hugetlbpage.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. /*
  2. * PPC64 (POWER4) Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2003 David Gibson, IBM Corporation.
  5. *
  6. * Based on the IA-32 version:
  7. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/io.h>
  11. #include <linux/slab.h>
  12. #include <linux/hugetlb.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/pgalloc.h>
  15. #include <asm/tlb.h>
  16. #define PAGE_SHIFT_64K 16
  17. #define PAGE_SHIFT_16M 24
  18. #define PAGE_SHIFT_16G 34
  19. #define MAX_NUMBER_GPAGES 1024
  20. /* Tracks the 16G pages after the device tree is scanned and before the
  21. * huge_boot_pages list is ready. */
  22. static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
  23. static unsigned nr_gpages;
  24. /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
  25. * will choke on pointers to hugepte tables, which is handy for
  26. * catching screwups early. */
  27. static inline int shift_to_mmu_psize(unsigned int shift)
  28. {
  29. int psize;
  30. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
  31. if (mmu_psize_defs[psize].shift == shift)
  32. return psize;
  33. return -1;
  34. }
  35. static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
  36. {
  37. if (mmu_psize_defs[mmu_psize].shift)
  38. return mmu_psize_defs[mmu_psize].shift;
  39. BUG();
  40. }
  41. #define hugepd_none(hpd) ((hpd).pd == 0)
  42. static inline pte_t *hugepd_page(hugepd_t hpd)
  43. {
  44. BUG_ON(!hugepd_ok(hpd));
  45. return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
  46. }
  47. static inline unsigned int hugepd_shift(hugepd_t hpd)
  48. {
  49. return hpd.pd & HUGEPD_SHIFT_MASK;
  50. }
  51. static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
  52. {
  53. unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
  54. pte_t *dir = hugepd_page(*hpdp);
  55. return dir + idx;
  56. }
  57. pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
  58. {
  59. pgd_t *pg;
  60. pud_t *pu;
  61. pmd_t *pm;
  62. hugepd_t *hpdp = NULL;
  63. unsigned pdshift = PGDIR_SHIFT;
  64. if (shift)
  65. *shift = 0;
  66. pg = pgdir + pgd_index(ea);
  67. if (is_hugepd(pg)) {
  68. hpdp = (hugepd_t *)pg;
  69. } else if (!pgd_none(*pg)) {
  70. pdshift = PUD_SHIFT;
  71. pu = pud_offset(pg, ea);
  72. if (is_hugepd(pu))
  73. hpdp = (hugepd_t *)pu;
  74. else if (!pud_none(*pu)) {
  75. pdshift = PMD_SHIFT;
  76. pm = pmd_offset(pu, ea);
  77. if (is_hugepd(pm))
  78. hpdp = (hugepd_t *)pm;
  79. else if (!pmd_none(*pm)) {
  80. return pte_offset_map(pm, ea);
  81. }
  82. }
  83. }
  84. if (!hpdp)
  85. return NULL;
  86. if (shift)
  87. *shift = hugepd_shift(*hpdp);
  88. return hugepte_offset(hpdp, ea, pdshift);
  89. }
  90. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  91. {
  92. return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
  93. }
  94. static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  95. unsigned long address, unsigned pdshift, unsigned pshift)
  96. {
  97. pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
  98. GFP_KERNEL|__GFP_REPEAT);
  99. BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  100. BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  101. if (! new)
  102. return -ENOMEM;
  103. spin_lock(&mm->page_table_lock);
  104. if (!hugepd_none(*hpdp))
  105. kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
  106. else
  107. hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
  108. spin_unlock(&mm->page_table_lock);
  109. return 0;
  110. }
  111. pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  112. {
  113. pgd_t *pg;
  114. pud_t *pu;
  115. pmd_t *pm;
  116. hugepd_t *hpdp = NULL;
  117. unsigned pshift = __ffs(sz);
  118. unsigned pdshift = PGDIR_SHIFT;
  119. addr &= ~(sz-1);
  120. pg = pgd_offset(mm, addr);
  121. if (pshift >= PUD_SHIFT) {
  122. hpdp = (hugepd_t *)pg;
  123. } else {
  124. pdshift = PUD_SHIFT;
  125. pu = pud_alloc(mm, pg, addr);
  126. if (pshift >= PMD_SHIFT) {
  127. hpdp = (hugepd_t *)pu;
  128. } else {
  129. pdshift = PMD_SHIFT;
  130. pm = pmd_alloc(mm, pu, addr);
  131. hpdp = (hugepd_t *)pm;
  132. }
  133. }
  134. if (!hpdp)
  135. return NULL;
  136. BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
  137. if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
  138. return NULL;
  139. return hugepte_offset(hpdp, addr, pdshift);
  140. }
  141. /* Build list of addresses of gigantic pages. This function is used in early
  142. * boot before the buddy or bootmem allocator is setup.
  143. */
  144. void add_gpage(unsigned long addr, unsigned long page_size,
  145. unsigned long number_of_pages)
  146. {
  147. if (!addr)
  148. return;
  149. while (number_of_pages > 0) {
  150. gpage_freearray[nr_gpages] = addr;
  151. nr_gpages++;
  152. number_of_pages--;
  153. addr += page_size;
  154. }
  155. }
  156. /* Moves the gigantic page addresses from the temporary list to the
  157. * huge_boot_pages list.
  158. */
  159. int alloc_bootmem_huge_page(struct hstate *hstate)
  160. {
  161. struct huge_bootmem_page *m;
  162. if (nr_gpages == 0)
  163. return 0;
  164. m = phys_to_virt(gpage_freearray[--nr_gpages]);
  165. gpage_freearray[nr_gpages] = 0;
  166. list_add(&m->list, &huge_boot_pages);
  167. m->hstate = hstate;
  168. return 1;
  169. }
  170. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  171. {
  172. return 0;
  173. }
  174. static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
  175. unsigned long start, unsigned long end,
  176. unsigned long floor, unsigned long ceiling)
  177. {
  178. pte_t *hugepte = hugepd_page(*hpdp);
  179. unsigned shift = hugepd_shift(*hpdp);
  180. unsigned long pdmask = ~((1UL << pdshift) - 1);
  181. start &= pdmask;
  182. if (start < floor)
  183. return;
  184. if (ceiling) {
  185. ceiling &= pdmask;
  186. if (! ceiling)
  187. return;
  188. }
  189. if (end - 1 > ceiling - 1)
  190. return;
  191. hpdp->pd = 0;
  192. tlb->need_flush = 1;
  193. pgtable_free_tlb(tlb, hugepte, pdshift - shift);
  194. }
  195. static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  196. unsigned long addr, unsigned long end,
  197. unsigned long floor, unsigned long ceiling)
  198. {
  199. pmd_t *pmd;
  200. unsigned long next;
  201. unsigned long start;
  202. start = addr;
  203. pmd = pmd_offset(pud, addr);
  204. do {
  205. next = pmd_addr_end(addr, end);
  206. if (pmd_none(*pmd))
  207. continue;
  208. free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
  209. addr, next, floor, ceiling);
  210. } while (pmd++, addr = next, addr != end);
  211. start &= PUD_MASK;
  212. if (start < floor)
  213. return;
  214. if (ceiling) {
  215. ceiling &= PUD_MASK;
  216. if (!ceiling)
  217. return;
  218. }
  219. if (end - 1 > ceiling - 1)
  220. return;
  221. pmd = pmd_offset(pud, start);
  222. pud_clear(pud);
  223. pmd_free_tlb(tlb, pmd, start);
  224. }
  225. static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  226. unsigned long addr, unsigned long end,
  227. unsigned long floor, unsigned long ceiling)
  228. {
  229. pud_t *pud;
  230. unsigned long next;
  231. unsigned long start;
  232. start = addr;
  233. pud = pud_offset(pgd, addr);
  234. do {
  235. next = pud_addr_end(addr, end);
  236. if (!is_hugepd(pud)) {
  237. if (pud_none_or_clear_bad(pud))
  238. continue;
  239. hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
  240. ceiling);
  241. } else {
  242. free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
  243. addr, next, floor, ceiling);
  244. }
  245. } while (pud++, addr = next, addr != end);
  246. start &= PGDIR_MASK;
  247. if (start < floor)
  248. return;
  249. if (ceiling) {
  250. ceiling &= PGDIR_MASK;
  251. if (!ceiling)
  252. return;
  253. }
  254. if (end - 1 > ceiling - 1)
  255. return;
  256. pud = pud_offset(pgd, start);
  257. pgd_clear(pgd);
  258. pud_free_tlb(tlb, pud, start);
  259. }
  260. /*
  261. * This function frees user-level page tables of a process.
  262. *
  263. * Must be called with pagetable lock held.
  264. */
  265. void hugetlb_free_pgd_range(struct mmu_gather *tlb,
  266. unsigned long addr, unsigned long end,
  267. unsigned long floor, unsigned long ceiling)
  268. {
  269. pgd_t *pgd;
  270. unsigned long next;
  271. /*
  272. * Because there are a number of different possible pagetable
  273. * layouts for hugepage ranges, we limit knowledge of how
  274. * things should be laid out to the allocation path
  275. * (huge_pte_alloc(), above). Everything else works out the
  276. * structure as it goes from information in the hugepd
  277. * pointers. That means that we can't here use the
  278. * optimization used in the normal page free_pgd_range(), of
  279. * checking whether we're actually covering a large enough
  280. * range to have to do anything at the top level of the walk
  281. * instead of at the bottom.
  282. *
  283. * To make sense of this, you should probably go read the big
  284. * block comment at the top of the normal free_pgd_range(),
  285. * too.
  286. */
  287. pgd = pgd_offset(tlb->mm, addr);
  288. do {
  289. next = pgd_addr_end(addr, end);
  290. if (!is_hugepd(pgd)) {
  291. if (pgd_none_or_clear_bad(pgd))
  292. continue;
  293. hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  294. } else {
  295. free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
  296. addr, next, floor, ceiling);
  297. }
  298. } while (pgd++, addr = next, addr != end);
  299. }
  300. struct page *
  301. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  302. {
  303. pte_t *ptep;
  304. struct page *page;
  305. unsigned shift;
  306. unsigned long mask;
  307. ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
  308. /* Verify it is a huge page else bail. */
  309. if (!ptep || !shift)
  310. return ERR_PTR(-EINVAL);
  311. mask = (1UL << shift) - 1;
  312. page = pte_page(*ptep);
  313. if (page)
  314. page += (address & mask) / PAGE_SIZE;
  315. return page;
  316. }
  317. int pmd_huge(pmd_t pmd)
  318. {
  319. return 0;
  320. }
  321. int pud_huge(pud_t pud)
  322. {
  323. return 0;
  324. }
  325. struct page *
  326. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  327. pmd_t *pmd, int write)
  328. {
  329. BUG();
  330. return NULL;
  331. }
  332. static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
  333. unsigned long end, int write, struct page **pages, int *nr)
  334. {
  335. unsigned long mask;
  336. unsigned long pte_end;
  337. struct page *head, *page;
  338. pte_t pte;
  339. int refs;
  340. pte_end = (addr + sz) & ~(sz-1);
  341. if (pte_end < end)
  342. end = pte_end;
  343. pte = *ptep;
  344. mask = _PAGE_PRESENT | _PAGE_USER;
  345. if (write)
  346. mask |= _PAGE_RW;
  347. if ((pte_val(pte) & mask) != mask)
  348. return 0;
  349. /* hugepages are never "special" */
  350. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  351. refs = 0;
  352. head = pte_page(pte);
  353. page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
  354. do {
  355. VM_BUG_ON(compound_head(page) != head);
  356. pages[*nr] = page;
  357. (*nr)++;
  358. page++;
  359. refs++;
  360. } while (addr += PAGE_SIZE, addr != end);
  361. if (!page_cache_add_speculative(head, refs)) {
  362. *nr -= refs;
  363. return 0;
  364. }
  365. if (unlikely(pte_val(pte) != pte_val(*ptep))) {
  366. /* Could be optimized better */
  367. while (*nr) {
  368. put_page(page);
  369. (*nr)--;
  370. }
  371. }
  372. return 1;
  373. }
  374. static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
  375. unsigned long sz)
  376. {
  377. unsigned long __boundary = (addr + sz) & ~(sz-1);
  378. return (__boundary - 1 < end - 1) ? __boundary : end;
  379. }
  380. int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
  381. unsigned long addr, unsigned long end,
  382. int write, struct page **pages, int *nr)
  383. {
  384. pte_t *ptep;
  385. unsigned long sz = 1UL << hugepd_shift(*hugepd);
  386. unsigned long next;
  387. ptep = hugepte_offset(hugepd, addr, pdshift);
  388. do {
  389. next = hugepte_addr_end(addr, end, sz);
  390. if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
  391. return 0;
  392. } while (ptep++, addr = next, addr != end);
  393. return 1;
  394. }
  395. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  396. unsigned long len, unsigned long pgoff,
  397. unsigned long flags)
  398. {
  399. struct hstate *hstate = hstate_file(file);
  400. int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
  401. return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
  402. }
  403. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  404. {
  405. unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
  406. return 1UL << mmu_psize_to_shift(psize);
  407. }
  408. static int __init add_huge_page_size(unsigned long long size)
  409. {
  410. int shift = __ffs(size);
  411. int mmu_psize;
  412. /* Check that it is a page size supported by the hardware and
  413. * that it fits within pagetable and slice limits. */
  414. if (!is_power_of_2(size)
  415. || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
  416. return -EINVAL;
  417. if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
  418. return -EINVAL;
  419. #ifdef CONFIG_SPU_FS_64K_LS
  420. /* Disable support for 64K huge pages when 64K SPU local store
  421. * support is enabled as the current implementation conflicts.
  422. */
  423. if (shift == PAGE_SHIFT_64K)
  424. return -EINVAL;
  425. #endif /* CONFIG_SPU_FS_64K_LS */
  426. BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
  427. /* Return if huge page size has already been setup */
  428. if (size_to_hstate(size))
  429. return 0;
  430. hugetlb_add_hstate(shift - PAGE_SHIFT);
  431. return 0;
  432. }
  433. static int __init hugepage_setup_sz(char *str)
  434. {
  435. unsigned long long size;
  436. size = memparse(str, &str);
  437. if (add_huge_page_size(size) != 0)
  438. printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
  439. return 1;
  440. }
  441. __setup("hugepagesz=", hugepage_setup_sz);
  442. static int __init hugetlbpage_init(void)
  443. {
  444. int psize;
  445. if (!mmu_has_feature(MMU_FTR_16M_PAGE))
  446. return -ENODEV;
  447. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  448. unsigned shift;
  449. unsigned pdshift;
  450. if (!mmu_psize_defs[psize].shift)
  451. continue;
  452. shift = mmu_psize_to_shift(psize);
  453. if (add_huge_page_size(1ULL << shift) < 0)
  454. continue;
  455. if (shift < PMD_SHIFT)
  456. pdshift = PMD_SHIFT;
  457. else if (shift < PUD_SHIFT)
  458. pdshift = PUD_SHIFT;
  459. else
  460. pdshift = PGDIR_SHIFT;
  461. pgtable_cache_add(pdshift - shift, NULL);
  462. if (!PGT_CACHE(pdshift - shift))
  463. panic("hugetlbpage_init(): could not create "
  464. "pgtable cache for %d bit pagesize\n", shift);
  465. }
  466. /* Set default large page size. Currently, we pick 16M or 1M
  467. * depending on what is available
  468. */
  469. if (mmu_psize_defs[MMU_PAGE_16M].shift)
  470. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
  471. else if (mmu_psize_defs[MMU_PAGE_1M].shift)
  472. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
  473. return 0;
  474. }
  475. module_init(hugetlbpage_init);
  476. void flush_dcache_icache_hugepage(struct page *page)
  477. {
  478. int i;
  479. BUG_ON(!PageCompound(page));
  480. for (i = 0; i < (1UL << compound_order(page)); i++)
  481. __flush_dcache_icache(page_address(page+i));
  482. }