memcpy_32.S 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <arch/chip.h>
  15. /*
  16. * This file shares the implementation of the userspace memcpy and
  17. * the kernel's memcpy, copy_to_user and copy_from_user.
  18. */
  19. #include <linux/linkage.h>
  20. /* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */
  21. #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
  22. #define memcpy __memcpy_asm
  23. #define __copy_to_user_inatomic __copy_to_user_inatomic_asm
  24. #define __copy_from_user_inatomic __copy_from_user_inatomic_asm
  25. #define __copy_from_user_zeroing __copy_from_user_zeroing_asm
  26. #endif
  27. #define IS_MEMCPY 0
  28. #define IS_COPY_FROM_USER 1
  29. #define IS_COPY_FROM_USER_ZEROING 2
  30. #define IS_COPY_TO_USER -1
  31. .section .text.memcpy_common, "ax"
  32. .align 64
  33. /* Use this to preface each bundle that can cause an exception so
  34. * the kernel can clean up properly. The special cleanup code should
  35. * not use these, since it knows what it is doing.
  36. */
  37. #define EX \
  38. .pushsection __ex_table, "a"; \
  39. .word 9f, memcpy_common_fixup; \
  40. .popsection; \
  41. 9
  42. /* __copy_from_user_inatomic takes the kernel target address in r0,
  43. * the user source in r1, and the bytes to copy in r2.
  44. * It returns the number of uncopiable bytes (hopefully zero) in r0.
  45. */
  46. ENTRY(__copy_from_user_inatomic)
  47. .type __copy_from_user_inatomic, @function
  48. FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
  49. .text.memcpy_common, \
  50. .Lend_memcpy_common - __copy_from_user_inatomic)
  51. { movei r29, IS_COPY_FROM_USER; j memcpy_common }
  52. .size __copy_from_user_inatomic, . - __copy_from_user_inatomic
  53. /* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
  54. * any uncopiable bytes are zeroed in the target.
  55. */
  56. ENTRY(__copy_from_user_zeroing)
  57. .type __copy_from_user_zeroing, @function
  58. FEEDBACK_REENTER(__copy_from_user_inatomic)
  59. { movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
  60. .size __copy_from_user_zeroing, . - __copy_from_user_zeroing
  61. /* __copy_to_user_inatomic takes the user target address in r0,
  62. * the kernel source in r1, and the bytes to copy in r2.
  63. * It returns the number of uncopiable bytes (hopefully zero) in r0.
  64. */
  65. ENTRY(__copy_to_user_inatomic)
  66. .type __copy_to_user_inatomic, @function
  67. FEEDBACK_REENTER(__copy_from_user_inatomic)
  68. { movei r29, IS_COPY_TO_USER; j memcpy_common }
  69. .size __copy_to_user_inatomic, . - __copy_to_user_inatomic
  70. ENTRY(memcpy)
  71. .type memcpy, @function
  72. FEEDBACK_REENTER(__copy_from_user_inatomic)
  73. { movei r29, IS_MEMCPY }
  74. .size memcpy, . - memcpy
  75. /* Fall through */
  76. .type memcpy_common, @function
  77. memcpy_common:
  78. /* On entry, r29 holds one of the IS_* macro values from above. */
  79. /* r0 is the dest, r1 is the source, r2 is the size. */
  80. /* Save aside original dest so we can return it at the end. */
  81. { sw sp, lr; move r23, r0; or r4, r0, r1 }
  82. /* Check for an empty size. */
  83. { bz r2, .Ldone; andi r4, r4, 3 }
  84. /* Save aside original values in case of a fault. */
  85. { move r24, r1; move r25, r2 }
  86. move r27, lr
  87. /* Check for an unaligned source or dest. */
  88. { bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
  89. .Lcheck_aligned_copy_size:
  90. /* If we are copying < 256 bytes, branch to simple case. */
  91. { blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
  92. /* Copying >= 256 bytes, so jump to complex prefetching loop. */
  93. { andi r6, r1, 63; j .Lcopy_many }
  94. /*
  95. *
  96. * Aligned 4 byte at a time copy loop
  97. *
  98. */
  99. .Lcopy_8_loop:
  100. /* Copy two words at a time to hide load latency. */
  101. EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
  102. EX: { lw r4, r1; addi r1, r1, 4 }
  103. EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
  104. EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
  105. .Lcopy_8_check:
  106. { bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
  107. /* Copy odd leftover word, if any. */
  108. { bnzt r4, .Lcheck_odd_stragglers }
  109. EX: { lw r3, r1; addi r1, r1, 4 }
  110. EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
  111. .Lcheck_odd_stragglers:
  112. { bnz r2, .Lcopy_unaligned_few }
  113. .Ldone:
  114. /* For memcpy return original dest address, else zero. */
  115. { mz r0, r29, r23; jrp lr }
  116. /*
  117. *
  118. * Prefetching multiple cache line copy handler (for large transfers).
  119. *
  120. */
  121. /* Copy words until r1 is cache-line-aligned. */
  122. .Lalign_loop:
  123. EX: { lw r3, r1; addi r1, r1, 4 }
  124. { andi r6, r1, 63 }
  125. EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
  126. .Lcopy_many:
  127. { bnzt r6, .Lalign_loop; addi r9, r0, 63 }
  128. { addi r3, r1, 60; andi r9, r9, -64 }
  129. #if CHIP_HAS_WH64()
  130. /* No need to prefetch dst, we'll just do the wh64
  131. * right before we copy a line.
  132. */
  133. #endif
  134. EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 }
  135. /* Intentionally stall for a few cycles to leave L2 cache alone. */
  136. { bnzt zero, .; move r27, lr }
  137. EX: { lw r6, r3; addi r3, r3, 64 }
  138. /* Intentionally stall for a few cycles to leave L2 cache alone. */
  139. { bnzt zero, . }
  140. EX: { lw r7, r3; addi r3, r3, 64 }
  141. #if !CHIP_HAS_WH64()
  142. /* Prefetch the dest */
  143. /* Intentionally stall for a few cycles to leave L2 cache alone. */
  144. { bnzt zero, . }
  145. /* Use a real load to cause a TLB miss if necessary. We aren't using
  146. * r28, so this should be fine.
  147. */
  148. EX: { lw r28, r9; addi r9, r9, 64 }
  149. /* Intentionally stall for a few cycles to leave L2 cache alone. */
  150. { bnzt zero, . }
  151. { prefetch r9; addi r9, r9, 64 }
  152. /* Intentionally stall for a few cycles to leave L2 cache alone. */
  153. { bnzt zero, . }
  154. { prefetch r9; addi r9, r9, 64 }
  155. #endif
  156. /* Intentionally stall for a few cycles to leave L2 cache alone. */
  157. { bz zero, .Lbig_loop2 }
  158. /* On entry to this loop:
  159. * - r0 points to the start of dst line 0
  160. * - r1 points to start of src line 0
  161. * - r2 >= (256 - 60), only the first time the loop trips.
  162. * - r3 contains r1 + 128 + 60 [pointer to end of source line 2]
  163. * This is our prefetch address. When we get near the end
  164. * rather than prefetching off the end this is changed to point
  165. * to some "safe" recently loaded address.
  166. * - r5 contains *(r1 + 60) [i.e. last word of source line 0]
  167. * - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1]
  168. * - r9 contains ((r0 + 63) & -64)
  169. * [start of next dst cache line.]
  170. */
  171. .Lbig_loop:
  172. { jal .Lcopy_line2; add r15, r1, r2 }
  173. .Lbig_loop2:
  174. /* Copy line 0, first stalling until r5 is ready. */
  175. EX: { move r12, r5; lw r16, r1 }
  176. { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
  177. /* Prefetch several lines ahead. */
  178. EX: { lw r5, r3; addi r3, r3, 64 }
  179. { jal .Lcopy_line }
  180. /* Copy line 1, first stalling until r6 is ready. */
  181. EX: { move r12, r6; lw r16, r1 }
  182. { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
  183. /* Prefetch several lines ahead. */
  184. EX: { lw r6, r3; addi r3, r3, 64 }
  185. { jal .Lcopy_line }
  186. /* Copy line 2, first stalling until r7 is ready. */
  187. EX: { move r12, r7; lw r16, r1 }
  188. { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
  189. /* Prefetch several lines ahead. */
  190. EX: { lw r7, r3; addi r3, r3, 64 }
  191. /* Use up a caches-busy cycle by jumping back to the top of the
  192. * loop. Might as well get it out of the way now.
  193. */
  194. { j .Lbig_loop }
  195. /* On entry:
  196. * - r0 points to the destination line.
  197. * - r1 points to the source line.
  198. * - r3 is the next prefetch address.
  199. * - r9 holds the last address used for wh64.
  200. * - r12 = WORD_15
  201. * - r16 = WORD_0.
  202. * - r17 == r1 + 16.
  203. * - r27 holds saved lr to restore.
  204. *
  205. * On exit:
  206. * - r0 is incremented by 64.
  207. * - r1 is incremented by 64, unless that would point to a word
  208. * beyond the end of the source array, in which case it is redirected
  209. * to point to an arbitrary word already in the cache.
  210. * - r2 is decremented by 64.
  211. * - r3 is unchanged, unless it points to a word beyond the
  212. * end of the source array, in which case it is redirected
  213. * to point to an arbitrary word already in the cache.
  214. * Redirecting is OK since if we are that close to the end
  215. * of the array we will not come back to this subroutine
  216. * and use the contents of the prefetched address.
  217. * - r4 is nonzero iff r2 >= 64.
  218. * - r9 is incremented by 64, unless it points beyond the
  219. * end of the last full destination cache line, in which
  220. * case it is redirected to a "safe address" that can be
  221. * clobbered (sp - 64)
  222. * - lr contains the value in r27.
  223. */
  224. /* r26 unused */
  225. .Lcopy_line:
  226. /* TODO: when r3 goes past the end, we would like to redirect it
  227. * to prefetch the last partial cache line (if any) just once, for the
  228. * benefit of the final cleanup loop. But we don't want to
  229. * prefetch that line more than once, or subsequent prefetches
  230. * will go into the RTF. But then .Lbig_loop should unconditionally
  231. * branch to top of loop to execute final prefetch, and its
  232. * nop should become a conditional branch.
  233. */
  234. /* We need two non-memory cycles here to cover the resources
  235. * used by the loads initiated by the caller.
  236. */
  237. { add r15, r1, r2 }
  238. .Lcopy_line2:
  239. { slt_u r13, r3, r15; addi r17, r1, 16 }
  240. /* NOTE: this will stall for one cycle as L1 is busy. */
  241. /* Fill second L1D line. */
  242. EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
  243. #if CHIP_HAS_WH64()
  244. /* Prepare destination line for writing. */
  245. EX: { wh64 r9; addi r9, r9, 64 }
  246. #else
  247. /* Prefetch dest line */
  248. { prefetch r9; addi r9, r9, 64 }
  249. #endif
  250. /* Load seven words that are L1D hits to cover wh64 L2 usage. */
  251. /* Load the three remaining words from the last L1D line, which
  252. * we know has already filled the L1D.
  253. */
  254. EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */
  255. EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */
  256. EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */
  257. /* Load the three remaining words from the first L1D line, first
  258. * stalling until it has filled by "looking at" r16.
  259. */
  260. EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */
  261. EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */
  262. EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
  263. /* Load second word from the second L1D line, first
  264. * stalling until it has filled by "looking at" r17.
  265. */
  266. EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */
  267. /* Store last word to the destination line, potentially dirtying it
  268. * for the first time, which keeps the L2 busy for two cycles.
  269. */
  270. EX: { sw r10, r12 } /* store(WORD_15) */
  271. /* Use two L1D hits to cover the sw L2 access above. */
  272. EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */
  273. EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */
  274. /* Fill third L1D line. */
  275. EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */
  276. /* Store first L1D line. */
  277. EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
  278. EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
  279. EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
  280. #if CHIP_HAS_WH64()
  281. EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
  282. #else
  283. /* Back up the r9 to a cache line we are already storing to
  284. * if it gets past the end of the dest vector. Strictly speaking,
  285. * we don't need to back up to the start of a cache line, but it's free
  286. * and tidy, so why not?
  287. */
  288. EX: { sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */
  289. #endif
  290. /* Store second L1D line. */
  291. EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
  292. EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */
  293. EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */
  294. EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */
  295. EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */
  296. EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */
  297. EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */
  298. /* Store third L1D line. */
  299. EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */
  300. EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */
  301. EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */
  302. EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */
  303. /* Store rest of fourth L1D line. */
  304. EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */
  305. {
  306. EX: sw r0, r8 /* store(WORD_13) */
  307. addi r0, r0, 4
  308. /* Will r2 be > 64 after we subtract 64 below? */
  309. shri r4, r2, 7
  310. }
  311. {
  312. EX: sw r0, r11 /* store(WORD_14) */
  313. addi r0, r0, 8
  314. /* Record 64 bytes successfully copied. */
  315. addi r2, r2, -64
  316. }
  317. { jrp lr; move lr, r27 }
  318. /* Convey to the backtrace library that the stack frame is size
  319. * zero, and the real return address is on the stack rather than
  320. * in 'lr'.
  321. */
  322. { info 8 }
  323. .align 64
  324. .Lcopy_unaligned_maybe_many:
  325. /* Skip the setup overhead if we aren't copying many bytes. */
  326. { slti_u r8, r2, 20; sub r4, zero, r0 }
  327. { bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
  328. { bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
  329. /*
  330. *
  331. * unaligned 4 byte at a time copy handler.
  332. *
  333. */
  334. /* Copy single bytes until r0 == 0 mod 4, so we can store words. */
  335. .Lalign_dest_loop:
  336. EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
  337. EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
  338. { bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
  339. /* If source and dest are now *both* aligned, do an aligned copy. */
  340. { bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
  341. .Ldest_is_word_aligned:
  342. #if CHIP_HAS_DWORD_ALIGN()
  343. EX: { andi r8, r0, 63; lwadd_na r6, r1, 4}
  344. { slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
  345. /* This copies unaligned words until either there are fewer
  346. * than 4 bytes left to copy, or until the destination pointer
  347. * is cache-aligned, whichever comes first.
  348. *
  349. * On entry:
  350. * - r0 is the next store address.
  351. * - r1 points 4 bytes past the load address corresponding to r0.
  352. * - r2 >= 4
  353. * - r6 is the next aligned word loaded.
  354. */
  355. .Lcopy_unaligned_src_words:
  356. EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
  357. /* stall */
  358. { dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
  359. EX: { swadd r0, r6, 4; addi r2, r2, -4 }
  360. { bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
  361. { bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
  362. /* On entry:
  363. * - r0 is the next store address.
  364. * - r1 points 4 bytes past the load address corresponding to r0.
  365. * - r2 >= 4 (# of bytes left to store).
  366. * - r6 is the next aligned src word value.
  367. * - r9 = (r2 < 64U).
  368. * - r18 points one byte past the end of source memory.
  369. */
  370. .Ldest_is_L2_line_aligned:
  371. {
  372. /* Not a full cache line remains. */
  373. bnz r9, .Lcleanup_unaligned_words
  374. move r7, r6
  375. }
  376. /* r2 >= 64 */
  377. /* Kick off two prefetches, but don't go past the end. */
  378. { addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
  379. { prefetch r3; move r3, r8; slt_u r8, r8, r18 }
  380. { mvz r3, r8, r1; addi r8, r3, 64 }
  381. { prefetch r3; move r3, r8; slt_u r8, r8, r18 }
  382. { mvz r3, r8, r1; movei r17, 0 }
  383. .Lcopy_unaligned_line:
  384. /* Prefetch another line. */
  385. { prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
  386. /* Fire off a load of the last word we are about to copy. */
  387. EX: { lw_na r15, r15; slt_u r8, r3, r18 }
  388. EX: { mvz r3, r8, r1; wh64 r0 }
  389. /* This loop runs twice.
  390. *
  391. * On entry:
  392. * - r17 is even before the first iteration, and odd before
  393. * the second. It is incremented inside the loop. Encountering
  394. * an even value at the end of the loop makes it stop.
  395. */
  396. .Lcopy_half_an_unaligned_line:
  397. EX: {
  398. /* Stall until the last byte is ready. In the steady state this
  399. * guarantees all words to load below will be in the L2 cache, which
  400. * avoids shunting the loads to the RTF.
  401. */
  402. move zero, r15
  403. lwadd_na r7, r1, 16
  404. }
  405. EX: { lwadd_na r11, r1, 12 }
  406. EX: { lwadd_na r14, r1, -24 }
  407. EX: { lwadd_na r8, r1, 4 }
  408. EX: { lwadd_na r9, r1, 4 }
  409. EX: {
  410. lwadd_na r10, r1, 8
  411. /* r16 = (r2 < 64), after we subtract 32 from r2 below. */
  412. slti_u r16, r2, 64 + 32
  413. }
  414. EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 }
  415. EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
  416. EX: { swadd r0, r6, 4; dword_align r7, r8, r1 }
  417. EX: { swadd r0, r7, 4; dword_align r8, r9, r1 }
  418. EX: { swadd r0, r8, 4; dword_align r9, r10, r1 }
  419. EX: { swadd r0, r9, 4; dword_align r10, r11, r1 }
  420. EX: { swadd r0, r10, 4; dword_align r11, r12, r1 }
  421. EX: { swadd r0, r11, 4; dword_align r12, r13, r1 }
  422. EX: { swadd r0, r12, 4; dword_align r13, r14, r1 }
  423. EX: { swadd r0, r13, 4; addi r2, r2, -32 }
  424. { move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
  425. { bzt r16, .Lcopy_unaligned_line; move r7, r6 }
  426. /* On entry:
  427. * - r0 is the next store address.
  428. * - r1 points 4 bytes past the load address corresponding to r0.
  429. * - r2 >= 0 (# of bytes left to store).
  430. * - r7 is the next aligned src word value.
  431. */
  432. .Lcleanup_unaligned_words:
  433. /* Handle any trailing bytes. */
  434. { bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
  435. { bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
  436. /* Move r1 back to the point where it corresponds to r0. */
  437. { addi r1, r1, -4 }
  438. #else /* !CHIP_HAS_DWORD_ALIGN() */
  439. /* Compute right/left shift counts and load initial source words. */
  440. { andi r5, r1, -4; andi r3, r1, 3 }
  441. EX: { lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 }
  442. EX: { lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 }
  443. /* Load and store one word at a time, using shifts and ORs
  444. * to correct for the misaligned src.
  445. */
  446. .Lcopy_unaligned_src_loop:
  447. { shr r6, r6, r3; shl r8, r7, r4 }
  448. EX: { lw r7, r5; or r8, r8, r6; move r6, r7 }
  449. EX: { sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 }
  450. { addi r5, r5, 4; slti_u r8, r2, 8 }
  451. { bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 }
  452. { bz r2, .Lcopy_unaligned_done }
  453. #endif /* !CHIP_HAS_DWORD_ALIGN() */
  454. /* Fall through */
  455. /*
  456. *
  457. * 1 byte at a time copy handler.
  458. *
  459. */
  460. .Lcopy_unaligned_few:
  461. EX: { lb_u r3, r1; addi r1, r1, 1 }
  462. EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
  463. { bnzt r2, .Lcopy_unaligned_few }
  464. .Lcopy_unaligned_done:
  465. /* For memcpy return original dest address, else zero. */
  466. { mz r0, r29, r23; jrp lr }
  467. .Lend_memcpy_common:
  468. .size memcpy_common, .Lend_memcpy_common - memcpy_common
  469. .section .fixup,"ax"
  470. memcpy_common_fixup:
  471. .type memcpy_common_fixup, @function
  472. /* Skip any bytes we already successfully copied.
  473. * r2 (num remaining) is correct, but r0 (dst) and r1 (src)
  474. * may not be quite right because of unrolling and prefetching.
  475. * So we need to recompute their values as the address just
  476. * after the last byte we are sure was successfully loaded and
  477. * then stored.
  478. */
  479. /* Determine how many bytes we successfully copied. */
  480. { sub r3, r25, r2 }
  481. /* Add this to the original r0 and r1 to get their new values. */
  482. { add r0, r23, r3; add r1, r24, r3 }
  483. { bzt r29, memcpy_fixup_loop }
  484. { blzt r29, copy_to_user_fixup_loop }
  485. copy_from_user_fixup_loop:
  486. /* Try copying the rest one byte at a time, expecting a load fault. */
  487. .Lcfu: { lb_u r3, r1; addi r1, r1, 1 }
  488. { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
  489. { bnzt r2, copy_from_user_fixup_loop }
  490. .Lcopy_from_user_fixup_zero_remainder:
  491. { bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */
  492. /* byte-at-a-time loop faulted, so zero the rest. */
  493. { move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
  494. 1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
  495. { bnzt r3, 1b }
  496. 2: move lr, r27
  497. { move r0, r2; jrp lr }
  498. copy_to_user_fixup_loop:
  499. /* Try copying the rest one byte at a time, expecting a store fault. */
  500. { lb_u r3, r1; addi r1, r1, 1 }
  501. .Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
  502. { bnzt r2, copy_to_user_fixup_loop }
  503. .Lcopy_to_user_fixup_done:
  504. move lr, r27
  505. { move r0, r2; jrp lr }
  506. memcpy_fixup_loop:
  507. /* Try copying the rest one byte at a time. We expect a disastrous
  508. * fault to happen since we are in fixup code, but let it happen.
  509. */
  510. { lb_u r3, r1; addi r1, r1, 1 }
  511. { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
  512. { bnzt r2, memcpy_fixup_loop }
  513. /* This should be unreachable, we should have faulted again.
  514. * But be paranoid and handle it in case some interrupt changed
  515. * the TLB or something.
  516. */
  517. move lr, r27
  518. { move r0, r23; jrp lr }
  519. .size memcpy_common_fixup, . - memcpy_common_fixup
  520. .section __ex_table,"a"
  521. .word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
  522. .word .Lctu, .Lcopy_to_user_fixup_done