book3s_hv.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/fs.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/cpumask.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/page-flags.h>
  31. #include <asm/reg.h>
  32. #include <asm/cputable.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/io.h>
  37. #include <asm/kvm_ppc.h>
  38. #include <asm/kvm_book3s.h>
  39. #include <asm/mmu_context.h>
  40. #include <asm/lppaca.h>
  41. #include <asm/processor.h>
  42. #include <asm/cputhreads.h>
  43. #include <asm/page.h>
  44. #include <linux/gfp.h>
  45. #include <linux/sched.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/highmem.h>
  48. /*
  49. * For now, limit memory to 64GB and require it to be large pages.
  50. * This value is chosen because it makes the ram_pginfo array be
  51. * 64kB in size, which is about as large as we want to be trying
  52. * to allocate with kmalloc.
  53. */
  54. #define MAX_MEM_ORDER 36
  55. #define LARGE_PAGE_ORDER 24 /* 16MB pages */
  56. /* #define EXIT_DEBUG */
  57. /* #define EXIT_DEBUG_SIMPLE */
  58. /* #define EXIT_DEBUG_INT */
  59. void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  60. {
  61. local_paca->kvm_hstate.kvm_vcpu = vcpu;
  62. local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
  63. }
  64. void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  65. {
  66. }
  67. static void kvmppc_vcpu_blocked(struct kvm_vcpu *vcpu);
  68. static void kvmppc_vcpu_unblocked(struct kvm_vcpu *vcpu);
  69. void kvmppc_vcpu_block(struct kvm_vcpu *vcpu)
  70. {
  71. u64 now;
  72. unsigned long dec_nsec;
  73. now = get_tb();
  74. if (now >= vcpu->arch.dec_expires && !kvmppc_core_pending_dec(vcpu))
  75. kvmppc_core_queue_dec(vcpu);
  76. if (vcpu->arch.pending_exceptions)
  77. return;
  78. if (vcpu->arch.dec_expires != ~(u64)0) {
  79. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC /
  80. tb_ticks_per_sec;
  81. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  82. HRTIMER_MODE_REL);
  83. }
  84. kvmppc_vcpu_blocked(vcpu);
  85. kvm_vcpu_block(vcpu);
  86. vcpu->stat.halt_wakeup++;
  87. if (vcpu->arch.dec_expires != ~(u64)0)
  88. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  89. kvmppc_vcpu_unblocked(vcpu);
  90. }
  91. void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  92. {
  93. vcpu->arch.shregs.msr = msr;
  94. }
  95. void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  96. {
  97. vcpu->arch.pvr = pvr;
  98. }
  99. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  100. {
  101. int r;
  102. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  103. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  104. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  105. for (r = 0; r < 16; ++r)
  106. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  107. r, kvmppc_get_gpr(vcpu, r),
  108. r+16, kvmppc_get_gpr(vcpu, r+16));
  109. pr_err("ctr = %.16lx lr = %.16lx\n",
  110. vcpu->arch.ctr, vcpu->arch.lr);
  111. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  112. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  113. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  114. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  115. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  116. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  117. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  118. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  119. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  120. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  121. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  122. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  123. for (r = 0; r < vcpu->arch.slb_max; ++r)
  124. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  125. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  126. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  127. vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
  128. vcpu->arch.last_inst);
  129. }
  130. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  131. {
  132. int r;
  133. struct kvm_vcpu *v, *ret = NULL;
  134. mutex_lock(&kvm->lock);
  135. kvm_for_each_vcpu(r, v, kvm) {
  136. if (v->vcpu_id == id) {
  137. ret = v;
  138. break;
  139. }
  140. }
  141. mutex_unlock(&kvm->lock);
  142. return ret;
  143. }
  144. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  145. {
  146. vpa->shared_proc = 1;
  147. vpa->yield_count = 1;
  148. }
  149. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  150. unsigned long flags,
  151. unsigned long vcpuid, unsigned long vpa)
  152. {
  153. struct kvm *kvm = vcpu->kvm;
  154. unsigned long pg_index, ra, len;
  155. unsigned long pg_offset;
  156. void *va;
  157. struct kvm_vcpu *tvcpu;
  158. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  159. if (!tvcpu)
  160. return H_PARAMETER;
  161. flags >>= 63 - 18;
  162. flags &= 7;
  163. if (flags == 0 || flags == 4)
  164. return H_PARAMETER;
  165. if (flags < 4) {
  166. if (vpa & 0x7f)
  167. return H_PARAMETER;
  168. /* registering new area; convert logical addr to real */
  169. pg_index = vpa >> kvm->arch.ram_porder;
  170. pg_offset = vpa & (kvm->arch.ram_psize - 1);
  171. if (pg_index >= kvm->arch.ram_npages)
  172. return H_PARAMETER;
  173. if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
  174. return H_PARAMETER;
  175. ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
  176. ra |= pg_offset;
  177. va = __va(ra);
  178. if (flags <= 1)
  179. len = *(unsigned short *)(va + 4);
  180. else
  181. len = *(unsigned int *)(va + 4);
  182. if (pg_offset + len > kvm->arch.ram_psize)
  183. return H_PARAMETER;
  184. switch (flags) {
  185. case 1: /* register VPA */
  186. if (len < 640)
  187. return H_PARAMETER;
  188. tvcpu->arch.vpa = va;
  189. init_vpa(vcpu, va);
  190. break;
  191. case 2: /* register DTL */
  192. if (len < 48)
  193. return H_PARAMETER;
  194. if (!tvcpu->arch.vpa)
  195. return H_RESOURCE;
  196. len -= len % 48;
  197. tvcpu->arch.dtl = va;
  198. tvcpu->arch.dtl_end = va + len;
  199. break;
  200. case 3: /* register SLB shadow buffer */
  201. if (len < 8)
  202. return H_PARAMETER;
  203. if (!tvcpu->arch.vpa)
  204. return H_RESOURCE;
  205. tvcpu->arch.slb_shadow = va;
  206. len = (len - 16) / 16;
  207. tvcpu->arch.slb_shadow = va;
  208. break;
  209. }
  210. } else {
  211. switch (flags) {
  212. case 5: /* unregister VPA */
  213. if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
  214. return H_RESOURCE;
  215. tvcpu->arch.vpa = NULL;
  216. break;
  217. case 6: /* unregister DTL */
  218. tvcpu->arch.dtl = NULL;
  219. break;
  220. case 7: /* unregister SLB shadow buffer */
  221. tvcpu->arch.slb_shadow = NULL;
  222. break;
  223. }
  224. }
  225. return H_SUCCESS;
  226. }
  227. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  228. {
  229. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  230. unsigned long target, ret = H_SUCCESS;
  231. struct kvm_vcpu *tvcpu;
  232. switch (req) {
  233. case H_CEDE:
  234. vcpu->arch.shregs.msr |= MSR_EE;
  235. vcpu->arch.ceded = 1;
  236. smp_mb();
  237. if (!vcpu->arch.prodded)
  238. kvmppc_vcpu_block(vcpu);
  239. else
  240. vcpu->arch.prodded = 0;
  241. smp_mb();
  242. vcpu->arch.ceded = 0;
  243. break;
  244. case H_PROD:
  245. target = kvmppc_get_gpr(vcpu, 4);
  246. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  247. if (!tvcpu) {
  248. ret = H_PARAMETER;
  249. break;
  250. }
  251. tvcpu->arch.prodded = 1;
  252. smp_mb();
  253. if (vcpu->arch.ceded) {
  254. if (waitqueue_active(&vcpu->wq)) {
  255. wake_up_interruptible(&vcpu->wq);
  256. vcpu->stat.halt_wakeup++;
  257. }
  258. }
  259. break;
  260. case H_CONFER:
  261. break;
  262. case H_REGISTER_VPA:
  263. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  264. kvmppc_get_gpr(vcpu, 5),
  265. kvmppc_get_gpr(vcpu, 6));
  266. break;
  267. default:
  268. return RESUME_HOST;
  269. }
  270. kvmppc_set_gpr(vcpu, 3, ret);
  271. vcpu->arch.hcall_needed = 0;
  272. return RESUME_GUEST;
  273. }
  274. static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
  275. struct task_struct *tsk)
  276. {
  277. int r = RESUME_HOST;
  278. vcpu->stat.sum_exits++;
  279. run->exit_reason = KVM_EXIT_UNKNOWN;
  280. run->ready_for_interrupt_injection = 1;
  281. switch (vcpu->arch.trap) {
  282. /* We're good on these - the host merely wanted to get our attention */
  283. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  284. vcpu->stat.dec_exits++;
  285. r = RESUME_GUEST;
  286. break;
  287. case BOOK3S_INTERRUPT_EXTERNAL:
  288. vcpu->stat.ext_intr_exits++;
  289. r = RESUME_GUEST;
  290. break;
  291. case BOOK3S_INTERRUPT_PERFMON:
  292. r = RESUME_GUEST;
  293. break;
  294. case BOOK3S_INTERRUPT_PROGRAM:
  295. {
  296. ulong flags;
  297. /*
  298. * Normally program interrupts are delivered directly
  299. * to the guest by the hardware, but we can get here
  300. * as a result of a hypervisor emulation interrupt
  301. * (e40) getting turned into a 700 by BML RTAS.
  302. */
  303. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  304. kvmppc_core_queue_program(vcpu, flags);
  305. r = RESUME_GUEST;
  306. break;
  307. }
  308. case BOOK3S_INTERRUPT_SYSCALL:
  309. {
  310. /* hcall - punt to userspace */
  311. int i;
  312. if (vcpu->arch.shregs.msr & MSR_PR) {
  313. /* sc 1 from userspace - reflect to guest syscall */
  314. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
  315. r = RESUME_GUEST;
  316. break;
  317. }
  318. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  319. for (i = 0; i < 9; ++i)
  320. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  321. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  322. vcpu->arch.hcall_needed = 1;
  323. r = RESUME_HOST;
  324. break;
  325. }
  326. /*
  327. * We get these next two if the guest does a bad real-mode access,
  328. * as we have enabled VRMA (virtualized real mode area) mode in the
  329. * LPCR. We just generate an appropriate DSI/ISI to the guest.
  330. */
  331. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  332. vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
  333. vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
  334. kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
  335. r = RESUME_GUEST;
  336. break;
  337. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  338. kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
  339. 0x08000000);
  340. r = RESUME_GUEST;
  341. break;
  342. /*
  343. * This occurs if the guest executes an illegal instruction.
  344. * We just generate a program interrupt to the guest, since
  345. * we don't emulate any guest instructions at this stage.
  346. */
  347. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  348. kvmppc_core_queue_program(vcpu, 0x80000);
  349. r = RESUME_GUEST;
  350. break;
  351. default:
  352. kvmppc_dump_regs(vcpu);
  353. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  354. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  355. vcpu->arch.shregs.msr);
  356. r = RESUME_HOST;
  357. BUG();
  358. break;
  359. }
  360. if (!(r & RESUME_HOST)) {
  361. /* To avoid clobbering exit_reason, only check for signals if
  362. * we aren't already exiting to userspace for some other
  363. * reason. */
  364. if (signal_pending(tsk)) {
  365. vcpu->stat.signal_exits++;
  366. run->exit_reason = KVM_EXIT_INTR;
  367. r = -EINTR;
  368. } else {
  369. kvmppc_core_deliver_interrupts(vcpu);
  370. }
  371. }
  372. return r;
  373. }
  374. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  375. struct kvm_sregs *sregs)
  376. {
  377. int i;
  378. sregs->pvr = vcpu->arch.pvr;
  379. memset(sregs, 0, sizeof(struct kvm_sregs));
  380. for (i = 0; i < vcpu->arch.slb_max; i++) {
  381. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  382. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  383. }
  384. return 0;
  385. }
  386. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  387. struct kvm_sregs *sregs)
  388. {
  389. int i, j;
  390. kvmppc_set_pvr(vcpu, sregs->pvr);
  391. j = 0;
  392. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  393. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  394. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  395. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  396. ++j;
  397. }
  398. }
  399. vcpu->arch.slb_max = j;
  400. return 0;
  401. }
  402. int kvmppc_core_check_processor_compat(void)
  403. {
  404. if (cpu_has_feature(CPU_FTR_HVMODE))
  405. return 0;
  406. return -EIO;
  407. }
  408. struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
  409. {
  410. struct kvm_vcpu *vcpu;
  411. int err = -EINVAL;
  412. int core;
  413. struct kvmppc_vcore *vcore;
  414. core = id / threads_per_core;
  415. if (core >= KVM_MAX_VCORES)
  416. goto out;
  417. err = -ENOMEM;
  418. vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  419. if (!vcpu)
  420. goto out;
  421. err = kvm_vcpu_init(vcpu, kvm, id);
  422. if (err)
  423. goto free_vcpu;
  424. vcpu->arch.shared = &vcpu->arch.shregs;
  425. vcpu->arch.last_cpu = -1;
  426. vcpu->arch.mmcr[0] = MMCR0_FC;
  427. vcpu->arch.ctrl = CTRL_RUNLATCH;
  428. /* default to host PVR, since we can't spoof it */
  429. vcpu->arch.pvr = mfspr(SPRN_PVR);
  430. kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
  431. kvmppc_mmu_book3s_hv_init(vcpu);
  432. /*
  433. * Some vcpus may start out in stopped state. If we initialize
  434. * them to busy-in-host state they will stop other vcpus in the
  435. * vcore from running. Instead we initialize them to blocked
  436. * state, effectively considering them to be stopped until we
  437. * see the first run ioctl for them.
  438. */
  439. vcpu->arch.state = KVMPPC_VCPU_BLOCKED;
  440. init_waitqueue_head(&vcpu->arch.cpu_run);
  441. mutex_lock(&kvm->lock);
  442. vcore = kvm->arch.vcores[core];
  443. if (!vcore) {
  444. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  445. if (vcore) {
  446. INIT_LIST_HEAD(&vcore->runnable_threads);
  447. spin_lock_init(&vcore->lock);
  448. }
  449. kvm->arch.vcores[core] = vcore;
  450. }
  451. mutex_unlock(&kvm->lock);
  452. if (!vcore)
  453. goto free_vcpu;
  454. spin_lock(&vcore->lock);
  455. ++vcore->num_threads;
  456. ++vcore->n_blocked;
  457. spin_unlock(&vcore->lock);
  458. vcpu->arch.vcore = vcore;
  459. return vcpu;
  460. free_vcpu:
  461. kfree(vcpu);
  462. out:
  463. return ERR_PTR(err);
  464. }
  465. void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
  466. {
  467. kvm_vcpu_uninit(vcpu);
  468. kfree(vcpu);
  469. }
  470. static void kvmppc_vcpu_blocked(struct kvm_vcpu *vcpu)
  471. {
  472. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  473. spin_lock(&vc->lock);
  474. vcpu->arch.state = KVMPPC_VCPU_BLOCKED;
  475. ++vc->n_blocked;
  476. if (vc->n_runnable > 0 &&
  477. vc->n_runnable + vc->n_blocked == vc->num_threads) {
  478. vcpu = list_first_entry(&vc->runnable_threads, struct kvm_vcpu,
  479. arch.run_list);
  480. wake_up(&vcpu->arch.cpu_run);
  481. }
  482. spin_unlock(&vc->lock);
  483. }
  484. static void kvmppc_vcpu_unblocked(struct kvm_vcpu *vcpu)
  485. {
  486. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  487. spin_lock(&vc->lock);
  488. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  489. --vc->n_blocked;
  490. spin_unlock(&vc->lock);
  491. }
  492. extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
  493. extern void xics_wake_cpu(int cpu);
  494. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  495. struct kvm_vcpu *vcpu)
  496. {
  497. struct kvm_vcpu *v;
  498. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  499. return;
  500. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  501. --vc->n_runnable;
  502. /* decrement the physical thread id of each following vcpu */
  503. v = vcpu;
  504. list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
  505. --v->arch.ptid;
  506. list_del(&vcpu->arch.run_list);
  507. }
  508. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  509. {
  510. int cpu;
  511. struct paca_struct *tpaca;
  512. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  513. cpu = vc->pcpu + vcpu->arch.ptid;
  514. tpaca = &paca[cpu];
  515. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  516. tpaca->kvm_hstate.kvm_vcore = vc;
  517. smp_wmb();
  518. #ifdef CONFIG_PPC_ICP_NATIVE
  519. if (vcpu->arch.ptid) {
  520. tpaca->cpu_start = 0x80;
  521. tpaca->kvm_hstate.in_guest = KVM_GUEST_MODE_GUEST;
  522. wmb();
  523. xics_wake_cpu(cpu);
  524. ++vc->n_woken;
  525. }
  526. #endif
  527. }
  528. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  529. {
  530. int i;
  531. HMT_low();
  532. i = 0;
  533. while (vc->nap_count < vc->n_woken) {
  534. if (++i >= 1000000) {
  535. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  536. vc->nap_count, vc->n_woken);
  537. break;
  538. }
  539. cpu_relax();
  540. }
  541. HMT_medium();
  542. }
  543. /*
  544. * Check that we are on thread 0 and that any other threads in
  545. * this core are off-line.
  546. */
  547. static int on_primary_thread(void)
  548. {
  549. int cpu = smp_processor_id();
  550. int thr = cpu_thread_in_core(cpu);
  551. if (thr)
  552. return 0;
  553. while (++thr < threads_per_core)
  554. if (cpu_online(cpu + thr))
  555. return 0;
  556. return 1;
  557. }
  558. /*
  559. * Run a set of guest threads on a physical core.
  560. * Called with vc->lock held.
  561. */
  562. static int kvmppc_run_core(struct kvmppc_vcore *vc)
  563. {
  564. struct kvm_vcpu *vcpu, *vnext;
  565. long ret;
  566. u64 now;
  567. /* don't start if any threads have a signal pending */
  568. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  569. if (signal_pending(vcpu->arch.run_task))
  570. return 0;
  571. /*
  572. * Make sure we are running on thread 0, and that
  573. * secondary threads are offline.
  574. * XXX we should also block attempts to bring any
  575. * secondary threads online.
  576. */
  577. if (threads_per_core > 1 && !on_primary_thread()) {
  578. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  579. vcpu->arch.ret = -EBUSY;
  580. goto out;
  581. }
  582. vc->n_woken = 0;
  583. vc->nap_count = 0;
  584. vc->entry_exit_count = 0;
  585. vc->vcore_running = 1;
  586. vc->in_guest = 0;
  587. vc->pcpu = smp_processor_id();
  588. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  589. kvmppc_start_thread(vcpu);
  590. vcpu = list_first_entry(&vc->runnable_threads, struct kvm_vcpu,
  591. arch.run_list);
  592. spin_unlock(&vc->lock);
  593. preempt_disable();
  594. kvm_guest_enter();
  595. __kvmppc_vcore_entry(NULL, vcpu);
  596. /* wait for secondary threads to finish writing their state to memory */
  597. spin_lock(&vc->lock);
  598. if (vc->nap_count < vc->n_woken)
  599. kvmppc_wait_for_nap(vc);
  600. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  601. vc->vcore_running = 2;
  602. spin_unlock(&vc->lock);
  603. /* make sure updates to secondary vcpu structs are visible now */
  604. smp_mb();
  605. kvm_guest_exit();
  606. preempt_enable();
  607. kvm_resched(vcpu);
  608. now = get_tb();
  609. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  610. /* cancel pending dec exception if dec is positive */
  611. if (now < vcpu->arch.dec_expires &&
  612. kvmppc_core_pending_dec(vcpu))
  613. kvmppc_core_dequeue_dec(vcpu);
  614. if (!vcpu->arch.trap) {
  615. if (signal_pending(vcpu->arch.run_task)) {
  616. vcpu->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  617. vcpu->arch.ret = -EINTR;
  618. }
  619. continue; /* didn't get to run */
  620. }
  621. ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
  622. vcpu->arch.run_task);
  623. vcpu->arch.ret = ret;
  624. vcpu->arch.trap = 0;
  625. }
  626. spin_lock(&vc->lock);
  627. out:
  628. vc->vcore_running = 0;
  629. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  630. arch.run_list) {
  631. if (vcpu->arch.ret != RESUME_GUEST) {
  632. kvmppc_remove_runnable(vc, vcpu);
  633. wake_up(&vcpu->arch.cpu_run);
  634. }
  635. }
  636. return 1;
  637. }
  638. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  639. {
  640. int ptid;
  641. int wait_state;
  642. struct kvmppc_vcore *vc;
  643. DEFINE_WAIT(wait);
  644. /* No need to go into the guest when all we do is going out */
  645. if (signal_pending(current)) {
  646. kvm_run->exit_reason = KVM_EXIT_INTR;
  647. return -EINTR;
  648. }
  649. /* On PPC970, check that we have an RMA region */
  650. if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
  651. return -EPERM;
  652. kvm_run->exit_reason = 0;
  653. vcpu->arch.ret = RESUME_GUEST;
  654. vcpu->arch.trap = 0;
  655. flush_fp_to_thread(current);
  656. flush_altivec_to_thread(current);
  657. flush_vsx_to_thread(current);
  658. /*
  659. * Synchronize with other threads in this virtual core
  660. */
  661. vc = vcpu->arch.vcore;
  662. spin_lock(&vc->lock);
  663. /* This happens the first time this is called for a vcpu */
  664. if (vcpu->arch.state == KVMPPC_VCPU_BLOCKED)
  665. --vc->n_blocked;
  666. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  667. ptid = vc->n_runnable;
  668. vcpu->arch.run_task = current;
  669. vcpu->arch.kvm_run = kvm_run;
  670. vcpu->arch.ptid = ptid;
  671. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  672. ++vc->n_runnable;
  673. wait_state = TASK_INTERRUPTIBLE;
  674. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  675. if (signal_pending(current)) {
  676. if (!vc->vcore_running) {
  677. kvm_run->exit_reason = KVM_EXIT_INTR;
  678. vcpu->arch.ret = -EINTR;
  679. break;
  680. }
  681. /* have to wait for vcore to stop executing guest */
  682. wait_state = TASK_UNINTERRUPTIBLE;
  683. smp_send_reschedule(vc->pcpu);
  684. }
  685. if (!vc->vcore_running &&
  686. vc->n_runnable + vc->n_blocked == vc->num_threads) {
  687. /* we can run now */
  688. if (kvmppc_run_core(vc))
  689. continue;
  690. }
  691. if (vc->vcore_running == 1 && VCORE_EXIT_COUNT(vc) == 0)
  692. kvmppc_start_thread(vcpu);
  693. /* wait for other threads to come in, or wait for vcore */
  694. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  695. spin_unlock(&vc->lock);
  696. schedule();
  697. finish_wait(&vcpu->arch.cpu_run, &wait);
  698. spin_lock(&vc->lock);
  699. }
  700. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  701. kvmppc_remove_runnable(vc, vcpu);
  702. spin_unlock(&vc->lock);
  703. return vcpu->arch.ret;
  704. }
  705. int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
  706. {
  707. int r;
  708. do {
  709. r = kvmppc_run_vcpu(run, vcpu);
  710. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  711. !(vcpu->arch.shregs.msr & MSR_PR)) {
  712. r = kvmppc_pseries_do_hcall(vcpu);
  713. kvmppc_core_deliver_interrupts(vcpu);
  714. }
  715. } while (r == RESUME_GUEST);
  716. return r;
  717. }
  718. static long kvmppc_stt_npages(unsigned long window_size)
  719. {
  720. return ALIGN((window_size >> SPAPR_TCE_SHIFT)
  721. * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
  722. }
  723. static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
  724. {
  725. struct kvm *kvm = stt->kvm;
  726. int i;
  727. mutex_lock(&kvm->lock);
  728. list_del(&stt->list);
  729. for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
  730. __free_page(stt->pages[i]);
  731. kfree(stt);
  732. mutex_unlock(&kvm->lock);
  733. kvm_put_kvm(kvm);
  734. }
  735. static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  736. {
  737. struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
  738. struct page *page;
  739. if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
  740. return VM_FAULT_SIGBUS;
  741. page = stt->pages[vmf->pgoff];
  742. get_page(page);
  743. vmf->page = page;
  744. return 0;
  745. }
  746. static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
  747. .fault = kvm_spapr_tce_fault,
  748. };
  749. static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
  750. {
  751. vma->vm_ops = &kvm_spapr_tce_vm_ops;
  752. return 0;
  753. }
  754. static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
  755. {
  756. struct kvmppc_spapr_tce_table *stt = filp->private_data;
  757. release_spapr_tce_table(stt);
  758. return 0;
  759. }
  760. static struct file_operations kvm_spapr_tce_fops = {
  761. .mmap = kvm_spapr_tce_mmap,
  762. .release = kvm_spapr_tce_release,
  763. };
  764. long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
  765. struct kvm_create_spapr_tce *args)
  766. {
  767. struct kvmppc_spapr_tce_table *stt = NULL;
  768. long npages;
  769. int ret = -ENOMEM;
  770. int i;
  771. /* Check this LIOBN hasn't been previously allocated */
  772. list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
  773. if (stt->liobn == args->liobn)
  774. return -EBUSY;
  775. }
  776. npages = kvmppc_stt_npages(args->window_size);
  777. stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
  778. GFP_KERNEL);
  779. if (!stt)
  780. goto fail;
  781. stt->liobn = args->liobn;
  782. stt->window_size = args->window_size;
  783. stt->kvm = kvm;
  784. for (i = 0; i < npages; i++) {
  785. stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
  786. if (!stt->pages[i])
  787. goto fail;
  788. }
  789. kvm_get_kvm(kvm);
  790. mutex_lock(&kvm->lock);
  791. list_add(&stt->list, &kvm->arch.spapr_tce_tables);
  792. mutex_unlock(&kvm->lock);
  793. return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
  794. stt, O_RDWR);
  795. fail:
  796. if (stt) {
  797. for (i = 0; i < npages; i++)
  798. if (stt->pages[i])
  799. __free_page(stt->pages[i]);
  800. kfree(stt);
  801. }
  802. return ret;
  803. }
  804. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  805. Assumes POWER7 or PPC970. */
  806. static inline int lpcr_rmls(unsigned long rma_size)
  807. {
  808. switch (rma_size) {
  809. case 32ul << 20: /* 32 MB */
  810. if (cpu_has_feature(CPU_FTR_ARCH_206))
  811. return 8; /* only supported on POWER7 */
  812. return -1;
  813. case 64ul << 20: /* 64 MB */
  814. return 3;
  815. case 128ul << 20: /* 128 MB */
  816. return 7;
  817. case 256ul << 20: /* 256 MB */
  818. return 4;
  819. case 1ul << 30: /* 1 GB */
  820. return 2;
  821. case 16ul << 30: /* 16 GB */
  822. return 1;
  823. case 256ul << 30: /* 256 GB */
  824. return 0;
  825. default:
  826. return -1;
  827. }
  828. }
  829. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  830. {
  831. struct kvmppc_rma_info *ri = vma->vm_file->private_data;
  832. struct page *page;
  833. if (vmf->pgoff >= ri->npages)
  834. return VM_FAULT_SIGBUS;
  835. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  836. get_page(page);
  837. vmf->page = page;
  838. return 0;
  839. }
  840. static const struct vm_operations_struct kvm_rma_vm_ops = {
  841. .fault = kvm_rma_fault,
  842. };
  843. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  844. {
  845. vma->vm_flags |= VM_RESERVED;
  846. vma->vm_ops = &kvm_rma_vm_ops;
  847. return 0;
  848. }
  849. static int kvm_rma_release(struct inode *inode, struct file *filp)
  850. {
  851. struct kvmppc_rma_info *ri = filp->private_data;
  852. kvm_release_rma(ri);
  853. return 0;
  854. }
  855. static struct file_operations kvm_rma_fops = {
  856. .mmap = kvm_rma_mmap,
  857. .release = kvm_rma_release,
  858. };
  859. long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
  860. {
  861. struct kvmppc_rma_info *ri;
  862. long fd;
  863. ri = kvm_alloc_rma();
  864. if (!ri)
  865. return -ENOMEM;
  866. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
  867. if (fd < 0)
  868. kvm_release_rma(ri);
  869. ret->rma_size = ri->npages << PAGE_SHIFT;
  870. return fd;
  871. }
  872. static struct page *hva_to_page(unsigned long addr)
  873. {
  874. struct page *page[1];
  875. int npages;
  876. might_sleep();
  877. npages = get_user_pages_fast(addr, 1, 1, page);
  878. if (unlikely(npages != 1))
  879. return 0;
  880. return page[0];
  881. }
  882. int kvmppc_core_prepare_memory_region(struct kvm *kvm,
  883. struct kvm_userspace_memory_region *mem)
  884. {
  885. unsigned long psize, porder;
  886. unsigned long i, npages, totalpages;
  887. unsigned long pg_ix;
  888. struct kvmppc_pginfo *pginfo;
  889. unsigned long hva;
  890. struct kvmppc_rma_info *ri = NULL;
  891. struct page *page;
  892. /* For now, only allow 16MB pages */
  893. porder = LARGE_PAGE_ORDER;
  894. psize = 1ul << porder;
  895. if ((mem->memory_size & (psize - 1)) ||
  896. (mem->guest_phys_addr & (psize - 1))) {
  897. pr_err("bad memory_size=%llx @ %llx\n",
  898. mem->memory_size, mem->guest_phys_addr);
  899. return -EINVAL;
  900. }
  901. npages = mem->memory_size >> porder;
  902. totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
  903. /* More memory than we have space to track? */
  904. if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
  905. return -EINVAL;
  906. /* Do we already have an RMA registered? */
  907. if (mem->guest_phys_addr == 0 && kvm->arch.rma)
  908. return -EINVAL;
  909. if (totalpages > kvm->arch.ram_npages)
  910. kvm->arch.ram_npages = totalpages;
  911. /* Is this one of our preallocated RMAs? */
  912. if (mem->guest_phys_addr == 0) {
  913. struct vm_area_struct *vma;
  914. down_read(&current->mm->mmap_sem);
  915. vma = find_vma(current->mm, mem->userspace_addr);
  916. if (vma && vma->vm_file &&
  917. vma->vm_file->f_op == &kvm_rma_fops &&
  918. mem->userspace_addr == vma->vm_start)
  919. ri = vma->vm_file->private_data;
  920. up_read(&current->mm->mmap_sem);
  921. if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
  922. pr_err("CPU requires an RMO\n");
  923. return -EINVAL;
  924. }
  925. }
  926. if (ri) {
  927. unsigned long rma_size;
  928. unsigned long lpcr;
  929. long rmls;
  930. rma_size = ri->npages << PAGE_SHIFT;
  931. if (rma_size > mem->memory_size)
  932. rma_size = mem->memory_size;
  933. rmls = lpcr_rmls(rma_size);
  934. if (rmls < 0) {
  935. pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
  936. return -EINVAL;
  937. }
  938. atomic_inc(&ri->use_count);
  939. kvm->arch.rma = ri;
  940. kvm->arch.n_rma_pages = rma_size >> porder;
  941. /* Update LPCR and RMOR */
  942. lpcr = kvm->arch.lpcr;
  943. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  944. /* PPC970; insert RMLS value (split field) in HID4 */
  945. lpcr &= ~((1ul << HID4_RMLS0_SH) |
  946. (3ul << HID4_RMLS2_SH));
  947. lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
  948. ((rmls & 3) << HID4_RMLS2_SH);
  949. /* RMOR is also in HID4 */
  950. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  951. << HID4_RMOR_SH;
  952. } else {
  953. /* POWER7 */
  954. lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
  955. lpcr |= rmls << LPCR_RMLS_SH;
  956. kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
  957. }
  958. kvm->arch.lpcr = lpcr;
  959. pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
  960. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  961. }
  962. pg_ix = mem->guest_phys_addr >> porder;
  963. pginfo = kvm->arch.ram_pginfo + pg_ix;
  964. for (i = 0; i < npages; ++i, ++pg_ix) {
  965. if (ri && pg_ix < kvm->arch.n_rma_pages) {
  966. pginfo[i].pfn = ri->base_pfn +
  967. (pg_ix << (porder - PAGE_SHIFT));
  968. continue;
  969. }
  970. hva = mem->userspace_addr + (i << porder);
  971. page = hva_to_page(hva);
  972. if (!page) {
  973. pr_err("oops, no pfn for hva %lx\n", hva);
  974. goto err;
  975. }
  976. /* Check it's a 16MB page */
  977. if (!PageHead(page) ||
  978. compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
  979. pr_err("page at %lx isn't 16MB (o=%d)\n",
  980. hva, compound_order(page));
  981. goto err;
  982. }
  983. pginfo[i].pfn = page_to_pfn(page);
  984. }
  985. return 0;
  986. err:
  987. return -EINVAL;
  988. }
  989. void kvmppc_core_commit_memory_region(struct kvm *kvm,
  990. struct kvm_userspace_memory_region *mem)
  991. {
  992. if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
  993. !kvm->arch.rma)
  994. kvmppc_map_vrma(kvm, mem);
  995. }
  996. int kvmppc_core_init_vm(struct kvm *kvm)
  997. {
  998. long r;
  999. unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
  1000. long err = -ENOMEM;
  1001. unsigned long lpcr;
  1002. /* Allocate hashed page table */
  1003. r = kvmppc_alloc_hpt(kvm);
  1004. if (r)
  1005. return r;
  1006. INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
  1007. kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
  1008. GFP_KERNEL);
  1009. if (!kvm->arch.ram_pginfo) {
  1010. pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
  1011. npages * sizeof(struct kvmppc_pginfo));
  1012. goto out_free;
  1013. }
  1014. kvm->arch.ram_npages = 0;
  1015. kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
  1016. kvm->arch.ram_porder = LARGE_PAGE_ORDER;
  1017. kvm->arch.rma = NULL;
  1018. kvm->arch.n_rma_pages = 0;
  1019. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  1020. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1021. /* PPC970; HID4 is effectively the LPCR */
  1022. unsigned long lpid = kvm->arch.lpid;
  1023. kvm->arch.host_lpid = 0;
  1024. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  1025. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  1026. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  1027. ((lpid & 0xf) << HID4_LPID5_SH);
  1028. } else {
  1029. /* POWER7; init LPCR for virtual RMA mode */
  1030. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  1031. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  1032. lpcr &= LPCR_PECE | LPCR_LPES;
  1033. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  1034. LPCR_VPM0 | LPCR_VRMA_L;
  1035. }
  1036. kvm->arch.lpcr = lpcr;
  1037. return 0;
  1038. out_free:
  1039. kvmppc_free_hpt(kvm);
  1040. return err;
  1041. }
  1042. void kvmppc_core_destroy_vm(struct kvm *kvm)
  1043. {
  1044. struct kvmppc_pginfo *pginfo;
  1045. unsigned long i;
  1046. if (kvm->arch.ram_pginfo) {
  1047. pginfo = kvm->arch.ram_pginfo;
  1048. kvm->arch.ram_pginfo = NULL;
  1049. for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
  1050. if (pginfo[i].pfn)
  1051. put_page(pfn_to_page(pginfo[i].pfn));
  1052. kfree(pginfo);
  1053. }
  1054. if (kvm->arch.rma) {
  1055. kvm_release_rma(kvm->arch.rma);
  1056. kvm->arch.rma = NULL;
  1057. }
  1058. kvmppc_free_hpt(kvm);
  1059. WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
  1060. }
  1061. /* These are stubs for now */
  1062. void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
  1063. {
  1064. }
  1065. /* We don't need to emulate any privileged instructions or dcbz */
  1066. int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
  1067. unsigned int inst, int *advance)
  1068. {
  1069. return EMULATE_FAIL;
  1070. }
  1071. int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
  1072. {
  1073. return EMULATE_FAIL;
  1074. }
  1075. int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
  1076. {
  1077. return EMULATE_FAIL;
  1078. }
  1079. static int kvmppc_book3s_hv_init(void)
  1080. {
  1081. int r;
  1082. r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1083. if (r)
  1084. return r;
  1085. r = kvmppc_mmu_hv_init();
  1086. return r;
  1087. }
  1088. static void kvmppc_book3s_hv_exit(void)
  1089. {
  1090. kvm_exit();
  1091. }
  1092. module_init(kvmppc_book3s_hv_init);
  1093. module_exit(kvmppc_book3s_hv_exit);