cstate.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. /*
  2. * Copyright (C) 2005 Intel Corporation
  3. * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  4. * - Added _PDC for SMP C-states on Intel CPUs
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/acpi.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <acpi/processor.h>
  13. #include <asm/acpi.h>
  14. #include <asm/mwait.h>
  15. /*
  16. * Initialize bm_flags based on the CPU cache properties
  17. * On SMP it depends on cache configuration
  18. * - When cache is not shared among all CPUs, we flush cache
  19. * before entering C3.
  20. * - When cache is shared among all CPUs, we use bm_check
  21. * mechanism as in UP case
  22. *
  23. * This routine is called only after all the CPUs are online
  24. */
  25. void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags,
  26. unsigned int cpu)
  27. {
  28. struct cpuinfo_x86 *c = &cpu_data(cpu);
  29. flags->bm_check = 0;
  30. if (num_online_cpus() == 1)
  31. flags->bm_check = 1;
  32. else if (c->x86_vendor == X86_VENDOR_INTEL) {
  33. /*
  34. * Today all MP CPUs that support C3 share cache.
  35. * And caches should not be flushed by software while
  36. * entering C3 type state.
  37. */
  38. flags->bm_check = 1;
  39. }
  40. /*
  41. * On all recent Intel platforms, ARB_DISABLE is a nop.
  42. * So, set bm_control to zero to indicate that ARB_DISABLE
  43. * is not required while entering C3 type state on
  44. * P4, Core and beyond CPUs
  45. */
  46. if (c->x86_vendor == X86_VENDOR_INTEL &&
  47. (c->x86 > 0xf || (c->x86 == 6 && c->x86_model >= 0x0f)))
  48. flags->bm_control = 0;
  49. }
  50. EXPORT_SYMBOL(acpi_processor_power_init_bm_check);
  51. /* The code below handles cstate entry with monitor-mwait pair on Intel*/
  52. struct cstate_entry {
  53. struct {
  54. unsigned int eax;
  55. unsigned int ecx;
  56. } states[ACPI_PROCESSOR_MAX_POWER];
  57. };
  58. static struct cstate_entry __percpu *cpu_cstate_entry; /* per CPU ptr */
  59. static short mwait_supported[ACPI_PROCESSOR_MAX_POWER];
  60. #define NATIVE_CSTATE_BEYOND_HALT (2)
  61. static long acpi_processor_ffh_cstate_probe_cpu(void *_cx)
  62. {
  63. struct acpi_processor_cx *cx = _cx;
  64. long retval;
  65. unsigned int eax, ebx, ecx, edx;
  66. unsigned int edx_part;
  67. unsigned int cstate_type; /* C-state type and not ACPI C-state type */
  68. unsigned int num_cstate_subtype;
  69. cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
  70. /* Check whether this particular cx_type (in CST) is supported or not */
  71. cstate_type = ((cx->address >> MWAIT_SUBSTATE_SIZE) &
  72. MWAIT_CSTATE_MASK) + 1;
  73. edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE);
  74. num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK;
  75. retval = 0;
  76. if (num_cstate_subtype < (cx->address & MWAIT_SUBSTATE_MASK)) {
  77. retval = -1;
  78. goto out;
  79. }
  80. /* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */
  81. if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
  82. !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) {
  83. retval = -1;
  84. goto out;
  85. }
  86. if (!mwait_supported[cstate_type]) {
  87. mwait_supported[cstate_type] = 1;
  88. printk(KERN_DEBUG
  89. "Monitor-Mwait will be used to enter C-%d "
  90. "state\n", cx->type);
  91. }
  92. snprintf(cx->desc,
  93. ACPI_CX_DESC_LEN, "ACPI FFH INTEL MWAIT 0x%x",
  94. cx->address);
  95. out:
  96. return retval;
  97. }
  98. int acpi_processor_ffh_cstate_probe(unsigned int cpu,
  99. struct acpi_processor_cx *cx, struct acpi_power_register *reg)
  100. {
  101. struct cstate_entry *percpu_entry;
  102. struct cpuinfo_x86 *c = &cpu_data(cpu);
  103. long retval;
  104. if (!cpu_cstate_entry || c->cpuid_level < CPUID_MWAIT_LEAF)
  105. return -1;
  106. if (reg->bit_offset != NATIVE_CSTATE_BEYOND_HALT)
  107. return -1;
  108. percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
  109. percpu_entry->states[cx->index].eax = 0;
  110. percpu_entry->states[cx->index].ecx = 0;
  111. /* Make sure we are running on right CPU */
  112. retval = work_on_cpu(cpu, acpi_processor_ffh_cstate_probe_cpu, cx);
  113. if (retval == 0) {
  114. /* Use the hint in CST */
  115. percpu_entry->states[cx->index].eax = cx->address;
  116. percpu_entry->states[cx->index].ecx = MWAIT_ECX_INTERRUPT_BREAK;
  117. }
  118. /*
  119. * For _CST FFH on Intel, if GAS.access_size bit 1 is cleared,
  120. * then we should skip checking BM_STS for this C-state.
  121. * ref: "Intel Processor Vendor-Specific ACPI Interface Specification"
  122. */
  123. if ((c->x86_vendor == X86_VENDOR_INTEL) && !(reg->access_size & 0x2))
  124. cx->bm_sts_skip = 1;
  125. return retval;
  126. }
  127. EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe);
  128. /*
  129. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  130. * which can obviate IPI to trigger checking of need_resched.
  131. * We execute MONITOR against need_resched and enter optimized wait state
  132. * through MWAIT. Whenever someone changes need_resched, we would be woken
  133. * up from MWAIT (without an IPI).
  134. *
  135. * New with Core Duo processors, MWAIT can take some hints based on CPU
  136. * capability.
  137. */
  138. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  139. {
  140. if (!need_resched()) {
  141. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  142. clflush((void *)&current_thread_info()->flags);
  143. __monitor((void *)&current_thread_info()->flags, 0, 0);
  144. smp_mb();
  145. if (!need_resched())
  146. __mwait(ax, cx);
  147. }
  148. }
  149. void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx)
  150. {
  151. unsigned int cpu = smp_processor_id();
  152. struct cstate_entry *percpu_entry;
  153. percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
  154. mwait_idle_with_hints(percpu_entry->states[cx->index].eax,
  155. percpu_entry->states[cx->index].ecx);
  156. }
  157. EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_enter);
  158. static int __init ffh_cstate_init(void)
  159. {
  160. struct cpuinfo_x86 *c = &boot_cpu_data;
  161. if (c->x86_vendor != X86_VENDOR_INTEL)
  162. return -1;
  163. cpu_cstate_entry = alloc_percpu(struct cstate_entry);
  164. return 0;
  165. }
  166. static void __exit ffh_cstate_exit(void)
  167. {
  168. free_percpu(cpu_cstate_entry);
  169. cpu_cstate_entry = NULL;
  170. }
  171. arch_initcall(ffh_cstate_init);
  172. __exitcall(ffh_cstate_exit);