irq.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. /*
  2. * Copyright 2001, 2007-2008 MontaVista Software Inc.
  3. * Author: MontaVista Software, Inc. <source@mvista.com>
  4. *
  5. * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. *
  12. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  13. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  14. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  15. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  16. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  17. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  18. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  19. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  20. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  21. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, write to the Free Software Foundation, Inc.,
  25. * 675 Mass Ave, Cambridge, MA 02139, USA.
  26. */
  27. #include <linux/bitops.h>
  28. #include <linux/init.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/irq.h>
  31. #include <linux/slab.h>
  32. #include <linux/syscore_ops.h>
  33. #include <asm/irq_cpu.h>
  34. #include <asm/mipsregs.h>
  35. #include <asm/mach-au1x00/au1000.h>
  36. #ifdef CONFIG_MIPS_PB1000
  37. #include <asm/mach-pb1x00/pb1000.h>
  38. #endif
  39. /* Interrupt Controller register offsets */
  40. #define IC_CFG0RD 0x40
  41. #define IC_CFG0SET 0x40
  42. #define IC_CFG0CLR 0x44
  43. #define IC_CFG1RD 0x48
  44. #define IC_CFG1SET 0x48
  45. #define IC_CFG1CLR 0x4C
  46. #define IC_CFG2RD 0x50
  47. #define IC_CFG2SET 0x50
  48. #define IC_CFG2CLR 0x54
  49. #define IC_REQ0INT 0x54
  50. #define IC_SRCRD 0x58
  51. #define IC_SRCSET 0x58
  52. #define IC_SRCCLR 0x5C
  53. #define IC_REQ1INT 0x5C
  54. #define IC_ASSIGNRD 0x60
  55. #define IC_ASSIGNSET 0x60
  56. #define IC_ASSIGNCLR 0x64
  57. #define IC_WAKERD 0x68
  58. #define IC_WAKESET 0x68
  59. #define IC_WAKECLR 0x6C
  60. #define IC_MASKRD 0x70
  61. #define IC_MASKSET 0x70
  62. #define IC_MASKCLR 0x74
  63. #define IC_RISINGRD 0x78
  64. #define IC_RISINGCLR 0x78
  65. #define IC_FALLINGRD 0x7C
  66. #define IC_FALLINGCLR 0x7C
  67. #define IC_TESTBIT 0x80
  68. static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type);
  69. /* NOTE on interrupt priorities: The original writers of this code said:
  70. *
  71. * Because of the tight timing of SETUP token to reply transactions,
  72. * the USB devices-side packet complete interrupt (USB_DEV_REQ_INT)
  73. * needs the highest priority.
  74. */
  75. /* per-processor fixed function irqs */
  76. struct au1xxx_irqmap {
  77. int im_irq;
  78. int im_type;
  79. int im_request; /* set 1 to get higher priority */
  80. };
  81. struct au1xxx_irqmap au1000_irqmap[] __initdata = {
  82. { AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  83. { AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  84. { AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  85. { AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  86. { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  87. { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  88. { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
  89. { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
  90. { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
  91. { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
  92. { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
  93. { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
  94. { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
  95. { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
  96. { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  97. { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  98. { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  99. { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  100. { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  101. { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  102. { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  103. { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  104. { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  105. { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  106. { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
  107. { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  108. { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  109. { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  110. { AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  111. { AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  112. { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
  113. { -1, },
  114. };
  115. struct au1xxx_irqmap au1500_irqmap[] __initdata = {
  116. { AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  117. { AU1500_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
  118. { AU1500_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
  119. { AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  120. { AU1500_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
  121. { AU1500_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
  122. { AU1500_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
  123. { AU1500_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
  124. { AU1500_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
  125. { AU1500_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
  126. { AU1500_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
  127. { AU1500_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
  128. { AU1500_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
  129. { AU1500_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
  130. { AU1500_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  131. { AU1500_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  132. { AU1500_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  133. { AU1500_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  134. { AU1500_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  135. { AU1500_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  136. { AU1500_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  137. { AU1500_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  138. { AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
  139. { AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  140. { AU1500_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  141. { AU1500_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  142. { AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  143. { AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  144. { AU1500_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
  145. { -1, },
  146. };
  147. struct au1xxx_irqmap au1100_irqmap[] __initdata = {
  148. { AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  149. { AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  150. { AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  151. { AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  152. { AU1100_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  153. { AU1100_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  154. { AU1100_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
  155. { AU1100_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
  156. { AU1100_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
  157. { AU1100_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
  158. { AU1100_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
  159. { AU1100_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
  160. { AU1100_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
  161. { AU1100_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
  162. { AU1100_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  163. { AU1100_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  164. { AU1100_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  165. { AU1100_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  166. { AU1100_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  167. { AU1100_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  168. { AU1100_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  169. { AU1100_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  170. { AU1100_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  171. { AU1100_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  172. { AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
  173. { AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  174. { AU1100_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  175. { AU1100_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  176. { AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  177. { AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  178. { AU1100_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
  179. { -1, },
  180. };
  181. struct au1xxx_irqmap au1550_irqmap[] __initdata = {
  182. { AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  183. { AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
  184. { AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
  185. { AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  186. { AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  187. { AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
  188. { AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
  189. { AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  190. { AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  191. { AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  192. { AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  193. { AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  194. { AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  195. { AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  196. { AU1550_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  197. { AU1550_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  198. { AU1550_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  199. { AU1550_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  200. { AU1550_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  201. { AU1550_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  202. { AU1550_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  203. { AU1550_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  204. { AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
  205. { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
  206. { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
  207. { AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
  208. { AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  209. { AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  210. { -1, },
  211. };
  212. struct au1xxx_irqmap au1200_irqmap[] __initdata = {
  213. { AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  214. { AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 },
  215. { AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  216. { AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  217. { AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  218. { AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  219. { AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  220. { AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  221. { AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  222. { AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  223. { AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  224. { AU1200_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
  225. { AU1200_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  226. { AU1200_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  227. { AU1200_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
  228. { AU1200_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
  229. { AU1200_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
  230. { AU1200_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
  231. { AU1200_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
  232. { AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
  233. { AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  234. { AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  235. { AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
  236. { -1, },
  237. };
  238. static void au1x_ic0_unmask(struct irq_data *d)
  239. {
  240. unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
  241. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
  242. __raw_writel(1 << bit, base + IC_MASKSET);
  243. __raw_writel(1 << bit, base + IC_WAKESET);
  244. wmb();
  245. }
  246. static void au1x_ic1_unmask(struct irq_data *d)
  247. {
  248. unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
  249. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
  250. __raw_writel(1 << bit, base + IC_MASKSET);
  251. __raw_writel(1 << bit, base + IC_WAKESET);
  252. /* very hacky. does the pb1000 cpld auto-disable this int?
  253. * nowhere in the current kernel sources is it disabled. --mlau
  254. */
  255. #if defined(CONFIG_MIPS_PB1000)
  256. if (d->irq == AU1000_GPIO15_INT)
  257. __raw_writel(0x4000, (void __iomem *)PB1000_MDR); /* enable int */
  258. #endif
  259. wmb();
  260. }
  261. static void au1x_ic0_mask(struct irq_data *d)
  262. {
  263. unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
  264. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
  265. __raw_writel(1 << bit, base + IC_MASKCLR);
  266. __raw_writel(1 << bit, base + IC_WAKECLR);
  267. wmb();
  268. }
  269. static void au1x_ic1_mask(struct irq_data *d)
  270. {
  271. unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
  272. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
  273. __raw_writel(1 << bit, base + IC_MASKCLR);
  274. __raw_writel(1 << bit, base + IC_WAKECLR);
  275. wmb();
  276. }
  277. static void au1x_ic0_ack(struct irq_data *d)
  278. {
  279. unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
  280. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
  281. /*
  282. * This may assume that we don't get interrupts from
  283. * both edges at once, or if we do, that we don't care.
  284. */
  285. __raw_writel(1 << bit, base + IC_FALLINGCLR);
  286. __raw_writel(1 << bit, base + IC_RISINGCLR);
  287. wmb();
  288. }
  289. static void au1x_ic1_ack(struct irq_data *d)
  290. {
  291. unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
  292. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
  293. /*
  294. * This may assume that we don't get interrupts from
  295. * both edges at once, or if we do, that we don't care.
  296. */
  297. __raw_writel(1 << bit, base + IC_FALLINGCLR);
  298. __raw_writel(1 << bit, base + IC_RISINGCLR);
  299. wmb();
  300. }
  301. static void au1x_ic0_maskack(struct irq_data *d)
  302. {
  303. unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
  304. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
  305. __raw_writel(1 << bit, base + IC_WAKECLR);
  306. __raw_writel(1 << bit, base + IC_MASKCLR);
  307. __raw_writel(1 << bit, base + IC_RISINGCLR);
  308. __raw_writel(1 << bit, base + IC_FALLINGCLR);
  309. wmb();
  310. }
  311. static void au1x_ic1_maskack(struct irq_data *d)
  312. {
  313. unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
  314. void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
  315. __raw_writel(1 << bit, base + IC_WAKECLR);
  316. __raw_writel(1 << bit, base + IC_MASKCLR);
  317. __raw_writel(1 << bit, base + IC_RISINGCLR);
  318. __raw_writel(1 << bit, base + IC_FALLINGCLR);
  319. wmb();
  320. }
  321. static int au1x_ic1_setwake(struct irq_data *d, unsigned int on)
  322. {
  323. int bit = d->irq - AU1000_INTC1_INT_BASE;
  324. unsigned long wakemsk, flags;
  325. /* only GPIO 0-7 can act as wakeup source. Fortunately these
  326. * are wired up identically on all supported variants.
  327. */
  328. if ((bit < 0) || (bit > 7))
  329. return -EINVAL;
  330. local_irq_save(flags);
  331. wakemsk = __raw_readl((void __iomem *)SYS_WAKEMSK);
  332. if (on)
  333. wakemsk |= 1 << bit;
  334. else
  335. wakemsk &= ~(1 << bit);
  336. __raw_writel(wakemsk, (void __iomem *)SYS_WAKEMSK);
  337. wmb();
  338. local_irq_restore(flags);
  339. return 0;
  340. }
  341. /*
  342. * irq_chips for both ICs; this way the mask handlers can be
  343. * as short as possible.
  344. */
  345. static struct irq_chip au1x_ic0_chip = {
  346. .name = "Alchemy-IC0",
  347. .irq_ack = au1x_ic0_ack,
  348. .irq_mask = au1x_ic0_mask,
  349. .irq_mask_ack = au1x_ic0_maskack,
  350. .irq_unmask = au1x_ic0_unmask,
  351. .irq_set_type = au1x_ic_settype,
  352. };
  353. static struct irq_chip au1x_ic1_chip = {
  354. .name = "Alchemy-IC1",
  355. .irq_ack = au1x_ic1_ack,
  356. .irq_mask = au1x_ic1_mask,
  357. .irq_mask_ack = au1x_ic1_maskack,
  358. .irq_unmask = au1x_ic1_unmask,
  359. .irq_set_type = au1x_ic_settype,
  360. .irq_set_wake = au1x_ic1_setwake,
  361. };
  362. static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type)
  363. {
  364. struct irq_chip *chip;
  365. unsigned int bit, irq = d->irq;
  366. irq_flow_handler_t handler = NULL;
  367. unsigned char *name = NULL;
  368. void __iomem *base;
  369. int ret;
  370. if (irq >= AU1000_INTC1_INT_BASE) {
  371. bit = irq - AU1000_INTC1_INT_BASE;
  372. chip = &au1x_ic1_chip;
  373. base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
  374. } else {
  375. bit = irq - AU1000_INTC0_INT_BASE;
  376. chip = &au1x_ic0_chip;
  377. base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
  378. }
  379. if (bit > 31)
  380. return -EINVAL;
  381. ret = 0;
  382. switch (flow_type) { /* cfgregs 2:1:0 */
  383. case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */
  384. __raw_writel(1 << bit, base + IC_CFG2CLR);
  385. __raw_writel(1 << bit, base + IC_CFG1CLR);
  386. __raw_writel(1 << bit, base + IC_CFG0SET);
  387. handler = handle_edge_irq;
  388. name = "riseedge";
  389. break;
  390. case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */
  391. __raw_writel(1 << bit, base + IC_CFG2CLR);
  392. __raw_writel(1 << bit, base + IC_CFG1SET);
  393. __raw_writel(1 << bit, base + IC_CFG0CLR);
  394. handler = handle_edge_irq;
  395. name = "falledge";
  396. break;
  397. case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */
  398. __raw_writel(1 << bit, base + IC_CFG2CLR);
  399. __raw_writel(1 << bit, base + IC_CFG1SET);
  400. __raw_writel(1 << bit, base + IC_CFG0SET);
  401. handler = handle_edge_irq;
  402. name = "bothedge";
  403. break;
  404. case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */
  405. __raw_writel(1 << bit, base + IC_CFG2SET);
  406. __raw_writel(1 << bit, base + IC_CFG1CLR);
  407. __raw_writel(1 << bit, base + IC_CFG0SET);
  408. handler = handle_level_irq;
  409. name = "hilevel";
  410. break;
  411. case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */
  412. __raw_writel(1 << bit, base + IC_CFG2SET);
  413. __raw_writel(1 << bit, base + IC_CFG1SET);
  414. __raw_writel(1 << bit, base + IC_CFG0CLR);
  415. handler = handle_level_irq;
  416. name = "lowlevel";
  417. break;
  418. case IRQ_TYPE_NONE: /* 0:0:0 */
  419. __raw_writel(1 << bit, base + IC_CFG2CLR);
  420. __raw_writel(1 << bit, base + IC_CFG1CLR);
  421. __raw_writel(1 << bit, base + IC_CFG0CLR);
  422. break;
  423. default:
  424. ret = -EINVAL;
  425. }
  426. __irq_set_chip_handler_name_locked(d->irq, chip, handler, name);
  427. wmb();
  428. return ret;
  429. }
  430. asmlinkage void plat_irq_dispatch(void)
  431. {
  432. unsigned int pending = read_c0_status() & read_c0_cause();
  433. unsigned long s, off;
  434. if (pending & CAUSEF_IP7) {
  435. off = MIPS_CPU_IRQ_BASE + 7;
  436. goto handle;
  437. } else if (pending & CAUSEF_IP2) {
  438. s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ0INT;
  439. off = AU1000_INTC0_INT_BASE;
  440. } else if (pending & CAUSEF_IP3) {
  441. s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ1INT;
  442. off = AU1000_INTC0_INT_BASE;
  443. } else if (pending & CAUSEF_IP4) {
  444. s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ0INT;
  445. off = AU1000_INTC1_INT_BASE;
  446. } else if (pending & CAUSEF_IP5) {
  447. s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ1INT;
  448. off = AU1000_INTC1_INT_BASE;
  449. } else
  450. goto spurious;
  451. s = __raw_readl((void __iomem *)s);
  452. if (unlikely(!s)) {
  453. spurious:
  454. spurious_interrupt();
  455. return;
  456. }
  457. off += __ffs(s);
  458. handle:
  459. do_IRQ(off);
  460. }
  461. static inline void ic_init(void __iomem *base)
  462. {
  463. /* initialize interrupt controller to a safe state */
  464. __raw_writel(0xffffffff, base + IC_CFG0CLR);
  465. __raw_writel(0xffffffff, base + IC_CFG1CLR);
  466. __raw_writel(0xffffffff, base + IC_CFG2CLR);
  467. __raw_writel(0xffffffff, base + IC_MASKCLR);
  468. __raw_writel(0xffffffff, base + IC_ASSIGNCLR);
  469. __raw_writel(0xffffffff, base + IC_WAKECLR);
  470. __raw_writel(0xffffffff, base + IC_SRCSET);
  471. __raw_writel(0xffffffff, base + IC_FALLINGCLR);
  472. __raw_writel(0xffffffff, base + IC_RISINGCLR);
  473. __raw_writel(0x00000000, base + IC_TESTBIT);
  474. wmb();
  475. }
  476. static void __init au1000_init_irq(struct au1xxx_irqmap *map)
  477. {
  478. unsigned int bit, irq_nr;
  479. void __iomem *base;
  480. ic_init((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR));
  481. ic_init((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR));
  482. mips_cpu_irq_init();
  483. /* register all 64 possible IC0+IC1 irq sources as type "none".
  484. * Use set_irq_type() to set edge/level behaviour at runtime.
  485. */
  486. for (irq_nr = AU1000_INTC0_INT_BASE;
  487. (irq_nr < AU1000_INTC0_INT_BASE + 32); irq_nr++)
  488. au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
  489. for (irq_nr = AU1000_INTC1_INT_BASE;
  490. (irq_nr < AU1000_INTC1_INT_BASE + 32); irq_nr++)
  491. au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
  492. /*
  493. * Initialize IC0, which is fixed per processor.
  494. */
  495. while (map->im_irq != -1) {
  496. irq_nr = map->im_irq;
  497. if (irq_nr >= AU1000_INTC1_INT_BASE) {
  498. bit = irq_nr - AU1000_INTC1_INT_BASE;
  499. base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
  500. } else {
  501. bit = irq_nr - AU1000_INTC0_INT_BASE;
  502. base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
  503. }
  504. if (map->im_request)
  505. __raw_writel(1 << bit, base + IC_ASSIGNSET);
  506. au1x_ic_settype(irq_get_irq_data(irq_nr), map->im_type);
  507. ++map;
  508. }
  509. set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);
  510. }
  511. void __init arch_init_irq(void)
  512. {
  513. switch (alchemy_get_cputype()) {
  514. case ALCHEMY_CPU_AU1000:
  515. au1000_init_irq(au1000_irqmap);
  516. break;
  517. case ALCHEMY_CPU_AU1500:
  518. au1000_init_irq(au1500_irqmap);
  519. break;
  520. case ALCHEMY_CPU_AU1100:
  521. au1000_init_irq(au1100_irqmap);
  522. break;
  523. case ALCHEMY_CPU_AU1550:
  524. au1000_init_irq(au1550_irqmap);
  525. break;
  526. case ALCHEMY_CPU_AU1200:
  527. au1000_init_irq(au1200_irqmap);
  528. break;
  529. }
  530. }
  531. static unsigned long alchemy_ic_pmdata[7 * 2];
  532. static inline void alchemy_ic_suspend_one(void __iomem *base, unsigned long *d)
  533. {
  534. d[0] = __raw_readl(base + IC_CFG0RD);
  535. d[1] = __raw_readl(base + IC_CFG1RD);
  536. d[2] = __raw_readl(base + IC_CFG2RD);
  537. d[3] = __raw_readl(base + IC_SRCRD);
  538. d[4] = __raw_readl(base + IC_ASSIGNRD);
  539. d[5] = __raw_readl(base + IC_WAKERD);
  540. d[6] = __raw_readl(base + IC_MASKRD);
  541. ic_init(base); /* shut it up too while at it */
  542. }
  543. static inline void alchemy_ic_resume_one(void __iomem *base, unsigned long *d)
  544. {
  545. ic_init(base);
  546. __raw_writel(d[0], base + IC_CFG0SET);
  547. __raw_writel(d[1], base + IC_CFG1SET);
  548. __raw_writel(d[2], base + IC_CFG2SET);
  549. __raw_writel(d[3], base + IC_SRCSET);
  550. __raw_writel(d[4], base + IC_ASSIGNSET);
  551. __raw_writel(d[5], base + IC_WAKESET);
  552. wmb();
  553. __raw_writel(d[6], base + IC_MASKSET);
  554. wmb();
  555. }
  556. static int alchemy_ic_suspend(void)
  557. {
  558. alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
  559. alchemy_ic_pmdata);
  560. alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
  561. &alchemy_ic_pmdata[7]);
  562. return 0;
  563. }
  564. static void alchemy_ic_resume(void)
  565. {
  566. alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
  567. &alchemy_ic_pmdata[7]);
  568. alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
  569. alchemy_ic_pmdata);
  570. }
  571. static struct syscore_ops alchemy_ic_syscore_ops = {
  572. .suspend = alchemy_ic_suspend,
  573. .resume = alchemy_ic_resume,
  574. };
  575. static int __init alchemy_ic_pm_init(void)
  576. {
  577. register_syscore_ops(&alchemy_ic_syscore_ops);
  578. return 0;
  579. }
  580. device_initcall(alchemy_ic_pm_init);