pgtable.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. /*
  2. * arch/arm/include/asm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <linux/const.h>
  13. #include <asm-generic/4level-fixup.h>
  14. #include <asm/proc-fns.h>
  15. #ifndef CONFIG_MMU
  16. #include "pgtable-nommu.h"
  17. #else
  18. #include <asm/memory.h>
  19. #include <mach/vmalloc.h>
  20. #include <asm/pgtable-hwdef.h>
  21. /*
  22. * Just any arbitrary offset to the start of the vmalloc VM area: the
  23. * current 8MB value just means that there will be a 8MB "hole" after the
  24. * physical memory until the kernel virtual memory starts. That means that
  25. * any out-of-bounds memory accesses will hopefully be caught.
  26. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  27. * area for the same reason. ;)
  28. *
  29. * Note that platforms may override VMALLOC_START, but they must provide
  30. * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
  31. * which may not overlap IO space.
  32. */
  33. #ifndef VMALLOC_START
  34. #define VMALLOC_OFFSET (8*1024*1024)
  35. #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  36. #endif
  37. /*
  38. * Hardware-wise, we have a two level page table structure, where the first
  39. * level has 4096 entries, and the second level has 256 entries. Each entry
  40. * is one 32-bit word. Most of the bits in the second level entry are used
  41. * by hardware, and there aren't any "accessed" and "dirty" bits.
  42. *
  43. * Linux on the other hand has a three level page table structure, which can
  44. * be wrapped to fit a two level page table structure easily - using the PGD
  45. * and PTE only. However, Linux also expects one "PTE" table per page, and
  46. * at least a "dirty" bit.
  47. *
  48. * Therefore, we tweak the implementation slightly - we tell Linux that we
  49. * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  50. * hardware pointers to the second level.) The second level contains two
  51. * hardware PTE tables arranged contiguously, preceded by Linux versions
  52. * which contain the state information Linux needs. We, therefore, end up
  53. * with 512 entries in the "PTE" level.
  54. *
  55. * This leads to the page tables having the following layout:
  56. *
  57. * pgd pte
  58. * | |
  59. * +--------+
  60. * | | +------------+ +0
  61. * +- - - - + | Linux pt 0 |
  62. * | | +------------+ +1024
  63. * +--------+ +0 | Linux pt 1 |
  64. * | |-----> +------------+ +2048
  65. * +- - - - + +4 | h/w pt 0 |
  66. * | |-----> +------------+ +3072
  67. * +--------+ +8 | h/w pt 1 |
  68. * | | +------------+ +4096
  69. *
  70. * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  71. * PTE_xxx for definitions of bits appearing in the "h/w pt".
  72. *
  73. * PMD_xxx definitions refer to bits in the first level page table.
  74. *
  75. * The "dirty" bit is emulated by only granting hardware write permission
  76. * iff the page is marked "writable" and "dirty" in the Linux PTE. This
  77. * means that a write to a clean page will cause a permission fault, and
  78. * the Linux MM layer will mark the page dirty via handle_pte_fault().
  79. * For the hardware to notice the permission change, the TLB entry must
  80. * be flushed, and ptep_set_access_flags() does that for us.
  81. *
  82. * The "accessed" or "young" bit is emulated by a similar method; we only
  83. * allow accesses to the page if the "young" bit is set. Accesses to the
  84. * page will cause a fault, and handle_pte_fault() will set the young bit
  85. * for us as long as the page is marked present in the corresponding Linux
  86. * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
  87. * up to date.
  88. *
  89. * However, when the "young" bit is cleared, we deny access to the page
  90. * by clearing the hardware PTE. Currently Linux does not flush the TLB
  91. * for us in this case, which means the TLB will retain the transation
  92. * until either the TLB entry is evicted under pressure, or a context
  93. * switch which changes the user space mapping occurs.
  94. */
  95. #define PTRS_PER_PTE 512
  96. #define PTRS_PER_PMD 1
  97. #define PTRS_PER_PGD 2048
  98. #define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
  99. #define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
  100. #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
  101. /*
  102. * PMD_SHIFT determines the size of the area a second-level page table can map
  103. * PGDIR_SHIFT determines what a third-level page table entry can map
  104. */
  105. #define PMD_SHIFT 21
  106. #define PGDIR_SHIFT 21
  107. #define LIBRARY_TEXT_START 0x0c000000
  108. #ifndef __ASSEMBLY__
  109. extern void __pte_error(const char *file, int line, pte_t);
  110. extern void __pmd_error(const char *file, int line, pmd_t);
  111. extern void __pgd_error(const char *file, int line, pgd_t);
  112. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
  113. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
  114. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
  115. #endif /* !__ASSEMBLY__ */
  116. #define PMD_SIZE (1UL << PMD_SHIFT)
  117. #define PMD_MASK (~(PMD_SIZE-1))
  118. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  119. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  120. /*
  121. * This is the lowest virtual address we can permit any user space
  122. * mapping to be mapped at. This is particularly important for
  123. * non-high vector CPUs.
  124. */
  125. #define FIRST_USER_ADDRESS PAGE_SIZE
  126. #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
  127. /*
  128. * section address mask and size definitions.
  129. */
  130. #define SECTION_SHIFT 20
  131. #define SECTION_SIZE (1UL << SECTION_SHIFT)
  132. #define SECTION_MASK (~(SECTION_SIZE-1))
  133. /*
  134. * ARMv6 supersection address mask and size definitions.
  135. */
  136. #define SUPERSECTION_SHIFT 24
  137. #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
  138. #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
  139. /*
  140. * "Linux" PTE definitions.
  141. *
  142. * We keep two sets of PTEs - the hardware and the linux version.
  143. * This allows greater flexibility in the way we map the Linux bits
  144. * onto the hardware tables, and allows us to have YOUNG and DIRTY
  145. * bits.
  146. *
  147. * The PTE table pointer refers to the hardware entries; the "Linux"
  148. * entries are stored 1024 bytes below.
  149. */
  150. #define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
  151. #define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
  152. #define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
  153. #define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
  154. #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
  155. #define L_PTE_USER (_AT(pteval_t, 1) << 8)
  156. #define L_PTE_XN (_AT(pteval_t, 1) << 9)
  157. #define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
  158. /*
  159. * These are the memory types, defined to be compatible with
  160. * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
  161. */
  162. #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
  163. #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
  164. #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
  165. #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
  166. #define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
  167. #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
  168. #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
  169. #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
  170. #define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
  171. #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
  172. #define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
  173. #ifndef __ASSEMBLY__
  174. /*
  175. * The pgprot_* and protection_map entries will be fixed up in runtime
  176. * to include the cachable and bufferable bits based on memory policy,
  177. * as well as any architecture dependent bits like global/ASID and SMP
  178. * shared mapping bits.
  179. */
  180. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
  181. extern pgprot_t pgprot_user;
  182. extern pgprot_t pgprot_kernel;
  183. #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
  184. #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
  185. #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
  186. #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
  187. #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  188. #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  189. #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  190. #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  191. #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
  192. #define PAGE_KERNEL_EXEC pgprot_kernel
  193. #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
  194. #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
  195. #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
  196. #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  197. #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  198. #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  199. #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  200. #define __pgprot_modify(prot,mask,bits) \
  201. __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
  202. #define pgprot_noncached(prot) \
  203. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  204. #define pgprot_writecombine(prot) \
  205. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
  206. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  207. #define pgprot_dmacoherent(prot) \
  208. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
  209. #define __HAVE_PHYS_MEM_ACCESS_PROT
  210. struct file;
  211. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  212. unsigned long size, pgprot_t vma_prot);
  213. #else
  214. #define pgprot_dmacoherent(prot) \
  215. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
  216. #endif
  217. #endif /* __ASSEMBLY__ */
  218. /*
  219. * The table below defines the page protection levels that we insert into our
  220. * Linux page table version. These get translated into the best that the
  221. * architecture can perform. Note that on most ARM hardware:
  222. * 1) We cannot do execute protection
  223. * 2) If we could do execute protection, then read is implied
  224. * 3) write implies read permissions
  225. */
  226. #define __P000 __PAGE_NONE
  227. #define __P001 __PAGE_READONLY
  228. #define __P010 __PAGE_COPY
  229. #define __P011 __PAGE_COPY
  230. #define __P100 __PAGE_READONLY_EXEC
  231. #define __P101 __PAGE_READONLY_EXEC
  232. #define __P110 __PAGE_COPY_EXEC
  233. #define __P111 __PAGE_COPY_EXEC
  234. #define __S000 __PAGE_NONE
  235. #define __S001 __PAGE_READONLY
  236. #define __S010 __PAGE_SHARED
  237. #define __S011 __PAGE_SHARED
  238. #define __S100 __PAGE_READONLY_EXEC
  239. #define __S101 __PAGE_READONLY_EXEC
  240. #define __S110 __PAGE_SHARED_EXEC
  241. #define __S111 __PAGE_SHARED_EXEC
  242. #ifndef __ASSEMBLY__
  243. /*
  244. * ZERO_PAGE is a global shared page that is always zero: used
  245. * for zero-mapped memory areas etc..
  246. */
  247. extern struct page *empty_zero_page;
  248. #define ZERO_PAGE(vaddr) (empty_zero_page)
  249. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  250. /* to find an entry in a page-table-directory */
  251. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  252. #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
  253. /* to find an entry in a kernel page-table-directory */
  254. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  255. /*
  256. * The "pgd_xxx()" functions here are trivial for a folded two-level
  257. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  258. * into the pgd entry)
  259. */
  260. #define pgd_none(pgd) (0)
  261. #define pgd_bad(pgd) (0)
  262. #define pgd_present(pgd) (1)
  263. #define pgd_clear(pgdp) do { } while (0)
  264. #define set_pgd(pgd,pgdp) do { } while (0)
  265. #define set_pud(pud,pudp) do { } while (0)
  266. /* Find an entry in the second-level page table.. */
  267. #define pmd_offset(dir, addr) ((pmd_t *)(dir))
  268. #define pmd_none(pmd) (!pmd_val(pmd))
  269. #define pmd_present(pmd) (pmd_val(pmd))
  270. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  271. #define copy_pmd(pmdpd,pmdps) \
  272. do { \
  273. pmdpd[0] = pmdps[0]; \
  274. pmdpd[1] = pmdps[1]; \
  275. flush_pmd_entry(pmdpd); \
  276. } while (0)
  277. #define pmd_clear(pmdp) \
  278. do { \
  279. pmdp[0] = __pmd(0); \
  280. pmdp[1] = __pmd(0); \
  281. clean_pmd_entry(pmdp); \
  282. } while (0)
  283. static inline pte_t *pmd_page_vaddr(pmd_t pmd)
  284. {
  285. return __va(pmd_val(pmd) & PAGE_MASK);
  286. }
  287. #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
  288. /* we don't need complex calculations here as the pmd is folded into the pgd */
  289. #define pmd_addr_end(addr,end) (end)
  290. #ifndef CONFIG_HIGHPTE
  291. #define __pte_map(pmd) pmd_page_vaddr(*(pmd))
  292. #define __pte_unmap(pte) do { } while (0)
  293. #else
  294. #define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
  295. #define __pte_unmap(pte) kunmap_atomic(pte)
  296. #endif
  297. #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  298. #define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
  299. #define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
  300. #define pte_unmap(pte) __pte_unmap(pte)
  301. #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
  302. #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
  303. #define pte_page(pte) pfn_to_page(pte_pfn(pte))
  304. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
  305. #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
  306. #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
  307. #if __LINUX_ARM_ARCH__ < 6
  308. static inline void __sync_icache_dcache(pte_t pteval)
  309. {
  310. }
  311. #else
  312. extern void __sync_icache_dcache(pte_t pteval);
  313. #endif
  314. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  315. pte_t *ptep, pte_t pteval)
  316. {
  317. if (addr >= TASK_SIZE)
  318. set_pte_ext(ptep, pteval, 0);
  319. else {
  320. __sync_icache_dcache(pteval);
  321. set_pte_ext(ptep, pteval, PTE_EXT_NG);
  322. }
  323. }
  324. #define pte_none(pte) (!pte_val(pte))
  325. #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
  326. #define pte_write(pte) (!(pte_val(pte) & L_PTE_RDONLY))
  327. #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
  328. #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
  329. #define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
  330. #define pte_special(pte) (0)
  331. #define pte_present_user(pte) \
  332. ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
  333. (L_PTE_PRESENT | L_PTE_USER))
  334. #define PTE_BIT_FUNC(fn,op) \
  335. static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
  336. PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
  337. PTE_BIT_FUNC(mkwrite, &= ~L_PTE_RDONLY);
  338. PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
  339. PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
  340. PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
  341. PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
  342. static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
  343. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  344. {
  345. const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
  346. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  347. return pte;
  348. }
  349. /*
  350. * Encode and decode a swap entry. Swap entries are stored in the Linux
  351. * page tables as follows:
  352. *
  353. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  354. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  355. * <--------------- offset --------------------> <- type --> 0 0 0
  356. *
  357. * This gives us up to 63 swap files and 32GB per swap file. Note that
  358. * the offset field is always non-zero.
  359. */
  360. #define __SWP_TYPE_SHIFT 3
  361. #define __SWP_TYPE_BITS 6
  362. #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
  363. #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
  364. #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
  365. #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
  366. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
  367. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  368. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  369. /*
  370. * It is an error for the kernel to have more swap files than we can
  371. * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
  372. * is increased beyond what we presently support.
  373. */
  374. #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
  375. /*
  376. * Encode and decode a file entry. File entries are stored in the Linux
  377. * page tables as follows:
  378. *
  379. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  380. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  381. * <----------------------- offset ------------------------> 1 0 0
  382. */
  383. #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
  384. #define pte_to_pgoff(x) (pte_val(x) >> 3)
  385. #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
  386. #define PTE_FILE_MAX_BITS 29
  387. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  388. /* FIXME: this is not correct */
  389. #define kern_addr_valid(addr) (1)
  390. #include <asm-generic/pgtable.h>
  391. /*
  392. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  393. */
  394. #define HAVE_ARCH_UNMAPPED_AREA
  395. /*
  396. * remap a physical page `pfn' of size `size' with page protection `prot'
  397. * into virtual address `from'
  398. */
  399. #define io_remap_pfn_range(vma,from,pfn,size,prot) \
  400. remap_pfn_range(vma, from, pfn, size, prot)
  401. #define pgtable_cache_init() do { } while (0)
  402. void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
  403. void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
  404. #endif /* !__ASSEMBLY__ */
  405. #endif /* CONFIG_MMU */
  406. #endif /* _ASMARM_PGTABLE_H */