process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <asm/cpu.h>
  33. #include <asm/delay.h>
  34. #include <asm/elf.h>
  35. #include <asm/irq.h>
  36. #include <asm/kexec.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sal.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/unwind.h>
  43. #include <asm/user.h>
  44. #include "entry.h"
  45. #ifdef CONFIG_PERFMON
  46. # include <asm/perfmon.h>
  47. #endif
  48. #include "sigframe.h"
  49. void (*ia64_mark_idle)(int);
  50. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  51. EXPORT_SYMBOL(boot_option_idle_override);
  52. void (*pm_idle) (void);
  53. EXPORT_SYMBOL(pm_idle);
  54. void (*pm_power_off) (void);
  55. EXPORT_SYMBOL(pm_power_off);
  56. void
  57. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  58. {
  59. unsigned long ip, sp, bsp;
  60. char buf[128]; /* don't make it so big that it overflows the stack! */
  61. printk("\nCall Trace:\n");
  62. do {
  63. unw_get_ip(info, &ip);
  64. if (ip == 0)
  65. break;
  66. unw_get_sp(info, &sp);
  67. unw_get_bsp(info, &bsp);
  68. snprintf(buf, sizeof(buf),
  69. " [<%016lx>] %%s\n"
  70. " sp=%016lx bsp=%016lx\n",
  71. ip, sp, bsp);
  72. print_symbol(buf, ip);
  73. } while (unw_unwind(info) >= 0);
  74. }
  75. void
  76. show_stack (struct task_struct *task, unsigned long *sp)
  77. {
  78. if (!task)
  79. unw_init_running(ia64_do_show_stack, NULL);
  80. else {
  81. struct unw_frame_info info;
  82. unw_init_from_blocked_task(&info, task);
  83. ia64_do_show_stack(&info, NULL);
  84. }
  85. }
  86. void
  87. dump_stack (void)
  88. {
  89. show_stack(NULL, NULL);
  90. }
  91. EXPORT_SYMBOL(dump_stack);
  92. void
  93. show_regs (struct pt_regs *regs)
  94. {
  95. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  96. print_modules();
  97. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  98. smp_processor_id(), current->comm);
  99. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  100. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  101. init_utsname()->release);
  102. print_symbol("ip is at %s\n", ip);
  103. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  104. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  105. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  106. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  107. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  108. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  109. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  110. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  111. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  112. regs->f6.u.bits[1], regs->f6.u.bits[0],
  113. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  114. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  115. regs->f8.u.bits[1], regs->f8.u.bits[0],
  116. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  117. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  118. regs->f10.u.bits[1], regs->f10.u.bits[0],
  119. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  120. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  121. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  122. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  123. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  124. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  125. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  126. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  127. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  128. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  129. if (user_mode(regs)) {
  130. /* print the stacked registers */
  131. unsigned long val, *bsp, ndirty;
  132. int i, sof, is_nat = 0;
  133. sof = regs->cr_ifs & 0x7f; /* size of frame */
  134. ndirty = (regs->loadrs >> 19);
  135. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  136. for (i = 0; i < sof; ++i) {
  137. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  138. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  139. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  140. }
  141. } else
  142. show_stack(NULL, NULL);
  143. }
  144. /* local support for deprecated console_print */
  145. void
  146. console_print(const char *s)
  147. {
  148. printk(KERN_EMERG "%s", s);
  149. }
  150. void
  151. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  152. {
  153. if (fsys_mode(current, &scr->pt)) {
  154. /*
  155. * defer signal-handling etc. until we return to
  156. * privilege-level 0.
  157. */
  158. if (!ia64_psr(&scr->pt)->lp)
  159. ia64_psr(&scr->pt)->lp = 1;
  160. return;
  161. }
  162. #ifdef CONFIG_PERFMON
  163. if (current->thread.pfm_needs_checking)
  164. /*
  165. * Note: pfm_handle_work() allow us to call it with interrupts
  166. * disabled, and may enable interrupts within the function.
  167. */
  168. pfm_handle_work();
  169. #endif
  170. /* deal with pending signal delivery */
  171. if (test_thread_flag(TIF_SIGPENDING)) {
  172. local_irq_enable(); /* force interrupt enable */
  173. ia64_do_signal(scr, in_syscall);
  174. }
  175. if (test_thread_flag(TIF_NOTIFY_RESUME)) {
  176. clear_thread_flag(TIF_NOTIFY_RESUME);
  177. tracehook_notify_resume(&scr->pt);
  178. if (current->replacement_session_keyring)
  179. key_replace_session_keyring();
  180. }
  181. /* copy user rbs to kernel rbs */
  182. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  183. local_irq_enable(); /* force interrupt enable */
  184. ia64_sync_krbs();
  185. }
  186. local_irq_disable(); /* force interrupt disable */
  187. }
  188. static int pal_halt = 1;
  189. static int can_do_pal_halt = 1;
  190. static int __init nohalt_setup(char * str)
  191. {
  192. pal_halt = can_do_pal_halt = 0;
  193. return 1;
  194. }
  195. __setup("nohalt", nohalt_setup);
  196. void
  197. update_pal_halt_status(int status)
  198. {
  199. can_do_pal_halt = pal_halt && status;
  200. }
  201. /*
  202. * We use this if we don't have any better idle routine..
  203. */
  204. void
  205. default_idle (void)
  206. {
  207. local_irq_enable();
  208. while (!need_resched()) {
  209. if (can_do_pal_halt) {
  210. local_irq_disable();
  211. if (!need_resched()) {
  212. safe_halt();
  213. }
  214. local_irq_enable();
  215. } else
  216. cpu_relax();
  217. }
  218. }
  219. #ifdef CONFIG_HOTPLUG_CPU
  220. /* We don't actually take CPU down, just spin without interrupts. */
  221. static inline void play_dead(void)
  222. {
  223. unsigned int this_cpu = smp_processor_id();
  224. /* Ack it */
  225. __get_cpu_var(cpu_state) = CPU_DEAD;
  226. max_xtp();
  227. local_irq_disable();
  228. idle_task_exit();
  229. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  230. /*
  231. * The above is a point of no-return, the processor is
  232. * expected to be in SAL loop now.
  233. */
  234. BUG();
  235. }
  236. #else
  237. static inline void play_dead(void)
  238. {
  239. BUG();
  240. }
  241. #endif /* CONFIG_HOTPLUG_CPU */
  242. static void do_nothing(void *unused)
  243. {
  244. }
  245. /*
  246. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  247. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  248. * handler on SMP systems.
  249. *
  250. * Caller must have changed pm_idle to the new value before the call. Old
  251. * pm_idle value will not be used by any CPU after the return of this function.
  252. */
  253. void cpu_idle_wait(void)
  254. {
  255. smp_mb();
  256. /* kick all the CPUs so that they exit out of pm_idle */
  257. smp_call_function(do_nothing, NULL, 1);
  258. }
  259. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  260. void __attribute__((noreturn))
  261. cpu_idle (void)
  262. {
  263. void (*mark_idle)(int) = ia64_mark_idle;
  264. int cpu = smp_processor_id();
  265. /* endless idle loop with no priority at all */
  266. while (1) {
  267. if (can_do_pal_halt) {
  268. current_thread_info()->status &= ~TS_POLLING;
  269. /*
  270. * TS_POLLING-cleared state must be visible before we
  271. * test NEED_RESCHED:
  272. */
  273. smp_mb();
  274. } else {
  275. current_thread_info()->status |= TS_POLLING;
  276. }
  277. if (!need_resched()) {
  278. void (*idle)(void);
  279. #ifdef CONFIG_SMP
  280. min_xtp();
  281. #endif
  282. rmb();
  283. if (mark_idle)
  284. (*mark_idle)(1);
  285. idle = pm_idle;
  286. if (!idle)
  287. idle = default_idle;
  288. (*idle)();
  289. if (mark_idle)
  290. (*mark_idle)(0);
  291. #ifdef CONFIG_SMP
  292. normal_xtp();
  293. #endif
  294. }
  295. preempt_enable_no_resched();
  296. schedule();
  297. preempt_disable();
  298. check_pgt_cache();
  299. if (cpu_is_offline(cpu))
  300. play_dead();
  301. }
  302. }
  303. void
  304. ia64_save_extra (struct task_struct *task)
  305. {
  306. #ifdef CONFIG_PERFMON
  307. unsigned long info;
  308. #endif
  309. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  310. ia64_save_debug_regs(&task->thread.dbr[0]);
  311. #ifdef CONFIG_PERFMON
  312. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  313. pfm_save_regs(task);
  314. info = __get_cpu_var(pfm_syst_info);
  315. if (info & PFM_CPUINFO_SYST_WIDE)
  316. pfm_syst_wide_update_task(task, info, 0);
  317. #endif
  318. }
  319. void
  320. ia64_load_extra (struct task_struct *task)
  321. {
  322. #ifdef CONFIG_PERFMON
  323. unsigned long info;
  324. #endif
  325. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  326. ia64_load_debug_regs(&task->thread.dbr[0]);
  327. #ifdef CONFIG_PERFMON
  328. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  329. pfm_load_regs(task);
  330. info = __get_cpu_var(pfm_syst_info);
  331. if (info & PFM_CPUINFO_SYST_WIDE)
  332. pfm_syst_wide_update_task(task, info, 1);
  333. #endif
  334. }
  335. /*
  336. * Copy the state of an ia-64 thread.
  337. *
  338. * We get here through the following call chain:
  339. *
  340. * from user-level: from kernel:
  341. *
  342. * <clone syscall> <some kernel call frames>
  343. * sys_clone :
  344. * do_fork do_fork
  345. * copy_thread copy_thread
  346. *
  347. * This means that the stack layout is as follows:
  348. *
  349. * +---------------------+ (highest addr)
  350. * | struct pt_regs |
  351. * +---------------------+
  352. * | struct switch_stack |
  353. * +---------------------+
  354. * | |
  355. * | memory stack |
  356. * | | <-- sp (lowest addr)
  357. * +---------------------+
  358. *
  359. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  360. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  361. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  362. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  363. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  364. * so there is nothing to worry about.
  365. */
  366. int
  367. copy_thread(unsigned long clone_flags,
  368. unsigned long user_stack_base, unsigned long user_stack_size,
  369. struct task_struct *p, struct pt_regs *regs)
  370. {
  371. extern char ia64_ret_from_clone;
  372. struct switch_stack *child_stack, *stack;
  373. unsigned long rbs, child_rbs, rbs_size;
  374. struct pt_regs *child_ptregs;
  375. int retval = 0;
  376. #ifdef CONFIG_SMP
  377. /*
  378. * For SMP idle threads, fork_by_hand() calls do_fork with
  379. * NULL regs.
  380. */
  381. if (!regs)
  382. return 0;
  383. #endif
  384. stack = ((struct switch_stack *) regs) - 1;
  385. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  386. child_stack = (struct switch_stack *) child_ptregs - 1;
  387. /* copy parent's switch_stack & pt_regs to child: */
  388. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  389. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  390. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  391. rbs_size = stack->ar_bspstore - rbs;
  392. /* copy the parent's register backing store to the child: */
  393. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  394. if (likely(user_mode(child_ptregs))) {
  395. if (clone_flags & CLONE_SETTLS)
  396. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  397. if (user_stack_base) {
  398. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  399. child_ptregs->ar_bspstore = user_stack_base;
  400. child_ptregs->ar_rnat = 0;
  401. child_ptregs->loadrs = 0;
  402. }
  403. } else {
  404. /*
  405. * Note: we simply preserve the relative position of
  406. * the stack pointer here. There is no need to
  407. * allocate a scratch area here, since that will have
  408. * been taken care of by the caller of sys_clone()
  409. * already.
  410. */
  411. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  412. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  413. }
  414. child_stack->ar_bspstore = child_rbs + rbs_size;
  415. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  416. /* copy parts of thread_struct: */
  417. p->thread.ksp = (unsigned long) child_stack - 16;
  418. /* stop some PSR bits from being inherited.
  419. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  420. * therefore we must specify them explicitly here and not include them in
  421. * IA64_PSR_BITS_TO_CLEAR.
  422. */
  423. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  424. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  425. /*
  426. * NOTE: The calling convention considers all floating point
  427. * registers in the high partition (fph) to be scratch. Since
  428. * the only way to get to this point is through a system call,
  429. * we know that the values in fph are all dead. Hence, there
  430. * is no need to inherit the fph state from the parent to the
  431. * child and all we have to do is to make sure that
  432. * IA64_THREAD_FPH_VALID is cleared in the child.
  433. *
  434. * XXX We could push this optimization a bit further by
  435. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  436. * However, it's not clear this is worth doing. Also, it
  437. * would be a slight deviation from the normal Linux system
  438. * call behavior where scratch registers are preserved across
  439. * system calls (unless used by the system call itself).
  440. */
  441. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  442. | IA64_THREAD_PM_VALID)
  443. # define THREAD_FLAGS_TO_SET 0
  444. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  445. | THREAD_FLAGS_TO_SET);
  446. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  447. #ifdef CONFIG_PERFMON
  448. if (current->thread.pfm_context)
  449. pfm_inherit(p, child_ptregs);
  450. #endif
  451. return retval;
  452. }
  453. static void
  454. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  455. {
  456. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  457. unsigned long uninitialized_var(ip); /* GCC be quiet */
  458. elf_greg_t *dst = arg;
  459. struct pt_regs *pt;
  460. char nat;
  461. int i;
  462. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  463. if (unw_unwind_to_user(info) < 0)
  464. return;
  465. unw_get_sp(info, &sp);
  466. pt = (struct pt_regs *) (sp + 16);
  467. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  468. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  469. return;
  470. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  471. &ar_rnat);
  472. /*
  473. * coredump format:
  474. * r0-r31
  475. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  476. * predicate registers (p0-p63)
  477. * b0-b7
  478. * ip cfm user-mask
  479. * ar.rsc ar.bsp ar.bspstore ar.rnat
  480. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  481. */
  482. /* r0 is zero */
  483. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  484. unw_get_gr(info, i, &dst[i], &nat);
  485. if (nat)
  486. nat_bits |= mask;
  487. mask <<= 1;
  488. }
  489. dst[32] = nat_bits;
  490. unw_get_pr(info, &dst[33]);
  491. for (i = 0; i < 8; ++i)
  492. unw_get_br(info, i, &dst[34 + i]);
  493. unw_get_rp(info, &ip);
  494. dst[42] = ip + ia64_psr(pt)->ri;
  495. dst[43] = cfm;
  496. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  497. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  498. /*
  499. * For bsp and bspstore, unw_get_ar() would return the kernel
  500. * addresses, but we need the user-level addresses instead:
  501. */
  502. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  503. dst[47] = pt->ar_bspstore;
  504. dst[48] = ar_rnat;
  505. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  506. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  507. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  508. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  509. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  510. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  511. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  512. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  513. }
  514. void
  515. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  516. {
  517. elf_fpreg_t *dst = arg;
  518. int i;
  519. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  520. if (unw_unwind_to_user(info) < 0)
  521. return;
  522. /* f0 is 0.0, f1 is 1.0 */
  523. for (i = 2; i < 32; ++i)
  524. unw_get_fr(info, i, dst + i);
  525. ia64_flush_fph(task);
  526. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  527. memcpy(dst + 32, task->thread.fph, 96*16);
  528. }
  529. void
  530. do_copy_regs (struct unw_frame_info *info, void *arg)
  531. {
  532. do_copy_task_regs(current, info, arg);
  533. }
  534. void
  535. do_dump_fpu (struct unw_frame_info *info, void *arg)
  536. {
  537. do_dump_task_fpu(current, info, arg);
  538. }
  539. void
  540. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  541. {
  542. unw_init_running(do_copy_regs, dst);
  543. }
  544. int
  545. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  546. {
  547. unw_init_running(do_dump_fpu, dst);
  548. return 1; /* f0-f31 are always valid so we always return 1 */
  549. }
  550. long
  551. sys_execve (const char __user *filename,
  552. const char __user *const __user *argv,
  553. const char __user *const __user *envp,
  554. struct pt_regs *regs)
  555. {
  556. char *fname;
  557. int error;
  558. fname = getname(filename);
  559. error = PTR_ERR(fname);
  560. if (IS_ERR(fname))
  561. goto out;
  562. error = do_execve(fname, argv, envp, regs);
  563. putname(fname);
  564. out:
  565. return error;
  566. }
  567. pid_t
  568. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  569. {
  570. extern void start_kernel_thread (void);
  571. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  572. struct {
  573. struct switch_stack sw;
  574. struct pt_regs pt;
  575. } regs;
  576. memset(&regs, 0, sizeof(regs));
  577. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  578. regs.pt.r1 = helper_fptr[1]; /* set GP */
  579. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  580. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  581. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  582. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  583. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  584. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  585. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  586. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  587. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  588. }
  589. EXPORT_SYMBOL(kernel_thread);
  590. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  591. int
  592. kernel_thread_helper (int (*fn)(void *), void *arg)
  593. {
  594. return (*fn)(arg);
  595. }
  596. /*
  597. * Flush thread state. This is called when a thread does an execve().
  598. */
  599. void
  600. flush_thread (void)
  601. {
  602. /* drop floating-point and debug-register state if it exists: */
  603. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  604. ia64_drop_fpu(current);
  605. }
  606. /*
  607. * Clean up state associated with current thread. This is called when
  608. * the thread calls exit().
  609. */
  610. void
  611. exit_thread (void)
  612. {
  613. ia64_drop_fpu(current);
  614. #ifdef CONFIG_PERFMON
  615. /* if needed, stop monitoring and flush state to perfmon context */
  616. if (current->thread.pfm_context)
  617. pfm_exit_thread(current);
  618. /* free debug register resources */
  619. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  620. pfm_release_debug_registers(current);
  621. #endif
  622. }
  623. unsigned long
  624. get_wchan (struct task_struct *p)
  625. {
  626. struct unw_frame_info info;
  627. unsigned long ip;
  628. int count = 0;
  629. if (!p || p == current || p->state == TASK_RUNNING)
  630. return 0;
  631. /*
  632. * Note: p may not be a blocked task (it could be current or
  633. * another process running on some other CPU. Rather than
  634. * trying to determine if p is really blocked, we just assume
  635. * it's blocked and rely on the unwind routines to fail
  636. * gracefully if the process wasn't really blocked after all.
  637. * --davidm 99/12/15
  638. */
  639. unw_init_from_blocked_task(&info, p);
  640. do {
  641. if (p->state == TASK_RUNNING)
  642. return 0;
  643. if (unw_unwind(&info) < 0)
  644. return 0;
  645. unw_get_ip(&info, &ip);
  646. if (!in_sched_functions(ip))
  647. return ip;
  648. } while (count++ < 16);
  649. return 0;
  650. }
  651. void
  652. cpu_halt (void)
  653. {
  654. pal_power_mgmt_info_u_t power_info[8];
  655. unsigned long min_power;
  656. int i, min_power_state;
  657. if (ia64_pal_halt_info(power_info) != 0)
  658. return;
  659. min_power_state = 0;
  660. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  661. for (i = 1; i < 8; ++i)
  662. if (power_info[i].pal_power_mgmt_info_s.im
  663. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  664. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  665. min_power_state = i;
  666. }
  667. while (1)
  668. ia64_pal_halt(min_power_state);
  669. }
  670. void machine_shutdown(void)
  671. {
  672. #ifdef CONFIG_HOTPLUG_CPU
  673. int cpu;
  674. for_each_online_cpu(cpu) {
  675. if (cpu != smp_processor_id())
  676. cpu_down(cpu);
  677. }
  678. #endif
  679. #ifdef CONFIG_KEXEC
  680. kexec_disable_iosapic();
  681. #endif
  682. }
  683. void
  684. machine_restart (char *restart_cmd)
  685. {
  686. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  687. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  688. }
  689. void
  690. machine_halt (void)
  691. {
  692. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  693. cpu_halt();
  694. }
  695. void
  696. machine_power_off (void)
  697. {
  698. if (pm_power_off)
  699. pm_power_off();
  700. machine_halt();
  701. }