123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- /*
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- *
- * Portions Copyright (C) Cisco Systems, Inc.
- */
- #ifndef __ASM_MACH_POWERTV_IOREMAP_H
- #define __ASM_MACH_POWERTV_IOREMAP_H
- #include <linux/types.h>
- #include <linux/log2.h>
- #include <linux/compiler.h>
- #include <asm/pgtable-bits.h>
- #include <asm/addrspace.h>
- /* We're going to mess with bits, so get sizes */
- #define IOR_BPC 8 /* Bits per char */
- #define IOR_PHYS_BITS (IOR_BPC * sizeof(phys_addr_t))
- #define IOR_DMA_BITS (IOR_BPC * sizeof(dma_addr_t))
- /*
- * Define the granularity of physical/DMA mapping in terms of the number
- * of bits that defines the offset within a grain. These will be the
- * least significant bits of the address. The rest of a physical or DMA
- * address will be used to index into an appropriate table to find the
- * offset to add to the address to yield the corresponding DMA or physical
- * address, respectively.
- */
- #define IOR_LSBITS 22 /* Bits in a grain */
- /*
- * Compute the number of most significant address bits after removing those
- * used for the offset within a grain and then compute the number of table
- * entries for the conversion.
- */
- #define IOR_PHYS_MSBITS (IOR_PHYS_BITS - IOR_LSBITS)
- #define IOR_NUM_PHYS_TO_DMA ((phys_addr_t) 1 << IOR_PHYS_MSBITS)
- #define IOR_DMA_MSBITS (IOR_DMA_BITS - IOR_LSBITS)
- #define IOR_NUM_DMA_TO_PHYS ((dma_addr_t) 1 << IOR_DMA_MSBITS)
- /*
- * Define data structures used as elements in the arrays for the conversion
- * between physical and DMA addresses. We do some slightly fancy math to
- * compute the width of the offset element of the conversion tables so
- * that we can have the smallest conversion tables. Next, round up the
- * sizes to the next higher power of two, i.e. the offset element will have
- * 8, 16, 32, 64, etc. bits. This eliminates the need to mask off any
- * bits. Finally, we compute a shift value that puts the most significant
- * bits of the offset into the most significant bits of the offset element.
- * This makes it more efficient on processors without barrel shifters and
- * easier to see the values if the conversion table is dumped in binary.
- */
- #define _IOR_OFFSET_WIDTH(n) (1 << order_base_2(n))
- #define IOR_OFFSET_WIDTH(n) \
- (_IOR_OFFSET_WIDTH(n) < 8 ? 8 : _IOR_OFFSET_WIDTH(n))
- #define IOR_PHYS_OFFSET_BITS IOR_OFFSET_WIDTH(IOR_PHYS_MSBITS)
- #define IOR_PHYS_SHIFT (IOR_PHYS_BITS - IOR_PHYS_OFFSET_BITS)
- #define IOR_DMA_OFFSET_BITS IOR_OFFSET_WIDTH(IOR_DMA_MSBITS)
- #define IOR_DMA_SHIFT (IOR_DMA_BITS - IOR_DMA_OFFSET_BITS)
- struct ior_phys_to_dma {
- dma_addr_t offset:IOR_DMA_OFFSET_BITS __packed
- __aligned((IOR_DMA_OFFSET_BITS / IOR_BPC));
- };
- struct ior_dma_to_phys {
- dma_addr_t offset:IOR_PHYS_OFFSET_BITS __packed
- __aligned((IOR_PHYS_OFFSET_BITS / IOR_BPC));
- };
- extern struct ior_phys_to_dma _ior_phys_to_dma[IOR_NUM_PHYS_TO_DMA];
- extern struct ior_dma_to_phys _ior_dma_to_phys[IOR_NUM_DMA_TO_PHYS];
- static inline dma_addr_t _phys_to_dma_offset_raw(phys_addr_t phys)
- {
- return (dma_addr_t)_ior_phys_to_dma[phys >> IOR_LSBITS].offset;
- }
- static inline dma_addr_t _dma_to_phys_offset_raw(dma_addr_t dma)
- {
- return (dma_addr_t)_ior_dma_to_phys[dma >> IOR_LSBITS].offset;
- }
- /* These are not portable and should not be used in drivers. Drivers should
- * be using ioremap() and friends to map physical addresses to virtual
- * addresses and dma_map*() and friends to map virtual addresses into DMA
- * addresses and back.
- */
- static inline dma_addr_t phys_to_dma(phys_addr_t phys)
- {
- return phys + (_phys_to_dma_offset_raw(phys) << IOR_PHYS_SHIFT);
- }
- static inline phys_addr_t dma_to_phys(dma_addr_t dma)
- {
- return dma + (_dma_to_phys_offset_raw(dma) << IOR_DMA_SHIFT);
- }
- extern void ioremap_add_map(dma_addr_t phys, phys_addr_t alias,
- dma_addr_t size);
- /*
- * Allow physical addresses to be fixed up to help peripherals located
- * outside the low 32-bit range -- generic pass-through version.
- */
- static inline phys_t fixup_bigphys_addr(phys_t phys_addr, phys_t size)
- {
- return phys_addr;
- }
- /*
- * Handle the special case of addresses the area aliased into the first
- * 512 MiB of the processor's physical address space. These turn into either
- * kseg0 or kseg1 addresses, depending on flags.
- */
- static inline void __iomem *plat_ioremap(phys_t start, unsigned long size,
- unsigned long flags)
- {
- phys_addr_t start_offset;
- void __iomem *result = NULL;
- /* Start by checking to see whether this is an aliased address */
- start_offset = _dma_to_phys_offset_raw(start);
- /*
- * If:
- * o the memory is aliased into the first 512 MiB, and
- * o the start and end are in the same RAM bank, and
- * o we don't have a zero size or wrap around, and
- * o we are supposed to create an uncached mapping,
- * handle this is a kseg0 or kseg1 address
- */
- if (start_offset != 0) {
- phys_addr_t last;
- dma_addr_t dma_to_phys_offset;
- last = start + size - 1;
- dma_to_phys_offset =
- _dma_to_phys_offset_raw(last) << IOR_DMA_SHIFT;
- if (dma_to_phys_offset == start_offset &&
- size != 0 && start <= last) {
- phys_t adjusted_start;
- adjusted_start = start + start_offset;
- if (flags == _CACHE_UNCACHED)
- result = (void __iomem *) (unsigned long)
- CKSEG1ADDR(adjusted_start);
- else
- result = (void __iomem *) (unsigned long)
- CKSEG0ADDR(adjusted_start);
- }
- }
- return result;
- }
- static inline int plat_iounmap(const volatile void __iomem *addr)
- {
- return 0;
- }
- #endif /* __ASM_MACH_POWERTV_IOREMAP_H */
|