perf_event_intel.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642
  1. #ifdef CONFIG_CPU_SUP_INTEL
  2. /*
  3. * Per core/cpu state
  4. *
  5. * Used to coordinate shared registers between HT threads or
  6. * among events on a single PMU.
  7. */
  8. struct intel_shared_regs {
  9. struct er_account regs[EXTRA_REG_MAX];
  10. int refcnt; /* per-core: #HT threads */
  11. unsigned core_id; /* per-core: core id */
  12. };
  13. /*
  14. * Intel PerfMon, used on Core and later.
  15. */
  16. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  17. {
  18. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  19. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  20. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  21. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  22. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  23. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  24. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  25. };
  26. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  27. {
  28. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  29. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  30. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  31. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  32. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  33. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  34. EVENT_CONSTRAINT_END
  35. };
  36. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  37. {
  38. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  39. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  40. /*
  41. * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
  42. * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
  43. * ratio between these counters.
  44. */
  45. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  46. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  47. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  48. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  49. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  50. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  51. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  52. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  53. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  54. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  55. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  56. EVENT_CONSTRAINT_END
  57. };
  58. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  59. {
  60. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  61. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  62. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  63. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  64. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  65. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  66. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  67. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  68. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  69. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  70. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  71. EVENT_CONSTRAINT_END
  72. };
  73. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  74. {
  75. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  76. EVENT_EXTRA_END
  77. };
  78. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  79. {
  80. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  81. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  82. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  83. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  84. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  85. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  86. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  87. EVENT_CONSTRAINT_END
  88. };
  89. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  90. {
  91. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  92. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  93. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  94. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  95. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  96. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  97. EVENT_CONSTRAINT_END
  98. };
  99. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  100. {
  101. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  102. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  103. EVENT_EXTRA_END
  104. };
  105. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  106. {
  107. EVENT_CONSTRAINT_END
  108. };
  109. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  110. {
  111. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  112. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  113. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  114. EVENT_CONSTRAINT_END
  115. };
  116. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  117. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  118. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  119. EVENT_EXTRA_END
  120. };
  121. static u64 intel_pmu_event_map(int hw_event)
  122. {
  123. return intel_perfmon_event_map[hw_event];
  124. }
  125. static __initconst const u64 snb_hw_cache_event_ids
  126. [PERF_COUNT_HW_CACHE_MAX]
  127. [PERF_COUNT_HW_CACHE_OP_MAX]
  128. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  129. {
  130. [ C(L1D) ] = {
  131. [ C(OP_READ) ] = {
  132. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  133. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  134. },
  135. [ C(OP_WRITE) ] = {
  136. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  137. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  138. },
  139. [ C(OP_PREFETCH) ] = {
  140. [ C(RESULT_ACCESS) ] = 0x0,
  141. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  142. },
  143. },
  144. [ C(L1I ) ] = {
  145. [ C(OP_READ) ] = {
  146. [ C(RESULT_ACCESS) ] = 0x0,
  147. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  148. },
  149. [ C(OP_WRITE) ] = {
  150. [ C(RESULT_ACCESS) ] = -1,
  151. [ C(RESULT_MISS) ] = -1,
  152. },
  153. [ C(OP_PREFETCH) ] = {
  154. [ C(RESULT_ACCESS) ] = 0x0,
  155. [ C(RESULT_MISS) ] = 0x0,
  156. },
  157. },
  158. [ C(LL ) ] = {
  159. [ C(OP_READ) ] = {
  160. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  161. [ C(RESULT_ACCESS) ] = 0x01b7,
  162. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  163. [ C(RESULT_MISS) ] = 0x01b7,
  164. },
  165. [ C(OP_WRITE) ] = {
  166. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  167. [ C(RESULT_ACCESS) ] = 0x01b7,
  168. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  169. [ C(RESULT_MISS) ] = 0x01b7,
  170. },
  171. [ C(OP_PREFETCH) ] = {
  172. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  173. [ C(RESULT_ACCESS) ] = 0x01b7,
  174. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  175. [ C(RESULT_MISS) ] = 0x01b7,
  176. },
  177. },
  178. [ C(DTLB) ] = {
  179. [ C(OP_READ) ] = {
  180. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  181. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  182. },
  183. [ C(OP_WRITE) ] = {
  184. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  185. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  186. },
  187. [ C(OP_PREFETCH) ] = {
  188. [ C(RESULT_ACCESS) ] = 0x0,
  189. [ C(RESULT_MISS) ] = 0x0,
  190. },
  191. },
  192. [ C(ITLB) ] = {
  193. [ C(OP_READ) ] = {
  194. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  195. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  196. },
  197. [ C(OP_WRITE) ] = {
  198. [ C(RESULT_ACCESS) ] = -1,
  199. [ C(RESULT_MISS) ] = -1,
  200. },
  201. [ C(OP_PREFETCH) ] = {
  202. [ C(RESULT_ACCESS) ] = -1,
  203. [ C(RESULT_MISS) ] = -1,
  204. },
  205. },
  206. [ C(BPU ) ] = {
  207. [ C(OP_READ) ] = {
  208. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  209. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  210. },
  211. [ C(OP_WRITE) ] = {
  212. [ C(RESULT_ACCESS) ] = -1,
  213. [ C(RESULT_MISS) ] = -1,
  214. },
  215. [ C(OP_PREFETCH) ] = {
  216. [ C(RESULT_ACCESS) ] = -1,
  217. [ C(RESULT_MISS) ] = -1,
  218. },
  219. },
  220. [ C(NODE) ] = {
  221. [ C(OP_READ) ] = {
  222. [ C(RESULT_ACCESS) ] = -1,
  223. [ C(RESULT_MISS) ] = -1,
  224. },
  225. [ C(OP_WRITE) ] = {
  226. [ C(RESULT_ACCESS) ] = -1,
  227. [ C(RESULT_MISS) ] = -1,
  228. },
  229. [ C(OP_PREFETCH) ] = {
  230. [ C(RESULT_ACCESS) ] = -1,
  231. [ C(RESULT_MISS) ] = -1,
  232. },
  233. },
  234. };
  235. static __initconst const u64 westmere_hw_cache_event_ids
  236. [PERF_COUNT_HW_CACHE_MAX]
  237. [PERF_COUNT_HW_CACHE_OP_MAX]
  238. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  239. {
  240. [ C(L1D) ] = {
  241. [ C(OP_READ) ] = {
  242. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  243. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  244. },
  245. [ C(OP_WRITE) ] = {
  246. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  247. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  248. },
  249. [ C(OP_PREFETCH) ] = {
  250. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  251. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  252. },
  253. },
  254. [ C(L1I ) ] = {
  255. [ C(OP_READ) ] = {
  256. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  257. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  258. },
  259. [ C(OP_WRITE) ] = {
  260. [ C(RESULT_ACCESS) ] = -1,
  261. [ C(RESULT_MISS) ] = -1,
  262. },
  263. [ C(OP_PREFETCH) ] = {
  264. [ C(RESULT_ACCESS) ] = 0x0,
  265. [ C(RESULT_MISS) ] = 0x0,
  266. },
  267. },
  268. [ C(LL ) ] = {
  269. [ C(OP_READ) ] = {
  270. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  271. [ C(RESULT_ACCESS) ] = 0x01b7,
  272. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  273. [ C(RESULT_MISS) ] = 0x01b7,
  274. },
  275. /*
  276. * Use RFO, not WRITEBACK, because a write miss would typically occur
  277. * on RFO.
  278. */
  279. [ C(OP_WRITE) ] = {
  280. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  281. [ C(RESULT_ACCESS) ] = 0x01b7,
  282. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  283. [ C(RESULT_MISS) ] = 0x01b7,
  284. },
  285. [ C(OP_PREFETCH) ] = {
  286. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  287. [ C(RESULT_ACCESS) ] = 0x01b7,
  288. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  289. [ C(RESULT_MISS) ] = 0x01b7,
  290. },
  291. },
  292. [ C(DTLB) ] = {
  293. [ C(OP_READ) ] = {
  294. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  295. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  296. },
  297. [ C(OP_WRITE) ] = {
  298. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  299. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  300. },
  301. [ C(OP_PREFETCH) ] = {
  302. [ C(RESULT_ACCESS) ] = 0x0,
  303. [ C(RESULT_MISS) ] = 0x0,
  304. },
  305. },
  306. [ C(ITLB) ] = {
  307. [ C(OP_READ) ] = {
  308. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  309. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  310. },
  311. [ C(OP_WRITE) ] = {
  312. [ C(RESULT_ACCESS) ] = -1,
  313. [ C(RESULT_MISS) ] = -1,
  314. },
  315. [ C(OP_PREFETCH) ] = {
  316. [ C(RESULT_ACCESS) ] = -1,
  317. [ C(RESULT_MISS) ] = -1,
  318. },
  319. },
  320. [ C(BPU ) ] = {
  321. [ C(OP_READ) ] = {
  322. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  323. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  324. },
  325. [ C(OP_WRITE) ] = {
  326. [ C(RESULT_ACCESS) ] = -1,
  327. [ C(RESULT_MISS) ] = -1,
  328. },
  329. [ C(OP_PREFETCH) ] = {
  330. [ C(RESULT_ACCESS) ] = -1,
  331. [ C(RESULT_MISS) ] = -1,
  332. },
  333. },
  334. [ C(NODE) ] = {
  335. [ C(OP_READ) ] = {
  336. [ C(RESULT_ACCESS) ] = 0x01b7,
  337. [ C(RESULT_MISS) ] = 0x01b7,
  338. },
  339. [ C(OP_WRITE) ] = {
  340. [ C(RESULT_ACCESS) ] = 0x01b7,
  341. [ C(RESULT_MISS) ] = 0x01b7,
  342. },
  343. [ C(OP_PREFETCH) ] = {
  344. [ C(RESULT_ACCESS) ] = 0x01b7,
  345. [ C(RESULT_MISS) ] = 0x01b7,
  346. },
  347. },
  348. };
  349. /*
  350. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  351. * See IA32 SDM Vol 3B 30.6.1.3
  352. */
  353. #define NHM_DMND_DATA_RD (1 << 0)
  354. #define NHM_DMND_RFO (1 << 1)
  355. #define NHM_DMND_IFETCH (1 << 2)
  356. #define NHM_DMND_WB (1 << 3)
  357. #define NHM_PF_DATA_RD (1 << 4)
  358. #define NHM_PF_DATA_RFO (1 << 5)
  359. #define NHM_PF_IFETCH (1 << 6)
  360. #define NHM_OFFCORE_OTHER (1 << 7)
  361. #define NHM_UNCORE_HIT (1 << 8)
  362. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  363. #define NHM_OTHER_CORE_HITM (1 << 10)
  364. /* reserved */
  365. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  366. #define NHM_REMOTE_DRAM (1 << 13)
  367. #define NHM_LOCAL_DRAM (1 << 14)
  368. #define NHM_NON_DRAM (1 << 15)
  369. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  370. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  371. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  372. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  373. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  374. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  375. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  376. static __initconst const u64 nehalem_hw_cache_extra_regs
  377. [PERF_COUNT_HW_CACHE_MAX]
  378. [PERF_COUNT_HW_CACHE_OP_MAX]
  379. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  380. {
  381. [ C(LL ) ] = {
  382. [ C(OP_READ) ] = {
  383. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  384. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  385. },
  386. [ C(OP_WRITE) ] = {
  387. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  388. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  389. },
  390. [ C(OP_PREFETCH) ] = {
  391. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  392. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  393. },
  394. },
  395. [ C(NODE) ] = {
  396. [ C(OP_READ) ] = {
  397. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
  398. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
  399. },
  400. [ C(OP_WRITE) ] = {
  401. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
  402. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
  403. },
  404. [ C(OP_PREFETCH) ] = {
  405. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
  406. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
  407. },
  408. },
  409. };
  410. static __initconst const u64 nehalem_hw_cache_event_ids
  411. [PERF_COUNT_HW_CACHE_MAX]
  412. [PERF_COUNT_HW_CACHE_OP_MAX]
  413. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  414. {
  415. [ C(L1D) ] = {
  416. [ C(OP_READ) ] = {
  417. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  418. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  419. },
  420. [ C(OP_WRITE) ] = {
  421. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  422. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  423. },
  424. [ C(OP_PREFETCH) ] = {
  425. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  426. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  427. },
  428. },
  429. [ C(L1I ) ] = {
  430. [ C(OP_READ) ] = {
  431. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  432. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  433. },
  434. [ C(OP_WRITE) ] = {
  435. [ C(RESULT_ACCESS) ] = -1,
  436. [ C(RESULT_MISS) ] = -1,
  437. },
  438. [ C(OP_PREFETCH) ] = {
  439. [ C(RESULT_ACCESS) ] = 0x0,
  440. [ C(RESULT_MISS) ] = 0x0,
  441. },
  442. },
  443. [ C(LL ) ] = {
  444. [ C(OP_READ) ] = {
  445. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  446. [ C(RESULT_ACCESS) ] = 0x01b7,
  447. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  448. [ C(RESULT_MISS) ] = 0x01b7,
  449. },
  450. /*
  451. * Use RFO, not WRITEBACK, because a write miss would typically occur
  452. * on RFO.
  453. */
  454. [ C(OP_WRITE) ] = {
  455. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  456. [ C(RESULT_ACCESS) ] = 0x01b7,
  457. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  458. [ C(RESULT_MISS) ] = 0x01b7,
  459. },
  460. [ C(OP_PREFETCH) ] = {
  461. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  462. [ C(RESULT_ACCESS) ] = 0x01b7,
  463. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  464. [ C(RESULT_MISS) ] = 0x01b7,
  465. },
  466. },
  467. [ C(DTLB) ] = {
  468. [ C(OP_READ) ] = {
  469. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  470. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  471. },
  472. [ C(OP_WRITE) ] = {
  473. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  474. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  475. },
  476. [ C(OP_PREFETCH) ] = {
  477. [ C(RESULT_ACCESS) ] = 0x0,
  478. [ C(RESULT_MISS) ] = 0x0,
  479. },
  480. },
  481. [ C(ITLB) ] = {
  482. [ C(OP_READ) ] = {
  483. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  484. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  485. },
  486. [ C(OP_WRITE) ] = {
  487. [ C(RESULT_ACCESS) ] = -1,
  488. [ C(RESULT_MISS) ] = -1,
  489. },
  490. [ C(OP_PREFETCH) ] = {
  491. [ C(RESULT_ACCESS) ] = -1,
  492. [ C(RESULT_MISS) ] = -1,
  493. },
  494. },
  495. [ C(BPU ) ] = {
  496. [ C(OP_READ) ] = {
  497. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  498. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  499. },
  500. [ C(OP_WRITE) ] = {
  501. [ C(RESULT_ACCESS) ] = -1,
  502. [ C(RESULT_MISS) ] = -1,
  503. },
  504. [ C(OP_PREFETCH) ] = {
  505. [ C(RESULT_ACCESS) ] = -1,
  506. [ C(RESULT_MISS) ] = -1,
  507. },
  508. },
  509. [ C(NODE) ] = {
  510. [ C(OP_READ) ] = {
  511. [ C(RESULT_ACCESS) ] = 0x01b7,
  512. [ C(RESULT_MISS) ] = 0x01b7,
  513. },
  514. [ C(OP_WRITE) ] = {
  515. [ C(RESULT_ACCESS) ] = 0x01b7,
  516. [ C(RESULT_MISS) ] = 0x01b7,
  517. },
  518. [ C(OP_PREFETCH) ] = {
  519. [ C(RESULT_ACCESS) ] = 0x01b7,
  520. [ C(RESULT_MISS) ] = 0x01b7,
  521. },
  522. },
  523. };
  524. static __initconst const u64 core2_hw_cache_event_ids
  525. [PERF_COUNT_HW_CACHE_MAX]
  526. [PERF_COUNT_HW_CACHE_OP_MAX]
  527. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  528. {
  529. [ C(L1D) ] = {
  530. [ C(OP_READ) ] = {
  531. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  532. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  533. },
  534. [ C(OP_WRITE) ] = {
  535. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  536. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  537. },
  538. [ C(OP_PREFETCH) ] = {
  539. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  540. [ C(RESULT_MISS) ] = 0,
  541. },
  542. },
  543. [ C(L1I ) ] = {
  544. [ C(OP_READ) ] = {
  545. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  546. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  547. },
  548. [ C(OP_WRITE) ] = {
  549. [ C(RESULT_ACCESS) ] = -1,
  550. [ C(RESULT_MISS) ] = -1,
  551. },
  552. [ C(OP_PREFETCH) ] = {
  553. [ C(RESULT_ACCESS) ] = 0,
  554. [ C(RESULT_MISS) ] = 0,
  555. },
  556. },
  557. [ C(LL ) ] = {
  558. [ C(OP_READ) ] = {
  559. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  560. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  561. },
  562. [ C(OP_WRITE) ] = {
  563. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  564. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  565. },
  566. [ C(OP_PREFETCH) ] = {
  567. [ C(RESULT_ACCESS) ] = 0,
  568. [ C(RESULT_MISS) ] = 0,
  569. },
  570. },
  571. [ C(DTLB) ] = {
  572. [ C(OP_READ) ] = {
  573. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  574. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  575. },
  576. [ C(OP_WRITE) ] = {
  577. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  578. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  579. },
  580. [ C(OP_PREFETCH) ] = {
  581. [ C(RESULT_ACCESS) ] = 0,
  582. [ C(RESULT_MISS) ] = 0,
  583. },
  584. },
  585. [ C(ITLB) ] = {
  586. [ C(OP_READ) ] = {
  587. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  588. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  589. },
  590. [ C(OP_WRITE) ] = {
  591. [ C(RESULT_ACCESS) ] = -1,
  592. [ C(RESULT_MISS) ] = -1,
  593. },
  594. [ C(OP_PREFETCH) ] = {
  595. [ C(RESULT_ACCESS) ] = -1,
  596. [ C(RESULT_MISS) ] = -1,
  597. },
  598. },
  599. [ C(BPU ) ] = {
  600. [ C(OP_READ) ] = {
  601. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  602. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  603. },
  604. [ C(OP_WRITE) ] = {
  605. [ C(RESULT_ACCESS) ] = -1,
  606. [ C(RESULT_MISS) ] = -1,
  607. },
  608. [ C(OP_PREFETCH) ] = {
  609. [ C(RESULT_ACCESS) ] = -1,
  610. [ C(RESULT_MISS) ] = -1,
  611. },
  612. },
  613. };
  614. static __initconst const u64 atom_hw_cache_event_ids
  615. [PERF_COUNT_HW_CACHE_MAX]
  616. [PERF_COUNT_HW_CACHE_OP_MAX]
  617. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  618. {
  619. [ C(L1D) ] = {
  620. [ C(OP_READ) ] = {
  621. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  622. [ C(RESULT_MISS) ] = 0,
  623. },
  624. [ C(OP_WRITE) ] = {
  625. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  626. [ C(RESULT_MISS) ] = 0,
  627. },
  628. [ C(OP_PREFETCH) ] = {
  629. [ C(RESULT_ACCESS) ] = 0x0,
  630. [ C(RESULT_MISS) ] = 0,
  631. },
  632. },
  633. [ C(L1I ) ] = {
  634. [ C(OP_READ) ] = {
  635. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  636. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  637. },
  638. [ C(OP_WRITE) ] = {
  639. [ C(RESULT_ACCESS) ] = -1,
  640. [ C(RESULT_MISS) ] = -1,
  641. },
  642. [ C(OP_PREFETCH) ] = {
  643. [ C(RESULT_ACCESS) ] = 0,
  644. [ C(RESULT_MISS) ] = 0,
  645. },
  646. },
  647. [ C(LL ) ] = {
  648. [ C(OP_READ) ] = {
  649. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  650. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  651. },
  652. [ C(OP_WRITE) ] = {
  653. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  654. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  655. },
  656. [ C(OP_PREFETCH) ] = {
  657. [ C(RESULT_ACCESS) ] = 0,
  658. [ C(RESULT_MISS) ] = 0,
  659. },
  660. },
  661. [ C(DTLB) ] = {
  662. [ C(OP_READ) ] = {
  663. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  664. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  665. },
  666. [ C(OP_WRITE) ] = {
  667. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  668. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  669. },
  670. [ C(OP_PREFETCH) ] = {
  671. [ C(RESULT_ACCESS) ] = 0,
  672. [ C(RESULT_MISS) ] = 0,
  673. },
  674. },
  675. [ C(ITLB) ] = {
  676. [ C(OP_READ) ] = {
  677. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  678. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  679. },
  680. [ C(OP_WRITE) ] = {
  681. [ C(RESULT_ACCESS) ] = -1,
  682. [ C(RESULT_MISS) ] = -1,
  683. },
  684. [ C(OP_PREFETCH) ] = {
  685. [ C(RESULT_ACCESS) ] = -1,
  686. [ C(RESULT_MISS) ] = -1,
  687. },
  688. },
  689. [ C(BPU ) ] = {
  690. [ C(OP_READ) ] = {
  691. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  692. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  693. },
  694. [ C(OP_WRITE) ] = {
  695. [ C(RESULT_ACCESS) ] = -1,
  696. [ C(RESULT_MISS) ] = -1,
  697. },
  698. [ C(OP_PREFETCH) ] = {
  699. [ C(RESULT_ACCESS) ] = -1,
  700. [ C(RESULT_MISS) ] = -1,
  701. },
  702. },
  703. };
  704. static void intel_pmu_disable_all(void)
  705. {
  706. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  707. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  708. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  709. intel_pmu_disable_bts();
  710. intel_pmu_pebs_disable_all();
  711. intel_pmu_lbr_disable_all();
  712. }
  713. static void intel_pmu_enable_all(int added)
  714. {
  715. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  716. intel_pmu_pebs_enable_all();
  717. intel_pmu_lbr_enable_all();
  718. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  719. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  720. struct perf_event *event =
  721. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  722. if (WARN_ON_ONCE(!event))
  723. return;
  724. intel_pmu_enable_bts(event->hw.config);
  725. }
  726. }
  727. /*
  728. * Workaround for:
  729. * Intel Errata AAK100 (model 26)
  730. * Intel Errata AAP53 (model 30)
  731. * Intel Errata BD53 (model 44)
  732. *
  733. * The official story:
  734. * These chips need to be 'reset' when adding counters by programming the
  735. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  736. * in sequence on the same PMC or on different PMCs.
  737. *
  738. * In practise it appears some of these events do in fact count, and
  739. * we need to programm all 4 events.
  740. */
  741. static void intel_pmu_nhm_workaround(void)
  742. {
  743. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  744. static const unsigned long nhm_magic[4] = {
  745. 0x4300B5,
  746. 0x4300D2,
  747. 0x4300B1,
  748. 0x4300B1
  749. };
  750. struct perf_event *event;
  751. int i;
  752. /*
  753. * The Errata requires below steps:
  754. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  755. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  756. * the corresponding PMCx;
  757. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  758. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  759. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  760. */
  761. /*
  762. * The real steps we choose are a little different from above.
  763. * A) To reduce MSR operations, we don't run step 1) as they
  764. * are already cleared before this function is called;
  765. * B) Call x86_perf_event_update to save PMCx before configuring
  766. * PERFEVTSELx with magic number;
  767. * C) With step 5), we do clear only when the PERFEVTSELx is
  768. * not used currently.
  769. * D) Call x86_perf_event_set_period to restore PMCx;
  770. */
  771. /* We always operate 4 pairs of PERF Counters */
  772. for (i = 0; i < 4; i++) {
  773. event = cpuc->events[i];
  774. if (event)
  775. x86_perf_event_update(event);
  776. }
  777. for (i = 0; i < 4; i++) {
  778. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  779. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  780. }
  781. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  782. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  783. for (i = 0; i < 4; i++) {
  784. event = cpuc->events[i];
  785. if (event) {
  786. x86_perf_event_set_period(event);
  787. __x86_pmu_enable_event(&event->hw,
  788. ARCH_PERFMON_EVENTSEL_ENABLE);
  789. } else
  790. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  791. }
  792. }
  793. static void intel_pmu_nhm_enable_all(int added)
  794. {
  795. if (added)
  796. intel_pmu_nhm_workaround();
  797. intel_pmu_enable_all(added);
  798. }
  799. static inline u64 intel_pmu_get_status(void)
  800. {
  801. u64 status;
  802. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  803. return status;
  804. }
  805. static inline void intel_pmu_ack_status(u64 ack)
  806. {
  807. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  808. }
  809. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  810. {
  811. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  812. u64 ctrl_val, mask;
  813. mask = 0xfULL << (idx * 4);
  814. rdmsrl(hwc->config_base, ctrl_val);
  815. ctrl_val &= ~mask;
  816. wrmsrl(hwc->config_base, ctrl_val);
  817. }
  818. static void intel_pmu_disable_event(struct perf_event *event)
  819. {
  820. struct hw_perf_event *hwc = &event->hw;
  821. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  822. intel_pmu_disable_bts();
  823. intel_pmu_drain_bts_buffer();
  824. return;
  825. }
  826. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  827. intel_pmu_disable_fixed(hwc);
  828. return;
  829. }
  830. x86_pmu_disable_event(event);
  831. if (unlikely(event->attr.precise_ip))
  832. intel_pmu_pebs_disable(event);
  833. }
  834. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  835. {
  836. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  837. u64 ctrl_val, bits, mask;
  838. /*
  839. * Enable IRQ generation (0x8),
  840. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  841. * if requested:
  842. */
  843. bits = 0x8ULL;
  844. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  845. bits |= 0x2;
  846. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  847. bits |= 0x1;
  848. /*
  849. * ANY bit is supported in v3 and up
  850. */
  851. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  852. bits |= 0x4;
  853. bits <<= (idx * 4);
  854. mask = 0xfULL << (idx * 4);
  855. rdmsrl(hwc->config_base, ctrl_val);
  856. ctrl_val &= ~mask;
  857. ctrl_val |= bits;
  858. wrmsrl(hwc->config_base, ctrl_val);
  859. }
  860. static void intel_pmu_enable_event(struct perf_event *event)
  861. {
  862. struct hw_perf_event *hwc = &event->hw;
  863. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  864. if (!__this_cpu_read(cpu_hw_events.enabled))
  865. return;
  866. intel_pmu_enable_bts(hwc->config);
  867. return;
  868. }
  869. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  870. intel_pmu_enable_fixed(hwc);
  871. return;
  872. }
  873. if (unlikely(event->attr.precise_ip))
  874. intel_pmu_pebs_enable(event);
  875. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  876. }
  877. /*
  878. * Save and restart an expired event. Called by NMI contexts,
  879. * so it has to be careful about preempting normal event ops:
  880. */
  881. static int intel_pmu_save_and_restart(struct perf_event *event)
  882. {
  883. x86_perf_event_update(event);
  884. return x86_perf_event_set_period(event);
  885. }
  886. static void intel_pmu_reset(void)
  887. {
  888. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  889. unsigned long flags;
  890. int idx;
  891. if (!x86_pmu.num_counters)
  892. return;
  893. local_irq_save(flags);
  894. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  895. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  896. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  897. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  898. }
  899. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  900. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  901. if (ds)
  902. ds->bts_index = ds->bts_buffer_base;
  903. local_irq_restore(flags);
  904. }
  905. /*
  906. * This handler is triggered by the local APIC, so the APIC IRQ handling
  907. * rules apply:
  908. */
  909. static int intel_pmu_handle_irq(struct pt_regs *regs)
  910. {
  911. struct perf_sample_data data;
  912. struct cpu_hw_events *cpuc;
  913. int bit, loops;
  914. u64 status;
  915. int handled;
  916. perf_sample_data_init(&data, 0);
  917. cpuc = &__get_cpu_var(cpu_hw_events);
  918. /*
  919. * Some chipsets need to unmask the LVTPC in a particular spot
  920. * inside the nmi handler. As a result, the unmasking was pushed
  921. * into all the nmi handlers.
  922. *
  923. * This handler doesn't seem to have any issues with the unmasking
  924. * so it was left at the top.
  925. */
  926. apic_write(APIC_LVTPC, APIC_DM_NMI);
  927. intel_pmu_disable_all();
  928. handled = intel_pmu_drain_bts_buffer();
  929. status = intel_pmu_get_status();
  930. if (!status) {
  931. intel_pmu_enable_all(0);
  932. return handled;
  933. }
  934. loops = 0;
  935. again:
  936. intel_pmu_ack_status(status);
  937. if (++loops > 100) {
  938. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  939. perf_event_print_debug();
  940. intel_pmu_reset();
  941. goto done;
  942. }
  943. inc_irq_stat(apic_perf_irqs);
  944. intel_pmu_lbr_read();
  945. /*
  946. * PEBS overflow sets bit 62 in the global status register
  947. */
  948. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  949. handled++;
  950. x86_pmu.drain_pebs(regs);
  951. }
  952. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  953. struct perf_event *event = cpuc->events[bit];
  954. handled++;
  955. if (!test_bit(bit, cpuc->active_mask))
  956. continue;
  957. if (!intel_pmu_save_and_restart(event))
  958. continue;
  959. data.period = event->hw.last_period;
  960. if (perf_event_overflow(event, &data, regs))
  961. x86_pmu_stop(event, 0);
  962. }
  963. /*
  964. * Repeat if there is more work to be done:
  965. */
  966. status = intel_pmu_get_status();
  967. if (status)
  968. goto again;
  969. done:
  970. intel_pmu_enable_all(0);
  971. return handled;
  972. }
  973. static struct event_constraint *
  974. intel_bts_constraints(struct perf_event *event)
  975. {
  976. struct hw_perf_event *hwc = &event->hw;
  977. unsigned int hw_event, bts_event;
  978. if (event->attr.freq)
  979. return NULL;
  980. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  981. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  982. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  983. return &bts_constraint;
  984. return NULL;
  985. }
  986. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  987. {
  988. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  989. return false;
  990. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  991. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  992. event->hw.config |= 0x01bb;
  993. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  994. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  995. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  996. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  997. event->hw.config |= 0x01b7;
  998. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  999. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1000. }
  1001. if (event->hw.extra_reg.idx == orig_idx)
  1002. return false;
  1003. return true;
  1004. }
  1005. /*
  1006. * manage allocation of shared extra msr for certain events
  1007. *
  1008. * sharing can be:
  1009. * per-cpu: to be shared between the various events on a single PMU
  1010. * per-core: per-cpu + shared by HT threads
  1011. */
  1012. static struct event_constraint *
  1013. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1014. struct perf_event *event)
  1015. {
  1016. struct event_constraint *c = &emptyconstraint;
  1017. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1018. struct er_account *era;
  1019. unsigned long flags;
  1020. int orig_idx = reg->idx;
  1021. /* already allocated shared msr */
  1022. if (reg->alloc)
  1023. return &unconstrained;
  1024. again:
  1025. era = &cpuc->shared_regs->regs[reg->idx];
  1026. /*
  1027. * we use spin_lock_irqsave() to avoid lockdep issues when
  1028. * passing a fake cpuc
  1029. */
  1030. raw_spin_lock_irqsave(&era->lock, flags);
  1031. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1032. /* lock in msr value */
  1033. era->config = reg->config;
  1034. era->reg = reg->reg;
  1035. /* one more user */
  1036. atomic_inc(&era->ref);
  1037. /* no need to reallocate during incremental event scheduling */
  1038. reg->alloc = 1;
  1039. /*
  1040. * All events using extra_reg are unconstrained.
  1041. * Avoids calling x86_get_event_constraints()
  1042. *
  1043. * Must revisit if extra_reg controlling events
  1044. * ever have constraints. Worst case we go through
  1045. * the regular event constraint table.
  1046. */
  1047. c = &unconstrained;
  1048. } else if (intel_try_alt_er(event, orig_idx)) {
  1049. raw_spin_unlock(&era->lock);
  1050. goto again;
  1051. }
  1052. raw_spin_unlock_irqrestore(&era->lock, flags);
  1053. return c;
  1054. }
  1055. static void
  1056. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1057. struct hw_perf_event_extra *reg)
  1058. {
  1059. struct er_account *era;
  1060. /*
  1061. * only put constraint if extra reg was actually
  1062. * allocated. Also takes care of event which do
  1063. * not use an extra shared reg
  1064. */
  1065. if (!reg->alloc)
  1066. return;
  1067. era = &cpuc->shared_regs->regs[reg->idx];
  1068. /* one fewer user */
  1069. atomic_dec(&era->ref);
  1070. /* allocate again next time */
  1071. reg->alloc = 0;
  1072. }
  1073. static struct event_constraint *
  1074. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1075. struct perf_event *event)
  1076. {
  1077. struct event_constraint *c = NULL;
  1078. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1079. c = __intel_shared_reg_get_constraints(cpuc, event);
  1080. return c;
  1081. }
  1082. static struct event_constraint *
  1083. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1084. {
  1085. struct event_constraint *c;
  1086. c = intel_bts_constraints(event);
  1087. if (c)
  1088. return c;
  1089. c = intel_pebs_constraints(event);
  1090. if (c)
  1091. return c;
  1092. c = intel_shared_regs_constraints(cpuc, event);
  1093. if (c)
  1094. return c;
  1095. return x86_get_event_constraints(cpuc, event);
  1096. }
  1097. static void
  1098. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1099. struct perf_event *event)
  1100. {
  1101. struct hw_perf_event_extra *reg;
  1102. reg = &event->hw.extra_reg;
  1103. if (reg->idx != EXTRA_REG_NONE)
  1104. __intel_shared_reg_put_constraints(cpuc, reg);
  1105. }
  1106. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1107. struct perf_event *event)
  1108. {
  1109. intel_put_shared_regs_event_constraints(cpuc, event);
  1110. }
  1111. static int intel_pmu_hw_config(struct perf_event *event)
  1112. {
  1113. int ret = x86_pmu_hw_config(event);
  1114. if (ret)
  1115. return ret;
  1116. if (event->attr.precise_ip &&
  1117. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1118. /*
  1119. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1120. * (0x003c) so that we can use it with PEBS.
  1121. *
  1122. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1123. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1124. * (0x00c0), which is a PEBS capable event, to get the same
  1125. * count.
  1126. *
  1127. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1128. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1129. * larger than the maximum number of instructions that can be
  1130. * retired per cycle (4) and then inverting the condition, we
  1131. * count all cycles that retire 16 or less instructions, which
  1132. * is every cycle.
  1133. *
  1134. * Thereby we gain a PEBS capable cycle counter.
  1135. */
  1136. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1137. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1138. event->hw.config = alt_config;
  1139. }
  1140. if (event->attr.type != PERF_TYPE_RAW)
  1141. return 0;
  1142. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1143. return 0;
  1144. if (x86_pmu.version < 3)
  1145. return -EINVAL;
  1146. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1147. return -EACCES;
  1148. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1149. return 0;
  1150. }
  1151. static __initconst const struct x86_pmu core_pmu = {
  1152. .name = "core",
  1153. .handle_irq = x86_pmu_handle_irq,
  1154. .disable_all = x86_pmu_disable_all,
  1155. .enable_all = x86_pmu_enable_all,
  1156. .enable = x86_pmu_enable_event,
  1157. .disable = x86_pmu_disable_event,
  1158. .hw_config = x86_pmu_hw_config,
  1159. .schedule_events = x86_schedule_events,
  1160. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1161. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1162. .event_map = intel_pmu_event_map,
  1163. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1164. .apic = 1,
  1165. /*
  1166. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1167. * so we install an artificial 1<<31 period regardless of
  1168. * the generic event period:
  1169. */
  1170. .max_period = (1ULL << 31) - 1,
  1171. .get_event_constraints = intel_get_event_constraints,
  1172. .put_event_constraints = intel_put_event_constraints,
  1173. .event_constraints = intel_core_event_constraints,
  1174. };
  1175. static struct intel_shared_regs *allocate_shared_regs(int cpu)
  1176. {
  1177. struct intel_shared_regs *regs;
  1178. int i;
  1179. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1180. GFP_KERNEL, cpu_to_node(cpu));
  1181. if (regs) {
  1182. /*
  1183. * initialize the locks to keep lockdep happy
  1184. */
  1185. for (i = 0; i < EXTRA_REG_MAX; i++)
  1186. raw_spin_lock_init(&regs->regs[i].lock);
  1187. regs->core_id = -1;
  1188. }
  1189. return regs;
  1190. }
  1191. static int intel_pmu_cpu_prepare(int cpu)
  1192. {
  1193. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1194. if (!x86_pmu.extra_regs)
  1195. return NOTIFY_OK;
  1196. cpuc->shared_regs = allocate_shared_regs(cpu);
  1197. if (!cpuc->shared_regs)
  1198. return NOTIFY_BAD;
  1199. return NOTIFY_OK;
  1200. }
  1201. static void intel_pmu_cpu_starting(int cpu)
  1202. {
  1203. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1204. int core_id = topology_core_id(cpu);
  1205. int i;
  1206. init_debug_store_on_cpu(cpu);
  1207. /*
  1208. * Deal with CPUs that don't clear their LBRs on power-up.
  1209. */
  1210. intel_pmu_lbr_reset();
  1211. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1212. return;
  1213. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1214. struct intel_shared_regs *pc;
  1215. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1216. if (pc && pc->core_id == core_id) {
  1217. kfree(cpuc->shared_regs);
  1218. cpuc->shared_regs = pc;
  1219. break;
  1220. }
  1221. }
  1222. cpuc->shared_regs->core_id = core_id;
  1223. cpuc->shared_regs->refcnt++;
  1224. }
  1225. static void intel_pmu_cpu_dying(int cpu)
  1226. {
  1227. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1228. struct intel_shared_regs *pc;
  1229. pc = cpuc->shared_regs;
  1230. if (pc) {
  1231. if (pc->core_id == -1 || --pc->refcnt == 0)
  1232. kfree(pc);
  1233. cpuc->shared_regs = NULL;
  1234. }
  1235. fini_debug_store_on_cpu(cpu);
  1236. }
  1237. static __initconst const struct x86_pmu intel_pmu = {
  1238. .name = "Intel",
  1239. .handle_irq = intel_pmu_handle_irq,
  1240. .disable_all = intel_pmu_disable_all,
  1241. .enable_all = intel_pmu_enable_all,
  1242. .enable = intel_pmu_enable_event,
  1243. .disable = intel_pmu_disable_event,
  1244. .hw_config = intel_pmu_hw_config,
  1245. .schedule_events = x86_schedule_events,
  1246. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1247. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1248. .event_map = intel_pmu_event_map,
  1249. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1250. .apic = 1,
  1251. /*
  1252. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1253. * so we install an artificial 1<<31 period regardless of
  1254. * the generic event period:
  1255. */
  1256. .max_period = (1ULL << 31) - 1,
  1257. .get_event_constraints = intel_get_event_constraints,
  1258. .put_event_constraints = intel_put_event_constraints,
  1259. .cpu_prepare = intel_pmu_cpu_prepare,
  1260. .cpu_starting = intel_pmu_cpu_starting,
  1261. .cpu_dying = intel_pmu_cpu_dying,
  1262. };
  1263. static void intel_clovertown_quirks(void)
  1264. {
  1265. /*
  1266. * PEBS is unreliable due to:
  1267. *
  1268. * AJ67 - PEBS may experience CPL leaks
  1269. * AJ68 - PEBS PMI may be delayed by one event
  1270. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1271. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1272. *
  1273. * AJ67 could be worked around by restricting the OS/USR flags.
  1274. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1275. *
  1276. * AJ106 could possibly be worked around by not allowing LBR
  1277. * usage from PEBS, including the fixup.
  1278. * AJ68 could possibly be worked around by always programming
  1279. * a pebs_event_reset[0] value and coping with the lost events.
  1280. *
  1281. * But taken together it might just make sense to not enable PEBS on
  1282. * these chips.
  1283. */
  1284. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1285. x86_pmu.pebs = 0;
  1286. x86_pmu.pebs_constraints = NULL;
  1287. }
  1288. static __init int intel_pmu_init(void)
  1289. {
  1290. union cpuid10_edx edx;
  1291. union cpuid10_eax eax;
  1292. unsigned int unused;
  1293. unsigned int ebx;
  1294. int version;
  1295. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1296. switch (boot_cpu_data.x86) {
  1297. case 0x6:
  1298. return p6_pmu_init();
  1299. case 0xf:
  1300. return p4_pmu_init();
  1301. }
  1302. return -ENODEV;
  1303. }
  1304. /*
  1305. * Check whether the Architectural PerfMon supports
  1306. * Branch Misses Retired hw_event or not.
  1307. */
  1308. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  1309. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  1310. return -ENODEV;
  1311. version = eax.split.version_id;
  1312. if (version < 2)
  1313. x86_pmu = core_pmu;
  1314. else
  1315. x86_pmu = intel_pmu;
  1316. x86_pmu.version = version;
  1317. x86_pmu.num_counters = eax.split.num_counters;
  1318. x86_pmu.cntval_bits = eax.split.bit_width;
  1319. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1320. /*
  1321. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1322. * assume at least 3 events:
  1323. */
  1324. if (version > 1)
  1325. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1326. /*
  1327. * v2 and above have a perf capabilities MSR
  1328. */
  1329. if (version > 1) {
  1330. u64 capabilities;
  1331. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1332. x86_pmu.intel_cap.capabilities = capabilities;
  1333. }
  1334. intel_ds_init();
  1335. /*
  1336. * Install the hw-cache-events table:
  1337. */
  1338. switch (boot_cpu_data.x86_model) {
  1339. case 14: /* 65 nm core solo/duo, "Yonah" */
  1340. pr_cont("Core events, ");
  1341. break;
  1342. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1343. x86_pmu.quirks = intel_clovertown_quirks;
  1344. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1345. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1346. case 29: /* six-core 45 nm xeon "Dunnington" */
  1347. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1348. sizeof(hw_cache_event_ids));
  1349. intel_pmu_lbr_init_core();
  1350. x86_pmu.event_constraints = intel_core2_event_constraints;
  1351. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1352. pr_cont("Core2 events, ");
  1353. break;
  1354. case 26: /* 45 nm nehalem, "Bloomfield" */
  1355. case 30: /* 45 nm nehalem, "Lynnfield" */
  1356. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1357. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1358. sizeof(hw_cache_event_ids));
  1359. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1360. sizeof(hw_cache_extra_regs));
  1361. intel_pmu_lbr_init_nhm();
  1362. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1363. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1364. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1365. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1366. /* UOPS_ISSUED.STALLED_CYCLES */
  1367. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1368. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1369. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1370. if (ebx & 0x40) {
  1371. /*
  1372. * Erratum AAJ80 detected, we work it around by using
  1373. * the BR_MISP_EXEC.ANY event. This will over-count
  1374. * branch-misses, but it's still much better than the
  1375. * architectural event which is often completely bogus:
  1376. */
  1377. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1378. pr_cont("erratum AAJ80 worked around, ");
  1379. }
  1380. pr_cont("Nehalem events, ");
  1381. break;
  1382. case 28: /* Atom */
  1383. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1384. sizeof(hw_cache_event_ids));
  1385. intel_pmu_lbr_init_atom();
  1386. x86_pmu.event_constraints = intel_gen_event_constraints;
  1387. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1388. pr_cont("Atom events, ");
  1389. break;
  1390. case 37: /* 32 nm nehalem, "Clarkdale" */
  1391. case 44: /* 32 nm nehalem, "Gulftown" */
  1392. case 47: /* 32 nm Xeon E7 */
  1393. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1394. sizeof(hw_cache_event_ids));
  1395. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1396. sizeof(hw_cache_extra_regs));
  1397. intel_pmu_lbr_init_nhm();
  1398. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1399. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1400. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1401. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1402. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1403. /* UOPS_ISSUED.STALLED_CYCLES */
  1404. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1405. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1406. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1407. pr_cont("Westmere events, ");
  1408. break;
  1409. case 42: /* SandyBridge */
  1410. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1411. sizeof(hw_cache_event_ids));
  1412. intel_pmu_lbr_init_nhm();
  1413. x86_pmu.event_constraints = intel_snb_event_constraints;
  1414. x86_pmu.pebs_constraints = intel_snb_pebs_events;
  1415. x86_pmu.extra_regs = intel_snb_extra_regs;
  1416. /* all extra regs are per-cpu when HT is on */
  1417. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1418. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1419. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1420. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1421. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1422. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1423. pr_cont("SandyBridge events, ");
  1424. break;
  1425. default:
  1426. switch (x86_pmu.version) {
  1427. case 1:
  1428. x86_pmu.event_constraints = intel_v1_event_constraints;
  1429. pr_cont("generic architected perfmon v1, ");
  1430. break;
  1431. default:
  1432. /*
  1433. * default constraints for v2 and up
  1434. */
  1435. x86_pmu.event_constraints = intel_gen_event_constraints;
  1436. pr_cont("generic architected perfmon, ");
  1437. break;
  1438. }
  1439. }
  1440. return 0;
  1441. }
  1442. #else /* CONFIG_CPU_SUP_INTEL */
  1443. static int intel_pmu_init(void)
  1444. {
  1445. return 0;
  1446. }
  1447. static struct intel_shared_regs *allocate_shared_regs(int cpu)
  1448. {
  1449. return NULL;
  1450. }
  1451. #endif /* CONFIG_CPU_SUP_INTEL */