64 data;
  1787. struct shared_msr_entry *msr;
  1788. if (!pdata) {
  1789. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1790. return -EINVAL;
  1791. }
  1792. switch (msr_index) {
  1793. #ifdef CONFIG_X86_64
  1794. case MSR_FS_BASE:
  1795. data = vmcs_readl(GUEST_FS_BASE);
  1796. break;
  1797. case MSR_GS_BASE:
  1798. data = vmcs_readl(GUEST_GS_BASE);
  1799. break;
  1800. case MSR_KERNEL_GS_BASE:
  1801. vmx_load_host_state(to_vmx(vcpu));
  1802. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1803. break;
  1804. #endif
  1805. case MSR_EFER:
  1806. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1807. case MSR_IA32_TSC:
  1808. data = guest_read_tsc();
  1809. break;
  1810. case MSR_IA32_SYSENTER_CS:
  1811. data = vmcs_read32(GUEST_SYSENTER_CS);
  1812. break;
  1813. case MSR_IA32_SYSENTER_EIP:
  1814. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1815. break;
  1816. case MSR_IA32_SYSENTER_ESP:
  1817. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1818. break;
  1819. case MSR_TSC_AUX:
  1820. if (!to_vmx(vcpu)->rdtscp_enabled)
  1821. return 1;
  1822. /* Otherwise falls through */
  1823. default:
  1824. vmx_load_host_state(to_vmx(vcpu));
  1825. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1826. return 0;
  1827. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1828. if (msr) {
  1829. vmx_load_host_state(to_vmx(vcpu));
  1830. data = msr->data;
  1831. break;
  1832. }
  1833. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1834. }
  1835. *pdata = data;
  1836. return 0;
  1837. }
  1838. /*
  1839. * Writes msr value into into the appropriate "register".
  1840. * Returns 0 on success, non-0 otherwise.
  1841. * Assumes vcpu_load() was already called.
  1842. */
  1843. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1844. {
  1845. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1846. struct shared_msr_entry *msr;
  1847. int ret = 0;
  1848. switch (msr_index) {
  1849. case MSR_EFER:
  1850. vmx_load_host_state(vmx);
  1851. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1852. break;
  1853. #ifdef CONFIG_X86_64
  1854. case MSR_FS_BASE:
  1855. vmx_segment_cache_clear(vmx);
  1856. vmcs_writel(GUEST_FS_BASE, data);
  1857. break;
  1858. case MSR_GS_BASE:
  1859. vmx_segment_cache_clear(vmx);
  1860. vmcs_writel(GUEST_GS_BASE, data);
  1861. break;
  1862. case MSR_KERNEL_GS_BASE:
  1863. vmx_load_host_state(vmx);
  1864. vmx->msr_guest_kernel_gs_base = data;
  1865. break;
  1866. #endif
  1867. case MSR_IA32_SYSENTER_CS:
  1868. vmcs_write32(GUEST_SYSENTER_CS, data);
  1869. break;
  1870. case MSR_IA32_SYSENTER_EIP:
  1871. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1872. break;
  1873. case MSR_IA32_SYSENTER_ESP:
  1874. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1875. break;
  1876. case MSR_IA32_TSC:
  1877. kvm_write_tsc(vcpu, data);
  1878. break;
  1879. case MSR_IA32_CR_PAT:
  1880. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1881. vmcs_write64(GUEST_IA32_PAT, data);
  1882. vcpu->arch.pat = data;
  1883. break;
  1884. }
  1885. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1886. break;
  1887. case MSR_TSC_AUX:
  1888. if (!vmx->rdtscp_enabled)
  1889. return 1;
  1890. /* Check reserved bit, higher 32 bits should be zero */
  1891. if ((data >> 32) != 0)
  1892. return 1;
  1893. /* Otherwise falls through */
  1894. default:
  1895. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1896. break;
  1897. msr = find_msr_entry(vmx, msr_index);
  1898. if (msr) {
  1899. vmx_load_host_state(vmx);
  1900. msr->data = data;
  1901. break;
  1902. }
  1903. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1904. }
  1905. return ret;
  1906. }
  1907. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1908. {
  1909. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1910. switch (reg) {
  1911. case VCPU_REGS_RSP:
  1912. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1913. break;
  1914. case VCPU_REGS_RIP:
  1915. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1916. break;
  1917. case VCPU_EXREG_PDPTR:
  1918. if (enable_ept)
  1919. ept_save_pdptrs(vcpu);
  1920. break;
  1921. default:
  1922. break;
  1923. }
  1924. }
  1925. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1926. {
  1927. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1928. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1929. else
  1930. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1931. update_exception_bitmap(vcpu);
  1932. }
  1933. static __init int cpu_has_kvm_support(void)
  1934. {
  1935. return cpu_has_vmx();
  1936. }
  1937. static __init int vmx_disabled_by_bios(void)
  1938. {
  1939. u64 msr;
  1940. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1941. if (msr & FEATURE_CONTROL_LOCKED) {
  1942. /* launched w/ TXT and VMX disabled */
  1943. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1944. && tboot_enabled())
  1945. return 1;
  1946. /* launched w/o TXT and VMX only enabled w/ TXT */
  1947. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1948. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1949. && !tboot_enabled()) {
  1950. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1951. "activate TXT before enabling KVM\n");
  1952. return 1;
  1953. }
  1954. /* launched w/o TXT and VMX disabled */
  1955. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1956. && !tboot_enabled())
  1957. return 1;
  1958. }
  1959. return 0;
  1960. }
  1961. static void kvm_cpu_vmxon(u64 addr)
  1962. {
  1963. asm volatile (ASM_VMX_VMXON_RAX
  1964. : : "a"(&addr), "m"(addr)
  1965. : "memory", "cc");
  1966. }
  1967. static int hardware_enable(void *garbage)
  1968. {
  1969. int cpu = raw_smp_processor_id();
  1970. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1971. u64 old, test_bits;
  1972. if (read_cr4() & X86_CR4_VMXE)
  1973. return -EBUSY;
  1974. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1975. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1976. test_bits = FEATURE_CONTROL_LOCKED;
  1977. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1978. if (tboot_enabled())
  1979. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1980. if ((old & test_bits) != test_bits) {
  1981. /* enable and lock */
  1982. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1983. }
  1984. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1985. if (vmm_exclusive) {
  1986. kvm_cpu_vmxon(phys_addr);
  1987. ept_sync_global();
  1988. }
  1989. store_gdt(&__get_cpu_var(host_gdt));
  1990. return 0;
  1991. }
  1992. static void vmclear_local_loaded_vmcss(void)
  1993. {
  1994. int cpu = raw_smp_processor_id();
  1995. struct loaded_vmcs *v, *n;
  1996. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1997. loaded_vmcss_on_cpu_link)
  1998. __loaded_vmcs_clear(v);
  1999. }
  2000. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2001. * tricks.
  2002. */
  2003. static void kvm_cpu_vmxoff(void)
  2004. {
  2005. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2006. }
  2007. static void hardware_disable(void *garbage)
  2008. {
  2009. if (vmm_exclusive) {
  2010. vmclear_local_loaded_vmcss();
  2011. kvm_cpu_vmxoff();
  2012. }
  2013. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2014. }
  2015. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2016. u32 msr, u32 *result)
  2017. {
  2018. u32 vmx_msr_low, vmx_msr_high;
  2019. u32 ctl = ctl_min | ctl_opt;
  2020. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2021. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2022. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2023. /* Ensure minimum (required) set of control bits are supported. */
  2024. if (ctl_min & ~ctl)
  2025. return -EIO;
  2026. *result = ctl;
  2027. return 0;
  2028. }
  2029. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2030. {
  2031. u32 vmx_msr_low, vmx_msr_high;
  2032. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2033. return vmx_msr_high & ctl;
  2034. }
  2035. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2036. {
  2037. u32 vmx_msr_low, vmx_msr_high;
  2038. u32 min, opt, min2, opt2;
  2039. u32 _pin_based_exec_control = 0;
  2040. u32 _cpu_based_exec_control = 0;
  2041. u32 _cpu_based_2nd_exec_control = 0;
  2042. u32 _vmexit_control = 0;
  2043. u32 _vmentry_control = 0;
  2044. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2045. opt = PIN_BASED_VIRTUAL_NMIS;
  2046. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2047. &_pin_based_exec_control) < 0)
  2048. return -EIO;
  2049. min =
  2050. #ifdef CONFIG_X86_64
  2051. CPU_BASED_CR8_LOAD_EXITING |
  2052. CPU_BASED_CR8_STORE_EXITING |
  2053. #endif
  2054. CPU_BASED_CR3_LOAD_EXITING |
  2055. CPU_BASED_CR3_STORE_EXITING |
  2056. CPU_BASED_USE_IO_BITMAPS |
  2057. CPU_BASED_MOV_DR_EXITING |
  2058. CPU_BASED_USE_TSC_OFFSETING |
  2059. CPU_BASED_MWAIT_EXITING |
  2060. CPU_BASED_MONITOR_EXITING |
  2061. CPU_BASED_INVLPG_EXITING;
  2062. if (yield_on_hlt)
  2063. min |= CPU_BASED_HLT_EXITING;
  2064. opt = CPU_BASED_TPR_SHADOW |
  2065. CPU_BASED_USE_MSR_BITMAPS |
  2066. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2067. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2068. &_cpu_based_exec_control) < 0)
  2069. return -EIO;
  2070. #ifdef CONFIG_X86_64
  2071. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2072. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2073. ~CPU_BASED_CR8_STORE_EXITING;
  2074. #endif
  2075. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2076. min2 = 0;
  2077. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2078. SECONDARY_EXEC_WBINVD_EXITING |
  2079. SECONDARY_EXEC_ENABLE_VPID |
  2080. SECONDARY_EXEC_ENABLE_EPT |
  2081. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2082. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2083. SECONDARY_EXEC_RDTSCP;
  2084. if (adjust_vmx_controls(min2, opt2,
  2085. MSR_IA32_VMX_PROCBASED_CTLS2,
  2086. &_cpu_based_2nd_exec_control) < 0)
  2087. return -EIO;
  2088. }
  2089. #ifndef CONFIG_X86_64
  2090. if (!(_cpu_based_2nd_exec_control &
  2091. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2092. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2093. #endif
  2094. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2095. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2096. enabled */
  2097. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2098. CPU_BASED_CR3_STORE_EXITING |
  2099. CPU_BASED_INVLPG_EXITING);
  2100. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2101. vmx_capability.ept, vmx_capability.vpid);
  2102. }
  2103. min = 0;
  2104. #ifdef CONFIG_X86_64
  2105. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2106. #endif
  2107. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2108. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2109. &_vmexit_control) < 0)
  2110. return -EIO;
  2111. min = 0;
  2112. opt = VM_ENTRY_LOAD_IA32_PAT;
  2113. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2114. &_vmentry_control) < 0)
  2115. return -EIO;
  2116. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2117. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2118. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2119. return -EIO;
  2120. #ifdef CONFIG_X86_64
  2121. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2122. if (vmx_msr_high & (1u<<16))
  2123. return -EIO;
  2124. #endif
  2125. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2126. if (((vmx_msr_high >> 18) & 15) != 6)
  2127. return -EIO;
  2128. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2129. vmcs_conf->order = get_order(vmcs_config.size);
  2130. vmcs_conf->revision_id = vmx_msr_low;
  2131. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2132. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2133. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2134. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2135. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2136. cpu_has_load_ia32_efer =
  2137. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2138. VM_ENTRY_LOAD_IA32_EFER)
  2139. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2140. VM_EXIT_LOAD_IA32_EFER);
  2141. return 0;
  2142. }
  2143. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2144. {
  2145. int node = cpu_to_node(cpu);
  2146. struct page *pages;
  2147. struct vmcs *vmcs;
  2148. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2149. if (!pages)
  2150. return NULL;
  2151. vmcs = page_address(pages);
  2152. memset(vmcs, 0, vmcs_config.size);
  2153. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2154. return vmcs;
  2155. }
  2156. static struct vmcs *alloc_vmcs(void)
  2157. {
  2158. return alloc_vmcs_cpu(raw_smp_processor_id());
  2159. }
  2160. static void free_vmcs(struct vmcs *vmcs)
  2161. {
  2162. free_pages((unsigned long)vmcs, vmcs_config.order);
  2163. }
  2164. /*
  2165. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2166. */
  2167. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2168. {
  2169. if (!loaded_vmcs->vmcs)
  2170. return;
  2171. loaded_vmcs_clear(loaded_vmcs);
  2172. free_vmcs(loaded_vmcs->vmcs);
  2173. loaded_vmcs->vmcs = NULL;
  2174. }
  2175. static void free_kvm_area(void)
  2176. {
  2177. int cpu;
  2178. for_each_possible_cpu(cpu) {
  2179. free_vmcs(per_cpu(vmxarea, cpu));
  2180. per_cpu(vmxarea, cpu) = NULL;
  2181. }
  2182. }
  2183. static __init int alloc_kvm_area(void)
  2184. {
  2185. int cpu;
  2186. for_each_possible_cpu(cpu) {
  2187. struct vmcs *vmcs;
  2188. vmcs = alloc_vmcs_cpu(cpu);
  2189. if (!vmcs) {
  2190. free_kvm_area();
  2191. return -ENOMEM;
  2192. }
  2193. per_cpu(vmxarea, cpu) = vmcs;
  2194. }
  2195. return 0;
  2196. }
  2197. static __init int hardware_setup(void)
  2198. {
  2199. if (setup_vmcs_config(&vmcs_config) < 0)
  2200. return -EIO;
  2201. if (boot_cpu_has(X86_FEATURE_NX))
  2202. kvm_enable_efer_bits(EFER_NX);
  2203. if (!cpu_has_vmx_vpid())
  2204. enable_vpid = 0;
  2205. if (!cpu_has_vmx_ept() ||
  2206. !cpu_has_vmx_ept_4levels()) {
  2207. enable_ept = 0;
  2208. enable_unrestricted_guest = 0;
  2209. }
  2210. if (!cpu_has_vmx_unrestricted_guest())
  2211. enable_unrestricted_guest = 0;
  2212. if (!cpu_has_vmx_flexpriority())
  2213. flexpriority_enabled = 0;
  2214. if (!cpu_has_vmx_tpr_shadow())
  2215. kvm_x86_ops->update_cr8_intercept = NULL;
  2216. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2217. kvm_disable_largepages();
  2218. if (!cpu_has_vmx_ple())
  2219. ple_gap = 0;
  2220. if (nested)
  2221. nested_vmx_setup_ctls_msrs();
  2222. return alloc_kvm_area();
  2223. }
  2224. static __exit void hardware_unsetup(void)
  2225. {
  2226. free_kvm_area();
  2227. }
  2228. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2229. {
  2230. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2231. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2232. vmcs_write16(sf->selector, save->selector);
  2233. vmcs_writel(sf->base, save->base);
  2234. vmcs_write32(sf->limit, save->limit);
  2235. vmcs_write32(sf->ar_bytes, save->ar);
  2236. } else {
  2237. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2238. << AR_DPL_SHIFT;
  2239. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2240. }
  2241. }
  2242. static void enter_pmode(struct kvm_vcpu *vcpu)
  2243. {
  2244. unsigned long flags;
  2245. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2246. vmx->emulation_required = 1;
  2247. vmx->rmode.vm86_active = 0;
  2248. vmx_segment_cache_clear(vmx);
  2249. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2250. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2251. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2252. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2253. flags = vmcs_readl(GUEST_RFLAGS);
  2254. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2255. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2256. vmcs_writel(GUEST_RFLAGS, flags);
  2257. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2258. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2259. update_exception_bitmap(vcpu);
  2260. if (emulate_invalid_guest_state)
  2261. return;
  2262. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2263. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2264. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2265. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2266. vmx_segment_cache_clear(vmx);
  2267. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2268. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2269. vmcs_write16(GUEST_CS_SELECTOR,
  2270. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2271. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2272. }
  2273. static gva_t rmode_tss_base(struct kvm *kvm)
  2274. {
  2275. if (!kvm->arch.tss_addr) {
  2276. struct kvm_memslots *slots;
  2277. gfn_t base_gfn;
  2278. slots = kvm_memslots(kvm);
  2279. base_gfn = slots->memslots[0].base_gfn +
  2280. kvm->memslots->memslots[0].npages - 3;
  2281. return base_gfn << PAGE_SHIFT;
  2282. }
  2283. return kvm->arch.tss_addr;
  2284. }
  2285. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2286. {
  2287. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2288. save->selector = vmcs_read16(sf->selector);
  2289. save->base = vmcs_readl(sf->base);
  2290. save->limit = vmcs_read32(sf->limit);
  2291. save->ar = vmcs_read32(sf->ar_bytes);
  2292. vmcs_write16(sf->selector, save->base >> 4);
  2293. vmcs_write32(sf->base, save->base & 0xffff0);
  2294. vmcs_write32(sf->limit, 0xffff);
  2295. vmcs_write32(sf->ar_bytes, 0xf3);
  2296. if (save->base & 0xf)
  2297. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2298. " aligned when entering protected mode (seg=%d)",
  2299. seg);
  2300. }
  2301. static void enter_rmode(struct kvm_vcpu *vcpu)
  2302. {
  2303. unsigned long flags;
  2304. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2305. if (enable_unrestricted_guest)
  2306. return;
  2307. vmx->emulation_required = 1;
  2308. vmx->rmode.vm86_active = 1;
  2309. /*
  2310. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2311. * vcpu. Call it here with phys address pointing 16M below 4G.
  2312. */
  2313. if (!vcpu->kvm->arch.tss_addr) {
  2314. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2315. "called before entering vcpu\n");
  2316. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2317. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2318. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2319. }
  2320. vmx_segment_cache_clear(vmx);
  2321. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2322. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2323. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2324. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2325. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2326. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2327. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2328. flags = vmcs_readl(GUEST_RFLAGS);
  2329. vmx->rmode.save_rflags = flags;
  2330. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2331. vmcs_writel(GUEST_RFLAGS, flags);
  2332. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2333. update_exception_bitmap(vcpu);
  2334. if (emulate_invalid_guest_state)
  2335. goto continue_rmode;
  2336. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2337. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2338. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2339. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2340. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2341. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2342. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2343. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2344. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2345. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2346. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2347. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2348. continue_rmode:
  2349. kvm_mmu_reset_context(vcpu);
  2350. }
  2351. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2352. {
  2353. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2354. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2355. if (!msr)
  2356. return;
  2357. /*
  2358. * Force kernel_gs_base reloading before EFER changes, as control
  2359. * of this msr depends on is_long_mode().
  2360. */
  2361. vmx_load_host_state(to_vmx(vcpu));
  2362. vcpu->arch.efer = efer;
  2363. if (efer & EFER_LMA) {
  2364. vmcs_write32(VM_ENTRY_CONTROLS,
  2365. vmcs_read32(VM_ENTRY_CONTROLS) |
  2366. VM_ENTRY_IA32E_MODE);
  2367. msr->data = efer;
  2368. } else {
  2369. vmcs_write32(VM_ENTRY_CONTROLS,
  2370. vmcs_read32(VM_ENTRY_CONTROLS) &
  2371. ~VM_ENTRY_IA32E_MODE);
  2372. msr->data = efer & ~EFER_LME;
  2373. }
  2374. setup_msrs(vmx);
  2375. }
  2376. #ifdef CONFIG_X86_64
  2377. static void enter_lmode(struct kvm_vcpu *vcpu)
  2378. {
  2379. u32 guest_tr_ar;
  2380. vmx_segment_cache_clear(to_vmx(vcpu));
  2381. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2382. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2383. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  2384. __func__);
  2385. vmcs_write32(GUEST_TR_AR_BYTES,
  2386. (guest_tr_ar & ~AR_TYPE_MASK)
  2387. | AR_TYPE_BUSY_64_TSS);
  2388. }
  2389. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2390. }
  2391. static void exit_lmode(struct kvm_vcpu *vcpu)
  2392. {
  2393. vmcs_write32(VM_ENTRY_CONTROLS,
  2394. vmcs_read32(VM_ENTRY_CONTROLS)
  2395. & ~VM_ENTRY_IA32E_MODE);
  2396. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2397. }
  2398. #endif
  2399. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2400. {
  2401. vpid_sync_context(to_vmx(vcpu));
  2402. if (enable_ept) {
  2403. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2404. return;
  2405. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2406. }
  2407. }
  2408. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2409. {
  2410. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2411. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2412. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2413. }
  2414. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2415. {
  2416. if (enable_ept && is_paging(vcpu))
  2417. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2418. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2419. }
  2420. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2421. {
  2422. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2423. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2424. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2425. }
  2426. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2427. {
  2428. if (!test_bit(VCPU_EXREG_PDPTR,
  2429. (unsigned long *)&vcpu->arch.regs_dirty))
  2430. return;
  2431. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2432. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2433. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2434. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2435. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2436. }
  2437. }
  2438. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2439. {
  2440. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2441. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2442. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2443. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2444. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2445. }
  2446. __set_bit(VCPU_EXREG_PDPTR,
  2447. (unsigned long *)&vcpu->arch.regs_avail);
  2448. __set_bit(VCPU_EXREG_PDPTR,
  2449. (unsigned long *)&vcpu->arch.regs_dirty);
  2450. }
  2451. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2452. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2453. unsigned long cr0,
  2454. struct kvm_vcpu *vcpu)
  2455. {
  2456. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2457. vmx_decache_cr3(vcpu);
  2458. if (!(cr0 & X86_CR0_PG)) {
  2459. /* From paging/starting to nonpaging */
  2460. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2461. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2462. (CPU_BASED_CR3_LOAD_EXITING |
  2463. CPU_BASED_CR3_STORE_EXITING));
  2464. vcpu->arch.cr0 = cr0;
  2465. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2466. } else if (!is_paging(vcpu)) {
  2467. /* From nonpaging to paging */
  2468. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2469. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2470. ~(CPU_BASED_CR3_LOAD_EXITING |
  2471. CPU_BASED_CR3_STORE_EXITING));
  2472. vcpu->arch.cr0 = cr0;
  2473. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2474. }
  2475. if (!(cr0 & X86_CR0_WP))
  2476. *hw_cr0 &= ~X86_CR0_WP;
  2477. }
  2478. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2479. {
  2480. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2481. unsigned long hw_cr0;
  2482. if (enable_unrestricted_guest)
  2483. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2484. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2485. else
  2486. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2487. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2488. enter_pmode(vcpu);
  2489. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2490. enter_rmode(vcpu);
  2491. #ifdef CONFIG_X86_64
  2492. if (vcpu->arch.efer & EFER_LME) {
  2493. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2494. enter_lmode(vcpu);
  2495. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2496. exit_lmode(vcpu);
  2497. }
  2498. #endif
  2499. if (enable_ept)
  2500. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2501. if (!vcpu->fpu_active)
  2502. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2503. vmcs_writel(CR0_READ_SHADOW, cr0);
  2504. vmcs_writel(GUEST_CR0, hw_cr0);
  2505. vcpu->arch.cr0 = cr0;
  2506. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2507. }
  2508. static u64 construct_eptp(unsigned long root_hpa)
  2509. {
  2510. u64 eptp;
  2511. /* TODO write the value reading from MSR */
  2512. eptp = VMX_EPT_DEFAULT_MT |
  2513. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2514. eptp |= (root_hpa & PAGE_MASK);
  2515. return eptp;
  2516. }
  2517. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2518. {
  2519. unsigned long guest_cr3;
  2520. u64 eptp;
  2521. guest_cr3 = cr3;
  2522. if (enable_ept) {
  2523. eptp = construct_eptp(cr3);
  2524. vmcs_write64(EPT_POINTER, eptp);
  2525. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2526. vcpu->kvm->arch.ept_identity_map_addr;
  2527. ept_load_pdptrs(vcpu);
  2528. }
  2529. vmx_flush_tlb(vcpu);
  2530. vmcs_writel(GUEST_CR3, guest_cr3);
  2531. }
  2532. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2533. {
  2534. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2535. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2536. if (cr4 & X86_CR4_VMXE) {
  2537. /*
  2538. * To use VMXON (and later other VMX instructions), a guest
  2539. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2540. * So basically the check on whether to allow nested VMX
  2541. * is here.
  2542. */
  2543. if (!nested_vmx_allowed(vcpu))
  2544. return 1;
  2545. } else if (to_vmx(vcpu)->nested.vmxon)
  2546. return 1;
  2547. vcpu->arch.cr4 = cr4;
  2548. if (enable_ept) {
  2549. if (!is_paging(vcpu)) {
  2550. hw_cr4 &= ~X86_CR4_PAE;
  2551. hw_cr4 |= X86_CR4_PSE;
  2552. } else if (!(cr4 & X86_CR4_PAE)) {
  2553. hw_cr4 &= ~X86_CR4_PAE;
  2554. }
  2555. }
  2556. vmcs_writel(CR4_READ_SHADOW, cr4);
  2557. vmcs_writel(GUEST_CR4, hw_cr4);
  2558. return 0;
  2559. }
  2560. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2561. struct kvm_segment *var, int seg)
  2562. {
  2563. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2564. struct kvm_save_segment *save;
  2565. u32 ar;
  2566. if (vmx->rmode.vm86_active
  2567. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2568. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2569. || seg == VCPU_SREG_GS)
  2570. && !emulate_invalid_guest_state) {
  2571. switch (seg) {
  2572. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2573. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2574. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2575. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2576. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2577. default: BUG();
  2578. }
  2579. var->selector = save->selector;
  2580. var->base = save->base;
  2581. var->limit = save->limit;
  2582. ar = save->ar;
  2583. if (seg == VCPU_SREG_TR
  2584. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2585. goto use_saved_rmode_seg;
  2586. }
  2587. var->base = vmx_read_guest_seg_base(vmx, seg);
  2588. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2589. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2590. ar = vmx_read_guest_seg_ar(vmx, seg);
  2591. use_saved_rmode_seg:
  2592. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2593. ar = 0;
  2594. var->type = ar & 15;
  2595. var->s = (ar >> 4) & 1;
  2596. var->dpl = (ar >> 5) & 3;
  2597. var->present = (ar >> 7) & 1;
  2598. var->avl = (ar >> 12) & 1;
  2599. var->l = (ar >> 13) & 1;
  2600. var->db = (ar >> 14) & 1;
  2601. var->g = (ar >> 15) & 1;
  2602. var->unusable = (ar >> 16) & 1;
  2603. }
  2604. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2605. {
  2606. struct kvm_segment s;
  2607. if (to_vmx(vcpu)->rmode.vm86_active) {
  2608. vmx_get_segment(vcpu, &s, seg);
  2609. return s.base;
  2610. }
  2611. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2612. }
  2613. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2614. {
  2615. if (!is_protmode(vcpu))
  2616. return 0;
  2617. if (!is_long_mode(vcpu)
  2618. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2619. return 3;
  2620. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2621. }
  2622. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2623. {
  2624. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2625. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2626. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2627. }
  2628. return to_vmx(vcpu)->cpl;
  2629. }
  2630. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2631. {
  2632. u32 ar;
  2633. if (var->unusable)
  2634. ar = 1 << 16;
  2635. else {
  2636. ar = var->type & 15;
  2637. ar |= (var->s & 1) << 4;
  2638. ar |= (var->dpl & 3) << 5;
  2639. ar |= (var->present & 1) << 7;
  2640. ar |= (var->avl & 1) << 12;
  2641. ar |= (var->l & 1) << 13;
  2642. ar |= (var->db & 1) << 14;
  2643. ar |= (var->g & 1) << 15;
  2644. }
  2645. if (ar == 0) /* a 0 value means unusable */
  2646. ar = AR_UNUSABLE_MASK;
  2647. return ar;
  2648. }
  2649. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2650. struct kvm_segment *var, int seg)
  2651. {
  2652. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2653. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2654. u32 ar;
  2655. vmx_segment_cache_clear(vmx);
  2656. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2657. vmcs_write16(sf->selector, var->selector);
  2658. vmx->rmode.tr.selector = var->selector;
  2659. vmx->rmode.tr.base = var->base;
  2660. vmx->rmode.tr.limit = var->limit;
  2661. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2662. return;
  2663. }
  2664. vmcs_writel(sf->base, var->base);
  2665. vmcs_write32(sf->limit, var->limit);
  2666. vmcs_write16(sf->selector, var->selector);
  2667. if (vmx->rmode.vm86_active && var->s) {
  2668. /*
  2669. * Hack real-mode segments into vm86 compatibility.
  2670. */
  2671. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2672. vmcs_writel(sf->base, 0xf0000);
  2673. ar = 0xf3;
  2674. } else
  2675. ar = vmx_segment_access_rights(var);
  2676. /*
  2677. * Fix the "Accessed" bit in AR field of segment registers for older
  2678. * qemu binaries.
  2679. * IA32 arch specifies that at the time of processor reset the
  2680. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2681. * is setting it to 0 in the usedland code. This causes invalid guest
  2682. * state vmexit when "unrestricted guest" mode is turned on.
  2683. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2684. * tree. Newer qemu binaries with that qemu fix would not need this
  2685. * kvm hack.
  2686. */
  2687. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2688. ar |= 0x1; /* Accessed */
  2689. vmcs_write32(sf->ar_bytes, ar);
  2690. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2691. }
  2692. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2693. {
  2694. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2695. *db = (ar >> 14) & 1;
  2696. *l = (ar >> 13) & 1;
  2697. }
  2698. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2699. {
  2700. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2701. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2702. }
  2703. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2704. {
  2705. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2706. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2707. }
  2708. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2709. {
  2710. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2711. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2712. }
  2713. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2714. {
  2715. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2716. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2717. }
  2718. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2719. {
  2720. struct kvm_segment var;
  2721. u32 ar;
  2722. vmx_get_segment(vcpu, &var, seg);
  2723. ar = vmx_segment_access_rights(&var);
  2724. if (var.base != (var.selector << 4))
  2725. return false;
  2726. if (var.limit != 0xffff)
  2727. return false;
  2728. if (ar != 0xf3)
  2729. return false;
  2730. return true;
  2731. }
  2732. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2733. {
  2734. struct kvm_segment cs;
  2735. unsigned int cs_rpl;
  2736. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2737. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2738. if (cs.unusable)
  2739. return false;
  2740. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2741. return false;
  2742. if (!cs.s)
  2743. return false;
  2744. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2745. if (cs.dpl > cs_rpl)
  2746. return false;
  2747. } else {
  2748. if (cs.dpl != cs_rpl)
  2749. return false;
  2750. }
  2751. if (!cs.present)
  2752. return false;
  2753. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2754. return true;
  2755. }
  2756. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2757. {
  2758. struct kvm_segment ss;
  2759. unsigned int ss_rpl;
  2760. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2761. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2762. if (ss.unusable)
  2763. return true;
  2764. if (ss.type != 3 && ss.type != 7)
  2765. return false;
  2766. if (!ss.s)
  2767. return false;
  2768. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2769. return false;
  2770. if (!ss.present)
  2771. return false;
  2772. return true;
  2773. }
  2774. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2775. {
  2776. struct kvm_segment var;
  2777. unsigned int rpl;
  2778. vmx_get_segment(vcpu, &var, seg);
  2779. rpl = var.selector & SELECTOR_RPL_MASK;
  2780. if (var.unusable)
  2781. return true;
  2782. if (!var.s)
  2783. return false;
  2784. if (!var.present)
  2785. return false;
  2786. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2787. if (var.dpl < rpl) /* DPL < RPL */
  2788. return false;
  2789. }
  2790. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2791. * rights flags
  2792. */
  2793. return true;
  2794. }
  2795. static bool tr_valid(struct kvm_vcpu *vcpu)
  2796. {
  2797. struct kvm_segment tr;
  2798. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2799. if (tr.unusable)
  2800. return false;
  2801. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2802. return false;
  2803. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2804. return false;
  2805. if (!tr.present)
  2806. return false;
  2807. return true;
  2808. }
  2809. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2810. {
  2811. struct kvm_segment ldtr;
  2812. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2813. if (ldtr.unusable)
  2814. return true;
  2815. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2816. return false;
  2817. if (ldtr.type != 2)
  2818. return false;
  2819. if (!ldtr.present)
  2820. return false;
  2821. return true;
  2822. }
  2823. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2824. {
  2825. struct kvm_segment cs, ss;
  2826. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2827. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2828. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2829. (ss.selector & SELECTOR_RPL_MASK));
  2830. }
  2831. /*
  2832. * Check if guest state is valid. Returns true if valid, false if
  2833. * not.
  2834. * We assume that registers are always usable
  2835. */
  2836. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2837. {
  2838. /* real mode guest state checks */
  2839. if (!is_protmode(vcpu)) {
  2840. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2841. return false;
  2842. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2843. return false;
  2844. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2845. return false;
  2846. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2847. return false;
  2848. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2849. return false;
  2850. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2851. return false;
  2852. } else {
  2853. /* protected mode guest state checks */
  2854. if (!cs_ss_rpl_check(vcpu))
  2855. return false;
  2856. if (!code_segment_valid(vcpu))
  2857. return false;
  2858. if (!stack_segment_valid(vcpu))
  2859. return false;
  2860. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2861. return false;
  2862. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2863. return false;
  2864. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2865. return false;
  2866. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2867. return false;
  2868. if (!tr_valid(vcpu))
  2869. return false;
  2870. if (!ldtr_valid(vcpu))
  2871. return false;
  2872. }
  2873. /* TODO:
  2874. * - Add checks on RIP
  2875. * - Add checks on RFLAGS
  2876. */
  2877. return true;
  2878. }
  2879. static int init_rmode_tss(struct kvm *kvm)
  2880. {
  2881. gfn_t fn;
  2882. u16 data = 0;
  2883. int r, idx, ret = 0;
  2884. idx = srcu_read_lock(&kvm->srcu);
  2885. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2886. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2887. if (r < 0)
  2888. goto out;
  2889. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2890. r = kvm_write_guest_page(kvm, fn++, &data,
  2891. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2892. if (r < 0)
  2893. goto out;
  2894. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2895. if (r < 0)
  2896. goto out;
  2897. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2898. if (r < 0)
  2899. goto out;
  2900. data = ~0;
  2901. r = kvm_write_guest_page(kvm, fn, &data,
  2902. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2903. sizeof(u8));
  2904. if (r < 0)
  2905. goto out;
  2906. ret = 1;
  2907. out:
  2908. srcu_read_unlock(&kvm->srcu, idx);
  2909. return ret;
  2910. }
  2911. static int init_rmode_identity_map(struct kvm *kvm)
  2912. {
  2913. int i, idx, r, ret;
  2914. pfn_t identity_map_pfn;
  2915. u32 tmp;
  2916. if (!enable_ept)
  2917. return 1;
  2918. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2919. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2920. "haven't been allocated!\n");
  2921. return 0;
  2922. }
  2923. if (likely(kvm->arch.ept_identity_pagetable_done))
  2924. return 1;
  2925. ret = 0;
  2926. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2927. idx = srcu_read_lock(&kvm->srcu);
  2928. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2929. if (r < 0)
  2930. goto out;
  2931. /* Set up identity-mapping pagetable for EPT in real mode */
  2932. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2933. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2934. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2935. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2936. &tmp, i * sizeof(tmp), sizeof(tmp));
  2937. if (r < 0)
  2938. goto out;
  2939. }
  2940. kvm->arch.ept_identity_pagetable_done = true;
  2941. ret = 1;
  2942. out:
  2943. srcu_read_unlock(&kvm->srcu, idx);
  2944. return ret;
  2945. }
  2946. static void seg_setup(int seg)
  2947. {
  2948. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2949. unsigned int ar;
  2950. vmcs_write16(sf->selector, 0);
  2951. vmcs_writel(sf->base, 0);
  2952. vmcs_write32(sf->limit, 0xffff);
  2953. if (enable_unrestricted_guest) {
  2954. ar = 0x93;
  2955. if (seg == VCPU_SREG_CS)
  2956. ar |= 0x08; /* code segment */
  2957. } else
  2958. ar = 0xf3;
  2959. vmcs_write32(sf->ar_bytes, ar);
  2960. }
  2961. static int alloc_apic_access_page(struct kvm *kvm)
  2962. {
  2963. struct kvm_userspace_memory_region kvm_userspace_mem;
  2964. int r = 0;
  2965. mutex_lock(&kvm->slots_lock);
  2966. if (kvm->arch.apic_access_page)
  2967. goto out;
  2968. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2969. kvm_userspace_mem.flags = 0;
  2970. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2971. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2972. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2973. if (r)
  2974. goto out;
  2975. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2976. out:
  2977. mutex_unlock(&kvm->slots_lock);
  2978. return r;
  2979. }
  2980. static int alloc_identity_pagetable(struct kvm *kvm)
  2981. {
  2982. struct kvm_userspace_memory_region kvm_userspace_mem;
  2983. int r = 0;
  2984. mutex_lock(&kvm->slots_lock);
  2985. if (kvm->arch.ept_identity_pagetable)
  2986. goto out;
  2987. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2988. kvm_userspace_mem.flags = 0;
  2989. kvm_userspace_mem.guest_phys_addr =
  2990. kvm->arch.ept_identity_map_addr;
  2991. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2992. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2993. if (r)
  2994. goto out;
  2995. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2996. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2997. out:
  2998. mutex_unlock(&kvm->slots_lock);
  2999. return r;
  3000. }
  3001. static void allocate_vpid(struct vcpu_vmx *vmx)
  3002. {
  3003. int vpid;
  3004. vmx->vpid = 0;
  3005. if (!enable_vpid)
  3006. return;
  3007. spin_lock(&vmx_vpid_lock);
  3008. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3009. if (vpid < VMX_NR_VPIDS) {
  3010. vmx->vpid = vpid;
  3011. __set_bit(vpid, vmx_vpid_bitmap);
  3012. }
  3013. spin_unlock(&vmx_vpid_lock);
  3014. }
  3015. static void free_vpid(struct vcpu_vmx *vmx)
  3016. {
  3017. if (!enable_vpid)
  3018. return;
  3019. spin_lock(&vmx_vpid_lock);
  3020. if (vmx->vpid != 0)
  3021. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3022. spin_unlock(&vmx_vpid_lock);
  3023. }
  3024. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3025. {
  3026. int f = sizeof(unsigned long);
  3027. if (!cpu_has_vmx_msr_bitmap())
  3028. return;
  3029. /*
  3030. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3031. * have the write-low and read-high bitmap offsets the wrong way round.
  3032. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3033. */
  3034. if (msr <= 0x1fff) {
  3035. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3036. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3037. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3038. msr &= 0x1fff;
  3039. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3040. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3041. }
  3042. }
  3043. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3044. {
  3045. if (!longmode_only)
  3046. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3047. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3048. }
  3049. /*
  3050. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3051. * will not change in the lifetime of the guest.
  3052. * Note that host-state that does change is set elsewhere. E.g., host-state
  3053. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3054. */
  3055. static void vmx_set_constant_host_state(void)
  3056. {
  3057. u32 low32, high32;
  3058. unsigned long tmpl;
  3059. struct desc_ptr dt;
  3060. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3061. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3062. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3063. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3064. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3065. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3066. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3067. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3068. native_store_idt(&dt);
  3069. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3070. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3071. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3072. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3073. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3074. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3075. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3076. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3077. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3078. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3079. }
  3080. }
  3081. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3082. {
  3083. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3084. if (enable_ept)
  3085. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3086. if (is_guest_mode(&vmx->vcpu))
  3087. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3088. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3089. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3090. }
  3091. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3092. {
  3093. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3094. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3095. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3096. #ifdef CONFIG_X86_64
  3097. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3098. CPU_BASED_CR8_LOAD_EXITING;
  3099. #endif
  3100. }
  3101. if (!enable_ept)
  3102. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3103. CPU_BASED_CR3_LOAD_EXITING |
  3104. CPU_BASED_INVLPG_EXITING;
  3105. return exec_control;
  3106. }
  3107. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3108. {
  3109. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3110. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3111. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3112. if (vmx->vpid == 0)
  3113. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3114. if (!enable_ept) {
  3115. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3116. enable_unrestricted_guest = 0;
  3117. }
  3118. if (!enable_unrestricted_guest)
  3119. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3120. if (!ple_gap)
  3121. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3122. return exec_control;
  3123. }
  3124. static void ept_set_mmio_spte_mask(void)
  3125. {
  3126. /*
  3127. * EPT Misconfigurations can be generated if the value of bits 2:0
  3128. * of an EPT paging-structure entry is 110b (write/execute).
  3129. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3130. * spte.
  3131. */
  3132. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3133. }
  3134. /*
  3135. * Sets up the vmcs for emulated real mode.
  3136. */
  3137. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3138. {
  3139. #ifdef CONFIG_X86_64
  3140. unsigned long a;
  3141. #endif
  3142. int i;
  3143. /* I/O */
  3144. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3145. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3146. if (cpu_has_vmx_msr_bitmap())
  3147. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3148. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3149. /* Control */
  3150. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3151. vmcs_config.pin_based_exec_ctrl);
  3152. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3153. if (cpu_has_secondary_exec_ctrls()) {
  3154. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3155. vmx_secondary_exec_control(vmx));
  3156. }
  3157. if (ple_gap) {
  3158. vmcs_write32(PLE_GAP, ple_gap);
  3159. vmcs_write32(PLE_WINDOW, ple_window);
  3160. }
  3161. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3162. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3163. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3164. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3165. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3166. vmx_set_constant_host_state();
  3167. #ifdef CONFIG_X86_64
  3168. rdmsrl(MSR_FS_BASE, a);
  3169. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3170. rdmsrl(MSR_GS_BASE, a);
  3171. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3172. #else
  3173. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3174. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3175. #endif
  3176. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3177. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3178. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3179. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3180. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3181. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3182. u32 msr_low, msr_high;
  3183. u64 host_pat;
  3184. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3185. host_pat = msr_low | ((u64) msr_high << 32);
  3186. /* Write the default value follow host pat */
  3187. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3188. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3189. vmx->vcpu.arch.pat = host_pat;
  3190. }
  3191. for (i = 0; i < NR_VMX_MSR; ++i) {
  3192. u32 index = vmx_msr_index[i];
  3193. u32 data_low, data_high;
  3194. int j = vmx->nmsrs;
  3195. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3196. continue;
  3197. if (wrmsr_safe(index, data_low, data_high) < 0)
  3198. continue;
  3199. vmx->guest_msrs[j].index = i;
  3200. vmx->guest_msrs[j].data = 0;
  3201. vmx->guest_msrs[j].mask = -1ull;
  3202. ++vmx->nmsrs;
  3203. }
  3204. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3205. /* 22.2.1, 20.8.1 */
  3206. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3207. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3208. set_cr4_guest_host_mask(vmx);
  3209. kvm_write_tsc(&vmx->vcpu, 0);
  3210. return 0;
  3211. }
  3212. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3213. {
  3214. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3215. u64 msr;
  3216. int ret;
  3217. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3218. vmx->rmode.vm86_active = 0;
  3219. vmx->soft_vnmi_blocked = 0;
  3220. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3221. kvm_set_cr8(&vmx->vcpu, 0);
  3222. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3223. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3224. msr |= MSR_IA32_APICBASE_BSP;
  3225. kvm_set_apic_base(&vmx->vcpu, msr);
  3226. ret = fx_init(&vmx->vcpu);
  3227. if (ret != 0)
  3228. goto out;
  3229. vmx_segment_cache_clear(vmx);
  3230. seg_setup(VCPU_SREG_CS);
  3231. /*
  3232. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3233. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3234. */
  3235. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3236. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3237. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3238. } else {
  3239. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3240. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3241. }
  3242. seg_setup(VCPU_SREG_DS);
  3243. seg_setup(VCPU_SREG_ES);
  3244. seg_setup(VCPU_SREG_FS);
  3245. seg_setup(VCPU_SREG_GS);
  3246. seg_setup(VCPU_SREG_SS);
  3247. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3248. vmcs_writel(GUEST_TR_BASE, 0);
  3249. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3250. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3251. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3252. vmcs_writel(GUEST_LDTR_BASE, 0);
  3253. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3254. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3255. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3256. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3257. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3258. vmcs_writel(GUEST_RFLAGS, 0x02);
  3259. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3260. kvm_rip_write(vcpu, 0xfff0);
  3261. else
  3262. kvm_rip_write(vcpu, 0);
  3263. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3264. vmcs_writel(GUEST_DR7, 0x400);
  3265. vmcs_writel(GUEST_GDTR_BASE, 0);
  3266. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3267. vmcs_writel(GUEST_IDTR_BASE, 0);
  3268. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3269. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3270. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3271. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3272. /* Special registers */
  3273. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3274. setup_msrs(vmx);
  3275. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3276. if (cpu_has_vmx_tpr_shadow()) {
  3277. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3278. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3279. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3280. __pa(vmx->vcpu.arch.apic->regs));
  3281. vmcs_write32(TPR_THRESHOLD, 0);
  3282. }
  3283. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3284. vmcs_write64(APIC_ACCESS_ADDR,
  3285. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3286. if (vmx->vpid != 0)
  3287. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3288. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3289. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3290. vmx_set_cr4(&vmx->vcpu, 0);
  3291. vmx_set_efer(&vmx->vcpu, 0);
  3292. vmx_fpu_activate(&vmx->vcpu);
  3293. update_exception_bitmap(&vmx->vcpu);
  3294. vpid_sync_context(vmx);
  3295. ret = 0;
  3296. /* HACK: Don't enable emulation on guest boot/reset */
  3297. vmx->emulation_required = 0;
  3298. out:
  3299. return ret;
  3300. }
  3301. /*
  3302. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3303. * For most existing hypervisors, this will always return true.
  3304. */
  3305. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3306. {
  3307. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3308. PIN_BASED_EXT_INTR_MASK;
  3309. }
  3310. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3311. {
  3312. u32 cpu_based_vm_exec_control;
  3313. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
  3314. /* We can get here when nested_run_pending caused
  3315. * vmx_interrupt_allowed() to return false. In this case, do
  3316. * nothing - the interrupt will be injected later.
  3317. */
  3318. return;
  3319. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3320. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3321. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3322. }
  3323. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3324. {
  3325. u32 cpu_based_vm_exec_control;
  3326. if (!cpu_has_virtual_nmis()) {
  3327. enable_irq_window(vcpu);
  3328. return;
  3329. }
  3330. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3331. enable_irq_window(vcpu);
  3332. return;
  3333. }
  3334. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3335. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3336. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3337. }
  3338. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3339. {
  3340. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3341. uint32_t intr;
  3342. int irq = vcpu->arch.interrupt.nr;
  3343. trace_kvm_inj_virq(irq);
  3344. ++vcpu->stat.irq_injections;
  3345. if (vmx->rmode.vm86_active) {
  3346. int inc_eip = 0;
  3347. if (vcpu->arch.interrupt.soft)
  3348. inc_eip = vcpu->arch.event_exit_inst_len;
  3349. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3350. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3351. return;
  3352. }
  3353. intr = irq | INTR_INFO_VALID_MASK;
  3354. if (vcpu->arch.interrupt.soft) {
  3355. intr |= INTR_TYPE_SOFT_INTR;
  3356. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3357. vmx->vcpu.arch.event_exit_inst_len);
  3358. } else
  3359. intr |= INTR_TYPE_EXT_INTR;
  3360. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3361. vmx_clear_hlt(vcpu);
  3362. }
  3363. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3364. {
  3365. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3366. if (is_guest_mode(vcpu))
  3367. return;
  3368. if (!cpu_has_virtual_nmis()) {
  3369. /*
  3370. * Tracking the NMI-blocked state in software is built upon
  3371. * finding the next open IRQ window. This, in turn, depends on
  3372. * well-behaving guests: They have to keep IRQs disabled at
  3373. * least as long as the NMI handler runs. Otherwise we may
  3374. * cause NMI nesting, maybe breaking the guest. But as this is
  3375. * highly unlikely, we can live with the residual risk.
  3376. */
  3377. vmx->soft_vnmi_blocked = 1;
  3378. vmx->vnmi_blocked_time = 0;
  3379. }
  3380. ++vcpu->stat.nmi_injections;
  3381. vmx->nmi_known_unmasked = false;
  3382. if (vmx->rmode.vm86_active) {
  3383. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3384. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3385. return;
  3386. }
  3387. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3388. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3389. vmx_clear_hlt(vcpu);
  3390. }
  3391. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3392. {
  3393. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3394. return 0;
  3395. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3396. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3397. | GUEST_INTR_STATE_NMI));
  3398. }
  3399. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3400. {
  3401. if (!cpu_has_virtual_nmis())
  3402. return to_vmx(vcpu)->soft_vnmi_blocked;
  3403. if (to_vmx(vcpu)->nmi_known_unmasked)
  3404. return false;
  3405. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3406. }
  3407. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3408. {
  3409. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3410. if (!cpu_has_virtual_nmis()) {
  3411. if (vmx->soft_vnmi_blocked != masked) {
  3412. vmx->soft_vnmi_blocked = masked;
  3413. vmx->vnmi_blocked_time = 0;
  3414. }
  3415. } else {
  3416. vmx->nmi_known_unmasked = !masked;
  3417. if (masked)
  3418. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3419. GUEST_INTR_STATE_NMI);
  3420. else
  3421. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3422. GUEST_INTR_STATE_NMI);
  3423. }
  3424. }
  3425. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3426. {
  3427. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3428. struct vmcs12 *vmcs12;
  3429. if (to_vmx(vcpu)->nested.nested_run_pending)
  3430. return 0;
  3431. nested_vmx_vmexit(vcpu);
  3432. vmcs12 = get_vmcs12(vcpu);
  3433. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3434. vmcs12->vm_exit_intr_info = 0;
  3435. /* fall through to normal code, but now in L1, not L2 */
  3436. }
  3437. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3438. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3439. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3440. }
  3441. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3442. {
  3443. int ret;
  3444. struct kvm_userspace_memory_region tss_mem = {
  3445. .slot = TSS_PRIVATE_MEMSLOT,
  3446. .guest_phys_addr = addr,
  3447. .memory_size = PAGE_SIZE * 3,
  3448. .flags = 0,
  3449. };
  3450. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3451. if (ret)
  3452. return ret;
  3453. kvm->arch.tss_addr = addr;
  3454. if (!init_rmode_tss(kvm))
  3455. return -ENOMEM;
  3456. return 0;
  3457. }
  3458. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3459. int vec, u32 err_code)
  3460. {
  3461. /*
  3462. * Instruction with address size override prefix opcode 0x67
  3463. * Cause the #SS fault with 0 error code in VM86 mode.
  3464. */
  3465. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3466. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3467. return 1;
  3468. /*
  3469. * Forward all other exceptions that are valid in real mode.
  3470. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3471. * the required debugging infrastructure rework.
  3472. */
  3473. switch (vec) {
  3474. case DB_VECTOR:
  3475. if (vcpu->guest_debug &
  3476. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3477. return 0;
  3478. kvm_queue_exception(vcpu, vec);
  3479. return 1;
  3480. case BP_VECTOR:
  3481. /*
  3482. * Update instruction length as we may reinject the exception
  3483. * from user space while in guest debugging mode.
  3484. */
  3485. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3486. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3487. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3488. return 0;
  3489. /* fall through */
  3490. case DE_VECTOR:
  3491. case OF_VECTOR:
  3492. case BR_VECTOR:
  3493. case UD_VECTOR:
  3494. case DF_VECTOR:
  3495. case SS_VECTOR:
  3496. case GP_VECTOR:
  3497. case MF_VECTOR:
  3498. kvm_queue_exception(vcpu, vec);
  3499. return 1;
  3500. }
  3501. return 0;
  3502. }
  3503. /*
  3504. * Trigger machine check on the host. We assume all the MSRs are already set up
  3505. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3506. * We pass a fake environment to the machine check handler because we want
  3507. * the guest to be always treated like user space, no matter what context
  3508. * it used internally.
  3509. */
  3510. static void kvm_machine_check(void)
  3511. {
  3512. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3513. struct pt_regs regs = {
  3514. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3515. .flags = X86_EFLAGS_IF,
  3516. };
  3517. do_machine_check(&regs, 0);
  3518. #endif
  3519. }
  3520. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3521. {
  3522. /* already handled by vcpu_run */
  3523. return 1;
  3524. }
  3525. static int handle_exception(struct kvm_vcpu *vcpu)
  3526. {
  3527. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3528. struct kvm_run *kvm_run = vcpu->run;
  3529. u32 intr_info, ex_no, error_code;
  3530. unsigned long cr2, rip, dr6;
  3531. u32 vect_info;
  3532. enum emulation_result er;
  3533. vect_info = vmx->idt_vectoring_info;
  3534. intr_info = vmx->exit_intr_info;
  3535. if (is_machine_check(intr_info))
  3536. return handle_machine_check(vcpu);
  3537. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3538. !is_page_fault(intr_info)) {
  3539. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3540. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3541. vcpu->run->internal.ndata = 2;
  3542. vcpu->run->internal.data[0] = vect_info;
  3543. vcpu->run->internal.data[1] = intr_info;
  3544. return 0;
  3545. }
  3546. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3547. return 1; /* already handled by vmx_vcpu_run() */
  3548. if (is_no_device(intr_info)) {
  3549. vmx_fpu_activate(vcpu);
  3550. return 1;
  3551. }
  3552. if (is_invalid_opcode(intr_info)) {
  3553. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3554. if (er != EMULATE_DONE)
  3555. kvm_queue_exception(vcpu, UD_VECTOR);
  3556. return 1;
  3557. }
  3558. error_code = 0;
  3559. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3560. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3561. if (is_page_fault(intr_info)) {
  3562. /* EPT won't cause page fault directly */
  3563. if (enable_ept)
  3564. BUG();
  3565. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3566. trace_kvm_page_fault(cr2, error_code);
  3567. if (kvm_event_needs_reinjection(vcpu))
  3568. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3569. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3570. }
  3571. if (vmx->rmode.vm86_active &&
  3572. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3573. error_code)) {
  3574. if (vcpu->arch.halt_request) {
  3575. vcpu->arch.halt_request = 0;
  3576. return kvm_emulate_halt(vcpu);
  3577. }
  3578. return 1;
  3579. }
  3580. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3581. switch (ex_no) {
  3582. case DB_VECTOR:
  3583. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3584. if (!(vcpu->guest_debug &
  3585. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3586. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3587. kvm_queue_exception(vcpu, DB_VECTOR);
  3588. return 1;
  3589. }
  3590. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3591. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3592. /* fall through */
  3593. case BP_VECTOR:
  3594. /*
  3595. * Update instruction length as we may reinject #BP from
  3596. * user space while in guest debugging mode. Reading it for
  3597. * #DB as well causes no harm, it is not used in that case.
  3598. */
  3599. vmx->vcpu.arch.event_exit_inst_len =
  3600. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3601. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3602. rip = kvm_rip_read(vcpu);
  3603. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3604. kvm_run->debug.arch.exception = ex_no;
  3605. break;
  3606. default:
  3607. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3608. kvm_run->ex.exception = ex_no;
  3609. kvm_run->ex.error_code = error_code;
  3610. break;
  3611. }
  3612. return 0;
  3613. }
  3614. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3615. {
  3616. ++vcpu->stat.irq_exits;
  3617. return 1;
  3618. }
  3619. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3620. {
  3621. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3622. return 0;
  3623. }
  3624. static int handle_io(struct kvm_vcpu *vcpu)
  3625. {
  3626. unsigned long exit_qualification;
  3627. int size, in, string;
  3628. unsigned port;
  3629. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3630. string = (exit_qualification & 16) != 0;
  3631. in = (exit_qualification & 8) != 0;
  3632. ++vcpu->stat.io_exits;
  3633. if (string || in)
  3634. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3635. port = exit_qualification >> 16;
  3636. size = (exit_qualification & 7) + 1;
  3637. skip_emulated_instruction(vcpu);
  3638. return kvm_fast_pio_out(vcpu, size, port);
  3639. }
  3640. static void
  3641. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3642. {
  3643. /*
  3644. * Patch in the VMCALL instruction:
  3645. */
  3646. hypercall[0] = 0x0f;
  3647. hypercall[1] = 0x01;
  3648. hypercall[2] = 0xc1;
  3649. }
  3650. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3651. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3652. {
  3653. if (to_vmx(vcpu)->nested.vmxon &&
  3654. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3655. return 1;
  3656. if (is_guest_mode(vcpu)) {
  3657. /*
  3658. * We get here when L2 changed cr0 in a way that did not change
  3659. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3660. * but did change L0 shadowed bits. This can currently happen
  3661. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3662. * loading) while pretending to allow the guest to change it.
  3663. */
  3664. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3665. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3666. return 1;
  3667. vmcs_writel(CR0_READ_SHADOW, val);
  3668. return 0;
  3669. } else
  3670. return kvm_set_cr0(vcpu, val);
  3671. }
  3672. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3673. {
  3674. if (is_guest_mode(vcpu)) {
  3675. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3676. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3677. return 1;
  3678. vmcs_writel(CR4_READ_SHADOW, val);
  3679. return 0;
  3680. } else
  3681. return kvm_set_cr4(vcpu, val);
  3682. }
  3683. /* called to set cr0 as approriate for clts instruction exit. */
  3684. static void handle_clts(struct kvm_vcpu *vcpu)
  3685. {
  3686. if (is_guest_mode(vcpu)) {
  3687. /*
  3688. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3689. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3690. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3691. */
  3692. vmcs_writel(CR0_READ_SHADOW,
  3693. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3694. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3695. } else
  3696. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3697. }
  3698. static int handle_cr(struct kvm_vcpu *vcpu)
  3699. {
  3700. unsigned long exit_qualification, val;
  3701. int cr;
  3702. int reg;
  3703. int err;
  3704. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3705. cr = exit_qualification & 15;
  3706. reg = (exit_qualification >> 8) & 15;
  3707. switch ((exit_qualification >> 4) & 3) {
  3708. case 0: /* mov to cr */
  3709. val = kvm_register_read(vcpu, reg);
  3710. trace_kvm_cr_write(cr, val);
  3711. switch (cr) {
  3712. case 0:
  3713. err = handle_set_cr0(vcpu, val);
  3714. kvm_complete_insn_gp(vcpu, err);
  3715. return 1;
  3716. case 3:
  3717. err = kvm_set_cr3(vcpu, val);
  3718. kvm_complete_insn_gp(vcpu, err);
  3719. return 1;
  3720. case 4:
  3721. err = handle_set_cr4(vcpu, val);
  3722. kvm_complete_insn_gp(vcpu, err);
  3723. return 1;
  3724. case 8: {
  3725. u8 cr8_prev = kvm_get_cr8(vcpu);
  3726. u8 cr8 = kvm_register_read(vcpu, reg);
  3727. err = kvm_set_cr8(vcpu, cr8);
  3728. kvm_complete_insn_gp(vcpu, err);
  3729. if (irqchip_in_kernel(vcpu->kvm))
  3730. return 1;
  3731. if (cr8_prev <= cr8)
  3732. return 1;
  3733. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3734. return 0;
  3735. }
  3736. };
  3737. break;
  3738. case 2: /* clts */
  3739. handle_clts(vcpu);
  3740. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3741. skip_emulated_instruction(vcpu);
  3742. vmx_fpu_activate(vcpu);
  3743. return 1;
  3744. case 1: /*mov from cr*/
  3745. switch (cr) {
  3746. case 3:
  3747. val = kvm_read_cr3(vcpu);
  3748. kvm_register_write(vcpu, reg, val);
  3749. trace_kvm_cr_read(cr, val);
  3750. skip_emulated_instruction(vcpu);
  3751. return 1;
  3752. case 8:
  3753. val = kvm_get_cr8(vcpu);
  3754. kvm_register_write(vcpu, reg, val);
  3755. trace_kvm_cr_read(cr, val);
  3756. skip_emulated_instruction(vcpu);
  3757. return 1;
  3758. }
  3759. break;
  3760. case 3: /* lmsw */
  3761. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3762. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3763. kvm_lmsw(vcpu, val);
  3764. skip_emulated_instruction(vcpu);
  3765. return 1;
  3766. default:
  3767. break;
  3768. }
  3769. vcpu->run->exit_reason = 0;
  3770. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3771. (int)(exit_qualification >> 4) & 3, cr);
  3772. return 0;
  3773. }
  3774. static int handle_dr(struct kvm_vcpu *vcpu)
  3775. {
  3776. unsigned long exit_qualification;
  3777. int dr, reg;
  3778. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3779. if (!kvm_require_cpl(vcpu, 0))
  3780. return 1;
  3781. dr = vmcs_readl(GUEST_DR7);
  3782. if (dr & DR7_GD) {
  3783. /*
  3784. * As the vm-exit takes precedence over the debug trap, we
  3785. * need to emulate the latter, either for the host or the
  3786. * guest debugging itself.
  3787. */
  3788. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3789. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3790. vcpu->run->debug.arch.dr7 = dr;
  3791. vcpu->run->debug.arch.pc =
  3792. vmcs_readl(GUEST_CS_BASE) +
  3793. vmcs_readl(GUEST_RIP);
  3794. vcpu->run->debug.arch.exception = DB_VECTOR;
  3795. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3796. return 0;
  3797. } else {
  3798. vcpu->arch.dr7 &= ~DR7_GD;
  3799. vcpu->arch.dr6 |= DR6_BD;
  3800. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3801. kvm_queue_exception(vcpu, DB_VECTOR);
  3802. return 1;
  3803. }
  3804. }
  3805. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3806. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3807. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3808. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3809. unsigned long val;
  3810. if (!kvm_get_dr(vcpu, dr, &val))
  3811. kvm_register_write(vcpu, reg, val);
  3812. } else
  3813. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3814. skip_emulated_instruction(vcpu);
  3815. return 1;
  3816. }
  3817. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3818. {
  3819. vmcs_writel(GUEST_DR7, val);
  3820. }
  3821. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3822. {
  3823. kvm_emulate_cpuid(vcpu);
  3824. return 1;
  3825. }
  3826. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3827. {
  3828. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3829. u64 data;
  3830. if (vmx_get_msr(vcpu, ecx, &data)) {
  3831. trace_kvm_msr_read_ex(ecx);
  3832. kvm_inject_gp(vcpu, 0);
  3833. return 1;
  3834. }
  3835. trace_kvm_msr_read(ecx, data);
  3836. /* FIXME: handling of bits 32:63 of rax, rdx */
  3837. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3838. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3839. skip_emulated_instruction(vcpu);
  3840. return 1;
  3841. }
  3842. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3843. {
  3844. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3845. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3846. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3847. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3848. trace_kvm_msr_write_ex(ecx, data);
  3849. kvm_inject_gp(vcpu, 0);
  3850. return 1;
  3851. }
  3852. trace_kvm_msr_write(ecx, data);
  3853. skip_emulated_instruction(vcpu);
  3854. return 1;
  3855. }
  3856. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3857. {
  3858. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3859. return 1;
  3860. }
  3861. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3862. {
  3863. u32 cpu_based_vm_exec_control;
  3864. /* clear pending irq */
  3865. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3866. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3867. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3868. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3869. ++vcpu->stat.irq_window_exits;
  3870. /*
  3871. * If the user space waits to inject interrupts, exit as soon as
  3872. * possible
  3873. */
  3874. if (!irqchip_in_kernel(vcpu->kvm) &&
  3875. vcpu->run->request_interrupt_window &&
  3876. !kvm_cpu_has_interrupt(vcpu)) {
  3877. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3878. return 0;
  3879. }
  3880. return 1;
  3881. }
  3882. static int handle_halt(struct kvm_vcpu *vcpu)
  3883. {
  3884. skip_emulated_instruction(vcpu);
  3885. return kvm_emulate_halt(vcpu);
  3886. }
  3887. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3888. {
  3889. skip_emulated_instruction(vcpu);
  3890. kvm_emulate_hypercall(vcpu);
  3891. return 1;
  3892. }
  3893. static int handle_invd(struct kvm_vcpu *vcpu)
  3894. {
  3895. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3896. }
  3897. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3898. {
  3899. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3900. kvm_mmu_invlpg(vcpu, exit_qualification);
  3901. skip_emulated_instruction(vcpu);
  3902. return 1;
  3903. }
  3904. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3905. {
  3906. skip_emulated_instruction(vcpu);
  3907. kvm_emulate_wbinvd(vcpu);
  3908. return 1;
  3909. }
  3910. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3911. {
  3912. u64 new_bv = kvm_read_edx_eax(vcpu);
  3913. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3914. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3915. skip_emulated_instruction(vcpu);
  3916. return 1;
  3917. }
  3918. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3919. {
  3920. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3921. }
  3922. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3923. {
  3924. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3925. unsigned long exit_qualification;
  3926. bool has_error_code = false;
  3927. u32 error_code = 0;
  3928. u16 tss_selector;
  3929. int reason, type, idt_v;
  3930. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3931. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3932. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3933. reason = (u32)exit_qualification >> 30;
  3934. if (reason == TASK_SWITCH_GATE && idt_v) {
  3935. switch (type) {
  3936. case INTR_TYPE_NMI_INTR:
  3937. vcpu->arch.nmi_injected = false;
  3938. vmx_set_nmi_mask(vcpu, true);
  3939. break;
  3940. case INTR_TYPE_EXT_INTR:
  3941. case INTR_TYPE_SOFT_INTR:
  3942. kvm_clear_interrupt_queue(vcpu);
  3943. break;
  3944. case INTR_TYPE_HARD_EXCEPTION:
  3945. if (vmx->idt_vectoring_info &
  3946. VECTORING_INFO_DELIVER_CODE_MASK) {
  3947. has_error_code = true;
  3948. error_code =
  3949. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3950. }
  3951. /* fall through */
  3952. case INTR_TYPE_SOFT_EXCEPTION:
  3953. kvm_clear_exception_queue(vcpu);
  3954. break;
  3955. default:
  3956. break;
  3957. }
  3958. }
  3959. tss_selector = exit_qualification;
  3960. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3961. type != INTR_TYPE_EXT_INTR &&
  3962. type != INTR_TYPE_NMI_INTR))
  3963. skip_emulated_instruction(vcpu);
  3964. if (kvm_task_switch(vcpu, tss_selector, reason,
  3965. has_error_code, error_code) == EMULATE_FAIL) {
  3966. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3967. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3968. vcpu->run->internal.ndata = 0;
  3969. return 0;
  3970. }
  3971. /* clear all local breakpoint enable flags */
  3972. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3973. /*
  3974. * TODO: What about debug traps on tss switch?
  3975. * Are we supposed to inject them and update dr6?
  3976. */
  3977. return 1;
  3978. }
  3979. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3980. {
  3981. unsigned long exit_qualification;
  3982. gpa_t gpa;
  3983. int gla_validity;
  3984. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3985. if (exit_qualification & (1 << 6)) {
  3986. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3987. return -EINVAL;
  3988. }
  3989. gla_validity = (exit_qualification >> 7) & 0x3;
  3990. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3991. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3992. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3993. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3994. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3995. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3996. (long unsigned int)exit_qualification);
  3997. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3998. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3999. return 0;
  4000. }
  4001. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4002. trace_kvm_page_fault(gpa, exit_qualification);
  4003. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4004. }
  4005. static u64 ept_rsvd_mask(u64 spte, int level)
  4006. {
  4007. int i;
  4008. u64 mask = 0;
  4009. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4010. mask |= (1ULL << i);
  4011. if (level > 2)
  4012. /* bits 7:3 reserved */
  4013. mask |= 0xf8;
  4014. else if (level == 2) {
  4015. if (spte & (1ULL << 7))
  4016. /* 2MB ref, bits 20:12 reserved */
  4017. mask |= 0x1ff000;
  4018. else
  4019. /* bits 6:3 reserved */
  4020. mask |= 0x78;
  4021. }
  4022. return mask;
  4023. }
  4024. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4025. int level)
  4026. {
  4027. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4028. /* 010b (write-only) */
  4029. WARN_ON((spte & 0x7) == 0x2);
  4030. /* 110b (write/execute) */
  4031. WARN_ON((spte & 0x7) == 0x6);
  4032. /* 100b (execute-only) and value not supported by logical processor */
  4033. if (!cpu_has_vmx_ept_execute_only())
  4034. WARN_ON((spte & 0x7) == 0x4);
  4035. /* not 000b */
  4036. if ((spte & 0x7)) {
  4037. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4038. if (rsvd_bits != 0) {
  4039. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4040. __func__, rsvd_bits);
  4041. WARN_ON(1);
  4042. }
  4043. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4044. u64 ept_mem_type = (spte & 0x38) >> 3;
  4045. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4046. ept_mem_type == 7) {
  4047. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4048. __func__, ept_mem_type);
  4049. WARN_ON(1);
  4050. }
  4051. }
  4052. }
  4053. }
  4054. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4055. {
  4056. u64 sptes[4];
  4057. int nr_sptes, i, ret;
  4058. gpa_t gpa;
  4059. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4060. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4061. if (likely(ret == 1))
  4062. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4063. EMULATE_DONE;
  4064. if (unlikely(!ret))
  4065. return 1;
  4066. /* It is the real ept misconfig */
  4067. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4068. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4069. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4070. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4071. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4072. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4073. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4074. return 0;
  4075. }
  4076. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4077. {
  4078. u32 cpu_based_vm_exec_control;
  4079. /* clear pending NMI */
  4080. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4081. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4082. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4083. ++vcpu->stat.nmi_window_exits;
  4084. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4085. return 1;
  4086. }
  4087. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4088. {
  4089. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4090. enum emulation_result err = EMULATE_DONE;
  4091. int ret = 1;
  4092. u32 cpu_exec_ctrl;
  4093. bool intr_window_requested;
  4094. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4095. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4096. while (!guest_state_valid(vcpu)) {
  4097. if (intr_window_requested
  4098. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4099. return handle_interrupt_window(&vmx->vcpu);
  4100. err = emulate_instruction(vcpu, 0);
  4101. if (err == EMULATE_DO_MMIO) {
  4102. ret = 0;
  4103. goto out;
  4104. }
  4105. if (err != EMULATE_DONE)
  4106. return 0;
  4107. if (signal_pending(current))
  4108. goto out;
  4109. if (need_resched())
  4110. schedule();
  4111. }
  4112. vmx->emulation_required = 0;
  4113. out:
  4114. return ret;
  4115. }
  4116. /*
  4117. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4118. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4119. */
  4120. static int handle_pause(struct kvm_vcpu *vcpu)
  4121. {
  4122. skip_emulated_instruction(vcpu);
  4123. kvm_vcpu_on_spin(vcpu);
  4124. return 1;
  4125. }
  4126. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4127. {
  4128. kvm_queue_exception(vcpu, UD_VECTOR);
  4129. return 1;
  4130. }
  4131. /*
  4132. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4133. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4134. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4135. * allows keeping them loaded on the processor, and in the future will allow
  4136. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4137. * every entry if they never change.
  4138. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4139. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4140. *
  4141. * The following functions allocate and free a vmcs02 in this pool.
  4142. */
  4143. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4144. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4145. {
  4146. struct vmcs02_list *item;
  4147. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4148. if (item->vmptr == vmx->nested.current_vmptr) {
  4149. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4150. return &item->vmcs02;
  4151. }
  4152. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4153. /* Recycle the least recently used VMCS. */
  4154. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4155. struct vmcs02_list, list);
  4156. item->vmptr = vmx->nested.current_vmptr;
  4157. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4158. return &item->vmcs02;
  4159. }
  4160. /* Create a new VMCS */
  4161. item = (struct vmcs02_list *)
  4162. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4163. if (!item)
  4164. return NULL;
  4165. item->vmcs02.vmcs = alloc_vmcs();
  4166. if (!item->vmcs02.vmcs) {
  4167. kfree(item);
  4168. return NULL;
  4169. }
  4170. loaded_vmcs_init(&item->vmcs02);
  4171. item->vmptr = vmx->nested.current_vmptr;
  4172. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4173. vmx->nested.vmcs02_num++;
  4174. return &item->vmcs02;
  4175. }
  4176. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4177. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4178. {
  4179. struct vmcs02_list *item;
  4180. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4181. if (item->vmptr == vmptr) {
  4182. free_loaded_vmcs(&item->vmcs02);
  4183. list_del(&item->list);
  4184. kfree(item);
  4185. vmx->nested.vmcs02_num--;
  4186. return;
  4187. }
  4188. }
  4189. /*
  4190. * Free all VMCSs saved for this vcpu, except the one pointed by
  4191. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4192. * currently used, if running L2), and vmcs01 when running L2.
  4193. */
  4194. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4195. {
  4196. struct vmcs02_list *item, *n;
  4197. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4198. if (vmx->loaded_vmcs != &item->vmcs02)
  4199. free_loaded_vmcs(&item->vmcs02);
  4200. list_del(&item->list);
  4201. kfree(item);
  4202. }
  4203. vmx->nested.vmcs02_num = 0;
  4204. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4205. free_loaded_vmcs(&vmx->vmcs01);
  4206. }
  4207. /*
  4208. * Emulate the VMXON instruction.
  4209. * Currently, we just remember that VMX is active, and do not save or even
  4210. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4211. * do not currently need to store anything in that guest-allocated memory
  4212. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4213. * argument is different from the VMXON pointer (which the spec says they do).
  4214. */
  4215. static int handle_vmon(struct kvm_vcpu *vcpu)
  4216. {
  4217. struct kvm_segment cs;
  4218. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4219. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4220. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4221. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4222. * Otherwise, we should fail with #UD. We test these now:
  4223. */
  4224. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4225. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4226. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4227. kvm_queue_exception(vcpu, UD_VECTOR);
  4228. return 1;
  4229. }
  4230. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4231. if (is_long_mode(vcpu) && !cs.l) {
  4232. kvm_queue_exception(vcpu, UD_VECTOR);
  4233. return 1;
  4234. }
  4235. if (vmx_get_cpl(vcpu)) {
  4236. kvm_inject_gp(vcpu, 0);
  4237. return 1;
  4238. }
  4239. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4240. vmx->nested.vmcs02_num = 0;
  4241. vmx->nested.vmxon = true;
  4242. skip_emulated_instruction(vcpu);
  4243. return 1;
  4244. }
  4245. /*
  4246. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4247. * for running VMX instructions (except VMXON, whose prerequisites are
  4248. * slightly different). It also specifies what exception to inject otherwise.
  4249. */
  4250. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4251. {
  4252. struct kvm_segment cs;
  4253. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4254. if (!vmx->nested.vmxon) {
  4255. kvm_queue_exception(vcpu, UD_VECTOR);
  4256. return 0;
  4257. }
  4258. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4259. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4260. (is_long_mode(vcpu) && !cs.l)) {
  4261. kvm_queue_exception(vcpu, UD_VECTOR);
  4262. return 0;
  4263. }
  4264. if (vmx_get_cpl(vcpu)) {
  4265. kvm_inject_gp(vcpu, 0);
  4266. return 0;
  4267. }
  4268. return 1;
  4269. }
  4270. /*
  4271. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4272. * just stops using VMX.
  4273. */
  4274. static void free_nested(struct vcpu_vmx *vmx)
  4275. {
  4276. if (!vmx->nested.vmxon)
  4277. return;
  4278. vmx->nested.vmxon = false;
  4279. if (vmx->nested.current_vmptr != -1ull) {
  4280. kunmap(vmx->nested.current_vmcs12_page);
  4281. nested_release_page(vmx->nested.current_vmcs12_page);
  4282. vmx->nested.current_vmptr = -1ull;
  4283. vmx->nested.current_vmcs12 = NULL;
  4284. }
  4285. /* Unpin physical memory we referred to in current vmcs02 */
  4286. if (vmx->nested.apic_access_page) {
  4287. nested_release_page(vmx->nested.apic_access_page);
  4288. vmx->nested.apic_access_page = 0;
  4289. }
  4290. nested_free_all_saved_vmcss(vmx);
  4291. }
  4292. /* Emulate the VMXOFF instruction */
  4293. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4294. {
  4295. if (!nested_vmx_check_permission(vcpu))
  4296. return 1;
  4297. free_nested(to_vmx(vcpu));
  4298. skip_emulated_instruction(vcpu);
  4299. return 1;
  4300. }
  4301. /*
  4302. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4303. * exit caused by such an instruction (run by a guest hypervisor).
  4304. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4305. * #UD or #GP.
  4306. */
  4307. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4308. unsigned long exit_qualification,
  4309. u32 vmx_instruction_info, gva_t *ret)
  4310. {
  4311. /*
  4312. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4313. * Execution", on an exit, vmx_instruction_info holds most of the
  4314. * addressing components of the operand. Only the displacement part
  4315. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4316. * For how an actual address is calculated from all these components,
  4317. * refer to Vol. 1, "Operand Addressing".
  4318. */
  4319. int scaling = vmx_instruction_info & 3;
  4320. int addr_size = (vmx_instruction_info >> 7) & 7;
  4321. bool is_reg = vmx_instruction_info & (1u << 10);
  4322. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4323. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4324. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4325. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4326. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4327. if (is_reg) {
  4328. kvm_queue_exception(vcpu, UD_VECTOR);
  4329. return 1;
  4330. }
  4331. /* Addr = segment_base + offset */
  4332. /* offset = base + [index * scale] + displacement */
  4333. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4334. if (base_is_valid)
  4335. *ret += kvm_register_read(vcpu, base_reg);
  4336. if (index_is_valid)
  4337. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4338. *ret += exit_qualification; /* holds the displacement */
  4339. if (addr_size == 1) /* 32 bit */
  4340. *ret &= 0xffffffff;
  4341. /*
  4342. * TODO: throw #GP (and return 1) in various cases that the VM*
  4343. * instructions require it - e.g., offset beyond segment limit,
  4344. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4345. * address, and so on. Currently these are not checked.
  4346. */
  4347. return 0;
  4348. }
  4349. /*
  4350. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4351. * set the success or error code of an emulated VMX instruction, as specified
  4352. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4353. */
  4354. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4355. {
  4356. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4357. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4358. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4359. }
  4360. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4361. {
  4362. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4363. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4364. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4365. | X86_EFLAGS_CF);
  4366. }
  4367. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4368. u32 vm_instruction_error)
  4369. {
  4370. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4371. /*
  4372. * failValid writes the error number to the current VMCS, which
  4373. * can't be done there isn't a current VMCS.
  4374. */
  4375. nested_vmx_failInvalid(vcpu);
  4376. return;
  4377. }
  4378. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4379. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4380. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4381. | X86_EFLAGS_ZF);
  4382. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4383. }
  4384. /* Emulate the VMCLEAR instruction */
  4385. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4386. {
  4387. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4388. gva_t gva;
  4389. gpa_t vmptr;
  4390. struct vmcs12 *vmcs12;
  4391. struct page *page;
  4392. struct x86_exception e;
  4393. if (!nested_vmx_check_permission(vcpu))
  4394. return 1;
  4395. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4396. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4397. return 1;
  4398. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4399. sizeof(vmptr), &e)) {
  4400. kvm_inject_page_fault(vcpu, &e);
  4401. return 1;
  4402. }
  4403. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4404. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4405. skip_emulated_instruction(vcpu);
  4406. return 1;
  4407. }
  4408. if (vmptr == vmx->nested.current_vmptr) {
  4409. kunmap(vmx->nested.current_vmcs12_page);
  4410. nested_release_page(vmx->nested.current_vmcs12_page);
  4411. vmx->nested.current_vmptr = -1ull;
  4412. vmx->nested.current_vmcs12 = NULL;
  4413. }
  4414. page = nested_get_page(vcpu, vmptr);
  4415. if (page == NULL) {
  4416. /*
  4417. * For accurate processor emulation, VMCLEAR beyond available
  4418. * physical memory should do nothing at all. However, it is
  4419. * possible that a nested vmx bug, not a guest hypervisor bug,
  4420. * resulted in this case, so let's shut down before doing any
  4421. * more damage:
  4422. */
  4423. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4424. return 1;
  4425. }
  4426. vmcs12 = kmap(page);
  4427. vmcs12->launch_state = 0;
  4428. kunmap(page);
  4429. nested_release_page(page);
  4430. nested_free_vmcs02(vmx, vmptr);
  4431. skip_emulated_instruction(vcpu);
  4432. nested_vmx_succeed(vcpu);
  4433. return 1;
  4434. }
  4435. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4436. /* Emulate the VMLAUNCH instruction */
  4437. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4438. {
  4439. return nested_vmx_run(vcpu, true);
  4440. }
  4441. /* Emulate the VMRESUME instruction */
  4442. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4443. {
  4444. return nested_vmx_run(vcpu, false);
  4445. }
  4446. enum vmcs_field_type {
  4447. VMCS_FIELD_TYPE_U16 = 0,
  4448. VMCS_FIELD_TYPE_U64 = 1,
  4449. VMCS_FIELD_TYPE_U32 = 2,
  4450. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4451. };
  4452. static inline int vmcs_field_type(unsigned long field)
  4453. {
  4454. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4455. return VMCS_FIELD_TYPE_U32;
  4456. return (field >> 13) & 0x3 ;
  4457. }
  4458. static inline int vmcs_field_readonly(unsigned long field)
  4459. {
  4460. return (((field >> 10) & 0x3) == 1);
  4461. }
  4462. /*
  4463. * Read a vmcs12 field. Since these can have varying lengths and we return
  4464. * one type, we chose the biggest type (u64) and zero-extend the return value
  4465. * to that size. Note that the caller, handle_vmread, might need to use only
  4466. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4467. * 64-bit fields are to be returned).
  4468. */
  4469. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4470. unsigned long field, u64 *ret)
  4471. {
  4472. short offset = vmcs_field_to_offset(field);
  4473. char *p;
  4474. if (offset < 0)
  4475. return 0;
  4476. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4477. switch (vmcs_field_type(field)) {
  4478. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4479. *ret = *((natural_width *)p);
  4480. return 1;
  4481. case VMCS_FIELD_TYPE_U16:
  4482. *ret = *((u16 *)p);
  4483. return 1;
  4484. case VMCS_FIELD_TYPE_U32:
  4485. *ret = *((u32 *)p);
  4486. return 1;
  4487. case VMCS_FIELD_TYPE_U64:
  4488. *ret = *((u64 *)p);
  4489. return 1;
  4490. default:
  4491. return 0; /* can never happen. */
  4492. }
  4493. }
  4494. /*
  4495. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4496. * used before) all generate the same failure when it is missing.
  4497. */
  4498. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4499. {
  4500. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4501. if (vmx->nested.current_vmptr == -1ull) {
  4502. nested_vmx_failInvalid(vcpu);
  4503. skip_emulated_instruction(vcpu);
  4504. return 0;
  4505. }
  4506. return 1;
  4507. }
  4508. static int handle_vmread(struct kvm_vcpu *vcpu)
  4509. {
  4510. unsigned long field;
  4511. u64 field_value;
  4512. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4513. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4514. gva_t gva = 0;
  4515. if (!nested_vmx_check_permission(vcpu) ||
  4516. !nested_vmx_check_vmcs12(vcpu))
  4517. return 1;
  4518. /* Decode instruction info and find the field to read */
  4519. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4520. /* Read the field, zero-extended to a u64 field_value */
  4521. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4522. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4523. skip_emulated_instruction(vcpu);
  4524. return 1;
  4525. }
  4526. /*
  4527. * Now copy part of this value to register or memory, as requested.
  4528. * Note that the number of bits actually copied is 32 or 64 depending
  4529. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4530. */
  4531. if (vmx_instruction_info & (1u << 10)) {
  4532. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4533. field_value);
  4534. } else {
  4535. if (get_vmx_mem_address(vcpu, exit_qualification,
  4536. vmx_instruction_info, &gva))
  4537. return 1;
  4538. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4539. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4540. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4541. }
  4542. nested_vmx_succeed(vcpu);
  4543. skip_emulated_instruction(vcpu);
  4544. return 1;
  4545. }
  4546. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4547. {
  4548. unsigned long field;
  4549. gva_t gva;
  4550. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4551. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4552. char *p;
  4553. short offset;
  4554. /* The value to write might be 32 or 64 bits, depending on L1's long
  4555. * mode, and eventually we need to write that into a field of several
  4556. * possible lengths. The code below first zero-extends the value to 64
  4557. * bit (field_value), and then copies only the approriate number of
  4558. * bits into the vmcs12 field.
  4559. */
  4560. u64 field_value = 0;
  4561. struct x86_exception e;
  4562. if (!nested_vmx_check_permission(vcpu) ||
  4563. !nested_vmx_check_vmcs12(vcpu))
  4564. return 1;
  4565. if (vmx_instruction_info & (1u << 10))
  4566. field_value = kvm_register_read(vcpu,
  4567. (((vmx_instruction_info) >> 3) & 0xf));
  4568. else {
  4569. if (get_vmx_mem_address(vcpu, exit_qualification,
  4570. vmx_instruction_info, &gva))
  4571. return 1;
  4572. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4573. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4574. kvm_inject_page_fault(vcpu, &e);
  4575. return 1;
  4576. }
  4577. }
  4578. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4579. if (vmcs_field_readonly(field)) {
  4580. nested_vmx_failValid(vcpu,
  4581. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4582. skip_emulated_instruction(vcpu);
  4583. return 1;
  4584. }
  4585. offset = vmcs_field_to_offset(field);
  4586. if (offset < 0) {
  4587. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4588. skip_emulated_instruction(vcpu);
  4589. return 1;
  4590. }
  4591. p = ((char *) get_vmcs12(vcpu)) + offset;
  4592. switch (vmcs_field_type(field)) {
  4593. case VMCS_FIELD_TYPE_U16:
  4594. *(u16 *)p = field_value;
  4595. break;
  4596. case VMCS_FIELD_TYPE_U32:
  4597. *(u32 *)p = field_value;
  4598. break;
  4599. case VMCS_FIELD_TYPE_U64:
  4600. *(u64 *)p = field_value;
  4601. break;
  4602. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4603. *(natural_width *)p = field_value;
  4604. break;
  4605. default:
  4606. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4607. skip_emulated_instruction(vcpu);
  4608. return 1;
  4609. }
  4610. nested_vmx_succeed(vcpu);
  4611. skip_emulated_instruction(vcpu);
  4612. return 1;
  4613. }
  4614. /* Emulate the VMPTRLD instruction */
  4615. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4616. {
  4617. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4618. gva_t gva;
  4619. gpa_t vmptr;
  4620. struct x86_exception e;
  4621. if (!nested_vmx_check_permission(vcpu))
  4622. return 1;
  4623. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4624. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4625. return 1;
  4626. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4627. sizeof(vmptr), &e)) {
  4628. kvm_inject_page_fault(vcpu, &e);
  4629. return 1;
  4630. }
  4631. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4632. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4633. skip_emulated_instruction(vcpu);
  4634. return 1;
  4635. }
  4636. if (vmx->nested.current_vmptr != vmptr) {
  4637. struct vmcs12 *new_vmcs12;
  4638. struct page *page;
  4639. page = nested_get_page(vcpu, vmptr);
  4640. if (page == NULL) {
  4641. nested_vmx_failInvalid(vcpu);
  4642. skip_emulated_instruction(vcpu);
  4643. return 1;
  4644. }
  4645. new_vmcs12 = kmap(page);
  4646. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4647. kunmap(page);
  4648. nested_release_page_clean(page);
  4649. nested_vmx_failValid(vcpu,
  4650. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4651. skip_emulated_instruction(vcpu);
  4652. return 1;
  4653. }
  4654. if (vmx->nested.current_vmptr != -1ull) {
  4655. kunmap(vmx->nested.current_vmcs12_page);
  4656. nested_release_page(vmx->nested.current_vmcs12_page);
  4657. }
  4658. vmx->nested.current_vmptr = vmptr;
  4659. vmx->nested.current_vmcs12 = new_vmcs12;
  4660. vmx->nested.current_vmcs12_page = page;
  4661. }
  4662. nested_vmx_succeed(vcpu);
  4663. skip_emulated_instruction(vcpu);
  4664. return 1;
  4665. }
  4666. /* Emulate the VMPTRST instruction */
  4667. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4668. {
  4669. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4670. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4671. gva_t vmcs_gva;
  4672. struct x86_exception e;
  4673. if (!nested_vmx_check_permission(vcpu))
  4674. return 1;
  4675. if (get_vmx_mem_address(vcpu, exit_qualification,
  4676. vmx_instruction_info, &vmcs_gva))
  4677. return 1;
  4678. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4679. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4680. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4681. sizeof(u64), &e)) {
  4682. kvm_inject_page_fault(vcpu, &e);
  4683. return 1;
  4684. }
  4685. nested_vmx_succeed(vcpu);
  4686. skip_emulated_instruction(vcpu);
  4687. return 1;
  4688. }
  4689. /*
  4690. * The exit handlers return 1 if the exit was handled fully and guest execution
  4691. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4692. * to be done to userspace and return 0.
  4693. */
  4694. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4695. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4696. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4697. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4698. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4699. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4700. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4701. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4702. [EXIT_REASON_CPUID] = handle_cpuid,
  4703. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4704. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4705. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4706. [EXIT_REASON_HLT] = handle_halt,
  4707. [EXIT_REASON_INVD] = handle_invd,
  4708. [EXIT_REASON_INVLPG] = handle_invlpg,
  4709. [EXIT_REASON_VMCALL] = handle_vmcall,
  4710. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4711. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4712. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4713. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4714. [EXIT_REASON_VMREAD] = handle_vmread,
  4715. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4716. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4717. [EXIT_REASON_VMOFF] = handle_vmoff,
  4718. [EXIT_REASON_VMON] = handle_vmon,
  4719. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4720. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4721. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4722. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4723. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4724. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4725. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4726. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4727. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4728. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4729. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4730. };
  4731. static const int kvm_vmx_max_exit_handlers =
  4732. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4733. /*
  4734. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4735. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4736. * disinterest in the current event (read or write a specific MSR) by using an
  4737. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4738. */
  4739. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4740. struct vmcs12 *vmcs12, u32 exit_reason)
  4741. {
  4742. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4743. gpa_t bitmap;
  4744. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4745. return 1;
  4746. /*
  4747. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4748. * for the four combinations of read/write and low/high MSR numbers.
  4749. * First we need to figure out which of the four to use:
  4750. */
  4751. bitmap = vmcs12->msr_bitmap;
  4752. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4753. bitmap += 2048;
  4754. if (msr_index >= 0xc0000000) {
  4755. msr_index -= 0xc0000000;
  4756. bitmap += 1024;
  4757. }
  4758. /* Then read the msr_index'th bit from this bitmap: */
  4759. if (msr_index < 1024*8) {
  4760. unsigned char b;
  4761. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4762. return 1 & (b >> (msr_index & 7));
  4763. } else
  4764. return 1; /* let L1 handle the wrong parameter */
  4765. }
  4766. /*
  4767. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4768. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4769. * intercept (via guest_host_mask etc.) the current event.
  4770. */
  4771. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4772. struct vmcs12 *vmcs12)
  4773. {
  4774. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4775. int cr = exit_qualification & 15;
  4776. int reg = (exit_qualification >> 8) & 15;
  4777. unsigned long val = kvm_register_read(vcpu, reg);
  4778. switch ((exit_qualification >> 4) & 3) {
  4779. case 0: /* mov to cr */
  4780. switch (cr) {
  4781. case 0:
  4782. if (vmcs12->cr0_guest_host_mask &
  4783. (val ^ vmcs12->cr0_read_shadow))
  4784. return 1;
  4785. break;
  4786. case 3:
  4787. if ((vmcs12->cr3_target_count >= 1 &&
  4788. vmcs12->cr3_target_value0 == val) ||
  4789. (vmcs12->cr3_target_count >= 2 &&
  4790. vmcs12->cr3_target_value1 == val) ||
  4791. (vmcs12->cr3_target_count >= 3 &&
  4792. vmcs12->cr3_target_value2 == val) ||
  4793. (vmcs12->cr3_target_count >= 4 &&
  4794. vmcs12->cr3_target_value3 == val))
  4795. return 0;
  4796. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4797. return 1;
  4798. break;
  4799. case 4:
  4800. if (vmcs12->cr4_guest_host_mask &
  4801. (vmcs12->cr4_read_shadow ^ val))
  4802. return 1;
  4803. break;
  4804. case 8:
  4805. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4806. return 1;
  4807. break;
  4808. }
  4809. break;
  4810. case 2: /* clts */
  4811. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4812. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4813. return 1;
  4814. break;
  4815. case 1: /* mov from cr */
  4816. switch (cr) {
  4817. case 3:
  4818. if (vmcs12->cpu_based_vm_exec_control &
  4819. CPU_BASED_CR3_STORE_EXITING)
  4820. return 1;
  4821. break;
  4822. case 8:
  4823. if (vmcs12->cpu_based_vm_exec_control &
  4824. CPU_BASED_CR8_STORE_EXITING)
  4825. return 1;
  4826. break;
  4827. }
  4828. break;
  4829. case 3: /* lmsw */
  4830. /*
  4831. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4832. * cr0. Other attempted changes are ignored, with no exit.
  4833. */
  4834. if (vmcs12->cr0_guest_host_mask & 0xe &
  4835. (val ^ vmcs12->cr0_read_shadow))
  4836. return 1;
  4837. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  4838. !(vmcs12->cr0_read_shadow & 0x1) &&
  4839. (val & 0x1))
  4840. return 1;
  4841. break;
  4842. }
  4843. return 0;
  4844. }
  4845. /*
  4846. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  4847. * should handle it ourselves in L0 (and then continue L2). Only call this
  4848. * when in is_guest_mode (L2).
  4849. */
  4850. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  4851. {
  4852. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  4853. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4854. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4855. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4856. if (vmx->nested.nested_run_pending)
  4857. return 0;
  4858. if (unlikely(vmx->fail)) {
  4859. printk(KERN_INFO "%s failed vm entry %x\n",
  4860. __func__, vmcs_read32(VM_INSTRUCTION_ERROR));
  4861. return 1;
  4862. }
  4863. switch (exit_reason) {
  4864. case EXIT_REASON_EXCEPTION_NMI:
  4865. if (!is_exception(intr_info))
  4866. return 0;
  4867. else if (is_page_fault(intr_info))
  4868. return enable_ept;
  4869. return vmcs12->exception_bitmap &
  4870. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  4871. case EXIT_REASON_EXTERNAL_INTERRUPT:
  4872. return 0;
  4873. case EXIT_REASON_TRIPLE_FAULT:
  4874. return 1;
  4875. case EXIT_REASON_PENDING_INTERRUPT:
  4876. case EXIT_REASON_NMI_WINDOW:
  4877. /*
  4878. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  4879. * (aka Interrupt Window Exiting) only when L1 turned it on,
  4880. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  4881. * Same for NMI Window Exiting.
  4882. */
  4883. return 1;
  4884. case EXIT_REASON_TASK_SWITCH:
  4885. return 1;
  4886. case EXIT_REASON_CPUID:
  4887. return 1;
  4888. case EXIT_REASON_HLT:
  4889. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  4890. case EXIT_REASON_INVD:
  4891. return 1;
  4892. case EXIT_REASON_INVLPG:
  4893. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  4894. case EXIT_REASON_RDPMC:
  4895. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  4896. case EXIT_REASON_RDTSC:
  4897. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  4898. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  4899. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  4900. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  4901. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  4902. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  4903. /*
  4904. * VMX instructions trap unconditionally. This allows L1 to
  4905. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  4906. */
  4907. return 1;
  4908. case EXIT_REASON_CR_ACCESS:
  4909. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  4910. case EXIT_REASON_DR_ACCESS:
  4911. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  4912. case EXIT_REASON_IO_INSTRUCTION:
  4913. /* TODO: support IO bitmaps */
  4914. return 1;
  4915. case EXIT_REASON_MSR_READ:
  4916. case EXIT_REASON_MSR_WRITE:
  4917. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  4918. case EXIT_REASON_INVALID_STATE:
  4919. return 1;
  4920. case EXIT_REASON_MWAIT_INSTRUCTION:
  4921. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  4922. case EXIT_REASON_MONITOR_INSTRUCTION:
  4923. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  4924. case EXIT_REASON_PAUSE_INSTRUCTION:
  4925. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  4926. nested_cpu_has2(vmcs12,
  4927. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  4928. case EXIT_REASON_MCE_DURING_VMENTRY:
  4929. return 0;
  4930. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  4931. return 1;
  4932. case EXIT_REASON_APIC_ACCESS:
  4933. return nested_cpu_has2(vmcs12,
  4934. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  4935. case EXIT_REASON_EPT_VIOLATION:
  4936. case EXIT_REASON_EPT_MISCONFIG:
  4937. return 0;
  4938. case EXIT_REASON_WBINVD:
  4939. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  4940. case EXIT_REASON_XSETBV:
  4941. return 1;
  4942. default:
  4943. return 1;
  4944. }
  4945. }
  4946. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  4947. {
  4948. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  4949. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  4950. }
  4951. /*
  4952. * The guest has exited. See if we can fix it or if we need userspace
  4953. * assistance.
  4954. */
  4955. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  4956. {
  4957. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4958. u32 exit_reason = vmx->exit_reason;
  4959. u32 vectoring_info = vmx->idt_vectoring_info;
  4960. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  4961. /* If guest state is invalid, start emulating */
  4962. if (vmx->emulation_required && emulate_invalid_guest_state)
  4963. return handle_invalid_guest_state(vcpu);
  4964. /*
  4965. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  4966. * we did not inject a still-pending event to L1 now because of
  4967. * nested_run_pending, we need to re-enable this bit.
  4968. */
  4969. if (vmx->nested.nested_run_pending)
  4970. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4971. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  4972. exit_reason == EXIT_REASON_VMRESUME))
  4973. vmx->nested.nested_run_pending = 1;
  4974. else
  4975. vmx->nested.nested_run_pending = 0;
  4976. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  4977. nested_vmx_vmexit(vcpu);
  4978. return 1;
  4979. }
  4980. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  4981. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4982. vcpu->run->fail_entry.hardware_entry_failure_reason
  4983. = exit_reason;
  4984. return 0;
  4985. }
  4986. if (unlikely(vmx->fail)) {
  4987. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4988. vcpu->run->fail_entry.hardware_entry_failure_reason
  4989. = vmcs_read32(VM_INSTRUCTION_ERROR);
  4990. return 0;
  4991. }
  4992. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  4993. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  4994. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  4995. exit_reason != EXIT_REASON_TASK_SWITCH))
  4996. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  4997. "(0x%x) and exit reason is 0x%x\n",
  4998. __func__, vectoring_info, exit_reason);
  4999. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5000. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5001. get_vmcs12(vcpu), vcpu)))) {
  5002. if (vmx_interrupt_allowed(vcpu)) {
  5003. vmx->soft_vnmi_blocked = 0;
  5004. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5005. vcpu->arch.nmi_pending) {
  5006. /*
  5007. * This CPU don't support us in finding the end of an
  5008. * NMI-blocked window if the guest runs with IRQs
  5009. * disabled. So we pull the trigger after 1 s of
  5010. * futile waiting, but inform the user about this.
  5011. */
  5012. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5013. "state on VCPU %d after 1 s timeout\n",
  5014. __func__, vcpu->vcpu_id);
  5015. vmx->soft_vnmi_blocked = 0;
  5016. }
  5017. }
  5018. if (exit_reason < kvm_vmx_max_exit_handlers
  5019. && kvm_vmx_exit_handlers[exit_reason])
  5020. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5021. else {
  5022. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5023. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5024. }
  5025. return 0;
  5026. }
  5027. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5028. {
  5029. if (irr == -1 || tpr < irr) {
  5030. vmcs_write32(TPR_THRESHOLD, 0);
  5031. return;
  5032. }
  5033. vmcs_write32(TPR_THRESHOLD, irr);
  5034. }
  5035. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5036. {
  5037. u32 exit_intr_info;
  5038. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5039. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5040. return;
  5041. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5042. exit_intr_info = vmx->exit_intr_info;
  5043. /* Handle machine checks before interrupts are enabled */
  5044. if (is_machine_check(exit_intr_info))
  5045. kvm_machine_check();
  5046. /* We need to handle NMIs before interrupts are enabled */
  5047. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5048. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5049. kvm_before_handle_nmi(&vmx->vcpu);
  5050. asm("int $2");
  5051. kvm_after_handle_nmi(&vmx->vcpu);
  5052. }
  5053. }
  5054. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5055. {
  5056. u32 exit_intr_info;
  5057. bool unblock_nmi;
  5058. u8 vector;
  5059. bool idtv_info_valid;
  5060. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5061. if (cpu_has_virtual_nmis()) {
  5062. if (vmx->nmi_known_unmasked)
  5063. return;
  5064. /*
  5065. * Can't use vmx->exit_intr_info since we're not sure what
  5066. * the exit reason is.
  5067. */
  5068. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5069. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5070. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5071. /*
  5072. * SDM 3: 27.7.1.2 (September 2008)
  5073. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5074. * a guest IRET fault.
  5075. * SDM 3: 23.2.2 (September 2008)
  5076. * Bit 12 is undefined in any of the following cases:
  5077. * If the VM exit sets the valid bit in the IDT-vectoring
  5078. * information field.
  5079. * If the VM exit is due to a double fault.
  5080. */
  5081. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5082. vector != DF_VECTOR && !idtv_info_valid)
  5083. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5084. GUEST_INTR_STATE_NMI);
  5085. else
  5086. vmx->nmi_known_unmasked =
  5087. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5088. & GUEST_INTR_STATE_NMI);
  5089. } else if (unlikely(vmx->soft_vnmi_blocked))
  5090. vmx->vnmi_blocked_time +=
  5091. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5092. }
  5093. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5094. u32 idt_vectoring_info,
  5095. int instr_len_field,
  5096. int error_code_field)
  5097. {
  5098. u8 vector;
  5099. int type;
  5100. bool idtv_info_valid;
  5101. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5102. vmx->vcpu.arch.nmi_injected = false;
  5103. kvm_clear_exception_queue(&vmx->vcpu);
  5104. kvm_clear_interrupt_queue(&vmx->vcpu);
  5105. if (!idtv_info_valid)
  5106. return;
  5107. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5108. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5109. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5110. switch (type) {
  5111. case INTR_TYPE_NMI_INTR:
  5112. vmx->vcpu.arch.nmi_injected = true;
  5113. /*
  5114. * SDM 3: 27.7.1.2 (September 2008)
  5115. * Clear bit "block by NMI" before VM entry if a NMI
  5116. * delivery faulted.
  5117. */
  5118. vmx_set_nmi_mask(&vmx->vcpu, false);
  5119. break;
  5120. case INTR_TYPE_SOFT_EXCEPTION:
  5121. vmx->vcpu.arch.event_exit_inst_len =
  5122. vmcs_read32(instr_len_field);
  5123. /* fall through */
  5124. case INTR_TYPE_HARD_EXCEPTION:
  5125. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5126. u32 err = vmcs_read32(error_code_field);
  5127. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5128. } else
  5129. kvm_queue_exception(&vmx->vcpu, vector);
  5130. break;
  5131. case INTR_TYPE_SOFT_INTR:
  5132. vmx->vcpu.arch.event_exit_inst_len =
  5133. vmcs_read32(instr_len_field);
  5134. /* fall through */
  5135. case INTR_TYPE_EXT_INTR:
  5136. kvm_queue_interrupt(&vmx->vcpu, vector,
  5137. type == INTR_TYPE_SOFT_INTR);
  5138. break;
  5139. default:
  5140. break;
  5141. }
  5142. }
  5143. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5144. {
  5145. if (is_guest_mode(&vmx->vcpu))
  5146. return;
  5147. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5148. VM_EXIT_INSTRUCTION_LEN,
  5149. IDT_VECTORING_ERROR_CODE);
  5150. }
  5151. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5152. {
  5153. if (is_guest_mode(vcpu))
  5154. return;
  5155. __vmx_complete_interrupts(to_vmx(vcpu),
  5156. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5157. VM_ENTRY_INSTRUCTION_LEN,
  5158. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5159. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5160. }
  5161. #ifdef CONFIG_X86_64
  5162. #define R "r"
  5163. #define Q "q"
  5164. #else
  5165. #define R "e"
  5166. #define Q "l"
  5167. #endif
  5168. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5169. {
  5170. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5171. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5172. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5173. if (vmcs12->idt_vectoring_info_field &
  5174. VECTORING_INFO_VALID_MASK) {
  5175. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5176. vmcs12->idt_vectoring_info_field);
  5177. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5178. vmcs12->vm_exit_instruction_len);
  5179. if (vmcs12->idt_vectoring_info_field &
  5180. VECTORING_INFO_DELIVER_CODE_MASK)
  5181. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5182. vmcs12->idt_vectoring_error_code);
  5183. }
  5184. }
  5185. /* Record the guest's net vcpu time for enforced NMI injections. */
  5186. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5187. vmx->entry_time = ktime_get();
  5188. /* Don't enter VMX if guest state is invalid, let the exit handler
  5189. start emulation until we arrive back to a valid state */
  5190. if (vmx->emulation_required && emulate_invalid_guest_state)
  5191. return;
  5192. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5193. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5194. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5195. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5196. /* When single-stepping over STI and MOV SS, we must clear the
  5197. * corresponding interruptibility bits in the guest state. Otherwise
  5198. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5199. * exceptions being set, but that's not correct for the guest debugging
  5200. * case. */
  5201. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5202. vmx_set_interrupt_shadow(vcpu, 0);
  5203. vmx->__launched = vmx->loaded_vmcs->launched;
  5204. asm(
  5205. /* Store host registers */
  5206. "push %%"R"dx; push %%"R"bp;"
  5207. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5208. "push %%"R"cx \n\t"
  5209. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5210. "je 1f \n\t"
  5211. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5212. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5213. "1: \n\t"
  5214. /* Reload cr2 if changed */
  5215. "mov %c[cr2](%0), %%"R"ax \n\t"
  5216. "mov %%cr2, %%"R"dx \n\t"
  5217. "cmp %%"R"ax, %%"R"dx \n\t"
  5218. "je 2f \n\t"
  5219. "mov %%"R"ax, %%cr2 \n\t"
  5220. "2: \n\t"
  5221. /* Check if vmlaunch of vmresume is needed */
  5222. "cmpl $0, %c[launched](%0) \n\t"
  5223. /* Load guest registers. Don't clobber flags. */
  5224. "mov %c[rax](%0), %%"R"ax \n\t"
  5225. "mov %c[rbx](%0), %%"R"bx \n\t"
  5226. "mov %c[rdx](%0), %%"R"dx \n\t"
  5227. "mov %c[rsi](%0), %%"R"si \n\t"
  5228. "mov %c[rdi](%0), %%"R"di \n\t"
  5229. "mov %c[rbp](%0), %%"R"bp \n\t"
  5230. #ifdef CONFIG_X86_64
  5231. "mov %c[r8](%0), %%r8 \n\t"
  5232. "mov %c[r9](%0), %%r9 \n\t"
  5233. "mov %c[r10](%0), %%r10 \n\t"
  5234. "mov %c[r11](%0), %%r11 \n\t"
  5235. "mov %c[r12](%0), %%r12 \n\t"
  5236. "mov %c[r13](%0), %%r13 \n\t"
  5237. "mov %c[r14](%0), %%r14 \n\t"
  5238. "mov %c[r15](%0), %%r15 \n\t"
  5239. #endif
  5240. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5241. /* Enter guest mode */
  5242. "jne .Llaunched \n\t"
  5243. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5244. "jmp .Lkvm_vmx_return \n\t"
  5245. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5246. ".Lkvm_vmx_return: "
  5247. /* Save guest registers, load host registers, keep flags */
  5248. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5249. "pop %0 \n\t"
  5250. "mov %%"R"ax, %c[rax](%0) \n\t"
  5251. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5252. "pop"Q" %c[rcx](%0) \n\t"
  5253. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5254. "mov %%"R"si, %c[rsi](%0) \n\t"
  5255. "mov %%"R"di, %c[rdi](%0) \n\t"
  5256. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5257. #ifdef CONFIG_X86_64
  5258. "mov %%r8, %c[r8](%0) \n\t"
  5259. "mov %%r9, %c[r9](%0) \n\t"
  5260. "mov %%r10, %c[r10](%0) \n\t"
  5261. "mov %%r11, %c[r11](%0) \n\t"
  5262. "mov %%r12, %c[r12](%0) \n\t"
  5263. "mov %%r13, %c[r13](%0) \n\t"
  5264. "mov %%r14, %c[r14](%0) \n\t"
  5265. "mov %%r15, %c[r15](%0) \n\t"
  5266. #endif
  5267. "mov %%cr2, %%"R"ax \n\t"
  5268. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5269. "pop %%"R"bp; pop %%"R"dx \n\t"
  5270. "setbe %c[fail](%0) \n\t"
  5271. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5272. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5273. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5274. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5275. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5276. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5277. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5278. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5279. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5280. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5281. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5282. #ifdef CONFIG_X86_64
  5283. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5284. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5285. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5286. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5287. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5288. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5289. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5290. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5291. #endif
  5292. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5293. [wordsize]"i"(sizeof(ulong))
  5294. : "cc", "memory"
  5295. , R"ax", R"bx", R"di", R"si"
  5296. #ifdef CONFIG_X86_64
  5297. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5298. #endif
  5299. );
  5300. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5301. | (1 << VCPU_EXREG_RFLAGS)
  5302. | (1 << VCPU_EXREG_CPL)
  5303. | (1 << VCPU_EXREG_PDPTR)
  5304. | (1 << VCPU_EXREG_SEGMENTS)
  5305. | (1 << VCPU_EXREG_CR3));
  5306. vcpu->arch.regs_dirty = 0;
  5307. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5308. if (is_guest_mode(vcpu)) {
  5309. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5310. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5311. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5312. vmcs12->idt_vectoring_error_code =
  5313. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5314. vmcs12->vm_exit_instruction_len =
  5315. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5316. }
  5317. }
  5318. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  5319. vmx->loaded_vmcs->launched = 1;
  5320. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5321. vmx_complete_atomic_exit(vmx);
  5322. vmx_recover_nmi_blocking(vmx);
  5323. vmx_complete_interrupts(vmx);
  5324. }
  5325. #undef R
  5326. #undef Q
  5327. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5328. {
  5329. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5330. free_vpid(vmx);
  5331. free_nested(vmx);
  5332. free_loaded_vmcs(vmx->loaded_vmcs);
  5333. kfree(vmx->guest_msrs);
  5334. kvm_vcpu_uninit(vcpu);
  5335. kmem_cache_free(kvm_vcpu_cache, vmx);
  5336. }
  5337. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5338. {
  5339. int err;
  5340. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5341. int cpu;
  5342. if (!vmx)
  5343. return ERR_PTR(-ENOMEM);
  5344. allocate_vpid(vmx);
  5345. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5346. if (err)
  5347. goto free_vcpu;
  5348. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5349. err = -ENOMEM;
  5350. if (!vmx->guest_msrs) {
  5351. goto uninit_vcpu;
  5352. }
  5353. vmx->loaded_vmcs = &vmx->vmcs01;
  5354. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5355. if (!vmx->loaded_vmcs->vmcs)
  5356. goto free_msrs;
  5357. if (!vmm_exclusive)
  5358. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5359. loaded_vmcs_init(vmx->loaded_vmcs);
  5360. if (!vmm_exclusive)
  5361. kvm_cpu_vmxoff();
  5362. cpu = get_cpu();
  5363. vmx_vcpu_load(&vmx->vcpu, cpu);
  5364. vmx->vcpu.cpu = cpu;
  5365. err = vmx_vcpu_setup(vmx);
  5366. vmx_vcpu_put(&vmx->vcpu);
  5367. put_cpu();
  5368. if (err)
  5369. goto free_vmcs;
  5370. if (vm_need_virtualize_apic_accesses(kvm))
  5371. err = alloc_apic_access_page(kvm);
  5372. if (err)
  5373. goto free_vmcs;
  5374. if (enable_ept) {
  5375. if (!kvm->arch.ept_identity_map_addr)
  5376. kvm->arch.ept_identity_map_addr =
  5377. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5378. err = -ENOMEM;
  5379. if (alloc_identity_pagetable(kvm) != 0)
  5380. goto free_vmcs;
  5381. if (!init_rmode_identity_map(kvm))
  5382. goto free_vmcs;
  5383. }
  5384. vmx->nested.current_vmptr = -1ull;
  5385. vmx->nested.current_vmcs12 = NULL;
  5386. return &vmx->vcpu;
  5387. free_vmcs:
  5388. free_vmcs(vmx->loaded_vmcs->vmcs);
  5389. free_msrs:
  5390. kfree(vmx->guest_msrs);
  5391. uninit_vcpu:
  5392. kvm_vcpu_uninit(&vmx->vcpu);
  5393. free_vcpu:
  5394. free_vpid(vmx);
  5395. kmem_cache_free(kvm_vcpu_cache, vmx);
  5396. return ERR_PTR(err);
  5397. }
  5398. static void __init vmx_check_processor_compat(void *rtn)
  5399. {
  5400. struct vmcs_config vmcs_conf;
  5401. *(int *)rtn = 0;
  5402. if (setup_vmcs_config(&vmcs_conf) < 0)
  5403. *(int *)rtn = -EIO;
  5404. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5405. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5406. smp_processor_id());
  5407. *(int *)rtn = -EIO;
  5408. }
  5409. }
  5410. static int get_ept_level(void)
  5411. {
  5412. return VMX_EPT_DEFAULT_GAW + 1;
  5413. }
  5414. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5415. {
  5416. u64 ret;
  5417. /* For VT-d and EPT combination
  5418. * 1. MMIO: always map as UC
  5419. * 2. EPT with VT-d:
  5420. * a. VT-d without snooping control feature: can't guarantee the
  5421. * result, try to trust guest.
  5422. * b. VT-d with snooping control feature: snooping control feature of
  5423. * VT-d engine can guarantee the cache correctness. Just set it
  5424. * to WB to keep consistent with host. So the same as item 3.
  5425. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5426. * consistent with host MTRR
  5427. */
  5428. if (is_mmio)
  5429. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5430. else if (vcpu->kvm->arch.iommu_domain &&
  5431. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5432. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5433. VMX_EPT_MT_EPTE_SHIFT;
  5434. else
  5435. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5436. | VMX_EPT_IPAT_BIT;
  5437. return ret;
  5438. }
  5439. #define _ER(x) { EXIT_REASON_##x, #x }
  5440. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  5441. _ER(EXCEPTION_NMI),
  5442. _ER(EXTERNAL_INTERRUPT),
  5443. _ER(TRIPLE_FAULT),
  5444. _ER(PENDING_INTERRUPT),
  5445. _ER(NMI_WINDOW),
  5446. _ER(TASK_SWITCH),
  5447. _ER(CPUID),
  5448. _ER(HLT),
  5449. _ER(INVLPG),
  5450. _ER(RDPMC),
  5451. _ER(RDTSC),
  5452. _ER(VMCALL),
  5453. _ER(VMCLEAR),
  5454. _ER(VMLAUNCH),
  5455. _ER(VMPTRLD),
  5456. _ER(VMPTRST),
  5457. _ER(VMREAD),
  5458. _ER(VMRESUME),
  5459. _ER(VMWRITE),
  5460. _ER(VMOFF),
  5461. _ER(VMON),
  5462. _ER(CR_ACCESS),
  5463. _ER(DR_ACCESS),
  5464. _ER(IO_INSTRUCTION),
  5465. _ER(MSR_READ),
  5466. _ER(MSR_WRITE),
  5467. _ER(MWAIT_INSTRUCTION),
  5468. _ER(MONITOR_INSTRUCTION),
  5469. _ER(PAUSE_INSTRUCTION),
  5470. _ER(MCE_DURING_VMENTRY),
  5471. _ER(TPR_BELOW_THRESHOLD),
  5472. _ER(APIC_ACCESS),
  5473. _ER(EPT_VIOLATION),
  5474. _ER(EPT_MISCONFIG),
  5475. _ER(WBINVD),
  5476. { -1, NULL }
  5477. };
  5478. #undef _ER
  5479. static int vmx_get_lpage_level(void)
  5480. {
  5481. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5482. return PT_DIRECTORY_LEVEL;
  5483. else
  5484. /* For shadow and EPT supported 1GB page */
  5485. return PT_PDPE_LEVEL;
  5486. }
  5487. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5488. {
  5489. struct kvm_cpuid_entry2 *best;
  5490. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5491. u32 exec_control;
  5492. vmx->rdtscp_enabled = false;
  5493. if (vmx_rdtscp_supported()) {
  5494. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5495. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5496. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5497. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5498. vmx->rdtscp_enabled = true;
  5499. else {
  5500. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5501. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5502. exec_control);
  5503. }
  5504. }
  5505. }
  5506. }
  5507. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5508. {
  5509. if (func == 1 && nested)
  5510. entry->ecx |= bit(X86_FEATURE_VMX);
  5511. }
  5512. /*
  5513. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5514. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5515. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5516. * guest in a way that will both be appropriate to L1's requests, and our
  5517. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5518. * function also has additional necessary side-effects, like setting various
  5519. * vcpu->arch fields.
  5520. */
  5521. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5522. {
  5523. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5524. u32 exec_control;
  5525. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5526. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5527. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5528. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5529. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5530. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5531. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5532. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5533. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5534. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5535. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5536. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5537. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5538. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5539. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5540. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5541. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5542. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5543. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5544. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5545. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5546. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5547. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5548. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5549. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5550. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5551. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5552. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5553. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5554. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5555. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5556. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5557. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5558. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5559. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5560. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5561. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5562. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5563. vmcs12->vm_entry_intr_info_field);
  5564. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5565. vmcs12->vm_entry_exception_error_code);
  5566. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5567. vmcs12->vm_entry_instruction_len);
  5568. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5569. vmcs12->guest_interruptibility_info);
  5570. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5571. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5572. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5573. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5574. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5575. vmcs12->guest_pending_dbg_exceptions);
  5576. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5577. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5578. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5579. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5580. (vmcs_config.pin_based_exec_ctrl |
  5581. vmcs12->pin_based_vm_exec_control));
  5582. /*
  5583. * Whether page-faults are trapped is determined by a combination of
  5584. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5585. * If enable_ept, L0 doesn't care about page faults and we should
  5586. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5587. * care about (at least some) page faults, and because it is not easy
  5588. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5589. * to exit on each and every L2 page fault. This is done by setting
  5590. * MASK=MATCH=0 and (see below) EB.PF=1.
  5591. * Note that below we don't need special code to set EB.PF beyond the
  5592. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5593. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5594. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5595. *
  5596. * A problem with this approach (when !enable_ept) is that L1 may be
  5597. * injected with more page faults than it asked for. This could have
  5598. * caused problems, but in practice existing hypervisors don't care.
  5599. * To fix this, we will need to emulate the PFEC checking (on the L1
  5600. * page tables), using walk_addr(), when injecting PFs to L1.
  5601. */
  5602. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5603. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5604. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5605. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5606. if (cpu_has_secondary_exec_ctrls()) {
  5607. u32 exec_control = vmx_secondary_exec_control(vmx);
  5608. if (!vmx->rdtscp_enabled)
  5609. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5610. /* Take the following fields only from vmcs12 */
  5611. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5612. if (nested_cpu_has(vmcs12,
  5613. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5614. exec_control |= vmcs12->secondary_vm_exec_control;
  5615. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5616. /*
  5617. * Translate L1 physical address to host physical
  5618. * address for vmcs02. Keep the page pinned, so this
  5619. * physical address remains valid. We keep a reference
  5620. * to it so we can release it later.
  5621. */
  5622. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5623. nested_release_page(vmx->nested.apic_access_page);
  5624. vmx->nested.apic_access_page =
  5625. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5626. /*
  5627. * If translation failed, no matter: This feature asks
  5628. * to exit when accessing the given address, and if it
  5629. * can never be accessed, this feature won't do
  5630. * anything anyway.
  5631. */
  5632. if (!vmx->nested.apic_access_page)
  5633. exec_control &=
  5634. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5635. else
  5636. vmcs_write64(APIC_ACCESS_ADDR,
  5637. page_to_phys(vmx->nested.apic_access_page));
  5638. }
  5639. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5640. }
  5641. /*
  5642. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5643. * Some constant fields are set here by vmx_set_constant_host_state().
  5644. * Other fields are different per CPU, and will be set later when
  5645. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5646. */
  5647. vmx_set_constant_host_state();
  5648. /*
  5649. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5650. * entry, but only if the current (host) sp changed from the value
  5651. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5652. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5653. * here we just force the write to happen on entry.
  5654. */
  5655. vmx->host_rsp = 0;
  5656. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5657. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5658. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5659. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5660. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5661. /*
  5662. * Merging of IO and MSR bitmaps not currently supported.
  5663. * Rather, exit every time.
  5664. */
  5665. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5666. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5667. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5668. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5669. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5670. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5671. * trap. Note that CR0.TS also needs updating - we do this later.
  5672. */
  5673. update_exception_bitmap(vcpu);
  5674. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5675. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5676. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5677. vmcs_write32(VM_EXIT_CONTROLS,
  5678. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5679. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5680. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5681. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5682. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5683. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5684. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5685. set_cr4_guest_host_mask(vmx);
  5686. vmcs_write64(TSC_OFFSET,
  5687. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5688. if (enable_vpid) {
  5689. /*
  5690. * Trivially support vpid by letting L2s share their parent
  5691. * L1's vpid. TODO: move to a more elaborate solution, giving
  5692. * each L2 its own vpid and exposing the vpid feature to L1.
  5693. */
  5694. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5695. vmx_flush_tlb(vcpu);
  5696. }
  5697. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5698. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5699. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5700. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5701. else
  5702. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5703. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5704. vmx_set_efer(vcpu, vcpu->arch.efer);
  5705. /*
  5706. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5707. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5708. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5709. * the specifications by L1; It's not enough to take
  5710. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5711. * have more bits than L1 expected.
  5712. */
  5713. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5714. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5715. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5716. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5717. /* shadow page tables on either EPT or shadow page tables */
  5718. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5719. kvm_mmu_reset_context(vcpu);
  5720. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5721. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5722. }
  5723. /*
  5724. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5725. * for running an L2 nested guest.
  5726. */
  5727. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5728. {
  5729. struct vmcs12 *vmcs12;
  5730. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5731. int cpu;
  5732. struct loaded_vmcs *vmcs02;
  5733. if (!nested_vmx_check_permission(vcpu) ||
  5734. !nested_vmx_check_vmcs12(vcpu))
  5735. return 1;
  5736. skip_emulated_instruction(vcpu);
  5737. vmcs12 = get_vmcs12(vcpu);
  5738. /*
  5739. * The nested entry process starts with enforcing various prerequisites
  5740. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5741. * they fail: As the SDM explains, some conditions should cause the
  5742. * instruction to fail, while others will cause the instruction to seem
  5743. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5744. * To speed up the normal (success) code path, we should avoid checking
  5745. * for misconfigurations which will anyway be caught by the processor
  5746. * when using the merged vmcs02.
  5747. */
  5748. if (vmcs12->launch_state == launch) {
  5749. nested_vmx_failValid(vcpu,
  5750. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5751. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5752. return 1;
  5753. }
  5754. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5755. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5756. /*TODO: Also verify bits beyond physical address width are 0*/
  5757. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5758. return 1;
  5759. }
  5760. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5761. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5762. /*TODO: Also verify bits beyond physical address width are 0*/
  5763. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5764. return 1;
  5765. }
  5766. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5767. vmcs12->vm_exit_msr_load_count > 0 ||
  5768. vmcs12->vm_exit_msr_store_count > 0) {
  5769. if (printk_ratelimit())
  5770. printk(KERN_WARNING
  5771. "%s: VMCS MSR_{LOAD,STORE} unsupported\n", __func__);
  5772. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5773. return 1;
  5774. }
  5775. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5776. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5777. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5778. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5779. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5780. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5781. !vmx_control_verify(vmcs12->vm_exit_controls,
  5782. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5783. !vmx_control_verify(vmcs12->vm_entry_controls,
  5784. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5785. {
  5786. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5787. return 1;
  5788. }
  5789. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5790. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5791. nested_vmx_failValid(vcpu,
  5792. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5793. return 1;
  5794. }
  5795. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5796. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5797. nested_vmx_entry_failure(vcpu, vmcs12,
  5798. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5799. return 1;
  5800. }
  5801. if (vmcs12->vmcs_link_pointer != -1ull) {
  5802. nested_vmx_entry_failure(vcpu, vmcs12,
  5803. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5804. return 1;
  5805. }
  5806. /*
  5807. * We're finally done with prerequisite checking, and can start with
  5808. * the nested entry.
  5809. */
  5810. vmcs02 = nested_get_current_vmcs02(vmx);
  5811. if (!vmcs02)
  5812. return -ENOMEM;
  5813. enter_guest_mode(vcpu);
  5814. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5815. cpu = get_cpu();
  5816. vmx->loaded_vmcs = vmcs02;
  5817. vmx_vcpu_put(vcpu);
  5818. vmx_vcpu_load(vcpu, cpu);
  5819. vcpu->cpu = cpu;
  5820. put_cpu();
  5821. vmcs12->launch_state = 1;
  5822. prepare_vmcs02(vcpu, vmcs12);
  5823. /*
  5824. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5825. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5826. * returned as far as L1 is concerned. It will only return (and set
  5827. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5828. */
  5829. return 1;
  5830. }
  5831. /*
  5832. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5833. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5834. * This function returns the new value we should put in vmcs12.guest_cr0.
  5835. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5836. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5837. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5838. * didn't trap the bit, because if L1 did, so would L0).
  5839. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5840. * been modified by L2, and L1 knows it. So just leave the old value of
  5841. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5842. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5843. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5844. * changed these bits, and therefore they need to be updated, but L0
  5845. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5846. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5847. */
  5848. static inline unsigned long
  5849. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5850. {
  5851. return
  5852. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5853. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5854. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5855. vcpu->arch.cr0_guest_owned_bits));
  5856. }
  5857. static inline unsigned long
  5858. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5859. {
  5860. return
  5861. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5862. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5863. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5864. vcpu->arch.cr4_guest_owned_bits));
  5865. }
  5866. /*
  5867. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5868. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5869. * and this function updates it to reflect the changes to the guest state while
  5870. * L2 was running (and perhaps made some exits which were handled directly by L0
  5871. * without going back to L1), and to reflect the exit reason.
  5872. * Note that we do not have to copy here all VMCS fields, just those that
  5873. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5874. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5875. * which already writes to vmcs12 directly.
  5876. */
  5877. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5878. {
  5879. /* update guest state fields: */
  5880. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5881. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5882. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5883. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5884. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5885. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5886. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5887. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5888. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  5889. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  5890. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  5891. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  5892. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  5893. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  5894. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  5895. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  5896. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  5897. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  5898. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  5899. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  5900. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  5901. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  5902. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  5903. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  5904. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  5905. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  5906. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  5907. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  5908. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  5909. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  5910. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  5911. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  5912. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  5913. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  5914. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  5915. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  5916. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  5917. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  5918. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  5919. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  5920. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  5921. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  5922. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  5923. vmcs12->guest_interruptibility_info =
  5924. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  5925. vmcs12->guest_pending_dbg_exceptions =
  5926. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  5927. /* TODO: These cannot have changed unless we have MSR bitmaps and
  5928. * the relevant bit asks not to trap the change */
  5929. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  5930. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  5931. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  5932. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  5933. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  5934. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  5935. /* update exit information fields: */
  5936. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  5937. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5938. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5939. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  5940. vmcs12->idt_vectoring_info_field =
  5941. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5942. vmcs12->idt_vectoring_error_code =
  5943. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5944. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5945. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5946. /* clear vm-entry fields which are to be cleared on exit */
  5947. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  5948. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  5949. }
  5950. /*
  5951. * A part of what we need to when the nested L2 guest exits and we want to
  5952. * run its L1 parent, is to reset L1's guest state to the host state specified
  5953. * in vmcs12.
  5954. * This function is to be called not only on normal nested exit, but also on
  5955. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  5956. * Failures During or After Loading Guest State").
  5957. * This function should be called when the active VMCS is L1's (vmcs01).
  5958. */
  5959. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5960. {
  5961. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  5962. vcpu->arch.efer = vmcs12->host_ia32_efer;
  5963. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  5964. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5965. else
  5966. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5967. vmx_set_efer(vcpu, vcpu->arch.efer);
  5968. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  5969. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  5970. /*
  5971. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  5972. * actually changed, because it depends on the current state of
  5973. * fpu_active (which may have changed).
  5974. * Note that vmx_set_cr0 refers to efer set above.
  5975. */
  5976. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  5977. /*
  5978. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  5979. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  5980. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  5981. */
  5982. update_exception_bitmap(vcpu);
  5983. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  5984. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5985. /*
  5986. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  5987. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  5988. */
  5989. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  5990. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  5991. /* shadow page tables on either EPT or shadow page tables */
  5992. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  5993. kvm_mmu_reset_context(vcpu);
  5994. if (enable_vpid) {
  5995. /*
  5996. * Trivially support vpid by letting L2s share their parent
  5997. * L1's vpid. TODO: move to a more elaborate solution, giving
  5998. * each L2 its own vpid and exposing the vpid feature to L1.
  5999. */
  6000. vmx_flush_tlb(vcpu);
  6001. }
  6002. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6003. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6004. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6005. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6006. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6007. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6008. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6009. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6010. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6011. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6012. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6013. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6014. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6015. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6016. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6017. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6018. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6019. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6020. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6021. vmcs12->host_ia32_perf_global_ctrl);
  6022. }
  6023. /*
  6024. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6025. * and modify vmcs12 to make it see what it would expect to see there if
  6026. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6027. */
  6028. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6029. {
  6030. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6031. int cpu;
  6032. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6033. leave_guest_mode(vcpu);
  6034. prepare_vmcs12(vcpu, vmcs12);
  6035. cpu = get_cpu();
  6036. vmx->loaded_vmcs = &vmx->vmcs01;
  6037. vmx_vcpu_put(vcpu);
  6038. vmx_vcpu_load(vcpu, cpu);
  6039. vcpu->cpu = cpu;
  6040. put_cpu();
  6041. /* if no vmcs02 cache requested, remove the one we used */
  6042. if (VMCS02_POOL_SIZE == 0)
  6043. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6044. load_vmcs12_host_state(vcpu, vmcs12);
  6045. /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
  6046. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6047. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6048. vmx->host_rsp = 0;
  6049. /* Unpin physical memory we referred to in vmcs02 */
  6050. if (vmx->nested.apic_access_page) {
  6051. nested_release_page(vmx->nested.apic_access_page);
  6052. vmx->nested.apic_access_page = 0;
  6053. }
  6054. /*
  6055. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6056. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6057. * success or failure flag accordingly.
  6058. */
  6059. if (unlikely(vmx->fail)) {
  6060. vmx->fail = 0;
  6061. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6062. } else
  6063. nested_vmx_succeed(vcpu);
  6064. }
  6065. /*
  6066. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6067. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6068. * lists the acceptable exit-reason and exit-qualification parameters).
  6069. * It should only be called before L2 actually succeeded to run, and when
  6070. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6071. */
  6072. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6073. struct vmcs12 *vmcs12,
  6074. u32 reason, unsigned long qualification)
  6075. {
  6076. load_vmcs12_host_state(vcpu, vmcs12);
  6077. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6078. vmcs12->exit_qualification = qualification;
  6079. nested_vmx_succeed(vcpu);
  6080. }
  6081. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6082. struct x86_instruction_info *info,
  6083. enum x86_intercept_stage stage)
  6084. {
  6085. return X86EMUL_CONTINUE;
  6086. }
  6087. static struct kvm_x86_ops vmx_x86_ops = {
  6088. .cpu_has_kvm_support = cpu_has_kvm_support,
  6089. .disabled_by_bios = vmx_disabled_by_bios,
  6090. .hardware_setup = hardware_setup,
  6091. .hardware_unsetup = hardware_unsetup,
  6092. .check_processor_compatibility = vmx_check_processor_compat,
  6093. .hardware_enable = hardware_enable,
  6094. .hardware_disable = hardware_disable,
  6095. .cpu_has_accelerated_tpr = report_flexpriority,
  6096. .vcpu_create = vmx_create_vcpu,
  6097. .vcpu_free = vmx_free_vcpu,
  6098. .vcpu_reset = vmx_vcpu_reset,
  6099. .prepare_guest_switch = vmx_save_host_state,
  6100. .vcpu_load = vmx_vcpu_load,
  6101. .vcpu_put = vmx_vcpu_put,
  6102. .set_guest_debug = set_guest_debug,
  6103. .get_msr = vmx_get_msr,
  6104. .set_msr = vmx_set_msr,
  6105. .get_segment_base = vmx_get_segment_base,
  6106. .get_segment = vmx_get_segment,
  6107. .set_segment = vmx_set_segment,
  6108. .get_cpl = vmx_get_cpl,
  6109. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6110. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6111. .decache_cr3 = vmx_decache_cr3,
  6112. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6113. .set_cr0 = vmx_set_cr0,
  6114. .set_cr3 = vmx_set_cr3,
  6115. .set_cr4 = vmx_set_cr4,
  6116. .set_efer = vmx_set_efer,
  6117. .get_idt = vmx_get_idt,
  6118. .set_idt = vmx_set_idt,
  6119. .get_gdt = vmx_get_gdt,
  6120. .set_gdt = vmx_set_gdt,
  6121. .set_dr7 = vmx_set_dr7,
  6122. .cache_reg = vmx_cache_reg,
  6123. .get_rflags = vmx_get_rflags,
  6124. .set_rflags = vmx_set_rflags,
  6125. .fpu_activate = vmx_fpu_activate,
  6126. .fpu_deactivate = vmx_fpu_deactivate,
  6127. .tlb_flush = vmx_flush_tlb,
  6128. .run = vmx_vcpu_run,
  6129. .handle_exit = vmx_handle_exit,
  6130. .skip_emulated_instruction = skip_emulated_instruction,
  6131. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6132. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6133. .patch_hypercall = vmx_patch_hypercall,
  6134. .set_irq = vmx_inject_irq,
  6135. .set_nmi = vmx_inject_nmi,
  6136. .queue_exception = vmx_queue_exception,
  6137. .cancel_injection = vmx_cancel_injection,
  6138. .interrupt_allowed = vmx_interrupt_allowed,
  6139. .nmi_allowed = vmx_nmi_allowed,
  6140. .get_nmi_mask = vmx_get_nmi_mask,
  6141. .set_nmi_mask = vmx_set_nmi_mask,
  6142. .enable_nmi_window = enable_nmi_window,
  6143. .enable_irq_window = enable_irq_window,
  6144. .update_cr8_intercept = update_cr8_intercept,
  6145. .set_tss_addr = vmx_set_tss_addr,
  6146. .get_tdp_level = get_ept_level,
  6147. .get_mt_mask = vmx_get_mt_mask,
  6148. .get_exit_info = vmx_get_exit_info,
  6149. .exit_reasons_str = vmx_exit_reasons_str,
  6150. .get_lpage_level = vmx_get_lpage_level,
  6151. .cpuid_update = vmx_cpuid_update,
  6152. .rdtscp_supported = vmx_rdtscp_supported,
  6153. .set_supported_cpuid = vmx_set_supported_cpuid,
  6154. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6155. .set_tsc_khz = vmx_set_tsc_khz,
  6156. .write_tsc_offset = vmx_write_tsc_offset,
  6157. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6158. .compute_tsc_offset = vmx_compute_tsc_offset,
  6159. .set_tdp_cr3 = vmx_set_cr3,
  6160. .check_intercept = vmx_check_intercept,
  6161. };
  6162. static int __init vmx_init(void)
  6163. {
  6164. int r, i;
  6165. rdmsrl_safe(MSR_EFER, &host_efer);
  6166. for (i = 0; i < NR_VMX_MSR; ++i)
  6167. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6168. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6169. if (!vmx_io_bitmap_a)
  6170. return -ENOMEM;
  6171. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6172. if (!vmx_io_bitmap_b) {
  6173. r = -ENOMEM;
  6174. goto out;
  6175. }
  6176. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6177. if (!vmx_msr_bitmap_legacy) {
  6178. r = -ENOMEM;
  6179. goto out1;
  6180. }
  6181. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6182. if (!vmx_msr_bitmap_longmode) {
  6183. r = -ENOMEM;
  6184. goto out2;
  6185. }
  6186. /*
  6187. * Allow direct access to the PC debug port (it is often used for I/O
  6188. * delays, but the vmexits simply slow things down).
  6189. */
  6190. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6191. clear_bit(0x80, vmx_io_bitmap_a);
  6192. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6193. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6194. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6195. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6196. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6197. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6198. if (r)
  6199. goto out3;
  6200. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6201. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6202. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6203. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6204. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6205. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6206. if (enable_ept) {
  6207. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6208. VMX_EPT_EXECUTABLE_MASK);
  6209. ept_set_mmio_spte_mask();
  6210. kvm_enable_tdp();
  6211. } else
  6212. kvm_disable_tdp();
  6213. return 0;
  6214. out3:
  6215. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6216. out2:
  6217. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6218. out1:
  6219. free_page((unsigned long)vmx_io_bitmap_b);
  6220. out:
  6221. free_page((unsigned long)vmx_io_bitmap_a);
  6222. return r;
  6223. }
  6224. static void __exit vmx_exit(void)
  6225. {
  6226. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6227. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6228. free_page((unsigned long)vmx_io_bitmap_b);
  6229. free_page((unsigned long)vmx_io_bitmap_a);
  6230. kvm_exit();
  6231. }
  6232. module_init(vmx_init)
  6233. module_exit(vmx_exit)