pci-octeon.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2005-2009 Cavium Networks
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/pci.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/time.h>
  13. #include <linux/delay.h>
  14. #include <linux/swiotlb.h>
  15. #include <asm/time.h>
  16. #include <asm/octeon/octeon.h>
  17. #include <asm/octeon/cvmx-npi-defs.h>
  18. #include <asm/octeon/cvmx-pci-defs.h>
  19. #include <asm/octeon/pci-octeon.h>
  20. #include <dma-coherence.h>
  21. #define USE_OCTEON_INTERNAL_ARBITER
  22. /*
  23. * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  24. * addresses. Use PCI endian swapping 1 so no address swapping is
  25. * necessary. The Linux io routines will endian swap the data.
  26. */
  27. #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
  28. #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
  29. /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  30. #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
  31. u64 octeon_bar1_pci_phys;
  32. /**
  33. * This is the bit decoding used for the Octeon PCI controller addresses
  34. */
  35. union octeon_pci_address {
  36. uint64_t u64;
  37. struct {
  38. uint64_t upper:2;
  39. uint64_t reserved:13;
  40. uint64_t io:1;
  41. uint64_t did:5;
  42. uint64_t subdid:3;
  43. uint64_t reserved2:4;
  44. uint64_t endian_swap:2;
  45. uint64_t reserved3:10;
  46. uint64_t bus:8;
  47. uint64_t dev:5;
  48. uint64_t func:3;
  49. uint64_t reg:8;
  50. } s;
  51. };
  52. int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
  53. u8 slot, u8 pin);
  54. enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  55. /**
  56. * Map a PCI device to the appropriate interrupt line
  57. *
  58. * @dev: The Linux PCI device structure for the device to map
  59. * @slot: The slot number for this device on __BUS 0__. Linux
  60. * enumerates through all the bridges and figures out the
  61. * slot on Bus 0 where this device eventually hooks to.
  62. * @pin: The PCI interrupt pin read from the device, then swizzled
  63. * as it goes through each bridge.
  64. * Returns Interrupt number for the device
  65. */
  66. int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  67. {
  68. if (octeon_pcibios_map_irq)
  69. return octeon_pcibios_map_irq(dev, slot, pin);
  70. else
  71. panic("octeon_pcibios_map_irq not set.");
  72. }
  73. /*
  74. * Called to perform platform specific PCI setup
  75. */
  76. int pcibios_plat_dev_init(struct pci_dev *dev)
  77. {
  78. uint16_t config;
  79. uint32_t dconfig;
  80. int pos;
  81. /*
  82. * Force the Cache line setting to 64 bytes. The standard
  83. * Linux bus scan doesn't seem to set it. Octeon really has
  84. * 128 byte lines, but Intel bridges get really upset if you
  85. * try and set values above 64 bytes. Value is specified in
  86. * 32bit words.
  87. */
  88. pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
  89. /* Set latency timers for all devices */
  90. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
  91. /* Enable reporting System errors and parity errors on all devices */
  92. /* Enable parity checking and error reporting */
  93. pci_read_config_word(dev, PCI_COMMAND, &config);
  94. config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
  95. pci_write_config_word(dev, PCI_COMMAND, config);
  96. if (dev->subordinate) {
  97. /* Set latency timers on sub bridges */
  98. pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
  99. /* More bridge error detection */
  100. pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
  101. config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
  102. pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
  103. }
  104. /* Enable the PCIe normal error reporting */
  105. pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
  106. if (pos) {
  107. /* Update Device Control */
  108. pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
  109. /* Correctable Error Reporting */
  110. config |= PCI_EXP_DEVCTL_CERE;
  111. /* Non-Fatal Error Reporting */
  112. config |= PCI_EXP_DEVCTL_NFERE;
  113. /* Fatal Error Reporting */
  114. config |= PCI_EXP_DEVCTL_FERE;
  115. /* Unsupported Request */
  116. config |= PCI_EXP_DEVCTL_URRE;
  117. pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
  118. }
  119. /* Find the Advanced Error Reporting capability */
  120. pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
  121. if (pos) {
  122. /* Clear Uncorrectable Error Status */
  123. pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
  124. &dconfig);
  125. pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
  126. dconfig);
  127. /* Enable reporting of all uncorrectable errors */
  128. /* Uncorrectable Error Mask - turned on bits disable errors */
  129. pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
  130. /*
  131. * Leave severity at HW default. This only controls if
  132. * errors are reported as uncorrectable or
  133. * correctable, not if the error is reported.
  134. */
  135. /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
  136. /* Clear Correctable Error Status */
  137. pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
  138. pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
  139. /* Enable reporting of all correctable errors */
  140. /* Correctable Error Mask - turned on bits disable errors */
  141. pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
  142. /* Advanced Error Capabilities */
  143. pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
  144. /* ECRC Generation Enable */
  145. if (config & PCI_ERR_CAP_ECRC_GENC)
  146. config |= PCI_ERR_CAP_ECRC_GENE;
  147. /* ECRC Check Enable */
  148. if (config & PCI_ERR_CAP_ECRC_CHKC)
  149. config |= PCI_ERR_CAP_ECRC_CHKE;
  150. pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
  151. /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
  152. /* Report all errors to the root complex */
  153. pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
  154. PCI_ERR_ROOT_CMD_COR_EN |
  155. PCI_ERR_ROOT_CMD_NONFATAL_EN |
  156. PCI_ERR_ROOT_CMD_FATAL_EN);
  157. /* Clear the Root status register */
  158. pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
  159. pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
  160. }
  161. dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
  162. return 0;
  163. }
  164. /**
  165. * Return the mapping of PCI device number to IRQ line. Each
  166. * character in the return string represents the interrupt
  167. * line for the device at that position. Device 1 maps to the
  168. * first character, etc. The characters A-D are used for PCI
  169. * interrupts.
  170. *
  171. * Returns PCI interrupt mapping
  172. */
  173. const char *octeon_get_pci_interrupts(void)
  174. {
  175. /*
  176. * Returning an empty string causes the interrupts to be
  177. * routed based on the PCI specification. From the PCI spec:
  178. *
  179. * INTA# of Device Number 0 is connected to IRQW on the system
  180. * board. (Device Number has no significance regarding being
  181. * located on the system board or in a connector.) INTA# of
  182. * Device Number 1 is connected to IRQX on the system
  183. * board. INTA# of Device Number 2 is connected to IRQY on the
  184. * system board. INTA# of Device Number 3 is connected to IRQZ
  185. * on the system board. The table below describes how each
  186. * agent's INTx# lines are connected to the system board
  187. * interrupt lines. The following equation can be used to
  188. * determine to which INTx# signal on the system board a given
  189. * device's INTx# line(s) is connected.
  190. *
  191. * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
  192. * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
  193. * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
  194. * INTD# = 3)
  195. */
  196. switch (octeon_bootinfo->board_type) {
  197. case CVMX_BOARD_TYPE_NAO38:
  198. /* This is really the NAC38 */
  199. return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
  200. case CVMX_BOARD_TYPE_EBH3100:
  201. case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
  202. case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
  203. return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
  204. case CVMX_BOARD_TYPE_BBGW_REF:
  205. return "AABCD";
  206. case CVMX_BOARD_TYPE_THUNDER:
  207. case CVMX_BOARD_TYPE_EBH3000:
  208. default:
  209. return "";
  210. }
  211. }
  212. /**
  213. * Map a PCI device to the appropriate interrupt line
  214. *
  215. * @dev: The Linux PCI device structure for the device to map
  216. * @slot: The slot number for this device on __BUS 0__. Linux
  217. * enumerates through all the bridges and figures out the
  218. * slot on Bus 0 where this device eventually hooks to.
  219. * @pin: The PCI interrupt pin read from the device, then swizzled
  220. * as it goes through each bridge.
  221. * Returns Interrupt number for the device
  222. */
  223. int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
  224. u8 slot, u8 pin)
  225. {
  226. int irq_num;
  227. const char *interrupts;
  228. int dev_num;
  229. /* Get the board specific interrupt mapping */
  230. interrupts = octeon_get_pci_interrupts();
  231. dev_num = dev->devfn >> 3;
  232. if (dev_num < strlen(interrupts))
  233. irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
  234. OCTEON_IRQ_PCI_INT0;
  235. else
  236. irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
  237. return irq_num;
  238. }
  239. /*
  240. * Read a value from configuration space
  241. */
  242. static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
  243. int reg, int size, u32 *val)
  244. {
  245. union octeon_pci_address pci_addr;
  246. pci_addr.u64 = 0;
  247. pci_addr.s.upper = 2;
  248. pci_addr.s.io = 1;
  249. pci_addr.s.did = 3;
  250. pci_addr.s.subdid = 1;
  251. pci_addr.s.endian_swap = 1;
  252. pci_addr.s.bus = bus->number;
  253. pci_addr.s.dev = devfn >> 3;
  254. pci_addr.s.func = devfn & 0x7;
  255. pci_addr.s.reg = reg;
  256. #if PCI_CONFIG_SPACE_DELAY
  257. udelay(PCI_CONFIG_SPACE_DELAY);
  258. #endif
  259. switch (size) {
  260. case 4:
  261. *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
  262. return PCIBIOS_SUCCESSFUL;
  263. case 2:
  264. *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
  265. return PCIBIOS_SUCCESSFUL;
  266. case 1:
  267. *val = cvmx_read64_uint8(pci_addr.u64);
  268. return PCIBIOS_SUCCESSFUL;
  269. }
  270. return PCIBIOS_FUNC_NOT_SUPPORTED;
  271. }
  272. /*
  273. * Write a value to PCI configuration space
  274. */
  275. static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
  276. int reg, int size, u32 val)
  277. {
  278. union octeon_pci_address pci_addr;
  279. pci_addr.u64 = 0;
  280. pci_addr.s.upper = 2;
  281. pci_addr.s.io = 1;
  282. pci_addr.s.did = 3;
  283. pci_addr.s.subdid = 1;
  284. pci_addr.s.endian_swap = 1;
  285. pci_addr.s.bus = bus->number;
  286. pci_addr.s.dev = devfn >> 3;
  287. pci_addr.s.func = devfn & 0x7;
  288. pci_addr.s.reg = reg;
  289. #if PCI_CONFIG_SPACE_DELAY
  290. udelay(PCI_CONFIG_SPACE_DELAY);
  291. #endif
  292. switch (size) {
  293. case 4:
  294. cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
  295. return PCIBIOS_SUCCESSFUL;
  296. case 2:
  297. cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
  298. return PCIBIOS_SUCCESSFUL;
  299. case 1:
  300. cvmx_write64_uint8(pci_addr.u64, val);
  301. return PCIBIOS_SUCCESSFUL;
  302. }
  303. return PCIBIOS_FUNC_NOT_SUPPORTED;
  304. }
  305. static struct pci_ops octeon_pci_ops = {
  306. octeon_read_config,
  307. octeon_write_config,
  308. };
  309. static struct resource octeon_pci_mem_resource = {
  310. .start = 0,
  311. .end = 0,
  312. .name = "Octeon PCI MEM",
  313. .flags = IORESOURCE_MEM,
  314. };
  315. /*
  316. * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
  317. * bridge
  318. */
  319. static struct resource octeon_pci_io_resource = {
  320. .start = 0x4000,
  321. .end = OCTEON_PCI_IOSPACE_SIZE - 1,
  322. .name = "Octeon PCI IO",
  323. .flags = IORESOURCE_IO,
  324. };
  325. static struct pci_controller octeon_pci_controller = {
  326. .pci_ops = &octeon_pci_ops,
  327. .mem_resource = &octeon_pci_mem_resource,
  328. .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
  329. .io_resource = &octeon_pci_io_resource,
  330. .io_offset = 0,
  331. .io_map_base = OCTEON_PCI_IOSPACE_BASE,
  332. };
  333. /*
  334. * Low level initialize the Octeon PCI controller
  335. */
  336. static void octeon_pci_initialize(void)
  337. {
  338. union cvmx_pci_cfg01 cfg01;
  339. union cvmx_npi_ctl_status ctl_status;
  340. union cvmx_pci_ctl_status_2 ctl_status_2;
  341. union cvmx_pci_cfg19 cfg19;
  342. union cvmx_pci_cfg16 cfg16;
  343. union cvmx_pci_cfg22 cfg22;
  344. union cvmx_pci_cfg56 cfg56;
  345. /* Reset the PCI Bus */
  346. cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
  347. cvmx_read_csr(CVMX_CIU_SOFT_PRST);
  348. udelay(2000); /* Hold PCI reset for 2 ms */
  349. ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
  350. ctl_status.s.max_word = 1;
  351. ctl_status.s.timer = 1;
  352. cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
  353. /* Deassert PCI reset and advertize PCX Host Mode Device Capability
  354. (64b) */
  355. cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
  356. cvmx_read_csr(CVMX_CIU_SOFT_PRST);
  357. udelay(2000); /* Wait 2 ms after deasserting PCI reset */
  358. ctl_status_2.u32 = 0;
  359. ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
  360. before any PCI reads. */
  361. ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
  362. ctl_status_2.s.bar2_enb = 1;
  363. ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
  364. ctl_status_2.s.bar2_esx = 1;
  365. ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
  366. if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
  367. /* BAR1 hole */
  368. ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
  369. ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
  370. ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
  371. ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
  372. ctl_status_2.s.bb1 = 1; /* BAR1 is big */
  373. ctl_status_2.s.bb0 = 1; /* BAR0 is big */
  374. }
  375. octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
  376. udelay(2000); /* Wait 2 ms before doing PCI reads */
  377. ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
  378. pr_notice("PCI Status: %s %s-bit\n",
  379. ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
  380. ctl_status_2.s.ap_64ad ? "64" : "32");
  381. if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
  382. union cvmx_pci_cnt_reg cnt_reg_start;
  383. union cvmx_pci_cnt_reg cnt_reg_end;
  384. unsigned long cycles, pci_clock;
  385. cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
  386. cycles = read_c0_cvmcount();
  387. udelay(1000);
  388. cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
  389. cycles = read_c0_cvmcount() - cycles;
  390. pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
  391. (cycles / (mips_hpt_frequency / 1000000));
  392. pr_notice("PCI Clock: %lu MHz\n", pci_clock);
  393. }
  394. /*
  395. * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
  396. * in PCI-X mode to allow four outstanding splits. Otherwise,
  397. * should not change from its reset value. Don't write PCI_CFG19
  398. * in PCI mode (0x82000001 reset value), write it to 0x82000004
  399. * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
  400. * MRBCM -> must be one.
  401. */
  402. if (ctl_status_2.s.ap_pcix) {
  403. cfg19.u32 = 0;
  404. /*
  405. * Target Delayed/Split request outstanding maximum
  406. * count. [1..31] and 0=32. NOTE: If the user
  407. * programs these bits beyond the Designed Maximum
  408. * outstanding count, then the designed maximum table
  409. * depth will be used instead. No additional
  410. * Deferred/Split transactions will be accepted if
  411. * this outstanding maximum count is
  412. * reached. Furthermore, no additional deferred/split
  413. * transactions will be accepted if the I/O delay/ I/O
  414. * Split Request outstanding maximum is reached.
  415. */
  416. cfg19.s.tdomc = 4;
  417. /*
  418. * Master Deferred Read Request Outstanding Max Count
  419. * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
  420. * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
  421. * 5 2 110 6 3 111 7 3 For example, if these bits are
  422. * programmed to 100, the core can support 2 DAC
  423. * cycles, 4 SAC cycles or a combination of 1 DAC and
  424. * 2 SAC cycles. NOTE: For the PCI-X maximum
  425. * outstanding split transactions, refer to
  426. * CRE0[22:20].
  427. */
  428. cfg19.s.mdrrmc = 2;
  429. /*
  430. * Master Request (Memory Read) Byte Count/Byte Enable
  431. * select. 0 = Byte Enables valid. In PCI mode, a
  432. * burst transaction cannot be performed using Memory
  433. * Read command=4?h6. 1 = DWORD Byte Count valid
  434. * (default). In PCI Mode, the memory read byte
  435. * enables are automatically generated by the
  436. * core. Note: N3 Master Request transaction sizes are
  437. * always determined through the
  438. * am_attr[<35:32>|<7:0>] field.
  439. */
  440. cfg19.s.mrbcm = 1;
  441. octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
  442. }
  443. cfg01.u32 = 0;
  444. cfg01.s.msae = 1; /* Memory Space Access Enable */
  445. cfg01.s.me = 1; /* Master Enable */
  446. cfg01.s.pee = 1; /* PERR# Enable */
  447. cfg01.s.see = 1; /* System Error Enable */
  448. cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
  449. octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
  450. #ifdef USE_OCTEON_INTERNAL_ARBITER
  451. /*
  452. * When OCTEON is a PCI host, most systems will use OCTEON's
  453. * internal arbiter, so must enable it before any PCI/PCI-X
  454. * traffic can occur.
  455. */
  456. {
  457. union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
  458. pci_int_arb_cfg.u64 = 0;
  459. pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
  460. cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
  461. }
  462. #endif /* USE_OCTEON_INTERNAL_ARBITER */
  463. /*
  464. * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
  465. * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
  466. * 1..7.
  467. */
  468. cfg16.u32 = 0;
  469. cfg16.s.mltd = 1; /* Master Latency Timer Disable */
  470. octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
  471. /*
  472. * Should be written to 0x4ff00. MTTV -> must be zero.
  473. * FLUSH -> must be 1. MRV -> should be 0xFF.
  474. */
  475. cfg22.u32 = 0;
  476. /* Master Retry Value [1..255] and 0=infinite */
  477. cfg22.s.mrv = 0xff;
  478. /*
  479. * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
  480. * N3K operation.
  481. */
  482. cfg22.s.flush = 1;
  483. octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
  484. /*
  485. * MOST Indicates the maximum number of outstanding splits (in -1
  486. * notation) when OCTEON is in PCI-X mode. PCI-X performance is
  487. * affected by the MOST selection. Should generally be written
  488. * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
  489. * depending on the desired MOST of 3, 2, 1, or 0, respectively.
  490. */
  491. cfg56.u32 = 0;
  492. cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
  493. cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
  494. cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
  495. cfg56.s.roe = 1; /* Relaxed Ordering Enable */
  496. cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
  497. [0=512B,1=1024B,2=2048B,3=4096B] */
  498. cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
  499. .. 7=32] */
  500. octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
  501. /*
  502. * Affects PCI performance when OCTEON services reads to its
  503. * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
  504. * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
  505. * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
  506. * these values need to be changed so they won't possibly prefetch off
  507. * of the end of memory if PCI is DMAing a buffer at the end of
  508. * memory. Note that these values differ from their reset values.
  509. */
  510. octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
  511. octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
  512. octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
  513. }
  514. /*
  515. * Initialize the Octeon PCI controller
  516. */
  517. static int __init octeon_pci_setup(void)
  518. {
  519. union cvmx_npi_mem_access_subidx mem_access;
  520. int index;
  521. /* Only these chips have PCI */
  522. if (octeon_has_feature(OCTEON_FEATURE_PCIE))
  523. return 0;
  524. /* Point pcibios_map_irq() to the PCI version of it */
  525. octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
  526. /* Only use the big bars on chips that support it */
  527. if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
  528. OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
  529. OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
  530. octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
  531. else
  532. octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
  533. /* PCI I/O and PCI MEM values */
  534. set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
  535. ioport_resource.start = 0;
  536. ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
  537. if (!octeon_is_pci_host()) {
  538. pr_notice("Not in host mode, PCI Controller not initialized\n");
  539. return 0;
  540. }
  541. pr_notice("%s Octeon big bar support\n",
  542. (octeon_dma_bar_type ==
  543. OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
  544. octeon_pci_initialize();
  545. mem_access.u64 = 0;
  546. mem_access.s.esr = 1; /* Endian-Swap on read. */
  547. mem_access.s.esw = 1; /* Endian-Swap on write. */
  548. mem_access.s.nsr = 0; /* No-Snoop on read. */
  549. mem_access.s.nsw = 0; /* No-Snoop on write. */
  550. mem_access.s.ror = 0; /* Relax Read on read. */
  551. mem_access.s.row = 0; /* Relax Order on write. */
  552. mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
  553. cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
  554. /*
  555. * Remap the Octeon BAR 2 above all 32 bit devices
  556. * (0x8000000000ul). This is done here so it is remapped
  557. * before the readl()'s below. We don't want BAR2 overlapping
  558. * with BAR0/BAR1 during these reads.
  559. */
  560. octeon_npi_write32(CVMX_NPI_PCI_CFG08,
  561. (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
  562. octeon_npi_write32(CVMX_NPI_PCI_CFG09,
  563. (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
  564. if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
  565. /* Remap the Octeon BAR 0 to 0-2GB */
  566. octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
  567. octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
  568. /*
  569. * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
  570. * BAR 1 hole).
  571. */
  572. octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
  573. octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
  574. /* BAR1 movable mappings set for identity mapping */
  575. octeon_bar1_pci_phys = 0x80000000ull;
  576. for (index = 0; index < 32; index++) {
  577. union cvmx_pci_bar1_indexx bar1_index;
  578. bar1_index.u32 = 0;
  579. /* Address bits[35:22] sent to L2C */
  580. bar1_index.s.addr_idx =
  581. (octeon_bar1_pci_phys >> 22) + index;
  582. /* Don't put PCI accesses in L2. */
  583. bar1_index.s.ca = 1;
  584. /* Endian Swap Mode */
  585. bar1_index.s.end_swp = 1;
  586. /* Set '1' when the selected address range is valid. */
  587. bar1_index.s.addr_v = 1;
  588. octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
  589. bar1_index.u32);
  590. }
  591. /* Devices go after BAR1 */
  592. octeon_pci_mem_resource.start =
  593. OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
  594. (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
  595. octeon_pci_mem_resource.end =
  596. octeon_pci_mem_resource.start + (1ul << 30);
  597. } else {
  598. /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
  599. octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
  600. octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
  601. /* Remap the Octeon BAR 1 to map 0-128MB */
  602. octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
  603. octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
  604. /* BAR1 movable regions contiguous to cover the swiotlb */
  605. octeon_bar1_pci_phys =
  606. virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
  607. for (index = 0; index < 32; index++) {
  608. union cvmx_pci_bar1_indexx bar1_index;
  609. bar1_index.u32 = 0;
  610. /* Address bits[35:22] sent to L2C */
  611. bar1_index.s.addr_idx =
  612. (octeon_bar1_pci_phys >> 22) + index;
  613. /* Don't put PCI accesses in L2. */
  614. bar1_index.s.ca = 1;
  615. /* Endian Swap Mode */
  616. bar1_index.s.end_swp = 1;
  617. /* Set '1' when the selected address range is valid. */
  618. bar1_index.s.addr_v = 1;
  619. octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
  620. bar1_index.u32);
  621. }
  622. /* Devices go after BAR0 */
  623. octeon_pci_mem_resource.start =
  624. OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
  625. (4ul << 10);
  626. octeon_pci_mem_resource.end =
  627. octeon_pci_mem_resource.start + (1ul << 30);
  628. }
  629. register_pci_controller(&octeon_pci_controller);
  630. /*
  631. * Clear any errors that might be pending from before the bus
  632. * was setup properly.
  633. */
  634. cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
  635. octeon_pci_dma_init();
  636. return 0;
  637. }
  638. arch_initcall(octeon_pci_setup);