fsl_msi.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. /*
  2. * Copyright (C) 2007-2011 Freescale Semiconductor, Inc.
  3. *
  4. * Author: Tony Li <tony.li@freescale.com>
  5. * Jason Jin <Jason.jin@freescale.com>
  6. *
  7. * The hwirq alloc and free code reuse from sysdev/mpic_msi.c
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; version 2 of the
  12. * License.
  13. *
  14. */
  15. #include <linux/irq.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/msi.h>
  18. #include <linux/pci.h>
  19. #include <linux/slab.h>
  20. #include <linux/of_platform.h>
  21. #include <sysdev/fsl_soc.h>
  22. #include <asm/prom.h>
  23. #include <asm/hw_irq.h>
  24. #include <asm/ppc-pci.h>
  25. #include <asm/mpic.h>
  26. #include "fsl_msi.h"
  27. #include "fsl_pci.h"
  28. LIST_HEAD(msi_head);
  29. struct fsl_msi_feature {
  30. u32 fsl_pic_ip;
  31. u32 msiir_offset;
  32. };
  33. struct fsl_msi_cascade_data {
  34. struct fsl_msi *msi_data;
  35. int index;
  36. };
  37. static inline u32 fsl_msi_read(u32 __iomem *base, unsigned int reg)
  38. {
  39. return in_be32(base + (reg >> 2));
  40. }
  41. /*
  42. * We do not need this actually. The MSIR register has been read once
  43. * in the cascade interrupt. So, this MSI interrupt has been acked
  44. */
  45. static void fsl_msi_end_irq(struct irq_data *d)
  46. {
  47. }
  48. static struct irq_chip fsl_msi_chip = {
  49. .irq_mask = mask_msi_irq,
  50. .irq_unmask = unmask_msi_irq,
  51. .irq_ack = fsl_msi_end_irq,
  52. .name = "FSL-MSI",
  53. };
  54. static int fsl_msi_host_map(struct irq_host *h, unsigned int virq,
  55. irq_hw_number_t hw)
  56. {
  57. struct fsl_msi *msi_data = h->host_data;
  58. struct irq_chip *chip = &fsl_msi_chip;
  59. irq_set_status_flags(virq, IRQ_TYPE_EDGE_FALLING);
  60. irq_set_chip_data(virq, msi_data);
  61. irq_set_chip_and_handler(virq, chip, handle_edge_irq);
  62. return 0;
  63. }
  64. static struct irq_host_ops fsl_msi_host_ops = {
  65. .map = fsl_msi_host_map,
  66. };
  67. static int fsl_msi_init_allocator(struct fsl_msi *msi_data)
  68. {
  69. int rc;
  70. rc = msi_bitmap_alloc(&msi_data->bitmap, NR_MSI_IRQS,
  71. msi_data->irqhost->of_node);
  72. if (rc)
  73. return rc;
  74. rc = msi_bitmap_reserve_dt_hwirqs(&msi_data->bitmap);
  75. if (rc < 0) {
  76. msi_bitmap_free(&msi_data->bitmap);
  77. return rc;
  78. }
  79. return 0;
  80. }
  81. static int fsl_msi_check_device(struct pci_dev *pdev, int nvec, int type)
  82. {
  83. if (type == PCI_CAP_ID_MSIX)
  84. pr_debug("fslmsi: MSI-X untested, trying anyway.\n");
  85. return 0;
  86. }
  87. static void fsl_teardown_msi_irqs(struct pci_dev *pdev)
  88. {
  89. struct msi_desc *entry;
  90. struct fsl_msi *msi_data;
  91. list_for_each_entry(entry, &pdev->msi_list, list) {
  92. if (entry->irq == NO_IRQ)
  93. continue;
  94. msi_data = irq_get_chip_data(entry->irq);
  95. irq_set_msi_desc(entry->irq, NULL);
  96. msi_bitmap_free_hwirqs(&msi_data->bitmap,
  97. virq_to_hw(entry->irq), 1);
  98. irq_dispose_mapping(entry->irq);
  99. }
  100. return;
  101. }
  102. static void fsl_compose_msi_msg(struct pci_dev *pdev, int hwirq,
  103. struct msi_msg *msg,
  104. struct fsl_msi *fsl_msi_data)
  105. {
  106. struct fsl_msi *msi_data = fsl_msi_data;
  107. struct pci_controller *hose = pci_bus_to_host(pdev->bus);
  108. u64 base = fsl_pci_immrbar_base(hose);
  109. msg->address_lo = msi_data->msi_addr_lo + lower_32_bits(base);
  110. msg->address_hi = msi_data->msi_addr_hi + upper_32_bits(base);
  111. msg->data = hwirq;
  112. pr_debug("%s: allocated srs: %d, ibs: %d\n",
  113. __func__, hwirq / IRQS_PER_MSI_REG, hwirq % IRQS_PER_MSI_REG);
  114. }
  115. static int fsl_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
  116. {
  117. int rc, hwirq = -ENOMEM;
  118. unsigned int virq;
  119. struct msi_desc *entry;
  120. struct msi_msg msg;
  121. struct fsl_msi *msi_data;
  122. list_for_each_entry(entry, &pdev->msi_list, list) {
  123. list_for_each_entry(msi_data, &msi_head, list) {
  124. hwirq = msi_bitmap_alloc_hwirqs(&msi_data->bitmap, 1);
  125. if (hwirq >= 0)
  126. break;
  127. }
  128. if (hwirq < 0) {
  129. rc = hwirq;
  130. pr_debug("%s: fail allocating msi interrupt\n",
  131. __func__);
  132. goto out_free;
  133. }
  134. virq = irq_create_mapping(msi_data->irqhost, hwirq);
  135. if (virq == NO_IRQ) {
  136. pr_debug("%s: fail mapping hwirq 0x%x\n",
  137. __func__, hwirq);
  138. msi_bitmap_free_hwirqs(&msi_data->bitmap, hwirq, 1);
  139. rc = -ENOSPC;
  140. goto out_free;
  141. }
  142. /* chip_data is msi_data via host->hostdata in host->map() */
  143. irq_set_msi_desc(virq, entry);
  144. fsl_compose_msi_msg(pdev, hwirq, &msg, msi_data);
  145. write_msi_msg(virq, &msg);
  146. }
  147. return 0;
  148. out_free:
  149. /* free by the caller of this function */
  150. return rc;
  151. }
  152. static void fsl_msi_cascade(unsigned int irq, struct irq_desc *desc)
  153. {
  154. struct irq_chip *chip = irq_desc_get_chip(desc);
  155. struct irq_data *idata = irq_desc_get_irq_data(desc);
  156. unsigned int cascade_irq;
  157. struct fsl_msi *msi_data;
  158. int msir_index = -1;
  159. u32 msir_value = 0;
  160. u32 intr_index;
  161. u32 have_shift = 0;
  162. struct fsl_msi_cascade_data *cascade_data;
  163. cascade_data = irq_get_handler_data(irq);
  164. msi_data = cascade_data->msi_data;
  165. raw_spin_lock(&desc->lock);
  166. if ((msi_data->feature & FSL_PIC_IP_MASK) == FSL_PIC_IP_IPIC) {
  167. if (chip->irq_mask_ack)
  168. chip->irq_mask_ack(idata);
  169. else {
  170. chip->irq_mask(idata);
  171. chip->irq_ack(idata);
  172. }
  173. }
  174. if (unlikely(irqd_irq_inprogress(idata)))
  175. goto unlock;
  176. msir_index = cascade_data->index;
  177. if (msir_index >= NR_MSI_REG)
  178. cascade_irq = NO_IRQ;
  179. irqd_set_chained_irq_inprogress(idata);
  180. switch (msi_data->feature & FSL_PIC_IP_MASK) {
  181. case FSL_PIC_IP_MPIC:
  182. msir_value = fsl_msi_read(msi_data->msi_regs,
  183. msir_index * 0x10);
  184. break;
  185. case FSL_PIC_IP_IPIC:
  186. msir_value = fsl_msi_read(msi_data->msi_regs, msir_index * 0x4);
  187. break;
  188. }
  189. while (msir_value) {
  190. intr_index = ffs(msir_value) - 1;
  191. cascade_irq = irq_linear_revmap(msi_data->irqhost,
  192. msir_index * IRQS_PER_MSI_REG +
  193. intr_index + have_shift);
  194. if (cascade_irq != NO_IRQ)
  195. generic_handle_irq(cascade_irq);
  196. have_shift += intr_index + 1;
  197. msir_value = msir_value >> (intr_index + 1);
  198. }
  199. irqd_clr_chained_irq_inprogress(idata);
  200. switch (msi_data->feature & FSL_PIC_IP_MASK) {
  201. case FSL_PIC_IP_MPIC:
  202. chip->irq_eoi(idata);
  203. break;
  204. case FSL_PIC_IP_IPIC:
  205. if (!irqd_irq_disabled(idata) && chip->irq_unmask)
  206. chip->irq_unmask(idata);
  207. break;
  208. }
  209. unlock:
  210. raw_spin_unlock(&desc->lock);
  211. }
  212. static int fsl_of_msi_remove(struct platform_device *ofdev)
  213. {
  214. struct fsl_msi *msi = platform_get_drvdata(ofdev);
  215. int virq, i;
  216. struct fsl_msi_cascade_data *cascade_data;
  217. if (msi->list.prev != NULL)
  218. list_del(&msi->list);
  219. for (i = 0; i < NR_MSI_REG; i++) {
  220. virq = msi->msi_virqs[i];
  221. if (virq != NO_IRQ) {
  222. cascade_data = irq_get_handler_data(virq);
  223. kfree(cascade_data);
  224. irq_dispose_mapping(virq);
  225. }
  226. }
  227. if (msi->bitmap.bitmap)
  228. msi_bitmap_free(&msi->bitmap);
  229. iounmap(msi->msi_regs);
  230. kfree(msi);
  231. return 0;
  232. }
  233. static int __devinit fsl_msi_setup_hwirq(struct fsl_msi *msi,
  234. struct platform_device *dev,
  235. int offset, int irq_index)
  236. {
  237. struct fsl_msi_cascade_data *cascade_data = NULL;
  238. int virt_msir;
  239. virt_msir = irq_of_parse_and_map(dev->dev.of_node, irq_index);
  240. if (virt_msir == NO_IRQ) {
  241. dev_err(&dev->dev, "%s: Cannot translate IRQ index %d\n",
  242. __func__, irq_index);
  243. return 0;
  244. }
  245. cascade_data = kzalloc(sizeof(struct fsl_msi_cascade_data), GFP_KERNEL);
  246. if (!cascade_data) {
  247. dev_err(&dev->dev, "No memory for MSI cascade data\n");
  248. return -ENOMEM;
  249. }
  250. msi->msi_virqs[irq_index] = virt_msir;
  251. cascade_data->index = offset + irq_index;
  252. cascade_data->msi_data = msi;
  253. irq_set_handler_data(virt_msir, cascade_data);
  254. irq_set_chained_handler(virt_msir, fsl_msi_cascade);
  255. return 0;
  256. }
  257. static const struct of_device_id fsl_of_msi_ids[];
  258. static int __devinit fsl_of_msi_probe(struct platform_device *dev)
  259. {
  260. const struct of_device_id *match;
  261. struct fsl_msi *msi;
  262. struct resource res;
  263. int err, i, j, irq_index, count;
  264. int rc;
  265. const u32 *p;
  266. struct fsl_msi_feature *features;
  267. int len;
  268. u32 offset;
  269. static const u32 all_avail[] = { 0, NR_MSI_IRQS };
  270. match = of_match_device(fsl_of_msi_ids, &dev->dev);
  271. if (!match)
  272. return -EINVAL;
  273. features = match->data;
  274. printk(KERN_DEBUG "Setting up Freescale MSI support\n");
  275. msi = kzalloc(sizeof(struct fsl_msi), GFP_KERNEL);
  276. if (!msi) {
  277. dev_err(&dev->dev, "No memory for MSI structure\n");
  278. return -ENOMEM;
  279. }
  280. platform_set_drvdata(dev, msi);
  281. msi->irqhost = irq_alloc_host(dev->dev.of_node, IRQ_HOST_MAP_LINEAR,
  282. NR_MSI_IRQS, &fsl_msi_host_ops, 0);
  283. if (msi->irqhost == NULL) {
  284. dev_err(&dev->dev, "No memory for MSI irqhost\n");
  285. err = -ENOMEM;
  286. goto error_out;
  287. }
  288. /* Get the MSI reg base */
  289. err = of_address_to_resource(dev->dev.of_node, 0, &res);
  290. if (err) {
  291. dev_err(&dev->dev, "%s resource error!\n",
  292. dev->dev.of_node->full_name);
  293. goto error_out;
  294. }
  295. msi->msi_regs = ioremap(res.start, resource_size(&res));
  296. if (!msi->msi_regs) {
  297. dev_err(&dev->dev, "ioremap problem failed\n");
  298. goto error_out;
  299. }
  300. msi->feature = features->fsl_pic_ip;
  301. msi->irqhost->host_data = msi;
  302. msi->msi_addr_hi = 0x0;
  303. msi->msi_addr_lo = features->msiir_offset + (res.start & 0xfffff);
  304. rc = fsl_msi_init_allocator(msi);
  305. if (rc) {
  306. dev_err(&dev->dev, "Error allocating MSI bitmap\n");
  307. goto error_out;
  308. }
  309. p = of_get_property(dev->dev.of_node, "msi-available-ranges", &len);
  310. if (p && len % (2 * sizeof(u32)) != 0) {
  311. dev_err(&dev->dev, "%s: Malformed msi-available-ranges property\n",
  312. __func__);
  313. err = -EINVAL;
  314. goto error_out;
  315. }
  316. if (!p)
  317. p = all_avail;
  318. for (irq_index = 0, i = 0; i < len / (2 * sizeof(u32)); i++) {
  319. if (p[i * 2] % IRQS_PER_MSI_REG ||
  320. p[i * 2 + 1] % IRQS_PER_MSI_REG) {
  321. printk(KERN_WARNING "%s: %s: msi available range of %u at %u is not IRQ-aligned\n",
  322. __func__, dev->dev.of_node->full_name,
  323. p[i * 2 + 1], p[i * 2]);
  324. err = -EINVAL;
  325. goto error_out;
  326. }
  327. offset = p[i * 2] / IRQS_PER_MSI_REG;
  328. count = p[i * 2 + 1] / IRQS_PER_MSI_REG;
  329. for (j = 0; j < count; j++, irq_index++) {
  330. err = fsl_msi_setup_hwirq(msi, dev, offset, irq_index);
  331. if (err)
  332. goto error_out;
  333. }
  334. }
  335. list_add_tail(&msi->list, &msi_head);
  336. /* The multiple setting ppc_md.setup_msi_irqs will not harm things */
  337. if (!ppc_md.setup_msi_irqs) {
  338. ppc_md.setup_msi_irqs = fsl_setup_msi_irqs;
  339. ppc_md.teardown_msi_irqs = fsl_teardown_msi_irqs;
  340. ppc_md.msi_check_device = fsl_msi_check_device;
  341. } else if (ppc_md.setup_msi_irqs != fsl_setup_msi_irqs) {
  342. dev_err(&dev->dev, "Different MSI driver already installed!\n");
  343. err = -ENODEV;
  344. goto error_out;
  345. }
  346. return 0;
  347. error_out:
  348. fsl_of_msi_remove(dev);
  349. return err;
  350. }
  351. static const struct fsl_msi_feature mpic_msi_feature = {
  352. .fsl_pic_ip = FSL_PIC_IP_MPIC,
  353. .msiir_offset = 0x140,
  354. };
  355. static const struct fsl_msi_feature ipic_msi_feature = {
  356. .fsl_pic_ip = FSL_PIC_IP_IPIC,
  357. .msiir_offset = 0x38,
  358. };
  359. static const struct of_device_id fsl_of_msi_ids[] = {
  360. {
  361. .compatible = "fsl,mpic-msi",
  362. .data = (void *)&mpic_msi_feature,
  363. },
  364. {
  365. .compatible = "fsl,ipic-msi",
  366. .data = (void *)&ipic_msi_feature,
  367. },
  368. {}
  369. };
  370. static struct platform_driver fsl_of_msi_driver = {
  371. .driver = {
  372. .name = "fsl-msi",
  373. .owner = THIS_MODULE,
  374. .of_match_table = fsl_of_msi_ids,
  375. },
  376. .probe = fsl_of_msi_probe,
  377. .remove = fsl_of_msi_remove,
  378. };
  379. static __init int fsl_of_msi_init(void)
  380. {
  381. return platform_driver_register(&fsl_of_msi_driver);
  382. }
  383. subsys_initcall(fsl_of_msi_init);