book3s_hv_rm_mmu.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <asm/tlbflush.h>
  14. #include <asm/kvm_ppc.h>
  15. #include <asm/kvm_book3s.h>
  16. #include <asm/mmu-hash64.h>
  17. #include <asm/hvcall.h>
  18. #include <asm/synch.h>
  19. #include <asm/ppc-opcode.h>
  20. /* For now use fixed-size 16MB page table */
  21. #define HPT_ORDER 24
  22. #define HPT_NPTEG (1ul << (HPT_ORDER - 7)) /* 128B per pteg */
  23. #define HPT_HASH_MASK (HPT_NPTEG - 1)
  24. #define HPTE_V_HVLOCK 0x40UL
  25. static inline long lock_hpte(unsigned long *hpte, unsigned long bits)
  26. {
  27. unsigned long tmp, old;
  28. asm volatile(" ldarx %0,0,%2\n"
  29. " and. %1,%0,%3\n"
  30. " bne 2f\n"
  31. " ori %0,%0,%4\n"
  32. " stdcx. %0,0,%2\n"
  33. " beq+ 2f\n"
  34. " li %1,%3\n"
  35. "2: isync"
  36. : "=&r" (tmp), "=&r" (old)
  37. : "r" (hpte), "r" (bits), "i" (HPTE_V_HVLOCK)
  38. : "cc", "memory");
  39. return old == 0;
  40. }
  41. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  42. long pte_index, unsigned long pteh, unsigned long ptel)
  43. {
  44. unsigned long porder;
  45. struct kvm *kvm = vcpu->kvm;
  46. unsigned long i, lpn, pa;
  47. unsigned long *hpte;
  48. /* only handle 4k, 64k and 16M pages for now */
  49. porder = 12;
  50. if (pteh & HPTE_V_LARGE) {
  51. if (cpu_has_feature(CPU_FTR_ARCH_206) &&
  52. (ptel & 0xf000) == 0x1000) {
  53. /* 64k page */
  54. porder = 16;
  55. } else if ((ptel & 0xff000) == 0) {
  56. /* 16M page */
  57. porder = 24;
  58. /* lowest AVA bit must be 0 for 16M pages */
  59. if (pteh & 0x80)
  60. return H_PARAMETER;
  61. } else
  62. return H_PARAMETER;
  63. }
  64. lpn = (ptel & HPTE_R_RPN) >> kvm->arch.ram_porder;
  65. if (lpn >= kvm->arch.ram_npages || porder > kvm->arch.ram_porder)
  66. return H_PARAMETER;
  67. pa = kvm->arch.ram_pginfo[lpn].pfn << PAGE_SHIFT;
  68. if (!pa)
  69. return H_PARAMETER;
  70. /* Check WIMG */
  71. if ((ptel & HPTE_R_WIMG) != HPTE_R_M &&
  72. (ptel & HPTE_R_WIMG) != (HPTE_R_W | HPTE_R_I | HPTE_R_M))
  73. return H_PARAMETER;
  74. pteh &= ~0x60UL;
  75. ptel &= ~(HPTE_R_PP0 - kvm->arch.ram_psize);
  76. ptel |= pa;
  77. if (pte_index >= (HPT_NPTEG << 3))
  78. return H_PARAMETER;
  79. if (likely((flags & H_EXACT) == 0)) {
  80. pte_index &= ~7UL;
  81. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  82. for (i = 0; ; ++i) {
  83. if (i == 8)
  84. return H_PTEG_FULL;
  85. if ((*hpte & HPTE_V_VALID) == 0 &&
  86. lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID))
  87. break;
  88. hpte += 2;
  89. }
  90. } else {
  91. i = 0;
  92. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  93. if (!lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID))
  94. return H_PTEG_FULL;
  95. }
  96. hpte[1] = ptel;
  97. eieio();
  98. hpte[0] = pteh;
  99. asm volatile("ptesync" : : : "memory");
  100. atomic_inc(&kvm->arch.ram_pginfo[lpn].refcnt);
  101. vcpu->arch.gpr[4] = pte_index + i;
  102. return H_SUCCESS;
  103. }
  104. static unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
  105. unsigned long pte_index)
  106. {
  107. unsigned long rb, va_low;
  108. rb = (v & ~0x7fUL) << 16; /* AVA field */
  109. va_low = pte_index >> 3;
  110. if (v & HPTE_V_SECONDARY)
  111. va_low = ~va_low;
  112. /* xor vsid from AVA */
  113. if (!(v & HPTE_V_1TB_SEG))
  114. va_low ^= v >> 12;
  115. else
  116. va_low ^= v >> 24;
  117. va_low &= 0x7ff;
  118. if (v & HPTE_V_LARGE) {
  119. rb |= 1; /* L field */
  120. if (cpu_has_feature(CPU_FTR_ARCH_206) &&
  121. (r & 0xff000)) {
  122. /* non-16MB large page, must be 64k */
  123. /* (masks depend on page size) */
  124. rb |= 0x1000; /* page encoding in LP field */
  125. rb |= (va_low & 0x7f) << 16; /* 7b of VA in AVA/LP field */
  126. rb |= (va_low & 0xfe); /* AVAL field (P7 doesn't seem to care) */
  127. }
  128. } else {
  129. /* 4kB page */
  130. rb |= (va_low & 0x7ff) << 12; /* remaining 11b of VA */
  131. }
  132. rb |= (v >> 54) & 0x300; /* B field */
  133. return rb;
  134. }
  135. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  136. static inline int try_lock_tlbie(unsigned int *lock)
  137. {
  138. unsigned int tmp, old;
  139. unsigned int token = LOCK_TOKEN;
  140. asm volatile("1:lwarx %1,0,%2\n"
  141. " cmpwi cr0,%1,0\n"
  142. " bne 2f\n"
  143. " stwcx. %3,0,%2\n"
  144. " bne- 1b\n"
  145. " isync\n"
  146. "2:"
  147. : "=&r" (tmp), "=&r" (old)
  148. : "r" (lock), "r" (token)
  149. : "cc", "memory");
  150. return old == 0;
  151. }
  152. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  153. unsigned long pte_index, unsigned long avpn,
  154. unsigned long va)
  155. {
  156. struct kvm *kvm = vcpu->kvm;
  157. unsigned long *hpte;
  158. unsigned long v, r, rb;
  159. if (pte_index >= (HPT_NPTEG << 3))
  160. return H_PARAMETER;
  161. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  162. while (!lock_hpte(hpte, HPTE_V_HVLOCK))
  163. cpu_relax();
  164. if ((hpte[0] & HPTE_V_VALID) == 0 ||
  165. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  166. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  167. hpte[0] &= ~HPTE_V_HVLOCK;
  168. return H_NOT_FOUND;
  169. }
  170. if (atomic_read(&kvm->online_vcpus) == 1)
  171. flags |= H_LOCAL;
  172. vcpu->arch.gpr[4] = v = hpte[0] & ~HPTE_V_HVLOCK;
  173. vcpu->arch.gpr[5] = r = hpte[1];
  174. rb = compute_tlbie_rb(v, r, pte_index);
  175. hpte[0] = 0;
  176. if (!(flags & H_LOCAL)) {
  177. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  178. cpu_relax();
  179. asm volatile("ptesync" : : : "memory");
  180. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  181. : : "r" (rb), "r" (kvm->arch.lpid));
  182. asm volatile("ptesync" : : : "memory");
  183. kvm->arch.tlbie_lock = 0;
  184. } else {
  185. asm volatile("ptesync" : : : "memory");
  186. asm volatile("tlbiel %0" : : "r" (rb));
  187. asm volatile("ptesync" : : : "memory");
  188. }
  189. return H_SUCCESS;
  190. }
  191. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  192. {
  193. struct kvm *kvm = vcpu->kvm;
  194. unsigned long *args = &vcpu->arch.gpr[4];
  195. unsigned long *hp, tlbrb[4];
  196. long int i, found;
  197. long int n_inval = 0;
  198. unsigned long flags, req, pte_index;
  199. long int local = 0;
  200. long int ret = H_SUCCESS;
  201. if (atomic_read(&kvm->online_vcpus) == 1)
  202. local = 1;
  203. for (i = 0; i < 4; ++i) {
  204. pte_index = args[i * 2];
  205. flags = pte_index >> 56;
  206. pte_index &= ((1ul << 56) - 1);
  207. req = flags >> 6;
  208. flags &= 3;
  209. if (req == 3)
  210. break;
  211. if (req != 1 || flags == 3 ||
  212. pte_index >= (HPT_NPTEG << 3)) {
  213. /* parameter error */
  214. args[i * 2] = ((0xa0 | flags) << 56) + pte_index;
  215. ret = H_PARAMETER;
  216. break;
  217. }
  218. hp = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  219. while (!lock_hpte(hp, HPTE_V_HVLOCK))
  220. cpu_relax();
  221. found = 0;
  222. if (hp[0] & HPTE_V_VALID) {
  223. switch (flags & 3) {
  224. case 0: /* absolute */
  225. found = 1;
  226. break;
  227. case 1: /* andcond */
  228. if (!(hp[0] & args[i * 2 + 1]))
  229. found = 1;
  230. break;
  231. case 2: /* AVPN */
  232. if ((hp[0] & ~0x7fUL) == args[i * 2 + 1])
  233. found = 1;
  234. break;
  235. }
  236. }
  237. if (!found) {
  238. hp[0] &= ~HPTE_V_HVLOCK;
  239. args[i * 2] = ((0x90 | flags) << 56) + pte_index;
  240. continue;
  241. }
  242. /* insert R and C bits from PTE */
  243. flags |= (hp[1] >> 5) & 0x0c;
  244. args[i * 2] = ((0x80 | flags) << 56) + pte_index;
  245. tlbrb[n_inval++] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  246. hp[0] = 0;
  247. }
  248. if (n_inval == 0)
  249. return ret;
  250. if (!local) {
  251. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  252. cpu_relax();
  253. asm volatile("ptesync" : : : "memory");
  254. for (i = 0; i < n_inval; ++i)
  255. asm volatile(PPC_TLBIE(%1,%0)
  256. : : "r" (tlbrb[i]), "r" (kvm->arch.lpid));
  257. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  258. kvm->arch.tlbie_lock = 0;
  259. } else {
  260. asm volatile("ptesync" : : : "memory");
  261. for (i = 0; i < n_inval; ++i)
  262. asm volatile("tlbiel %0" : : "r" (tlbrb[i]));
  263. asm volatile("ptesync" : : : "memory");
  264. }
  265. return ret;
  266. }
  267. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  268. unsigned long pte_index, unsigned long avpn,
  269. unsigned long va)
  270. {
  271. struct kvm *kvm = vcpu->kvm;
  272. unsigned long *hpte;
  273. unsigned long v, r, rb;
  274. if (pte_index >= (HPT_NPTEG << 3))
  275. return H_PARAMETER;
  276. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  277. while (!lock_hpte(hpte, HPTE_V_HVLOCK))
  278. cpu_relax();
  279. if ((hpte[0] & HPTE_V_VALID) == 0 ||
  280. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  281. hpte[0] &= ~HPTE_V_HVLOCK;
  282. return H_NOT_FOUND;
  283. }
  284. if (atomic_read(&kvm->online_vcpus) == 1)
  285. flags |= H_LOCAL;
  286. v = hpte[0];
  287. r = hpte[1] & ~(HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  288. HPTE_R_KEY_HI | HPTE_R_KEY_LO);
  289. r |= (flags << 55) & HPTE_R_PP0;
  290. r |= (flags << 48) & HPTE_R_KEY_HI;
  291. r |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  292. rb = compute_tlbie_rb(v, r, pte_index);
  293. hpte[0] = v & ~HPTE_V_VALID;
  294. if (!(flags & H_LOCAL)) {
  295. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  296. cpu_relax();
  297. asm volatile("ptesync" : : : "memory");
  298. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  299. : : "r" (rb), "r" (kvm->arch.lpid));
  300. asm volatile("ptesync" : : : "memory");
  301. kvm->arch.tlbie_lock = 0;
  302. } else {
  303. asm volatile("ptesync" : : : "memory");
  304. asm volatile("tlbiel %0" : : "r" (rb));
  305. asm volatile("ptesync" : : : "memory");
  306. }
  307. hpte[1] = r;
  308. eieio();
  309. hpte[0] = v & ~HPTE_V_HVLOCK;
  310. asm volatile("ptesync" : : : "memory");
  311. return H_SUCCESS;
  312. }
  313. static unsigned long reverse_xlate(struct kvm *kvm, unsigned long realaddr)
  314. {
  315. long int i;
  316. unsigned long offset, rpn;
  317. offset = realaddr & (kvm->arch.ram_psize - 1);
  318. rpn = (realaddr - offset) >> PAGE_SHIFT;
  319. for (i = 0; i < kvm->arch.ram_npages; ++i)
  320. if (rpn == kvm->arch.ram_pginfo[i].pfn)
  321. return (i << PAGE_SHIFT) + offset;
  322. return HPTE_R_RPN; /* all 1s in the RPN field */
  323. }
  324. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  325. unsigned long pte_index)
  326. {
  327. struct kvm *kvm = vcpu->kvm;
  328. unsigned long *hpte, r;
  329. int i, n = 1;
  330. if (pte_index >= (HPT_NPTEG << 3))
  331. return H_PARAMETER;
  332. if (flags & H_READ_4) {
  333. pte_index &= ~3;
  334. n = 4;
  335. }
  336. for (i = 0; i < n; ++i, ++pte_index) {
  337. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  338. r = hpte[1];
  339. if ((flags & H_R_XLATE) && (hpte[0] & HPTE_V_VALID))
  340. r = reverse_xlate(kvm, r & HPTE_R_RPN) |
  341. (r & ~HPTE_R_RPN);
  342. vcpu->arch.gpr[4 + i * 2] = hpte[0];
  343. vcpu->arch.gpr[5 + i * 2] = r;
  344. }
  345. return H_SUCCESS;
  346. }