dma.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. /*
  2. *
  3. * BRIEF MODULE DESCRIPTION
  4. * A DMA channel allocator for Au1x00. API is modeled loosely off of
  5. * linux/kernel/dma.c.
  6. *
  7. * Copyright 2000, 2008 MontaVista Software Inc.
  8. * Author: MontaVista Software, Inc. <source@mvista.com>
  9. * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
  10. *
  11. * This program is free software; you can redistribute it and/or modify it
  12. * under the terms of the GNU General Public License as published by the
  13. * Free Software Foundation; either version 2 of the License, or (at your
  14. * option) any later version.
  15. *
  16. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  17. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  18. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  19. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  20. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  22. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  23. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *
  27. * You should have received a copy of the GNU General Public License along
  28. * with this program; if not, write to the Free Software Foundation, Inc.,
  29. * 675 Mass Ave, Cambridge, MA 02139, USA.
  30. *
  31. */
  32. #include <linux/init.h>
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/errno.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/interrupt.h>
  38. #include <asm/mach-au1x00/au1000.h>
  39. #include <asm/mach-au1x00/au1000_dma.h>
  40. #if defined(CONFIG_SOC_AU1000) || defined(CONFIG_SOC_AU1500) || \
  41. defined(CONFIG_SOC_AU1100)
  42. /*
  43. * A note on resource allocation:
  44. *
  45. * All drivers needing DMA channels, should allocate and release them
  46. * through the public routines `request_dma()' and `free_dma()'.
  47. *
  48. * In order to avoid problems, all processes should allocate resources in
  49. * the same sequence and release them in the reverse order.
  50. *
  51. * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
  52. * When releasing them, first release the IRQ, then release the DMA. The
  53. * main reason for this order is that, if you are requesting the DMA buffer
  54. * done interrupt, you won't know the irq number until the DMA channel is
  55. * returned from request_dma.
  56. */
  57. /* DMA Channel register block spacing */
  58. #define DMA_CHANNEL_LEN 0x00000100
  59. DEFINE_SPINLOCK(au1000_dma_spin_lock);
  60. struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
  61. {.dev_id = -1,},
  62. {.dev_id = -1,},
  63. {.dev_id = -1,},
  64. {.dev_id = -1,},
  65. {.dev_id = -1,},
  66. {.dev_id = -1,},
  67. {.dev_id = -1,},
  68. {.dev_id = -1,}
  69. };
  70. EXPORT_SYMBOL(au1000_dma_table);
  71. /* Device FIFO addresses and default DMA modes */
  72. static const struct dma_dev {
  73. unsigned int fifo_addr;
  74. unsigned int dma_mode;
  75. } dma_dev_table[DMA_NUM_DEV] = {
  76. { AU1000_UART0_PHYS_ADDR + 0x04, DMA_DW8 }, /* UART0_TX */
  77. { AU1000_UART0_PHYS_ADDR + 0x00, DMA_DW8 | DMA_DR }, /* UART0_RX */
  78. { 0, 0 }, /* DMA_REQ0 */
  79. { 0, 0 }, /* DMA_REQ1 */
  80. { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 }, /* AC97 TX c */
  81. { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 | DMA_DR }, /* AC97 RX c */
  82. { AU1000_UART3_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* UART3_TX */
  83. { AU1000_UART3_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* UART3_RX */
  84. { AU1000_USBD_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* EP0RD */
  85. { AU1000_USBD_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* EP0WR */
  86. { AU1000_USBD_PHYS_ADDR + 0x08, DMA_DW8 | DMA_NC }, /* EP2WR */
  87. { AU1000_USBD_PHYS_ADDR + 0x0c, DMA_DW8 | DMA_NC }, /* EP3WR */
  88. { AU1000_USBD_PHYS_ADDR + 0x10, DMA_DW8 | DMA_NC | DMA_DR }, /* EP4RD */
  89. { AU1000_USBD_PHYS_ADDR + 0x14, DMA_DW8 | DMA_NC | DMA_DR }, /* EP5RD */
  90. /* on Au1500, these 2 are DMA_REQ2/3 (GPIO208/209) instead! */
  91. { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC}, /* I2S TX */
  92. { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC | DMA_DR}, /* I2S RX */
  93. };
  94. int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
  95. int length, int *eof, void *data)
  96. {
  97. int i, len = 0;
  98. struct dma_chan *chan;
  99. for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
  100. chan = get_dma_chan(i);
  101. if (chan != NULL)
  102. len += sprintf(buf + len, "%2d: %s\n",
  103. i, chan->dev_str);
  104. }
  105. if (fpos >= len) {
  106. *start = buf;
  107. *eof = 1;
  108. return 0;
  109. }
  110. *start = buf + fpos;
  111. len -= fpos;
  112. if (len > length)
  113. return length;
  114. *eof = 1;
  115. return len;
  116. }
  117. /* Device FIFO addresses and default DMA modes - 2nd bank */
  118. static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
  119. { AU1100_SD0_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
  120. { AU1100_SD0_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR }, /* coherent */
  121. { AU1100_SD1_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
  122. { AU1100_SD1_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR } /* coherent */
  123. };
  124. void dump_au1000_dma_channel(unsigned int dmanr)
  125. {
  126. struct dma_chan *chan;
  127. if (dmanr >= NUM_AU1000_DMA_CHANNELS)
  128. return;
  129. chan = &au1000_dma_table[dmanr];
  130. printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
  131. printk(KERN_INFO " mode = 0x%08x\n",
  132. au_readl(chan->io + DMA_MODE_SET));
  133. printk(KERN_INFO " addr = 0x%08x\n",
  134. au_readl(chan->io + DMA_PERIPHERAL_ADDR));
  135. printk(KERN_INFO " start0 = 0x%08x\n",
  136. au_readl(chan->io + DMA_BUFFER0_START));
  137. printk(KERN_INFO " start1 = 0x%08x\n",
  138. au_readl(chan->io + DMA_BUFFER1_START));
  139. printk(KERN_INFO " count0 = 0x%08x\n",
  140. au_readl(chan->io + DMA_BUFFER0_COUNT));
  141. printk(KERN_INFO " count1 = 0x%08x\n",
  142. au_readl(chan->io + DMA_BUFFER1_COUNT));
  143. }
  144. /*
  145. * Finds a free channel, and binds the requested device to it.
  146. * Returns the allocated channel number, or negative on error.
  147. * Requests the DMA done IRQ if irqhandler != NULL.
  148. */
  149. int request_au1000_dma(int dev_id, const char *dev_str,
  150. irq_handler_t irqhandler,
  151. unsigned long irqflags,
  152. void *irq_dev_id)
  153. {
  154. struct dma_chan *chan;
  155. const struct dma_dev *dev;
  156. int i, ret;
  157. #if defined(CONFIG_SOC_AU1100)
  158. if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
  159. return -EINVAL;
  160. #else
  161. if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
  162. return -EINVAL;
  163. #endif
  164. for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
  165. if (au1000_dma_table[i].dev_id < 0)
  166. break;
  167. if (i == NUM_AU1000_DMA_CHANNELS)
  168. return -ENODEV;
  169. chan = &au1000_dma_table[i];
  170. if (dev_id >= DMA_NUM_DEV) {
  171. dev_id -= DMA_NUM_DEV;
  172. dev = &dma_dev_table_bank2[dev_id];
  173. } else
  174. dev = &dma_dev_table[dev_id];
  175. if (irqhandler) {
  176. chan->irq_dev = irq_dev_id;
  177. ret = request_irq(chan->irq, irqhandler, irqflags, dev_str,
  178. chan->irq_dev);
  179. if (ret) {
  180. chan->irq_dev = NULL;
  181. return ret;
  182. }
  183. } else {
  184. chan->irq_dev = NULL;
  185. }
  186. /* fill it in */
  187. chan->io = KSEG1ADDR(AU1000_DMA_PHYS_ADDR) + i * DMA_CHANNEL_LEN;
  188. chan->dev_id = dev_id;
  189. chan->dev_str = dev_str;
  190. chan->fifo_addr = dev->fifo_addr;
  191. chan->mode = dev->dma_mode;
  192. /* initialize the channel before returning */
  193. init_dma(i);
  194. return i;
  195. }
  196. EXPORT_SYMBOL(request_au1000_dma);
  197. void free_au1000_dma(unsigned int dmanr)
  198. {
  199. struct dma_chan *chan = get_dma_chan(dmanr);
  200. if (!chan) {
  201. printk(KERN_ERR "Error trying to free DMA%d\n", dmanr);
  202. return;
  203. }
  204. disable_dma(dmanr);
  205. if (chan->irq_dev)
  206. free_irq(chan->irq, chan->irq_dev);
  207. chan->irq_dev = NULL;
  208. chan->dev_id = -1;
  209. }
  210. EXPORT_SYMBOL(free_au1000_dma);
  211. static int __init au1000_dma_init(void)
  212. {
  213. int base, i;
  214. switch (alchemy_get_cputype()) {
  215. case ALCHEMY_CPU_AU1000:
  216. base = AU1000_DMA_INT_BASE;
  217. break;
  218. case ALCHEMY_CPU_AU1500:
  219. base = AU1500_DMA_INT_BASE;
  220. break;
  221. case ALCHEMY_CPU_AU1100:
  222. base = AU1100_DMA_INT_BASE;
  223. break;
  224. default:
  225. goto out;
  226. }
  227. for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
  228. au1000_dma_table[i].irq = base + i;
  229. printk(KERN_INFO "Alchemy DMA initialized\n");
  230. out:
  231. return 0;
  232. }
  233. arch_initcall(au1000_dma_init);
  234. #endif /* AU1000 AU1500 AU1100 */