process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/sched.h>
  15. #include <linux/preempt.h>
  16. #include <linux/module.h>
  17. #include <linux/fs.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/tick.h>
  21. #include <linux/init.h>
  22. #include <linux/mm.h>
  23. #include <linux/compat.h>
  24. #include <linux/hardirq.h>
  25. #include <linux/syscalls.h>
  26. #include <linux/kernel.h>
  27. #include <linux/tracehook.h>
  28. #include <linux/signal.h>
  29. #include <asm/system.h>
  30. #include <asm/stack.h>
  31. #include <asm/homecache.h>
  32. #include <asm/syscalls.h>
  33. #include <asm/traps.h>
  34. #ifdef CONFIG_HARDWALL
  35. #include <asm/hardwall.h>
  36. #endif
  37. #include <arch/chip.h>
  38. #include <arch/abi.h>
  39. /*
  40. * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  41. * idle loop over low power while in the idle loop, e.g. if we have
  42. * one thread per core and we want to get threads out of futex waits fast.
  43. */
  44. static int no_idle_nap;
  45. static int __init idle_setup(char *str)
  46. {
  47. if (!str)
  48. return -EINVAL;
  49. if (!strcmp(str, "poll")) {
  50. pr_info("using polling idle threads.\n");
  51. no_idle_nap = 1;
  52. } else if (!strcmp(str, "halt"))
  53. no_idle_nap = 0;
  54. else
  55. return -1;
  56. return 0;
  57. }
  58. early_param("idle", idle_setup);
  59. /*
  60. * The idle thread. There's no useful work to be
  61. * done, so just try to conserve power and have a
  62. * low exit latency (ie sit in a loop waiting for
  63. * somebody to say that they'd like to reschedule)
  64. */
  65. void cpu_idle(void)
  66. {
  67. int cpu = smp_processor_id();
  68. current_thread_info()->status |= TS_POLLING;
  69. if (no_idle_nap) {
  70. while (1) {
  71. while (!need_resched())
  72. cpu_relax();
  73. schedule();
  74. }
  75. }
  76. /* endless idle loop with no priority at all */
  77. while (1) {
  78. tick_nohz_stop_sched_tick(1);
  79. while (!need_resched()) {
  80. if (cpu_is_offline(cpu))
  81. BUG(); /* no HOTPLUG_CPU */
  82. local_irq_disable();
  83. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  84. current_thread_info()->status &= ~TS_POLLING;
  85. /*
  86. * TS_POLLING-cleared state must be visible before we
  87. * test NEED_RESCHED:
  88. */
  89. smp_mb();
  90. if (!need_resched())
  91. _cpu_idle();
  92. else
  93. local_irq_enable();
  94. current_thread_info()->status |= TS_POLLING;
  95. }
  96. tick_nohz_restart_sched_tick();
  97. preempt_enable_no_resched();
  98. schedule();
  99. preempt_disable();
  100. }
  101. }
  102. struct thread_info *alloc_thread_info_node(struct task_struct *task, int node)
  103. {
  104. struct page *page;
  105. gfp_t flags = GFP_KERNEL;
  106. #ifdef CONFIG_DEBUG_STACK_USAGE
  107. flags |= __GFP_ZERO;
  108. #endif
  109. page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER);
  110. if (!page)
  111. return NULL;
  112. return (struct thread_info *)page_address(page);
  113. }
  114. /*
  115. * Free a thread_info node, and all of its derivative
  116. * data structures.
  117. */
  118. void free_thread_info(struct thread_info *info)
  119. {
  120. struct single_step_state *step_state = info->step_state;
  121. #ifdef CONFIG_HARDWALL
  122. /*
  123. * We free a thread_info from the context of the task that has
  124. * been scheduled next, so the original task is already dead.
  125. * Calling deactivate here just frees up the data structures.
  126. * If the task we're freeing held the last reference to a
  127. * hardwall fd, it would have been released prior to this point
  128. * anyway via exit_files(), and "hardwall" would be NULL by now.
  129. */
  130. if (info->task->thread.hardwall)
  131. hardwall_deactivate(info->task);
  132. #endif
  133. if (step_state) {
  134. /*
  135. * FIXME: we don't munmap step_state->buffer
  136. * because the mm_struct for this process (info->task->mm)
  137. * has already been zeroed in exit_mm(). Keeping a
  138. * reference to it here seems like a bad move, so this
  139. * means we can't munmap() the buffer, and therefore if we
  140. * ptrace multiple threads in a process, we will slowly
  141. * leak user memory. (Note that as soon as the last
  142. * thread in a process dies, we will reclaim all user
  143. * memory including single-step buffers in the usual way.)
  144. * We should either assign a kernel VA to this buffer
  145. * somehow, or we should associate the buffer(s) with the
  146. * mm itself so we can clean them up that way.
  147. */
  148. kfree(step_state);
  149. }
  150. free_pages((unsigned long)info, THREAD_SIZE_ORDER);
  151. }
  152. static void save_arch_state(struct thread_struct *t);
  153. int copy_thread(unsigned long clone_flags, unsigned long sp,
  154. unsigned long stack_size,
  155. struct task_struct *p, struct pt_regs *regs)
  156. {
  157. struct pt_regs *childregs;
  158. unsigned long ksp;
  159. /*
  160. * When creating a new kernel thread we pass sp as zero.
  161. * Assign it to a reasonable value now that we have the stack.
  162. */
  163. if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
  164. sp = KSTK_TOP(p);
  165. /*
  166. * Do not clone step state from the parent; each thread
  167. * must make its own lazily.
  168. */
  169. task_thread_info(p)->step_state = NULL;
  170. /*
  171. * Start new thread in ret_from_fork so it schedules properly
  172. * and then return from interrupt like the parent.
  173. */
  174. p->thread.pc = (unsigned long) ret_from_fork;
  175. /* Save user stack top pointer so we can ID the stack vm area later. */
  176. p->thread.usp0 = sp;
  177. /* Record the pid of the process that created this one. */
  178. p->thread.creator_pid = current->pid;
  179. /*
  180. * Copy the registers onto the kernel stack so the
  181. * return-from-interrupt code will reload it into registers.
  182. */
  183. childregs = task_pt_regs(p);
  184. *childregs = *regs;
  185. childregs->regs[0] = 0; /* return value is zero */
  186. childregs->sp = sp; /* override with new user stack pointer */
  187. /*
  188. * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
  189. * which is passed in as arg #5 to sys_clone().
  190. */
  191. if (clone_flags & CLONE_SETTLS)
  192. childregs->tp = regs->regs[4];
  193. /*
  194. * Copy the callee-saved registers from the passed pt_regs struct
  195. * into the context-switch callee-saved registers area.
  196. * This way when we start the interrupt-return sequence, the
  197. * callee-save registers will be correctly in registers, which
  198. * is how we assume the compiler leaves them as we start doing
  199. * the normal return-from-interrupt path after calling C code.
  200. * Zero out the C ABI save area to mark the top of the stack.
  201. */
  202. ksp = (unsigned long) childregs;
  203. ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
  204. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  205. ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
  206. memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
  207. CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
  208. ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
  209. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  210. p->thread.ksp = ksp;
  211. #if CHIP_HAS_TILE_DMA()
  212. /*
  213. * No DMA in the new thread. We model this on the fact that
  214. * fork() clears the pending signals, alarms, and aio for the child.
  215. */
  216. memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
  217. memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
  218. #endif
  219. #if CHIP_HAS_SN_PROC()
  220. /* Likewise, the new thread is not running static processor code. */
  221. p->thread.sn_proc_running = 0;
  222. memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
  223. #endif
  224. #if CHIP_HAS_PROC_STATUS_SPR()
  225. /* New thread has its miscellaneous processor state bits clear. */
  226. p->thread.proc_status = 0;
  227. #endif
  228. #ifdef CONFIG_HARDWALL
  229. /* New thread does not own any networks. */
  230. p->thread.hardwall = NULL;
  231. #endif
  232. /*
  233. * Start the new thread with the current architecture state
  234. * (user interrupt masks, etc.).
  235. */
  236. save_arch_state(&p->thread);
  237. return 0;
  238. }
  239. /*
  240. * Return "current" if it looks plausible, or else a pointer to a dummy.
  241. * This can be helpful if we are just trying to emit a clean panic.
  242. */
  243. struct task_struct *validate_current(void)
  244. {
  245. static struct task_struct corrupt = { .comm = "<corrupt>" };
  246. struct task_struct *tsk = current;
  247. if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
  248. (void *)tsk > high_memory ||
  249. ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
  250. pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
  251. tsk = &corrupt;
  252. }
  253. return tsk;
  254. }
  255. /* Take and return the pointer to the previous task, for schedule_tail(). */
  256. struct task_struct *sim_notify_fork(struct task_struct *prev)
  257. {
  258. struct task_struct *tsk = current;
  259. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
  260. (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
  261. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
  262. (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
  263. return prev;
  264. }
  265. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  266. {
  267. struct pt_regs *ptregs = task_pt_regs(tsk);
  268. elf_core_copy_regs(regs, ptregs);
  269. return 1;
  270. }
  271. #if CHIP_HAS_TILE_DMA()
  272. /* Allow user processes to access the DMA SPRs */
  273. void grant_dma_mpls(void)
  274. {
  275. #if CONFIG_KERNEL_PL == 2
  276. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  277. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  278. #else
  279. __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
  280. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
  281. #endif
  282. }
  283. /* Forbid user processes from accessing the DMA SPRs */
  284. void restrict_dma_mpls(void)
  285. {
  286. #if CONFIG_KERNEL_PL == 2
  287. __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
  288. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
  289. #else
  290. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  291. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  292. #endif
  293. }
  294. /* Pause the DMA engine, then save off its state registers. */
  295. static void save_tile_dma_state(struct tile_dma_state *dma)
  296. {
  297. unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
  298. unsigned long post_suspend_state;
  299. /* If we're running, suspend the engine. */
  300. if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
  301. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
  302. /*
  303. * Wait for the engine to idle, then save regs. Note that we
  304. * want to record the "running" bit from before suspension,
  305. * and the "done" bit from after, so that we can properly
  306. * distinguish a case where the user suspended the engine from
  307. * the case where the kernel suspended as part of the context
  308. * swap.
  309. */
  310. do {
  311. post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
  312. } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
  313. dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
  314. dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
  315. dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
  316. dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
  317. dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
  318. dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
  319. dma->byte = __insn_mfspr(SPR_DMA_BYTE);
  320. dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
  321. (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
  322. }
  323. /* Restart a DMA that was running before we were context-switched out. */
  324. static void restore_tile_dma_state(struct thread_struct *t)
  325. {
  326. const struct tile_dma_state *dma = &t->tile_dma_state;
  327. /*
  328. * The only way to restore the done bit is to run a zero
  329. * length transaction.
  330. */
  331. if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
  332. !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
  333. __insn_mtspr(SPR_DMA_BYTE, 0);
  334. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  335. while (__insn_mfspr(SPR_DMA_USER_STATUS) &
  336. SPR_DMA_STATUS__BUSY_MASK)
  337. ;
  338. }
  339. __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
  340. __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
  341. __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
  342. __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
  343. __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
  344. __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
  345. __insn_mtspr(SPR_DMA_BYTE, dma->byte);
  346. /*
  347. * Restart the engine if we were running and not done.
  348. * Clear a pending async DMA fault that we were waiting on return
  349. * to user space to execute, since we expect the DMA engine
  350. * to regenerate those faults for us now. Note that we don't
  351. * try to clear the TIF_ASYNC_TLB flag, since it's relatively
  352. * harmless if set, and it covers both DMA and the SN processor.
  353. */
  354. if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
  355. t->dma_async_tlb.fault_num = 0;
  356. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  357. }
  358. }
  359. #endif
  360. static void save_arch_state(struct thread_struct *t)
  361. {
  362. #if CHIP_HAS_SPLIT_INTR_MASK()
  363. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
  364. ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
  365. #else
  366. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
  367. #endif
  368. t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
  369. t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
  370. t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
  371. t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
  372. t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
  373. t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
  374. t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
  375. #if CHIP_HAS_PROC_STATUS_SPR()
  376. t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
  377. #endif
  378. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  379. t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
  380. #endif
  381. #if CHIP_HAS_TILE_RTF_HWM()
  382. t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
  383. #endif
  384. #if CHIP_HAS_DSTREAM_PF()
  385. t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
  386. #endif
  387. }
  388. static void restore_arch_state(const struct thread_struct *t)
  389. {
  390. #if CHIP_HAS_SPLIT_INTR_MASK()
  391. __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
  392. __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
  393. #else
  394. __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
  395. #endif
  396. __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
  397. __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
  398. __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
  399. __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
  400. __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
  401. __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
  402. __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
  403. #if CHIP_HAS_PROC_STATUS_SPR()
  404. __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
  405. #endif
  406. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  407. __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
  408. #endif
  409. #if CHIP_HAS_TILE_RTF_HWM()
  410. __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
  411. #endif
  412. #if CHIP_HAS_DSTREAM_PF()
  413. __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
  414. #endif
  415. }
  416. void _prepare_arch_switch(struct task_struct *next)
  417. {
  418. #if CHIP_HAS_SN_PROC()
  419. int snctl;
  420. #endif
  421. #if CHIP_HAS_TILE_DMA()
  422. struct tile_dma_state *dma = &current->thread.tile_dma_state;
  423. if (dma->enabled)
  424. save_tile_dma_state(dma);
  425. #endif
  426. #if CHIP_HAS_SN_PROC()
  427. /*
  428. * Suspend the static network processor if it was running.
  429. * We do not suspend the fabric itself, just like we don't
  430. * try to suspend the UDN.
  431. */
  432. snctl = __insn_mfspr(SPR_SNCTL);
  433. current->thread.sn_proc_running =
  434. (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
  435. if (current->thread.sn_proc_running)
  436. __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
  437. #endif
  438. }
  439. struct task_struct *__sched _switch_to(struct task_struct *prev,
  440. struct task_struct *next)
  441. {
  442. /* DMA state is already saved; save off other arch state. */
  443. save_arch_state(&prev->thread);
  444. #if CHIP_HAS_TILE_DMA()
  445. /*
  446. * Restore DMA in new task if desired.
  447. * Note that it is only safe to restart here since interrupts
  448. * are disabled, so we can't take any DMATLB miss or access
  449. * interrupts before we have finished switching stacks.
  450. */
  451. if (next->thread.tile_dma_state.enabled) {
  452. restore_tile_dma_state(&next->thread);
  453. grant_dma_mpls();
  454. } else {
  455. restrict_dma_mpls();
  456. }
  457. #endif
  458. /* Restore other arch state. */
  459. restore_arch_state(&next->thread);
  460. #if CHIP_HAS_SN_PROC()
  461. /*
  462. * Restart static network processor in the new process
  463. * if it was running before.
  464. */
  465. if (next->thread.sn_proc_running) {
  466. int snctl = __insn_mfspr(SPR_SNCTL);
  467. __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
  468. }
  469. #endif
  470. #ifdef CONFIG_HARDWALL
  471. /* Enable or disable access to the network registers appropriately. */
  472. if (prev->thread.hardwall != NULL) {
  473. if (next->thread.hardwall == NULL)
  474. restrict_network_mpls();
  475. } else if (next->thread.hardwall != NULL) {
  476. grant_network_mpls();
  477. }
  478. #endif
  479. /*
  480. * Switch kernel SP, PC, and callee-saved registers.
  481. * In the context of the new task, return the old task pointer
  482. * (i.e. the task that actually called __switch_to).
  483. * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
  484. */
  485. return __switch_to(prev, next, next_current_ksp0(next));
  486. }
  487. /*
  488. * This routine is called on return from interrupt if any of the
  489. * TIF_WORK_MASK flags are set in thread_info->flags. It is
  490. * entered with interrupts disabled so we don't miss an event
  491. * that modified the thread_info flags. If any flag is set, we
  492. * handle it and return, and the calling assembly code will
  493. * re-disable interrupts, reload the thread flags, and call back
  494. * if more flags need to be handled.
  495. *
  496. * We return whether we need to check the thread_info flags again
  497. * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
  498. * important that it be tested last, and then claim that we don't
  499. * need to recheck the flags.
  500. */
  501. int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
  502. {
  503. if (thread_info_flags & _TIF_NEED_RESCHED) {
  504. schedule();
  505. return 1;
  506. }
  507. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  508. if (thread_info_flags & _TIF_ASYNC_TLB) {
  509. do_async_page_fault(regs);
  510. return 1;
  511. }
  512. #endif
  513. if (thread_info_flags & _TIF_SIGPENDING) {
  514. do_signal(regs);
  515. return 1;
  516. }
  517. if (thread_info_flags & _TIF_NOTIFY_RESUME) {
  518. clear_thread_flag(TIF_NOTIFY_RESUME);
  519. tracehook_notify_resume(regs);
  520. if (current->replacement_session_keyring)
  521. key_replace_session_keyring();
  522. return 1;
  523. }
  524. if (thread_info_flags & _TIF_SINGLESTEP) {
  525. if ((regs->ex1 & SPR_EX_CONTEXT_1_1__PL_MASK) == 0)
  526. single_step_once(regs);
  527. return 0;
  528. }
  529. panic("work_pending: bad flags %#x\n", thread_info_flags);
  530. }
  531. /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
  532. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  533. void __user *, parent_tidptr, void __user *, child_tidptr,
  534. struct pt_regs *, regs)
  535. {
  536. if (!newsp)
  537. newsp = regs->sp;
  538. return do_fork(clone_flags, newsp, regs, 0,
  539. parent_tidptr, child_tidptr);
  540. }
  541. /*
  542. * sys_execve() executes a new program.
  543. */
  544. SYSCALL_DEFINE4(execve, const char __user *, path,
  545. const char __user *const __user *, argv,
  546. const char __user *const __user *, envp,
  547. struct pt_regs *, regs)
  548. {
  549. long error;
  550. char *filename;
  551. filename = getname(path);
  552. error = PTR_ERR(filename);
  553. if (IS_ERR(filename))
  554. goto out;
  555. error = do_execve(filename, argv, envp, regs);
  556. putname(filename);
  557. if (error == 0)
  558. single_step_execve();
  559. out:
  560. return error;
  561. }
  562. #ifdef CONFIG_COMPAT
  563. long compat_sys_execve(const char __user *path,
  564. compat_uptr_t __user *argv,
  565. compat_uptr_t __user *envp,
  566. struct pt_regs *regs)
  567. {
  568. long error;
  569. char *filename;
  570. filename = getname(path);
  571. error = PTR_ERR(filename);
  572. if (IS_ERR(filename))
  573. goto out;
  574. error = compat_do_execve(filename, argv, envp, regs);
  575. putname(filename);
  576. if (error == 0)
  577. single_step_execve();
  578. out:
  579. return error;
  580. }
  581. #endif
  582. unsigned long get_wchan(struct task_struct *p)
  583. {
  584. struct KBacktraceIterator kbt;
  585. if (!p || p == current || p->state == TASK_RUNNING)
  586. return 0;
  587. for (KBacktraceIterator_init(&kbt, p, NULL);
  588. !KBacktraceIterator_end(&kbt);
  589. KBacktraceIterator_next(&kbt)) {
  590. if (!in_sched_functions(kbt.it.pc))
  591. return kbt.it.pc;
  592. }
  593. return 0;
  594. }
  595. /*
  596. * We pass in lr as zero (cleared in kernel_thread) and the caller
  597. * part of the backtrace ABI on the stack also zeroed (in copy_thread)
  598. * so that backtraces will stop with this function.
  599. * Note that we don't use r0, since copy_thread() clears it.
  600. */
  601. static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
  602. {
  603. do_exit(fn(arg));
  604. }
  605. /*
  606. * Create a kernel thread
  607. */
  608. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  609. {
  610. struct pt_regs regs;
  611. memset(&regs, 0, sizeof(regs));
  612. regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
  613. regs.pc = (long) start_kernel_thread;
  614. regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
  615. regs.regs[1] = (long) fn; /* function pointer */
  616. regs.regs[2] = (long) arg; /* parameter register */
  617. /* Ok, create the new process.. */
  618. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
  619. 0, NULL, NULL);
  620. }
  621. EXPORT_SYMBOL(kernel_thread);
  622. /* Flush thread state. */
  623. void flush_thread(void)
  624. {
  625. /* Nothing */
  626. }
  627. /*
  628. * Free current thread data structures etc..
  629. */
  630. void exit_thread(void)
  631. {
  632. /* Nothing */
  633. }
  634. void show_regs(struct pt_regs *regs)
  635. {
  636. struct task_struct *tsk = validate_current();
  637. int i;
  638. pr_err("\n");
  639. pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
  640. tsk->pid, tsk->comm, smp_processor_id());
  641. #ifdef __tilegx__
  642. for (i = 0; i < 51; i += 3)
  643. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  644. i, regs->regs[i], i+1, regs->regs[i+1],
  645. i+2, regs->regs[i+2]);
  646. pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
  647. regs->regs[51], regs->regs[52], regs->tp);
  648. pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
  649. #else
  650. for (i = 0; i < 52; i += 4)
  651. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
  652. " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  653. i, regs->regs[i], i+1, regs->regs[i+1],
  654. i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
  655. pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
  656. regs->regs[52], regs->tp, regs->sp, regs->lr);
  657. #endif
  658. pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
  659. regs->pc, regs->ex1, regs->faultnum);
  660. dump_stack_regs(regs);
  661. }