contig.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/nmi.h>
  21. #include <linux/swap.h>
  22. #include <asm/meminit.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/sections.h>
  26. #include <asm/mca.h>
  27. #ifdef CONFIG_VIRTUAL_MEM_MAP
  28. static unsigned long max_gap;
  29. #endif
  30. /**
  31. * show_mem - give short summary of memory stats
  32. *
  33. * Shows a simple page count of reserved and used pages in the system.
  34. * For discontig machines, it does this on a per-pgdat basis.
  35. */
  36. void show_mem(unsigned int filter)
  37. {
  38. int i, total_reserved = 0;
  39. int total_shared = 0, total_cached = 0;
  40. unsigned long total_present = 0;
  41. pg_data_t *pgdat;
  42. printk(KERN_INFO "Mem-info:\n");
  43. show_free_areas(filter);
  44. printk(KERN_INFO "Node memory in pages:\n");
  45. for_each_online_pgdat(pgdat) {
  46. unsigned long present;
  47. unsigned long flags;
  48. int shared = 0, cached = 0, reserved = 0;
  49. int nid = pgdat->node_id;
  50. if (skip_free_areas_node(filter, nid))
  51. continue;
  52. pgdat_resize_lock(pgdat, &flags);
  53. present = pgdat->node_present_pages;
  54. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  55. struct page *page;
  56. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  57. touch_nmi_watchdog();
  58. if (pfn_valid(pgdat->node_start_pfn + i))
  59. page = pfn_to_page(pgdat->node_start_pfn + i);
  60. else {
  61. #ifdef CONFIG_VIRTUAL_MEM_MAP
  62. if (max_gap < LARGE_GAP)
  63. continue;
  64. #endif
  65. i = vmemmap_find_next_valid_pfn(nid, i) - 1;
  66. continue;
  67. }
  68. if (PageReserved(page))
  69. reserved++;
  70. else if (PageSwapCache(page))
  71. cached++;
  72. else if (page_count(page))
  73. shared += page_count(page)-1;
  74. }
  75. pgdat_resize_unlock(pgdat, &flags);
  76. total_present += present;
  77. total_reserved += reserved;
  78. total_cached += cached;
  79. total_shared += shared;
  80. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  81. "shrd: %10d, swpd: %10d\n", nid,
  82. present, reserved, shared, cached);
  83. }
  84. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  85. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  86. printk(KERN_INFO "%d pages shared\n", total_shared);
  87. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  88. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  89. quicklist_total_size());
  90. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  91. }
  92. /* physical address where the bootmem map is located */
  93. unsigned long bootmap_start;
  94. /**
  95. * find_bootmap_location - callback to find a memory area for the bootmap
  96. * @start: start of region
  97. * @end: end of region
  98. * @arg: unused callback data
  99. *
  100. * Find a place to put the bootmap and return its starting address in
  101. * bootmap_start. This address must be page-aligned.
  102. */
  103. static int __init
  104. find_bootmap_location (u64 start, u64 end, void *arg)
  105. {
  106. u64 needed = *(unsigned long *)arg;
  107. u64 range_start, range_end, free_start;
  108. int i;
  109. #if IGNORE_PFN0
  110. if (start == PAGE_OFFSET) {
  111. start += PAGE_SIZE;
  112. if (start >= end)
  113. return 0;
  114. }
  115. #endif
  116. free_start = PAGE_OFFSET;
  117. for (i = 0; i < num_rsvd_regions; i++) {
  118. range_start = max(start, free_start);
  119. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  120. free_start = PAGE_ALIGN(rsvd_region[i].end);
  121. if (range_end <= range_start)
  122. continue; /* skip over empty range */
  123. if (range_end - range_start >= needed) {
  124. bootmap_start = __pa(range_start);
  125. return -1; /* done */
  126. }
  127. /* nothing more available in this segment */
  128. if (range_end == end)
  129. return 0;
  130. }
  131. return 0;
  132. }
  133. #ifdef CONFIG_SMP
  134. static void *cpu_data;
  135. /**
  136. * per_cpu_init - setup per-cpu variables
  137. *
  138. * Allocate and setup per-cpu data areas.
  139. */
  140. void * __cpuinit
  141. per_cpu_init (void)
  142. {
  143. static bool first_time = true;
  144. void *cpu0_data = __cpu0_per_cpu;
  145. unsigned int cpu;
  146. if (!first_time)
  147. goto skip;
  148. first_time = false;
  149. /*
  150. * get_free_pages() cannot be used before cpu_init() done.
  151. * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
  152. * to avoid that AP calls get_zeroed_page().
  153. */
  154. for_each_possible_cpu(cpu) {
  155. void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
  156. memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
  157. __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
  158. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  159. /*
  160. * percpu area for cpu0 is moved from the __init area
  161. * which is setup by head.S and used till this point.
  162. * Update ar.k3. This move is ensures that percpu
  163. * area for cpu0 is on the correct node and its
  164. * virtual address isn't insanely far from other
  165. * percpu areas which is important for congruent
  166. * percpu allocator.
  167. */
  168. if (cpu == 0)
  169. ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
  170. (unsigned long)__per_cpu_start);
  171. cpu_data += PERCPU_PAGE_SIZE;
  172. }
  173. skip:
  174. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  175. }
  176. static inline void
  177. alloc_per_cpu_data(void)
  178. {
  179. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
  180. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  181. }
  182. /**
  183. * setup_per_cpu_areas - setup percpu areas
  184. *
  185. * Arch code has already allocated and initialized percpu areas. All
  186. * this function has to do is to teach the determined layout to the
  187. * dynamic percpu allocator, which happens to be more complex than
  188. * creating whole new ones using helpers.
  189. */
  190. void __init
  191. setup_per_cpu_areas(void)
  192. {
  193. struct pcpu_alloc_info *ai;
  194. struct pcpu_group_info *gi;
  195. unsigned int cpu;
  196. ssize_t static_size, reserved_size, dyn_size;
  197. int rc;
  198. ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
  199. if (!ai)
  200. panic("failed to allocate pcpu_alloc_info");
  201. gi = &ai->groups[0];
  202. /* units are assigned consecutively to possible cpus */
  203. for_each_possible_cpu(cpu)
  204. gi->cpu_map[gi->nr_units++] = cpu;
  205. /* set parameters */
  206. static_size = __per_cpu_end - __per_cpu_start;
  207. reserved_size = PERCPU_MODULE_RESERVE;
  208. dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
  209. if (dyn_size < 0)
  210. panic("percpu area overflow static=%zd reserved=%zd\n",
  211. static_size, reserved_size);
  212. ai->static_size = static_size;
  213. ai->reserved_size = reserved_size;
  214. ai->dyn_size = dyn_size;
  215. ai->unit_size = PERCPU_PAGE_SIZE;
  216. ai->atom_size = PAGE_SIZE;
  217. ai->alloc_size = PERCPU_PAGE_SIZE;
  218. rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
  219. if (rc)
  220. panic("failed to setup percpu area (err=%d)", rc);
  221. pcpu_free_alloc_info(ai);
  222. }
  223. #else
  224. #define alloc_per_cpu_data() do { } while (0)
  225. #endif /* CONFIG_SMP */
  226. /**
  227. * find_memory - setup memory map
  228. *
  229. * Walk the EFI memory map and find usable memory for the system, taking
  230. * into account reserved areas.
  231. */
  232. void __init
  233. find_memory (void)
  234. {
  235. unsigned long bootmap_size;
  236. reserve_memory();
  237. /* first find highest page frame number */
  238. min_low_pfn = ~0UL;
  239. max_low_pfn = 0;
  240. efi_memmap_walk(find_max_min_low_pfn, NULL);
  241. max_pfn = max_low_pfn;
  242. /* how many bytes to cover all the pages */
  243. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  244. /* look for a location to hold the bootmap */
  245. bootmap_start = ~0UL;
  246. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  247. if (bootmap_start == ~0UL)
  248. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  249. bootmap_size = init_bootmem_node(NODE_DATA(0),
  250. (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
  251. /* Free all available memory, then mark bootmem-map as being in use. */
  252. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  253. reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
  254. find_initrd();
  255. alloc_per_cpu_data();
  256. }
  257. static int count_pages(u64 start, u64 end, void *arg)
  258. {
  259. unsigned long *count = arg;
  260. *count += (end - start) >> PAGE_SHIFT;
  261. return 0;
  262. }
  263. /*
  264. * Set up the page tables.
  265. */
  266. void __init
  267. paging_init (void)
  268. {
  269. unsigned long max_dma;
  270. unsigned long max_zone_pfns[MAX_NR_ZONES];
  271. num_physpages = 0;
  272. efi_memmap_walk(count_pages, &num_physpages);
  273. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  274. #ifdef CONFIG_ZONE_DMA
  275. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  276. max_zone_pfns[ZONE_DMA] = max_dma;
  277. #endif
  278. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  279. #ifdef CONFIG_VIRTUAL_MEM_MAP
  280. efi_memmap_walk(filter_memory, register_active_ranges);
  281. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  282. if (max_gap < LARGE_GAP) {
  283. vmem_map = (struct page *) 0;
  284. free_area_init_nodes(max_zone_pfns);
  285. } else {
  286. unsigned long map_size;
  287. /* allocate virtual_mem_map */
  288. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  289. sizeof(struct page));
  290. VMALLOC_END -= map_size;
  291. vmem_map = (struct page *) VMALLOC_END;
  292. efi_memmap_walk(create_mem_map_page_table, NULL);
  293. /*
  294. * alloc_node_mem_map makes an adjustment for mem_map
  295. * which isn't compatible with vmem_map.
  296. */
  297. NODE_DATA(0)->node_mem_map = vmem_map +
  298. find_min_pfn_with_active_regions();
  299. free_area_init_nodes(max_zone_pfns);
  300. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  301. }
  302. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  303. add_active_range(0, 0, max_low_pfn);
  304. free_area_init_nodes(max_zone_pfns);
  305. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  306. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  307. }