fault.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * From i386 code copyright (C) 1995 Linus Torvalds
  15. */
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/errno.h>
  20. #include <linux/string.h>
  21. #include <linux/types.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/mman.h>
  24. #include <linux/mm.h>
  25. #include <linux/smp.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/init.h>
  28. #include <linux/tty.h>
  29. #include <linux/vt_kern.h> /* For unblank_screen() */
  30. #include <linux/highmem.h>
  31. #include <linux/module.h>
  32. #include <linux/kprobes.h>
  33. #include <linux/hugetlb.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/system.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/sections.h>
  39. #include <asm/traps.h>
  40. #include <asm/syscalls.h>
  41. #include <arch/interrupts.h>
  42. static noinline void force_sig_info_fault(const char *type, int si_signo,
  43. int si_code, unsigned long address,
  44. int fault_num,
  45. struct task_struct *tsk,
  46. struct pt_regs *regs)
  47. {
  48. siginfo_t info;
  49. if (unlikely(tsk->pid < 2)) {
  50. panic("Signal %d (code %d) at %#lx sent to %s!",
  51. si_signo, si_code & 0xffff, address,
  52. tsk->pid ? "init" : "the idle task");
  53. }
  54. info.si_signo = si_signo;
  55. info.si_errno = 0;
  56. info.si_code = si_code;
  57. info.si_addr = (void __user *)address;
  58. info.si_trapno = fault_num;
  59. trace_unhandled_signal(type, regs, address, si_signo);
  60. force_sig_info(si_signo, &info, tsk);
  61. }
  62. #ifndef __tilegx__
  63. /*
  64. * Synthesize the fault a PL0 process would get by doing a word-load of
  65. * an unaligned address or a high kernel address.
  66. */
  67. SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
  68. struct pt_regs *, regs)
  69. {
  70. if (address >= PAGE_OFFSET)
  71. force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
  72. address, INT_DTLB_MISS, current, regs);
  73. else
  74. force_sig_info_fault("atomic alignment fault", SIGBUS,
  75. BUS_ADRALN, address,
  76. INT_UNALIGN_DATA, current, regs);
  77. /*
  78. * Adjust pc to point at the actual instruction, which is unusual
  79. * for syscalls normally, but is appropriate when we are claiming
  80. * that a syscall swint1 caused a page fault or bus error.
  81. */
  82. regs->pc -= 8;
  83. /*
  84. * Mark this as a caller-save interrupt, like a normal page fault,
  85. * so that when we go through the signal handler path we will
  86. * properly restore r0, r1, and r2 for the signal handler arguments.
  87. */
  88. regs->flags |= PT_FLAGS_CALLER_SAVES;
  89. return 0;
  90. }
  91. #endif
  92. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  93. {
  94. unsigned index = pgd_index(address);
  95. pgd_t *pgd_k;
  96. pud_t *pud, *pud_k;
  97. pmd_t *pmd, *pmd_k;
  98. pgd += index;
  99. pgd_k = init_mm.pgd + index;
  100. if (!pgd_present(*pgd_k))
  101. return NULL;
  102. pud = pud_offset(pgd, address);
  103. pud_k = pud_offset(pgd_k, address);
  104. if (!pud_present(*pud_k))
  105. return NULL;
  106. pmd = pmd_offset(pud, address);
  107. pmd_k = pmd_offset(pud_k, address);
  108. if (!pmd_present(*pmd_k))
  109. return NULL;
  110. if (!pmd_present(*pmd)) {
  111. set_pmd(pmd, *pmd_k);
  112. arch_flush_lazy_mmu_mode();
  113. } else
  114. BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
  115. return pmd_k;
  116. }
  117. /*
  118. * Handle a fault on the vmalloc or module mapping area
  119. */
  120. static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
  121. {
  122. pmd_t *pmd_k;
  123. pte_t *pte_k;
  124. /* Make sure we are in vmalloc area */
  125. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  126. return -1;
  127. /*
  128. * Synchronize this task's top level page-table
  129. * with the 'reference' page table.
  130. */
  131. pmd_k = vmalloc_sync_one(pgd, address);
  132. if (!pmd_k)
  133. return -1;
  134. if (pmd_huge(*pmd_k))
  135. return 0; /* support TILE huge_vmap() API */
  136. pte_k = pte_offset_kernel(pmd_k, address);
  137. if (!pte_present(*pte_k))
  138. return -1;
  139. return 0;
  140. }
  141. /* Wait until this PTE has completed migration. */
  142. static void wait_for_migration(pte_t *pte)
  143. {
  144. if (pte_migrating(*pte)) {
  145. /*
  146. * Wait until the migrater fixes up this pte.
  147. * We scale the loop count by the clock rate so we'll wait for
  148. * a few seconds here.
  149. */
  150. int retries = 0;
  151. int bound = get_clock_rate();
  152. while (pte_migrating(*pte)) {
  153. barrier();
  154. if (++retries > bound)
  155. panic("Hit migrating PTE (%#llx) and"
  156. " page PFN %#lx still migrating",
  157. pte->val, pte_pfn(*pte));
  158. }
  159. }
  160. }
  161. /*
  162. * It's not generally safe to use "current" to get the page table pointer,
  163. * since we might be running an oprofile interrupt in the middle of a
  164. * task switch.
  165. */
  166. static pgd_t *get_current_pgd(void)
  167. {
  168. HV_Context ctx = hv_inquire_context();
  169. unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
  170. struct page *pgd_page = pfn_to_page(pgd_pfn);
  171. BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
  172. return (pgd_t *) __va(ctx.page_table);
  173. }
  174. /*
  175. * We can receive a page fault from a migrating PTE at any time.
  176. * Handle it by just waiting until the fault resolves.
  177. *
  178. * It's also possible to get a migrating kernel PTE that resolves
  179. * itself during the downcall from hypervisor to Linux. We just check
  180. * here to see if the PTE seems valid, and if so we retry it.
  181. *
  182. * NOTE! We MUST NOT take any locks for this case. We may be in an
  183. * interrupt or a critical region, and must do as little as possible.
  184. * Similarly, we can't use atomic ops here, since we may be handling a
  185. * fault caused by an atomic op access.
  186. */
  187. static int handle_migrating_pte(pgd_t *pgd, int fault_num,
  188. unsigned long address,
  189. int is_kernel_mode, int write)
  190. {
  191. pud_t *pud;
  192. pmd_t *pmd;
  193. pte_t *pte;
  194. pte_t pteval;
  195. if (pgd_addr_invalid(address))
  196. return 0;
  197. pgd += pgd_index(address);
  198. pud = pud_offset(pgd, address);
  199. if (!pud || !pud_present(*pud))
  200. return 0;
  201. pmd = pmd_offset(pud, address);
  202. if (!pmd || !pmd_present(*pmd))
  203. return 0;
  204. pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
  205. pte_offset_kernel(pmd, address);
  206. pteval = *pte;
  207. if (pte_migrating(pteval)) {
  208. wait_for_migration(pte);
  209. return 1;
  210. }
  211. if (!is_kernel_mode || !pte_present(pteval))
  212. return 0;
  213. if (fault_num == INT_ITLB_MISS) {
  214. if (pte_exec(pteval))
  215. return 1;
  216. } else if (write) {
  217. if (pte_write(pteval))
  218. return 1;
  219. } else {
  220. if (pte_read(pteval))
  221. return 1;
  222. }
  223. return 0;
  224. }
  225. /*
  226. * This routine is responsible for faulting in user pages.
  227. * It passes the work off to one of the appropriate routines.
  228. * It returns true if the fault was successfully handled.
  229. */
  230. static int handle_page_fault(struct pt_regs *regs,
  231. int fault_num,
  232. int is_page_fault,
  233. unsigned long address,
  234. int write)
  235. {
  236. struct task_struct *tsk;
  237. struct mm_struct *mm;
  238. struct vm_area_struct *vma;
  239. unsigned long stack_offset;
  240. int fault;
  241. int si_code;
  242. int is_kernel_mode;
  243. pgd_t *pgd;
  244. /* on TILE, protection faults are always writes */
  245. if (!is_page_fault)
  246. write = 1;
  247. is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
  248. tsk = validate_current();
  249. /*
  250. * Check to see if we might be overwriting the stack, and bail
  251. * out if so. The page fault code is a relatively likely
  252. * place to get trapped in an infinite regress, and once we
  253. * overwrite the whole stack, it becomes very hard to recover.
  254. */
  255. stack_offset = stack_pointer & (THREAD_SIZE-1);
  256. if (stack_offset < THREAD_SIZE / 8) {
  257. pr_alert("Potential stack overrun: sp %#lx\n",
  258. stack_pointer);
  259. show_regs(regs);
  260. pr_alert("Killing current process %d/%s\n",
  261. tsk->pid, tsk->comm);
  262. do_group_exit(SIGKILL);
  263. }
  264. /*
  265. * Early on, we need to check for migrating PTE entries;
  266. * see homecache.c. If we find a migrating PTE, we wait until
  267. * the backing page claims to be done migrating, then we proceed.
  268. * For kernel PTEs, we rewrite the PTE and return and retry.
  269. * Otherwise, we treat the fault like a normal "no PTE" fault,
  270. * rather than trying to patch up the existing PTE.
  271. */
  272. pgd = get_current_pgd();
  273. if (handle_migrating_pte(pgd, fault_num, address,
  274. is_kernel_mode, write))
  275. return 1;
  276. si_code = SEGV_MAPERR;
  277. /*
  278. * We fault-in kernel-space virtual memory on-demand. The
  279. * 'reference' page table is init_mm.pgd.
  280. *
  281. * NOTE! We MUST NOT take any locks for this case. We may
  282. * be in an interrupt or a critical region, and should
  283. * only copy the information from the master page table,
  284. * nothing more.
  285. *
  286. * This verifies that the fault happens in kernel space
  287. * and that the fault was not a protection fault.
  288. */
  289. if (unlikely(address >= TASK_SIZE &&
  290. !is_arch_mappable_range(address, 0))) {
  291. if (is_kernel_mode && is_page_fault &&
  292. vmalloc_fault(pgd, address) >= 0)
  293. return 1;
  294. /*
  295. * Don't take the mm semaphore here. If we fixup a prefetch
  296. * fault we could otherwise deadlock.
  297. */
  298. mm = NULL; /* happy compiler */
  299. vma = NULL;
  300. goto bad_area_nosemaphore;
  301. }
  302. /*
  303. * If we're trying to touch user-space addresses, we must
  304. * be either at PL0, or else with interrupts enabled in the
  305. * kernel, so either way we can re-enable interrupts here.
  306. */
  307. local_irq_enable();
  308. mm = tsk->mm;
  309. /*
  310. * If we're in an interrupt, have no user context or are running in an
  311. * atomic region then we must not take the fault.
  312. */
  313. if (in_atomic() || !mm) {
  314. vma = NULL; /* happy compiler */
  315. goto bad_area_nosemaphore;
  316. }
  317. /*
  318. * When running in the kernel we expect faults to occur only to
  319. * addresses in user space. All other faults represent errors in the
  320. * kernel and should generate an OOPS. Unfortunately, in the case of an
  321. * erroneous fault occurring in a code path which already holds mmap_sem
  322. * we will deadlock attempting to validate the fault against the
  323. * address space. Luckily the kernel only validly references user
  324. * space from well defined areas of code, which are listed in the
  325. * exceptions table.
  326. *
  327. * As the vast majority of faults will be valid we will only perform
  328. * the source reference check when there is a possibility of a deadlock.
  329. * Attempt to lock the address space, if we cannot we then validate the
  330. * source. If this is invalid we can skip the address space check,
  331. * thus avoiding the deadlock.
  332. */
  333. if (!down_read_trylock(&mm->mmap_sem)) {
  334. if (is_kernel_mode &&
  335. !search_exception_tables(regs->pc)) {
  336. vma = NULL; /* happy compiler */
  337. goto bad_area_nosemaphore;
  338. }
  339. down_read(&mm->mmap_sem);
  340. }
  341. vma = find_vma(mm, address);
  342. if (!vma)
  343. goto bad_area;
  344. if (vma->vm_start <= address)
  345. goto good_area;
  346. if (!(vma->vm_flags & VM_GROWSDOWN))
  347. goto bad_area;
  348. if (regs->sp < PAGE_OFFSET) {
  349. /*
  350. * accessing the stack below sp is always a bug.
  351. */
  352. if (address < regs->sp)
  353. goto bad_area;
  354. }
  355. if (expand_stack(vma, address))
  356. goto bad_area;
  357. /*
  358. * Ok, we have a good vm_area for this memory access, so
  359. * we can handle it..
  360. */
  361. good_area:
  362. si_code = SEGV_ACCERR;
  363. if (fault_num == INT_ITLB_MISS) {
  364. if (!(vma->vm_flags & VM_EXEC))
  365. goto bad_area;
  366. } else if (write) {
  367. #ifdef TEST_VERIFY_AREA
  368. if (!is_page_fault && regs->cs == KERNEL_CS)
  369. pr_err("WP fault at "REGFMT"\n", regs->eip);
  370. #endif
  371. if (!(vma->vm_flags & VM_WRITE))
  372. goto bad_area;
  373. } else {
  374. if (!is_page_fault || !(vma->vm_flags & VM_READ))
  375. goto bad_area;
  376. }
  377. survive:
  378. /*
  379. * If for any reason at all we couldn't handle the fault,
  380. * make sure we exit gracefully rather than endlessly redo
  381. * the fault.
  382. */
  383. fault = handle_mm_fault(mm, vma, address, write);
  384. if (unlikely(fault & VM_FAULT_ERROR)) {
  385. if (fault & VM_FAULT_OOM)
  386. goto out_of_memory;
  387. else if (fault & VM_FAULT_SIGBUS)
  388. goto do_sigbus;
  389. BUG();
  390. }
  391. if (fault & VM_FAULT_MAJOR)
  392. tsk->maj_flt++;
  393. else
  394. tsk->min_flt++;
  395. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  396. /*
  397. * If this was an asynchronous fault,
  398. * restart the appropriate engine.
  399. */
  400. switch (fault_num) {
  401. #if CHIP_HAS_TILE_DMA()
  402. case INT_DMATLB_MISS:
  403. case INT_DMATLB_MISS_DWNCL:
  404. case INT_DMATLB_ACCESS:
  405. case INT_DMATLB_ACCESS_DWNCL:
  406. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  407. break;
  408. #endif
  409. #if CHIP_HAS_SN_PROC()
  410. case INT_SNITLB_MISS:
  411. case INT_SNITLB_MISS_DWNCL:
  412. __insn_mtspr(SPR_SNCTL,
  413. __insn_mfspr(SPR_SNCTL) &
  414. ~SPR_SNCTL__FRZPROC_MASK);
  415. break;
  416. #endif
  417. }
  418. #endif
  419. up_read(&mm->mmap_sem);
  420. return 1;
  421. /*
  422. * Something tried to access memory that isn't in our memory map..
  423. * Fix it, but check if it's kernel or user first..
  424. */
  425. bad_area:
  426. up_read(&mm->mmap_sem);
  427. bad_area_nosemaphore:
  428. /* User mode accesses just cause a SIGSEGV */
  429. if (!is_kernel_mode) {
  430. /*
  431. * It's possible to have interrupts off here.
  432. */
  433. local_irq_enable();
  434. force_sig_info_fault("segfault", SIGSEGV, si_code, address,
  435. fault_num, tsk, regs);
  436. return 0;
  437. }
  438. no_context:
  439. /* Are we prepared to handle this kernel fault? */
  440. if (fixup_exception(regs))
  441. return 0;
  442. /*
  443. * Oops. The kernel tried to access some bad page. We'll have to
  444. * terminate things with extreme prejudice.
  445. */
  446. bust_spinlocks(1);
  447. /* FIXME: no lookup_address() yet */
  448. #ifdef SUPPORT_LOOKUP_ADDRESS
  449. if (fault_num == INT_ITLB_MISS) {
  450. pte_t *pte = lookup_address(address);
  451. if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
  452. pr_crit("kernel tried to execute"
  453. " non-executable page - exploit attempt?"
  454. " (uid: %d)\n", current->uid);
  455. }
  456. #endif
  457. if (address < PAGE_SIZE)
  458. pr_alert("Unable to handle kernel NULL pointer dereference\n");
  459. else
  460. pr_alert("Unable to handle kernel paging request\n");
  461. pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
  462. address, regs->pc);
  463. show_regs(regs);
  464. if (unlikely(tsk->pid < 2)) {
  465. panic("Kernel page fault running %s!",
  466. tsk->pid ? "init" : "the idle task");
  467. }
  468. /*
  469. * More FIXME: we should probably copy the i386 here and
  470. * implement a generic die() routine. Not today.
  471. */
  472. #ifdef SUPPORT_DIE
  473. die("Oops", regs);
  474. #endif
  475. bust_spinlocks(1);
  476. do_group_exit(SIGKILL);
  477. /*
  478. * We ran out of memory, or some other thing happened to us that made
  479. * us unable to handle the page fault gracefully.
  480. */
  481. out_of_memory:
  482. up_read(&mm->mmap_sem);
  483. if (is_global_init(tsk)) {
  484. yield();
  485. down_read(&mm->mmap_sem);
  486. goto survive;
  487. }
  488. pr_alert("VM: killing process %s\n", tsk->comm);
  489. if (!is_kernel_mode)
  490. do_group_exit(SIGKILL);
  491. goto no_context;
  492. do_sigbus:
  493. up_read(&mm->mmap_sem);
  494. /* Kernel mode? Handle exceptions or die */
  495. if (is_kernel_mode)
  496. goto no_context;
  497. force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
  498. fault_num, tsk, regs);
  499. return 0;
  500. }
  501. #ifndef __tilegx__
  502. /* We must release ICS before panicking or we won't get anywhere. */
  503. #define ics_panic(fmt, ...) do { \
  504. __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
  505. panic(fmt, __VA_ARGS__); \
  506. } while (0)
  507. /*
  508. * When we take an ITLB or DTLB fault or access violation in the
  509. * supervisor while the critical section bit is set, the hypervisor is
  510. * reluctant to write new values into the EX_CONTEXT_K_x registers,
  511. * since that might indicate we have not yet squirreled the SPR
  512. * contents away and can thus safely take a recursive interrupt.
  513. * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
  514. *
  515. * Note that this routine is called before homecache_tlb_defer_enter(),
  516. * which means that we can properly unlock any atomics that might
  517. * be used there (good), but also means we must be very sensitive
  518. * to not touch any data structures that might be located in memory
  519. * that could migrate, as we could be entering the kernel on a dataplane
  520. * cpu that has been deferring kernel TLB updates. This means, for
  521. * example, that we can't migrate init_mm or its pgd.
  522. */
  523. struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
  524. unsigned long address,
  525. unsigned long info)
  526. {
  527. unsigned long pc = info & ~1;
  528. int write = info & 1;
  529. pgd_t *pgd = get_current_pgd();
  530. /* Retval is 1 at first since we will handle the fault fully. */
  531. struct intvec_state state = {
  532. do_page_fault, fault_num, address, write, 1
  533. };
  534. /* Validate that we are plausibly in the right routine. */
  535. if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
  536. (fault_num != INT_DTLB_MISS &&
  537. fault_num != INT_DTLB_ACCESS)) {
  538. unsigned long old_pc = regs->pc;
  539. regs->pc = pc;
  540. ics_panic("Bad ICS page fault args:"
  541. " old PC %#lx, fault %d/%d at %#lx\n",
  542. old_pc, fault_num, write, address);
  543. }
  544. /* We might be faulting on a vmalloc page, so check that first. */
  545. if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
  546. return state;
  547. /*
  548. * If we faulted with ICS set in sys_cmpxchg, we are providing
  549. * a user syscall service that should generate a signal on
  550. * fault. We didn't set up a kernel stack on initial entry to
  551. * sys_cmpxchg, but instead had one set up by the fault, which
  552. * (because sys_cmpxchg never releases ICS) came to us via the
  553. * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
  554. * still referencing the original user code. We release the
  555. * atomic lock and rewrite pt_regs so that it appears that we
  556. * came from user-space directly, and after we finish the
  557. * fault we'll go back to user space and re-issue the swint.
  558. * This way the backtrace information is correct if we need to
  559. * emit a stack dump at any point while handling this.
  560. *
  561. * Must match register use in sys_cmpxchg().
  562. */
  563. if (pc >= (unsigned long) sys_cmpxchg &&
  564. pc < (unsigned long) __sys_cmpxchg_end) {
  565. #ifdef CONFIG_SMP
  566. /* Don't unlock before we could have locked. */
  567. if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
  568. int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
  569. __atomic_fault_unlock(lock_ptr);
  570. }
  571. #endif
  572. regs->sp = regs->regs[27];
  573. }
  574. /*
  575. * We can also fault in the atomic assembly, in which
  576. * case we use the exception table to do the first-level fixup.
  577. * We may re-fixup again in the real fault handler if it
  578. * turns out the faulting address is just bad, and not,
  579. * for example, migrating.
  580. */
  581. else if (pc >= (unsigned long) __start_atomic_asm_code &&
  582. pc < (unsigned long) __end_atomic_asm_code) {
  583. const struct exception_table_entry *fixup;
  584. #ifdef CONFIG_SMP
  585. /* Unlock the atomic lock. */
  586. int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
  587. __atomic_fault_unlock(lock_ptr);
  588. #endif
  589. fixup = search_exception_tables(pc);
  590. if (!fixup)
  591. ics_panic("ICS atomic fault not in table:"
  592. " PC %#lx, fault %d", pc, fault_num);
  593. regs->pc = fixup->fixup;
  594. regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
  595. }
  596. /*
  597. * Now that we have released the atomic lock (if necessary),
  598. * it's safe to spin if the PTE that caused the fault was migrating.
  599. */
  600. if (fault_num == INT_DTLB_ACCESS)
  601. write = 1;
  602. if (handle_migrating_pte(pgd, fault_num, address, 1, write))
  603. return state;
  604. /* Return zero so that we continue on with normal fault handling. */
  605. state.retval = 0;
  606. return state;
  607. }
  608. #endif /* !__tilegx__ */
  609. /*
  610. * This routine handles page faults. It determines the address, and the
  611. * problem, and then passes it handle_page_fault() for normal DTLB and
  612. * ITLB issues, and for DMA or SN processor faults when we are in user
  613. * space. For the latter, if we're in kernel mode, we just save the
  614. * interrupt away appropriately and return immediately. We can't do
  615. * page faults for user code while in kernel mode.
  616. */
  617. void do_page_fault(struct pt_regs *regs, int fault_num,
  618. unsigned long address, unsigned long write)
  619. {
  620. int is_page_fault;
  621. /* This case should have been handled by do_page_fault_ics(). */
  622. BUG_ON(write & ~1);
  623. #if CHIP_HAS_TILE_DMA()
  624. /*
  625. * If it's a DMA fault, suspend the transfer while we're
  626. * handling the miss; we'll restart after it's handled. If we
  627. * don't suspend, it's possible that this process could swap
  628. * out and back in, and restart the engine since the DMA is
  629. * still 'running'.
  630. */
  631. if (fault_num == INT_DMATLB_MISS ||
  632. fault_num == INT_DMATLB_ACCESS ||
  633. fault_num == INT_DMATLB_MISS_DWNCL ||
  634. fault_num == INT_DMATLB_ACCESS_DWNCL) {
  635. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
  636. while (__insn_mfspr(SPR_DMA_USER_STATUS) &
  637. SPR_DMA_STATUS__BUSY_MASK)
  638. ;
  639. }
  640. #endif
  641. /* Validate fault num and decide if this is a first-time page fault. */
  642. switch (fault_num) {
  643. case INT_ITLB_MISS:
  644. case INT_DTLB_MISS:
  645. #if CHIP_HAS_TILE_DMA()
  646. case INT_DMATLB_MISS:
  647. case INT_DMATLB_MISS_DWNCL:
  648. #endif
  649. #if CHIP_HAS_SN_PROC()
  650. case INT_SNITLB_MISS:
  651. case INT_SNITLB_MISS_DWNCL:
  652. #endif
  653. is_page_fault = 1;
  654. break;
  655. case INT_DTLB_ACCESS:
  656. #if CHIP_HAS_TILE_DMA()
  657. case INT_DMATLB_ACCESS:
  658. case INT_DMATLB_ACCESS_DWNCL:
  659. #endif
  660. is_page_fault = 0;
  661. break;
  662. default:
  663. panic("Bad fault number %d in do_page_fault", fault_num);
  664. }
  665. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  666. if (EX1_PL(regs->ex1) != USER_PL) {
  667. struct async_tlb *async;
  668. switch (fault_num) {
  669. #if CHIP_HAS_TILE_DMA()
  670. case INT_DMATLB_MISS:
  671. case INT_DMATLB_ACCESS:
  672. case INT_DMATLB_MISS_DWNCL:
  673. case INT_DMATLB_ACCESS_DWNCL:
  674. async = &current->thread.dma_async_tlb;
  675. break;
  676. #endif
  677. #if CHIP_HAS_SN_PROC()
  678. case INT_SNITLB_MISS:
  679. case INT_SNITLB_MISS_DWNCL:
  680. async = &current->thread.sn_async_tlb;
  681. break;
  682. #endif
  683. default:
  684. async = NULL;
  685. }
  686. if (async) {
  687. /*
  688. * No vmalloc check required, so we can allow
  689. * interrupts immediately at this point.
  690. */
  691. local_irq_enable();
  692. set_thread_flag(TIF_ASYNC_TLB);
  693. if (async->fault_num != 0) {
  694. panic("Second async fault %d;"
  695. " old fault was %d (%#lx/%ld)",
  696. fault_num, async->fault_num,
  697. address, write);
  698. }
  699. BUG_ON(fault_num == 0);
  700. async->fault_num = fault_num;
  701. async->is_fault = is_page_fault;
  702. async->is_write = write;
  703. async->address = address;
  704. return;
  705. }
  706. }
  707. #endif
  708. handle_page_fault(regs, fault_num, is_page_fault, address, write);
  709. }
  710. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  711. /*
  712. * Check an async_tlb structure to see if a deferred fault is waiting,
  713. * and if so pass it to the page-fault code.
  714. */
  715. static void handle_async_page_fault(struct pt_regs *regs,
  716. struct async_tlb *async)
  717. {
  718. if (async->fault_num) {
  719. /*
  720. * Clear async->fault_num before calling the page-fault
  721. * handler so that if we re-interrupt before returning
  722. * from the function we have somewhere to put the
  723. * information from the new interrupt.
  724. */
  725. int fault_num = async->fault_num;
  726. async->fault_num = 0;
  727. handle_page_fault(regs, fault_num, async->is_fault,
  728. async->address, async->is_write);
  729. }
  730. }
  731. /*
  732. * This routine effectively re-issues asynchronous page faults
  733. * when we are returning to user space.
  734. */
  735. void do_async_page_fault(struct pt_regs *regs)
  736. {
  737. /*
  738. * Clear thread flag early. If we re-interrupt while processing
  739. * code here, we will reset it and recall this routine before
  740. * returning to user space.
  741. */
  742. clear_thread_flag(TIF_ASYNC_TLB);
  743. #if CHIP_HAS_TILE_DMA()
  744. handle_async_page_fault(regs, &current->thread.dma_async_tlb);
  745. #endif
  746. #if CHIP_HAS_SN_PROC()
  747. handle_async_page_fault(regs, &current->thread.sn_async_tlb);
  748. #endif
  749. }
  750. #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
  751. void vmalloc_sync_all(void)
  752. {
  753. #ifdef __tilegx__
  754. /* Currently all L1 kernel pmd's are static and shared. */
  755. BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
  756. #else
  757. /*
  758. * Note that races in the updates of insync and start aren't
  759. * problematic: insync can only get set bits added, and updates to
  760. * start are only improving performance (without affecting correctness
  761. * if undone).
  762. */
  763. static DECLARE_BITMAP(insync, PTRS_PER_PGD);
  764. static unsigned long start = PAGE_OFFSET;
  765. unsigned long address;
  766. BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
  767. for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
  768. if (!test_bit(pgd_index(address), insync)) {
  769. unsigned long flags;
  770. struct list_head *pos;
  771. spin_lock_irqsave(&pgd_lock, flags);
  772. list_for_each(pos, &pgd_list)
  773. if (!vmalloc_sync_one(list_to_pgd(pos),
  774. address)) {
  775. /* Must be at first entry in list. */
  776. BUG_ON(pos != pgd_list.next);
  777. break;
  778. }
  779. spin_unlock_irqrestore(&pgd_lock, flags);
  780. if (pos != pgd_list.next)
  781. set_bit(pgd_index(address), insync);
  782. }
  783. if (address == start && test_bit(pgd_index(address), insync))
  784. start = address + PGDIR_SIZE;
  785. }
  786. #endif
  787. }