kvm-ia64.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/fs.h>
  26. #include <linux/slab.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include <asm/sn/addrs.h>
  43. #include <asm/sn/clksupport.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include "misc.h"
  46. #include "vti.h"
  47. #include "iodev.h"
  48. #include "ioapic.h"
  49. #include "lapic.h"
  50. #include "irq.h"
  51. static unsigned long kvm_vmm_base;
  52. static unsigned long kvm_vsa_base;
  53. static unsigned long kvm_vm_buffer;
  54. static unsigned long kvm_vm_buffer_size;
  55. unsigned long kvm_vmm_gp;
  56. static long vp_env_info;
  57. static struct kvm_vmm_info *kvm_vmm_info;
  58. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  59. struct kvm_stats_debugfs_item debugfs_entries[] = {
  60. { NULL }
  61. };
  62. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  63. {
  64. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  65. if (vcpu->kvm->arch.is_sn2)
  66. return rtc_time();
  67. else
  68. #endif
  69. return ia64_getreg(_IA64_REG_AR_ITC);
  70. }
  71. static void kvm_flush_icache(unsigned long start, unsigned long len)
  72. {
  73. int l;
  74. for (l = 0; l < (len + 32); l += 32)
  75. ia64_fc((void *)(start + l));
  76. ia64_sync_i();
  77. ia64_srlz_i();
  78. }
  79. static void kvm_flush_tlb_all(void)
  80. {
  81. unsigned long i, j, count0, count1, stride0, stride1, addr;
  82. long flags;
  83. addr = local_cpu_data->ptce_base;
  84. count0 = local_cpu_data->ptce_count[0];
  85. count1 = local_cpu_data->ptce_count[1];
  86. stride0 = local_cpu_data->ptce_stride[0];
  87. stride1 = local_cpu_data->ptce_stride[1];
  88. local_irq_save(flags);
  89. for (i = 0; i < count0; ++i) {
  90. for (j = 0; j < count1; ++j) {
  91. ia64_ptce(addr);
  92. addr += stride1;
  93. }
  94. addr += stride0;
  95. }
  96. local_irq_restore(flags);
  97. ia64_srlz_i(); /* srlz.i implies srlz.d */
  98. }
  99. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  100. {
  101. struct ia64_pal_retval iprv;
  102. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  103. (u64)opt_handler);
  104. return iprv.status;
  105. }
  106. static DEFINE_SPINLOCK(vp_lock);
  107. int kvm_arch_hardware_enable(void *garbage)
  108. {
  109. long status;
  110. long tmp_base;
  111. unsigned long pte;
  112. unsigned long saved_psr;
  113. int slot;
  114. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  115. local_irq_save(saved_psr);
  116. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  117. local_irq_restore(saved_psr);
  118. if (slot < 0)
  119. return -EINVAL;
  120. spin_lock(&vp_lock);
  121. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  122. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  123. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  124. if (status != 0) {
  125. spin_unlock(&vp_lock);
  126. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  127. return -EINVAL;
  128. }
  129. if (!kvm_vsa_base) {
  130. kvm_vsa_base = tmp_base;
  131. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  132. }
  133. spin_unlock(&vp_lock);
  134. ia64_ptr_entry(0x3, slot);
  135. return 0;
  136. }
  137. void kvm_arch_hardware_disable(void *garbage)
  138. {
  139. long status;
  140. int slot;
  141. unsigned long pte;
  142. unsigned long saved_psr;
  143. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  144. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  145. PAGE_KERNEL));
  146. local_irq_save(saved_psr);
  147. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  148. local_irq_restore(saved_psr);
  149. if (slot < 0)
  150. return;
  151. status = ia64_pal_vp_exit_env(host_iva);
  152. if (status)
  153. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  154. status);
  155. ia64_ptr_entry(0x3, slot);
  156. }
  157. void kvm_arch_check_processor_compat(void *rtn)
  158. {
  159. *(int *)rtn = 0;
  160. }
  161. int kvm_dev_ioctl_check_extension(long ext)
  162. {
  163. int r;
  164. switch (ext) {
  165. case KVM_CAP_IRQCHIP:
  166. case KVM_CAP_MP_STATE:
  167. case KVM_CAP_IRQ_INJECT_STATUS:
  168. r = 1;
  169. break;
  170. case KVM_CAP_COALESCED_MMIO:
  171. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  172. break;
  173. case KVM_CAP_IOMMU:
  174. r = iommu_found();
  175. break;
  176. default:
  177. r = 0;
  178. }
  179. return r;
  180. }
  181. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  182. {
  183. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  184. kvm_run->hw.hardware_exit_reason = 1;
  185. return 0;
  186. }
  187. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  188. {
  189. struct kvm_mmio_req *p;
  190. struct kvm_io_device *mmio_dev;
  191. int r;
  192. p = kvm_get_vcpu_ioreq(vcpu);
  193. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  194. goto mmio;
  195. vcpu->mmio_needed = 1;
  196. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  197. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  198. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  199. if (vcpu->mmio_is_write)
  200. memcpy(vcpu->mmio_data, &p->data, p->size);
  201. memcpy(kvm_run->mmio.data, &p->data, p->size);
  202. kvm_run->exit_reason = KVM_EXIT_MMIO;
  203. return 0;
  204. mmio:
  205. if (p->dir)
  206. r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  207. p->size, &p->data);
  208. else
  209. r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  210. p->size, &p->data);
  211. if (r)
  212. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  213. p->state = STATE_IORESP_READY;
  214. return 1;
  215. }
  216. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  217. {
  218. struct exit_ctl_data *p;
  219. p = kvm_get_exit_data(vcpu);
  220. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  221. return kvm_pal_emul(vcpu, kvm_run);
  222. else {
  223. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  224. kvm_run->hw.hardware_exit_reason = 2;
  225. return 0;
  226. }
  227. }
  228. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  229. {
  230. struct exit_ctl_data *p;
  231. p = kvm_get_exit_data(vcpu);
  232. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  233. kvm_sal_emul(vcpu);
  234. return 1;
  235. } else {
  236. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  237. kvm_run->hw.hardware_exit_reason = 3;
  238. return 0;
  239. }
  240. }
  241. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  242. {
  243. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  244. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  245. vcpu->arch.irq_new_pending = 1;
  246. kvm_vcpu_kick(vcpu);
  247. return 1;
  248. }
  249. return 0;
  250. }
  251. /*
  252. * offset: address offset to IPI space.
  253. * value: deliver value.
  254. */
  255. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  256. uint64_t vector)
  257. {
  258. switch (dm) {
  259. case SAPIC_FIXED:
  260. break;
  261. case SAPIC_NMI:
  262. vector = 2;
  263. break;
  264. case SAPIC_EXTINT:
  265. vector = 0;
  266. break;
  267. case SAPIC_INIT:
  268. case SAPIC_PMI:
  269. default:
  270. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  271. return;
  272. }
  273. __apic_accept_irq(vcpu, vector);
  274. }
  275. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  276. unsigned long eid)
  277. {
  278. union ia64_lid lid;
  279. int i;
  280. struct kvm_vcpu *vcpu;
  281. kvm_for_each_vcpu(i, vcpu, kvm) {
  282. lid.val = VCPU_LID(vcpu);
  283. if (lid.id == id && lid.eid == eid)
  284. return vcpu;
  285. }
  286. return NULL;
  287. }
  288. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  289. {
  290. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  291. struct kvm_vcpu *target_vcpu;
  292. struct kvm_pt_regs *regs;
  293. union ia64_ipi_a addr = p->u.ipi_data.addr;
  294. union ia64_ipi_d data = p->u.ipi_data.data;
  295. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  296. if (!target_vcpu)
  297. return handle_vm_error(vcpu, kvm_run);
  298. if (!target_vcpu->arch.launched) {
  299. regs = vcpu_regs(target_vcpu);
  300. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  301. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  302. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  303. if (waitqueue_active(&target_vcpu->wq))
  304. wake_up_interruptible(&target_vcpu->wq);
  305. } else {
  306. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  307. if (target_vcpu != vcpu)
  308. kvm_vcpu_kick(target_vcpu);
  309. }
  310. return 1;
  311. }
  312. struct call_data {
  313. struct kvm_ptc_g ptc_g_data;
  314. struct kvm_vcpu *vcpu;
  315. };
  316. static void vcpu_global_purge(void *info)
  317. {
  318. struct call_data *p = (struct call_data *)info;
  319. struct kvm_vcpu *vcpu = p->vcpu;
  320. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  321. return;
  322. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  323. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  324. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  325. p->ptc_g_data;
  326. } else {
  327. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  328. vcpu->arch.ptc_g_count = 0;
  329. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  330. }
  331. }
  332. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  333. {
  334. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  335. struct kvm *kvm = vcpu->kvm;
  336. struct call_data call_data;
  337. int i;
  338. struct kvm_vcpu *vcpui;
  339. call_data.ptc_g_data = p->u.ptc_g_data;
  340. kvm_for_each_vcpu(i, vcpui, kvm) {
  341. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  342. vcpu == vcpui)
  343. continue;
  344. if (waitqueue_active(&vcpui->wq))
  345. wake_up_interruptible(&vcpui->wq);
  346. if (vcpui->cpu != -1) {
  347. call_data.vcpu = vcpui;
  348. smp_call_function_single(vcpui->cpu,
  349. vcpu_global_purge, &call_data, 1);
  350. } else
  351. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  352. }
  353. return 1;
  354. }
  355. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  356. {
  357. return 1;
  358. }
  359. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  360. {
  361. unsigned long pte, rtc_phys_addr, map_addr;
  362. int slot;
  363. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  364. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  365. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  366. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  367. vcpu->arch.sn_rtc_tr_slot = slot;
  368. if (slot < 0) {
  369. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  370. slot = 0;
  371. }
  372. return slot;
  373. }
  374. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  375. {
  376. ktime_t kt;
  377. long itc_diff;
  378. unsigned long vcpu_now_itc;
  379. unsigned long expires;
  380. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  381. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  382. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  383. if (irqchip_in_kernel(vcpu->kvm)) {
  384. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  385. if (time_after(vcpu_now_itc, vpd->itm)) {
  386. vcpu->arch.timer_check = 1;
  387. return 1;
  388. }
  389. itc_diff = vpd->itm - vcpu_now_itc;
  390. if (itc_diff < 0)
  391. itc_diff = -itc_diff;
  392. expires = div64_u64(itc_diff, cyc_per_usec);
  393. kt = ktime_set(0, 1000 * expires);
  394. vcpu->arch.ht_active = 1;
  395. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  396. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  397. kvm_vcpu_block(vcpu);
  398. hrtimer_cancel(p_ht);
  399. vcpu->arch.ht_active = 0;
  400. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  401. kvm_cpu_has_pending_timer(vcpu))
  402. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  403. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  404. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  405. return -EINTR;
  406. return 1;
  407. } else {
  408. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  409. return 0;
  410. }
  411. }
  412. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  413. struct kvm_run *kvm_run)
  414. {
  415. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  416. return 0;
  417. }
  418. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  419. struct kvm_run *kvm_run)
  420. {
  421. return 1;
  422. }
  423. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  424. struct kvm_run *kvm_run)
  425. {
  426. printk("VMM: %s", vcpu->arch.log_buf);
  427. return 1;
  428. }
  429. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  430. struct kvm_run *kvm_run) = {
  431. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  432. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  433. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  434. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  435. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  436. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  437. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  438. [EXIT_REASON_IPI] = handle_ipi,
  439. [EXIT_REASON_PTC_G] = handle_global_purge,
  440. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  441. };
  442. static const int kvm_vti_max_exit_handlers =
  443. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  444. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  445. {
  446. struct exit_ctl_data *p_exit_data;
  447. p_exit_data = kvm_get_exit_data(vcpu);
  448. return p_exit_data->exit_reason;
  449. }
  450. /*
  451. * The guest has exited. See if we can fix it or if we need userspace
  452. * assistance.
  453. */
  454. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  455. {
  456. u32 exit_reason = kvm_get_exit_reason(vcpu);
  457. vcpu->arch.last_exit = exit_reason;
  458. if (exit_reason < kvm_vti_max_exit_handlers
  459. && kvm_vti_exit_handlers[exit_reason])
  460. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  461. else {
  462. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  463. kvm_run->hw.hardware_exit_reason = exit_reason;
  464. }
  465. return 0;
  466. }
  467. static inline void vti_set_rr6(unsigned long rr6)
  468. {
  469. ia64_set_rr(RR6, rr6);
  470. ia64_srlz_i();
  471. }
  472. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  473. {
  474. unsigned long pte;
  475. struct kvm *kvm = vcpu->kvm;
  476. int r;
  477. /*Insert a pair of tr to map vmm*/
  478. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  479. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  480. if (r < 0)
  481. goto out;
  482. vcpu->arch.vmm_tr_slot = r;
  483. /*Insert a pairt of tr to map data of vm*/
  484. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  485. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  486. pte, KVM_VM_DATA_SHIFT);
  487. if (r < 0)
  488. goto out;
  489. vcpu->arch.vm_tr_slot = r;
  490. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  491. if (kvm->arch.is_sn2) {
  492. r = kvm_sn2_setup_mappings(vcpu);
  493. if (r < 0)
  494. goto out;
  495. }
  496. #endif
  497. r = 0;
  498. out:
  499. return r;
  500. }
  501. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  502. {
  503. struct kvm *kvm = vcpu->kvm;
  504. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  505. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  506. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  507. if (kvm->arch.is_sn2)
  508. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  509. #endif
  510. }
  511. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  512. {
  513. unsigned long psr;
  514. int r;
  515. int cpu = smp_processor_id();
  516. if (vcpu->arch.last_run_cpu != cpu ||
  517. per_cpu(last_vcpu, cpu) != vcpu) {
  518. per_cpu(last_vcpu, cpu) = vcpu;
  519. vcpu->arch.last_run_cpu = cpu;
  520. kvm_flush_tlb_all();
  521. }
  522. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  523. vti_set_rr6(vcpu->arch.vmm_rr);
  524. local_irq_save(psr);
  525. r = kvm_insert_vmm_mapping(vcpu);
  526. local_irq_restore(psr);
  527. return r;
  528. }
  529. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  530. {
  531. kvm_purge_vmm_mapping(vcpu);
  532. vti_set_rr6(vcpu->arch.host_rr6);
  533. }
  534. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  535. {
  536. union context *host_ctx, *guest_ctx;
  537. int r, idx;
  538. idx = srcu_read_lock(&vcpu->kvm->srcu);
  539. again:
  540. if (signal_pending(current)) {
  541. r = -EINTR;
  542. kvm_run->exit_reason = KVM_EXIT_INTR;
  543. goto out;
  544. }
  545. preempt_disable();
  546. local_irq_disable();
  547. /*Get host and guest context with guest address space.*/
  548. host_ctx = kvm_get_host_context(vcpu);
  549. guest_ctx = kvm_get_guest_context(vcpu);
  550. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  551. r = kvm_vcpu_pre_transition(vcpu);
  552. if (r < 0)
  553. goto vcpu_run_fail;
  554. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  555. vcpu->mode = IN_GUEST_MODE;
  556. kvm_guest_enter();
  557. /*
  558. * Transition to the guest
  559. */
  560. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  561. kvm_vcpu_post_transition(vcpu);
  562. vcpu->arch.launched = 1;
  563. set_bit(KVM_REQ_KICK, &vcpu->requests);
  564. local_irq_enable();
  565. /*
  566. * We must have an instruction between local_irq_enable() and
  567. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  568. * the interrupt shadow. The stat.exits increment will do nicely.
  569. * But we need to prevent reordering, hence this barrier():
  570. */
  571. barrier();
  572. kvm_guest_exit();
  573. vcpu->mode = OUTSIDE_GUEST_MODE;
  574. preempt_enable();
  575. idx = srcu_read_lock(&vcpu->kvm->srcu);
  576. r = kvm_handle_exit(kvm_run, vcpu);
  577. if (r > 0) {
  578. if (!need_resched())
  579. goto again;
  580. }
  581. out:
  582. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  583. if (r > 0) {
  584. kvm_resched(vcpu);
  585. idx = srcu_read_lock(&vcpu->kvm->srcu);
  586. goto again;
  587. }
  588. return r;
  589. vcpu_run_fail:
  590. local_irq_enable();
  591. preempt_enable();
  592. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  593. goto out;
  594. }
  595. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  596. {
  597. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  598. if (!vcpu->mmio_is_write)
  599. memcpy(&p->data, vcpu->mmio_data, 8);
  600. p->state = STATE_IORESP_READY;
  601. }
  602. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  603. {
  604. int r;
  605. sigset_t sigsaved;
  606. if (vcpu->sigset_active)
  607. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  608. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  609. kvm_vcpu_block(vcpu);
  610. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  611. r = -EAGAIN;
  612. goto out;
  613. }
  614. if (vcpu->mmio_needed) {
  615. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  616. kvm_set_mmio_data(vcpu);
  617. vcpu->mmio_read_completed = 1;
  618. vcpu->mmio_needed = 0;
  619. }
  620. r = __vcpu_run(vcpu, kvm_run);
  621. out:
  622. if (vcpu->sigset_active)
  623. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  624. return r;
  625. }
  626. struct kvm *kvm_arch_alloc_vm(void)
  627. {
  628. struct kvm *kvm;
  629. uint64_t vm_base;
  630. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  631. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  632. if (!vm_base)
  633. return NULL;
  634. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  635. kvm = (struct kvm *)(vm_base +
  636. offsetof(struct kvm_vm_data, kvm_vm_struct));
  637. kvm->arch.vm_base = vm_base;
  638. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  639. return kvm;
  640. }
  641. struct kvm_io_range {
  642. unsigned long start;
  643. unsigned long size;
  644. unsigned long type;
  645. };
  646. static const struct kvm_io_range io_ranges[] = {
  647. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  648. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  649. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  650. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  651. {PIB_START, PIB_SIZE, GPFN_PIB},
  652. };
  653. static void kvm_build_io_pmt(struct kvm *kvm)
  654. {
  655. unsigned long i, j;
  656. /* Mark I/O ranges */
  657. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  658. i++) {
  659. for (j = io_ranges[i].start;
  660. j < io_ranges[i].start + io_ranges[i].size;
  661. j += PAGE_SIZE)
  662. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  663. io_ranges[i].type, 0);
  664. }
  665. }
  666. /*Use unused rids to virtualize guest rid.*/
  667. #define GUEST_PHYSICAL_RR0 0x1739
  668. #define GUEST_PHYSICAL_RR4 0x2739
  669. #define VMM_INIT_RR 0x1660
  670. int kvm_arch_init_vm(struct kvm *kvm)
  671. {
  672. BUG_ON(!kvm);
  673. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  674. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  675. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  676. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  677. /*
  678. *Fill P2M entries for MMIO/IO ranges
  679. */
  680. kvm_build_io_pmt(kvm);
  681. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  682. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  683. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  684. return 0;
  685. }
  686. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  687. struct kvm_irqchip *chip)
  688. {
  689. int r;
  690. r = 0;
  691. switch (chip->chip_id) {
  692. case KVM_IRQCHIP_IOAPIC:
  693. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  694. break;
  695. default:
  696. r = -EINVAL;
  697. break;
  698. }
  699. return r;
  700. }
  701. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  702. {
  703. int r;
  704. r = 0;
  705. switch (chip->chip_id) {
  706. case KVM_IRQCHIP_IOAPIC:
  707. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  708. break;
  709. default:
  710. r = -EINVAL;
  711. break;
  712. }
  713. return r;
  714. }
  715. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  716. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  717. {
  718. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  719. int i;
  720. for (i = 0; i < 16; i++) {
  721. vpd->vgr[i] = regs->vpd.vgr[i];
  722. vpd->vbgr[i] = regs->vpd.vbgr[i];
  723. }
  724. for (i = 0; i < 128; i++)
  725. vpd->vcr[i] = regs->vpd.vcr[i];
  726. vpd->vhpi = regs->vpd.vhpi;
  727. vpd->vnat = regs->vpd.vnat;
  728. vpd->vbnat = regs->vpd.vbnat;
  729. vpd->vpsr = regs->vpd.vpsr;
  730. vpd->vpr = regs->vpd.vpr;
  731. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  732. RESTORE_REGS(mp_state);
  733. RESTORE_REGS(vmm_rr);
  734. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  735. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  736. RESTORE_REGS(itr_regions);
  737. RESTORE_REGS(dtr_regions);
  738. RESTORE_REGS(tc_regions);
  739. RESTORE_REGS(irq_check);
  740. RESTORE_REGS(itc_check);
  741. RESTORE_REGS(timer_check);
  742. RESTORE_REGS(timer_pending);
  743. RESTORE_REGS(last_itc);
  744. for (i = 0; i < 8; i++) {
  745. vcpu->arch.vrr[i] = regs->vrr[i];
  746. vcpu->arch.ibr[i] = regs->ibr[i];
  747. vcpu->arch.dbr[i] = regs->dbr[i];
  748. }
  749. for (i = 0; i < 4; i++)
  750. vcpu->arch.insvc[i] = regs->insvc[i];
  751. RESTORE_REGS(xtp);
  752. RESTORE_REGS(metaphysical_rr0);
  753. RESTORE_REGS(metaphysical_rr4);
  754. RESTORE_REGS(metaphysical_saved_rr0);
  755. RESTORE_REGS(metaphysical_saved_rr4);
  756. RESTORE_REGS(fp_psr);
  757. RESTORE_REGS(saved_gp);
  758. vcpu->arch.irq_new_pending = 1;
  759. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  760. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  761. return 0;
  762. }
  763. long kvm_arch_vm_ioctl(struct file *filp,
  764. unsigned int ioctl, unsigned long arg)
  765. {
  766. struct kvm *kvm = filp->private_data;
  767. void __user *argp = (void __user *)arg;
  768. int r = -ENOTTY;
  769. switch (ioctl) {
  770. case KVM_SET_MEMORY_REGION: {
  771. struct kvm_memory_region kvm_mem;
  772. struct kvm_userspace_memory_region kvm_userspace_mem;
  773. r = -EFAULT;
  774. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  775. goto out;
  776. kvm_userspace_mem.slot = kvm_mem.slot;
  777. kvm_userspace_mem.flags = kvm_mem.flags;
  778. kvm_userspace_mem.guest_phys_addr =
  779. kvm_mem.guest_phys_addr;
  780. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  781. r = kvm_vm_ioctl_set_memory_region(kvm,
  782. &kvm_userspace_mem, 0);
  783. if (r)
  784. goto out;
  785. break;
  786. }
  787. case KVM_CREATE_IRQCHIP:
  788. r = -EFAULT;
  789. r = kvm_ioapic_init(kvm);
  790. if (r)
  791. goto out;
  792. r = kvm_setup_default_irq_routing(kvm);
  793. if (r) {
  794. mutex_lock(&kvm->slots_lock);
  795. kvm_ioapic_destroy(kvm);
  796. mutex_unlock(&kvm->slots_lock);
  797. goto out;
  798. }
  799. break;
  800. case KVM_IRQ_LINE_STATUS:
  801. case KVM_IRQ_LINE: {
  802. struct kvm_irq_level irq_event;
  803. r = -EFAULT;
  804. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  805. goto out;
  806. r = -ENXIO;
  807. if (irqchip_in_kernel(kvm)) {
  808. __s32 status;
  809. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  810. irq_event.irq, irq_event.level);
  811. if (ioctl == KVM_IRQ_LINE_STATUS) {
  812. r = -EFAULT;
  813. irq_event.status = status;
  814. if (copy_to_user(argp, &irq_event,
  815. sizeof irq_event))
  816. goto out;
  817. }
  818. r = 0;
  819. }
  820. break;
  821. }
  822. case KVM_GET_IRQCHIP: {
  823. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  824. struct kvm_irqchip chip;
  825. r = -EFAULT;
  826. if (copy_from_user(&chip, argp, sizeof chip))
  827. goto out;
  828. r = -ENXIO;
  829. if (!irqchip_in_kernel(kvm))
  830. goto out;
  831. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  832. if (r)
  833. goto out;
  834. r = -EFAULT;
  835. if (copy_to_user(argp, &chip, sizeof chip))
  836. goto out;
  837. r = 0;
  838. break;
  839. }
  840. case KVM_SET_IRQCHIP: {
  841. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  842. struct kvm_irqchip chip;
  843. r = -EFAULT;
  844. if (copy_from_user(&chip, argp, sizeof chip))
  845. goto out;
  846. r = -ENXIO;
  847. if (!irqchip_in_kernel(kvm))
  848. goto out;
  849. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  850. if (r)
  851. goto out;
  852. r = 0;
  853. break;
  854. }
  855. default:
  856. ;
  857. }
  858. out:
  859. return r;
  860. }
  861. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  862. struct kvm_sregs *sregs)
  863. {
  864. return -EINVAL;
  865. }
  866. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  867. struct kvm_sregs *sregs)
  868. {
  869. return -EINVAL;
  870. }
  871. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  872. struct kvm_translation *tr)
  873. {
  874. return -EINVAL;
  875. }
  876. static int kvm_alloc_vmm_area(void)
  877. {
  878. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  879. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  880. get_order(KVM_VMM_SIZE));
  881. if (!kvm_vmm_base)
  882. return -ENOMEM;
  883. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  884. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  885. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  886. kvm_vmm_base, kvm_vm_buffer);
  887. }
  888. return 0;
  889. }
  890. static void kvm_free_vmm_area(void)
  891. {
  892. if (kvm_vmm_base) {
  893. /*Zero this area before free to avoid bits leak!!*/
  894. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  895. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  896. kvm_vmm_base = 0;
  897. kvm_vm_buffer = 0;
  898. kvm_vsa_base = 0;
  899. }
  900. }
  901. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  902. {
  903. int i;
  904. union cpuid3_t cpuid3;
  905. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  906. if (IS_ERR(vpd))
  907. return PTR_ERR(vpd);
  908. /* CPUID init */
  909. for (i = 0; i < 5; i++)
  910. vpd->vcpuid[i] = ia64_get_cpuid(i);
  911. /* Limit the CPUID number to 5 */
  912. cpuid3.value = vpd->vcpuid[3];
  913. cpuid3.number = 4; /* 5 - 1 */
  914. vpd->vcpuid[3] = cpuid3.value;
  915. /*Set vac and vdc fields*/
  916. vpd->vac.a_from_int_cr = 1;
  917. vpd->vac.a_to_int_cr = 1;
  918. vpd->vac.a_from_psr = 1;
  919. vpd->vac.a_from_cpuid = 1;
  920. vpd->vac.a_cover = 1;
  921. vpd->vac.a_bsw = 1;
  922. vpd->vac.a_int = 1;
  923. vpd->vdc.d_vmsw = 1;
  924. /*Set virtual buffer*/
  925. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  926. return 0;
  927. }
  928. static int vti_create_vp(struct kvm_vcpu *vcpu)
  929. {
  930. long ret;
  931. struct vpd *vpd = vcpu->arch.vpd;
  932. unsigned long vmm_ivt;
  933. vmm_ivt = kvm_vmm_info->vmm_ivt;
  934. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  935. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  936. if (ret) {
  937. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  938. return -EINVAL;
  939. }
  940. return 0;
  941. }
  942. static void init_ptce_info(struct kvm_vcpu *vcpu)
  943. {
  944. ia64_ptce_info_t ptce = {0};
  945. ia64_get_ptce(&ptce);
  946. vcpu->arch.ptce_base = ptce.base;
  947. vcpu->arch.ptce_count[0] = ptce.count[0];
  948. vcpu->arch.ptce_count[1] = ptce.count[1];
  949. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  950. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  951. }
  952. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  953. {
  954. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  955. if (hrtimer_cancel(p_ht))
  956. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  957. }
  958. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  959. {
  960. struct kvm_vcpu *vcpu;
  961. wait_queue_head_t *q;
  962. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  963. q = &vcpu->wq;
  964. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  965. goto out;
  966. if (waitqueue_active(q))
  967. wake_up_interruptible(q);
  968. out:
  969. vcpu->arch.timer_fired = 1;
  970. vcpu->arch.timer_check = 1;
  971. return HRTIMER_NORESTART;
  972. }
  973. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  974. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  975. {
  976. struct kvm_vcpu *v;
  977. int r;
  978. int i;
  979. long itc_offset;
  980. struct kvm *kvm = vcpu->kvm;
  981. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  982. union context *p_ctx = &vcpu->arch.guest;
  983. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  984. /*Init vcpu context for first run.*/
  985. if (IS_ERR(vmm_vcpu))
  986. return PTR_ERR(vmm_vcpu);
  987. if (kvm_vcpu_is_bsp(vcpu)) {
  988. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  989. /*Set entry address for first run.*/
  990. regs->cr_iip = PALE_RESET_ENTRY;
  991. /*Initialize itc offset for vcpus*/
  992. itc_offset = 0UL - kvm_get_itc(vcpu);
  993. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  994. v = (struct kvm_vcpu *)((char *)vcpu +
  995. sizeof(struct kvm_vcpu_data) * i);
  996. v->arch.itc_offset = itc_offset;
  997. v->arch.last_itc = 0;
  998. }
  999. } else
  1000. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  1001. r = -ENOMEM;
  1002. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1003. if (!vcpu->arch.apic)
  1004. goto out;
  1005. vcpu->arch.apic->vcpu = vcpu;
  1006. p_ctx->gr[1] = 0;
  1007. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1008. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1009. p_ctx->psr = 0x1008522000UL;
  1010. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1011. p_ctx->caller_unat = 0;
  1012. p_ctx->pr = 0x0;
  1013. p_ctx->ar[36] = 0x0; /*unat*/
  1014. p_ctx->ar[19] = 0x0; /*rnat*/
  1015. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1016. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1017. p_ctx->ar[64] = 0x0; /*pfs*/
  1018. p_ctx->cr[0] = 0x7e04UL;
  1019. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1020. p_ctx->cr[8] = 0x3c;
  1021. /*Initialize region register*/
  1022. p_ctx->rr[0] = 0x30;
  1023. p_ctx->rr[1] = 0x30;
  1024. p_ctx->rr[2] = 0x30;
  1025. p_ctx->rr[3] = 0x30;
  1026. p_ctx->rr[4] = 0x30;
  1027. p_ctx->rr[5] = 0x30;
  1028. p_ctx->rr[7] = 0x30;
  1029. /*Initialize branch register 0*/
  1030. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1031. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1032. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1033. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1034. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1035. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1036. vcpu->arch.last_run_cpu = -1;
  1037. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1038. vcpu->arch.vsa_base = kvm_vsa_base;
  1039. vcpu->arch.__gp = kvm_vmm_gp;
  1040. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1041. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1042. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1043. init_ptce_info(vcpu);
  1044. r = 0;
  1045. out:
  1046. return r;
  1047. }
  1048. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1049. {
  1050. unsigned long psr;
  1051. int r;
  1052. local_irq_save(psr);
  1053. r = kvm_insert_vmm_mapping(vcpu);
  1054. local_irq_restore(psr);
  1055. if (r)
  1056. goto fail;
  1057. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1058. if (r)
  1059. goto fail;
  1060. r = vti_init_vpd(vcpu);
  1061. if (r) {
  1062. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1063. goto uninit;
  1064. }
  1065. r = vti_create_vp(vcpu);
  1066. if (r)
  1067. goto uninit;
  1068. kvm_purge_vmm_mapping(vcpu);
  1069. return 0;
  1070. uninit:
  1071. kvm_vcpu_uninit(vcpu);
  1072. fail:
  1073. return r;
  1074. }
  1075. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1076. unsigned int id)
  1077. {
  1078. struct kvm_vcpu *vcpu;
  1079. unsigned long vm_base = kvm->arch.vm_base;
  1080. int r;
  1081. int cpu;
  1082. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1083. r = -EINVAL;
  1084. if (id >= KVM_MAX_VCPUS) {
  1085. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1086. KVM_MAX_VCPUS);
  1087. goto fail;
  1088. }
  1089. r = -ENOMEM;
  1090. if (!vm_base) {
  1091. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1092. goto fail;
  1093. }
  1094. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1095. vcpu_data[id].vcpu_struct));
  1096. vcpu->kvm = kvm;
  1097. cpu = get_cpu();
  1098. r = vti_vcpu_setup(vcpu, id);
  1099. put_cpu();
  1100. if (r) {
  1101. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1102. goto fail;
  1103. }
  1104. return vcpu;
  1105. fail:
  1106. return ERR_PTR(r);
  1107. }
  1108. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1109. {
  1110. return 0;
  1111. }
  1112. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1113. {
  1114. return -EINVAL;
  1115. }
  1116. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1117. {
  1118. return -EINVAL;
  1119. }
  1120. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1121. struct kvm_guest_debug *dbg)
  1122. {
  1123. return -EINVAL;
  1124. }
  1125. void kvm_arch_free_vm(struct kvm *kvm)
  1126. {
  1127. unsigned long vm_base = kvm->arch.vm_base;
  1128. if (vm_base) {
  1129. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1130. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1131. }
  1132. }
  1133. static void kvm_release_vm_pages(struct kvm *kvm)
  1134. {
  1135. struct kvm_memslots *slots;
  1136. struct kvm_memory_slot *memslot;
  1137. int i, j;
  1138. unsigned long base_gfn;
  1139. slots = kvm_memslots(kvm);
  1140. for (i = 0; i < slots->nmemslots; i++) {
  1141. memslot = &slots->memslots[i];
  1142. base_gfn = memslot->base_gfn;
  1143. for (j = 0; j < memslot->npages; j++) {
  1144. if (memslot->rmap[j])
  1145. put_page((struct page *)memslot->rmap[j]);
  1146. }
  1147. }
  1148. }
  1149. void kvm_arch_sync_events(struct kvm *kvm)
  1150. {
  1151. }
  1152. void kvm_arch_destroy_vm(struct kvm *kvm)
  1153. {
  1154. kvm_iommu_unmap_guest(kvm);
  1155. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1156. kvm_free_all_assigned_devices(kvm);
  1157. #endif
  1158. kfree(kvm->arch.vioapic);
  1159. kvm_release_vm_pages(kvm);
  1160. }
  1161. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1162. {
  1163. }
  1164. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1165. {
  1166. if (cpu != vcpu->cpu) {
  1167. vcpu->cpu = cpu;
  1168. if (vcpu->arch.ht_active)
  1169. kvm_migrate_hlt_timer(vcpu);
  1170. }
  1171. }
  1172. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1173. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1174. {
  1175. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1176. int i;
  1177. vcpu_load(vcpu);
  1178. for (i = 0; i < 16; i++) {
  1179. regs->vpd.vgr[i] = vpd->vgr[i];
  1180. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1181. }
  1182. for (i = 0; i < 128; i++)
  1183. regs->vpd.vcr[i] = vpd->vcr[i];
  1184. regs->vpd.vhpi = vpd->vhpi;
  1185. regs->vpd.vnat = vpd->vnat;
  1186. regs->vpd.vbnat = vpd->vbnat;
  1187. regs->vpd.vpsr = vpd->vpsr;
  1188. regs->vpd.vpr = vpd->vpr;
  1189. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1190. SAVE_REGS(mp_state);
  1191. SAVE_REGS(vmm_rr);
  1192. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1193. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1194. SAVE_REGS(itr_regions);
  1195. SAVE_REGS(dtr_regions);
  1196. SAVE_REGS(tc_regions);
  1197. SAVE_REGS(irq_check);
  1198. SAVE_REGS(itc_check);
  1199. SAVE_REGS(timer_check);
  1200. SAVE_REGS(timer_pending);
  1201. SAVE_REGS(last_itc);
  1202. for (i = 0; i < 8; i++) {
  1203. regs->vrr[i] = vcpu->arch.vrr[i];
  1204. regs->ibr[i] = vcpu->arch.ibr[i];
  1205. regs->dbr[i] = vcpu->arch.dbr[i];
  1206. }
  1207. for (i = 0; i < 4; i++)
  1208. regs->insvc[i] = vcpu->arch.insvc[i];
  1209. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1210. SAVE_REGS(xtp);
  1211. SAVE_REGS(metaphysical_rr0);
  1212. SAVE_REGS(metaphysical_rr4);
  1213. SAVE_REGS(metaphysical_saved_rr0);
  1214. SAVE_REGS(metaphysical_saved_rr4);
  1215. SAVE_REGS(fp_psr);
  1216. SAVE_REGS(saved_gp);
  1217. vcpu_put(vcpu);
  1218. return 0;
  1219. }
  1220. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1221. struct kvm_ia64_vcpu_stack *stack)
  1222. {
  1223. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1224. return 0;
  1225. }
  1226. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1227. struct kvm_ia64_vcpu_stack *stack)
  1228. {
  1229. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1230. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1231. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1232. return 0;
  1233. }
  1234. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1235. {
  1236. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1237. kfree(vcpu->arch.apic);
  1238. }
  1239. long kvm_arch_vcpu_ioctl(struct file *filp,
  1240. unsigned int ioctl, unsigned long arg)
  1241. {
  1242. struct kvm_vcpu *vcpu = filp->private_data;
  1243. void __user *argp = (void __user *)arg;
  1244. struct kvm_ia64_vcpu_stack *stack = NULL;
  1245. long r;
  1246. switch (ioctl) {
  1247. case KVM_IA64_VCPU_GET_STACK: {
  1248. struct kvm_ia64_vcpu_stack __user *user_stack;
  1249. void __user *first_p = argp;
  1250. r = -EFAULT;
  1251. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1252. goto out;
  1253. if (!access_ok(VERIFY_WRITE, user_stack,
  1254. sizeof(struct kvm_ia64_vcpu_stack))) {
  1255. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1256. "Illegal user destination address for stack\n");
  1257. goto out;
  1258. }
  1259. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1260. if (!stack) {
  1261. r = -ENOMEM;
  1262. goto out;
  1263. }
  1264. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1265. if (r)
  1266. goto out;
  1267. if (copy_to_user(user_stack, stack,
  1268. sizeof(struct kvm_ia64_vcpu_stack))) {
  1269. r = -EFAULT;
  1270. goto out;
  1271. }
  1272. break;
  1273. }
  1274. case KVM_IA64_VCPU_SET_STACK: {
  1275. struct kvm_ia64_vcpu_stack __user *user_stack;
  1276. void __user *first_p = argp;
  1277. r = -EFAULT;
  1278. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1279. goto out;
  1280. if (!access_ok(VERIFY_READ, user_stack,
  1281. sizeof(struct kvm_ia64_vcpu_stack))) {
  1282. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1283. "Illegal user address for stack\n");
  1284. goto out;
  1285. }
  1286. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1287. if (!stack) {
  1288. r = -ENOMEM;
  1289. goto out;
  1290. }
  1291. if (copy_from_user(stack, user_stack,
  1292. sizeof(struct kvm_ia64_vcpu_stack)))
  1293. goto out;
  1294. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1295. break;
  1296. }
  1297. default:
  1298. r = -EINVAL;
  1299. }
  1300. out:
  1301. kfree(stack);
  1302. return r;
  1303. }
  1304. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  1305. struct kvm_memory_slot *memslot,
  1306. struct kvm_memory_slot old,
  1307. struct kvm_userspace_memory_region *mem,
  1308. int user_alloc)
  1309. {
  1310. unsigned long i;
  1311. unsigned long pfn;
  1312. int npages = memslot->npages;
  1313. unsigned long base_gfn = memslot->base_gfn;
  1314. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1315. return -ENOMEM;
  1316. for (i = 0; i < npages; i++) {
  1317. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1318. if (!kvm_is_mmio_pfn(pfn)) {
  1319. kvm_set_pmt_entry(kvm, base_gfn + i,
  1320. pfn << PAGE_SHIFT,
  1321. _PAGE_AR_RWX | _PAGE_MA_WB);
  1322. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1323. } else {
  1324. kvm_set_pmt_entry(kvm, base_gfn + i,
  1325. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1326. _PAGE_MA_UC);
  1327. memslot->rmap[i] = 0;
  1328. }
  1329. }
  1330. return 0;
  1331. }
  1332. void kvm_arch_commit_memory_region(struct kvm *kvm,
  1333. struct kvm_userspace_memory_region *mem,
  1334. struct kvm_memory_slot old,
  1335. int user_alloc)
  1336. {
  1337. return;
  1338. }
  1339. void kvm_arch_flush_shadow(struct kvm *kvm)
  1340. {
  1341. kvm_flush_remote_tlbs(kvm);
  1342. }
  1343. long kvm_arch_dev_ioctl(struct file *filp,
  1344. unsigned int ioctl, unsigned long arg)
  1345. {
  1346. return -EINVAL;
  1347. }
  1348. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1349. {
  1350. kvm_vcpu_uninit(vcpu);
  1351. }
  1352. static int vti_cpu_has_kvm_support(void)
  1353. {
  1354. long avail = 1, status = 1, control = 1;
  1355. long ret;
  1356. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1357. if (ret)
  1358. goto out;
  1359. if (!(avail & PAL_PROC_VM_BIT))
  1360. goto out;
  1361. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1362. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1363. if (ret)
  1364. goto out;
  1365. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1366. if (!(vp_env_info & VP_OPCODE)) {
  1367. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1368. "vm_env_info:0x%lx\n", vp_env_info);
  1369. }
  1370. return 1;
  1371. out:
  1372. return 0;
  1373. }
  1374. /*
  1375. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1376. * SN2 RTC, replacing the ITC based default verion.
  1377. */
  1378. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1379. struct module *module)
  1380. {
  1381. unsigned long new_ar, new_ar_sn2;
  1382. unsigned long module_base;
  1383. if (!ia64_platform_is("sn2"))
  1384. return;
  1385. module_base = (unsigned long)module->module_core;
  1386. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1387. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1388. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1389. "as source\n");
  1390. /*
  1391. * Copy the SN2 version of mov_ar into place. They are both
  1392. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1393. */
  1394. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1395. }
  1396. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1397. struct module *module)
  1398. {
  1399. unsigned long module_base;
  1400. unsigned long vmm_size;
  1401. unsigned long vmm_offset, func_offset, fdesc_offset;
  1402. struct fdesc *p_fdesc;
  1403. BUG_ON(!module);
  1404. if (!kvm_vmm_base) {
  1405. printk("kvm: kvm area hasn't been initialized yet!!\n");
  1406. return -EFAULT;
  1407. }
  1408. /*Calculate new position of relocated vmm module.*/
  1409. module_base = (unsigned long)module->module_core;
  1410. vmm_size = module->core_size;
  1411. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1412. return -EFAULT;
  1413. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1414. kvm_patch_vmm(vmm_info, module);
  1415. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1416. /*Recalculate kvm_vmm_info based on new VMM*/
  1417. vmm_offset = vmm_info->vmm_ivt - module_base;
  1418. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1419. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1420. kvm_vmm_info->vmm_ivt);
  1421. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1422. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1423. fdesc_offset);
  1424. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1425. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1426. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1427. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1428. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1429. KVM_VMM_BASE+func_offset);
  1430. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1431. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1432. fdesc_offset);
  1433. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1434. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1435. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1436. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1437. kvm_vmm_gp = p_fdesc->gp;
  1438. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1439. kvm_vmm_info->vmm_entry);
  1440. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1441. KVM_VMM_BASE + func_offset);
  1442. return 0;
  1443. }
  1444. int kvm_arch_init(void *opaque)
  1445. {
  1446. int r;
  1447. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1448. if (!vti_cpu_has_kvm_support()) {
  1449. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1450. r = -EOPNOTSUPP;
  1451. goto out;
  1452. }
  1453. if (kvm_vmm_info) {
  1454. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1455. r = -EEXIST;
  1456. goto out;
  1457. }
  1458. r = -ENOMEM;
  1459. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1460. if (!kvm_vmm_info)
  1461. goto out;
  1462. if (kvm_alloc_vmm_area())
  1463. goto out_free0;
  1464. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1465. if (r)
  1466. goto out_free1;
  1467. return 0;
  1468. out_free1:
  1469. kvm_free_vmm_area();
  1470. out_free0:
  1471. kfree(kvm_vmm_info);
  1472. out:
  1473. return r;
  1474. }
  1475. void kvm_arch_exit(void)
  1476. {
  1477. kvm_free_vmm_area();
  1478. kfree(kvm_vmm_info);
  1479. kvm_vmm_info = NULL;
  1480. }
  1481. static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1482. struct kvm_memory_slot *memslot)
  1483. {
  1484. int i;
  1485. long base;
  1486. unsigned long n;
  1487. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1488. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1489. n = kvm_dirty_bitmap_bytes(memslot);
  1490. base = memslot->base_gfn / BITS_PER_LONG;
  1491. spin_lock(&kvm->arch.dirty_log_lock);
  1492. for (i = 0; i < n/sizeof(long); ++i) {
  1493. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1494. dirty_bitmap[base + i] = 0;
  1495. }
  1496. spin_unlock(&kvm->arch.dirty_log_lock);
  1497. }
  1498. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1499. struct kvm_dirty_log *log)
  1500. {
  1501. int r;
  1502. unsigned long n;
  1503. struct kvm_memory_slot *memslot;
  1504. int is_dirty = 0;
  1505. mutex_lock(&kvm->slots_lock);
  1506. r = -EINVAL;
  1507. if (log->slot >= KVM_MEMORY_SLOTS)
  1508. goto out;
  1509. memslot = &kvm->memslots->memslots[log->slot];
  1510. r = -ENOENT;
  1511. if (!memslot->dirty_bitmap)
  1512. goto out;
  1513. kvm_ia64_sync_dirty_log(kvm, memslot);
  1514. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1515. if (r)
  1516. goto out;
  1517. /* If nothing is dirty, don't bother messing with page tables. */
  1518. if (is_dirty) {
  1519. kvm_flush_remote_tlbs(kvm);
  1520. n = kvm_dirty_bitmap_bytes(memslot);
  1521. memset(memslot->dirty_bitmap, 0, n);
  1522. }
  1523. r = 0;
  1524. out:
  1525. mutex_unlock(&kvm->slots_lock);
  1526. return r;
  1527. }
  1528. int kvm_arch_hardware_setup(void)
  1529. {
  1530. return 0;
  1531. }
  1532. void kvm_arch_hardware_unsetup(void)
  1533. {
  1534. }
  1535. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1536. {
  1537. int me;
  1538. int cpu = vcpu->cpu;
  1539. if (waitqueue_active(&vcpu->wq))
  1540. wake_up_interruptible(&vcpu->wq);
  1541. me = get_cpu();
  1542. if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
  1543. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  1544. smp_send_reschedule(cpu);
  1545. put_cpu();
  1546. }
  1547. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1548. {
  1549. return __apic_accept_irq(vcpu, irq->vector);
  1550. }
  1551. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1552. {
  1553. return apic->vcpu->vcpu_id == dest;
  1554. }
  1555. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1556. {
  1557. return 0;
  1558. }
  1559. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1560. {
  1561. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1562. }
  1563. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1564. int short_hand, int dest, int dest_mode)
  1565. {
  1566. struct kvm_lapic *target = vcpu->arch.apic;
  1567. return (dest_mode == 0) ?
  1568. kvm_apic_match_physical_addr(target, dest) :
  1569. kvm_apic_match_logical_addr(target, dest);
  1570. }
  1571. static int find_highest_bits(int *dat)
  1572. {
  1573. u32 bits, bitnum;
  1574. int i;
  1575. /* loop for all 256 bits */
  1576. for (i = 7; i >= 0 ; i--) {
  1577. bits = dat[i];
  1578. if (bits) {
  1579. bitnum = fls(bits);
  1580. return i * 32 + bitnum - 1;
  1581. }
  1582. }
  1583. return -1;
  1584. }
  1585. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1586. {
  1587. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1588. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1589. return NMI_VECTOR;
  1590. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1591. return ExtINT_VECTOR;
  1592. return find_highest_bits((int *)&vpd->irr[0]);
  1593. }
  1594. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1595. {
  1596. return vcpu->arch.timer_fired;
  1597. }
  1598. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1599. {
  1600. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1601. (kvm_highest_pending_irq(vcpu) != -1);
  1602. }
  1603. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1604. struct kvm_mp_state *mp_state)
  1605. {
  1606. mp_state->mp_state = vcpu->arch.mp_state;
  1607. return 0;
  1608. }
  1609. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1610. {
  1611. int r;
  1612. long psr;
  1613. local_irq_save(psr);
  1614. r = kvm_insert_vmm_mapping(vcpu);
  1615. local_irq_restore(psr);
  1616. if (r)
  1617. goto fail;
  1618. vcpu->arch.launched = 0;
  1619. kvm_arch_vcpu_uninit(vcpu);
  1620. r = kvm_arch_vcpu_init(vcpu);
  1621. if (r)
  1622. goto fail;
  1623. kvm_purge_vmm_mapping(vcpu);
  1624. r = 0;
  1625. fail:
  1626. return r;
  1627. }
  1628. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1629. struct kvm_mp_state *mp_state)
  1630. {
  1631. int r = 0;
  1632. vcpu->arch.mp_state = mp_state->mp_state;
  1633. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1634. r = vcpu_reset(vcpu);
  1635. return r;
  1636. }