intel_display.c 274 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. struct intel_shared_dpll *
  821. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  822. {
  823. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  824. if (crtc->config.shared_dpll < 0)
  825. return NULL;
  826. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  827. }
  828. /* For ILK+ */
  829. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  830. struct intel_shared_dpll *pll,
  831. bool state)
  832. {
  833. bool cur_state;
  834. struct intel_dpll_hw_state hw_state;
  835. if (HAS_PCH_LPT(dev_priv->dev)) {
  836. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  837. return;
  838. }
  839. if (WARN (!pll,
  840. "asserting DPLL %s with no DPLL\n", state_string(state)))
  841. return;
  842. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  843. WARN(cur_state != state,
  844. "%s assertion failure (expected %s, current %s)\n",
  845. pll->name, state_string(state), state_string(cur_state));
  846. }
  847. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  848. enum pipe pipe, bool state)
  849. {
  850. int reg;
  851. u32 val;
  852. bool cur_state;
  853. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  854. pipe);
  855. if (HAS_DDI(dev_priv->dev)) {
  856. /* DDI does not have a specific FDI_TX register */
  857. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  858. val = I915_READ(reg);
  859. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  860. } else {
  861. reg = FDI_TX_CTL(pipe);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & FDI_TX_ENABLE);
  864. }
  865. WARN(cur_state != state,
  866. "FDI TX state assertion failure (expected %s, current %s)\n",
  867. state_string(state), state_string(cur_state));
  868. }
  869. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  870. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  871. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  872. enum pipe pipe, bool state)
  873. {
  874. int reg;
  875. u32 val;
  876. bool cur_state;
  877. reg = FDI_RX_CTL(pipe);
  878. val = I915_READ(reg);
  879. cur_state = !!(val & FDI_RX_ENABLE);
  880. WARN(cur_state != state,
  881. "FDI RX state assertion failure (expected %s, current %s)\n",
  882. state_string(state), state_string(cur_state));
  883. }
  884. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  885. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  886. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  887. enum pipe pipe)
  888. {
  889. int reg;
  890. u32 val;
  891. /* ILK FDI PLL is always enabled */
  892. if (dev_priv->info->gen == 5)
  893. return;
  894. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  895. if (HAS_DDI(dev_priv->dev))
  896. return;
  897. reg = FDI_TX_CTL(pipe);
  898. val = I915_READ(reg);
  899. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  900. }
  901. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  902. enum pipe pipe, bool state)
  903. {
  904. int reg;
  905. u32 val;
  906. bool cur_state;
  907. reg = FDI_RX_CTL(pipe);
  908. val = I915_READ(reg);
  909. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  910. WARN(cur_state != state,
  911. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  912. state_string(state), state_string(cur_state));
  913. }
  914. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  915. enum pipe pipe)
  916. {
  917. int pp_reg, lvds_reg;
  918. u32 val;
  919. enum pipe panel_pipe = PIPE_A;
  920. bool locked = true;
  921. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  922. pp_reg = PCH_PP_CONTROL;
  923. lvds_reg = PCH_LVDS;
  924. } else {
  925. pp_reg = PP_CONTROL;
  926. lvds_reg = LVDS;
  927. }
  928. val = I915_READ(pp_reg);
  929. if (!(val & PANEL_POWER_ON) ||
  930. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  931. locked = false;
  932. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  933. panel_pipe = PIPE_B;
  934. WARN(panel_pipe == pipe && locked,
  935. "panel assertion failure, pipe %c regs locked\n",
  936. pipe_name(pipe));
  937. }
  938. void assert_pipe(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  945. pipe);
  946. /* if we need the pipe A quirk it must be always on */
  947. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  948. state = true;
  949. if (!intel_display_power_enabled(dev_priv->dev,
  950. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  951. cur_state = false;
  952. } else {
  953. reg = PIPECONF(cpu_transcoder);
  954. val = I915_READ(reg);
  955. cur_state = !!(val & PIPECONF_ENABLE);
  956. }
  957. WARN(cur_state != state,
  958. "pipe %c assertion failure (expected %s, current %s)\n",
  959. pipe_name(pipe), state_string(state), state_string(cur_state));
  960. }
  961. static void assert_plane(struct drm_i915_private *dev_priv,
  962. enum plane plane, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. reg = DSPCNTR(plane);
  968. val = I915_READ(reg);
  969. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  970. WARN(cur_state != state,
  971. "plane %c assertion failure (expected %s, current %s)\n",
  972. plane_name(plane), state_string(state), state_string(cur_state));
  973. }
  974. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  975. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  976. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe)
  978. {
  979. struct drm_device *dev = dev_priv->dev;
  980. int reg, i;
  981. u32 val;
  982. int cur_pipe;
  983. /* Primary planes are fixed to pipes on gen4+ */
  984. if (INTEL_INFO(dev)->gen >= 4) {
  985. reg = DSPCNTR(pipe);
  986. val = I915_READ(reg);
  987. WARN((val & DISPLAY_PLANE_ENABLE),
  988. "plane %c assertion failure, should be disabled but not\n",
  989. plane_name(pipe));
  990. return;
  991. }
  992. /* Need to check both planes against the pipe */
  993. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  994. reg = DSPCNTR(i);
  995. val = I915_READ(reg);
  996. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  997. DISPPLANE_SEL_PIPE_SHIFT;
  998. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  999. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1000. plane_name(i), pipe_name(pipe));
  1001. }
  1002. }
  1003. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe)
  1005. {
  1006. struct drm_device *dev = dev_priv->dev;
  1007. int reg, i;
  1008. u32 val;
  1009. if (IS_VALLEYVIEW(dev)) {
  1010. for (i = 0; i < dev_priv->num_plane; i++) {
  1011. reg = SPCNTR(pipe, i);
  1012. val = I915_READ(reg);
  1013. WARN((val & SP_ENABLE),
  1014. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1015. sprite_name(pipe, i), pipe_name(pipe));
  1016. }
  1017. } else if (INTEL_INFO(dev)->gen >= 7) {
  1018. reg = SPRCTL(pipe);
  1019. val = I915_READ(reg);
  1020. WARN((val & SPRITE_ENABLE),
  1021. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1022. plane_name(pipe), pipe_name(pipe));
  1023. } else if (INTEL_INFO(dev)->gen >= 5) {
  1024. reg = DVSCNTR(pipe);
  1025. val = I915_READ(reg);
  1026. WARN((val & DVS_ENABLE),
  1027. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(pipe), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1032. {
  1033. u32 val;
  1034. bool enabled;
  1035. if (HAS_PCH_LPT(dev_priv->dev)) {
  1036. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1037. return;
  1038. }
  1039. val = I915_READ(PCH_DREF_CONTROL);
  1040. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1041. DREF_SUPERSPREAD_SOURCE_MASK));
  1042. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1043. }
  1044. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe)
  1046. {
  1047. int reg;
  1048. u32 val;
  1049. bool enabled;
  1050. reg = PCH_TRANSCONF(pipe);
  1051. val = I915_READ(reg);
  1052. enabled = !!(val & TRANS_ENABLE);
  1053. WARN(enabled,
  1054. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1055. pipe_name(pipe));
  1056. }
  1057. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1058. enum pipe pipe, u32 port_sel, u32 val)
  1059. {
  1060. if ((val & DP_PORT_EN) == 0)
  1061. return false;
  1062. if (HAS_PCH_CPT(dev_priv->dev)) {
  1063. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1064. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1065. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1066. return false;
  1067. } else {
  1068. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1069. return false;
  1070. }
  1071. return true;
  1072. }
  1073. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1074. enum pipe pipe, u32 val)
  1075. {
  1076. if ((val & SDVO_ENABLE) == 0)
  1077. return false;
  1078. if (HAS_PCH_CPT(dev_priv->dev)) {
  1079. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1080. return false;
  1081. } else {
  1082. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1083. return false;
  1084. }
  1085. return true;
  1086. }
  1087. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, u32 val)
  1089. {
  1090. if ((val & LVDS_PORT_EN) == 0)
  1091. return false;
  1092. if (HAS_PCH_CPT(dev_priv->dev)) {
  1093. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1094. return false;
  1095. } else {
  1096. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & ADPA_DAC_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, int reg, u32 port_sel)
  1117. {
  1118. u32 val = I915_READ(reg);
  1119. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1120. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1121. reg, pipe_name(pipe));
  1122. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1123. && (val & DP_PIPEB_SELECT),
  1124. "IBX PCH dp port still using transcoder B\n");
  1125. }
  1126. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1127. enum pipe pipe, int reg)
  1128. {
  1129. u32 val = I915_READ(reg);
  1130. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1131. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1132. reg, pipe_name(pipe));
  1133. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1134. && (val & SDVO_PIPE_B_SELECT),
  1135. "IBX PCH hdmi port still using transcoder B\n");
  1136. }
  1137. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe)
  1139. {
  1140. int reg;
  1141. u32 val;
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1144. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1145. reg = PCH_ADPA;
  1146. val = I915_READ(reg);
  1147. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1149. pipe_name(pipe));
  1150. reg = PCH_LVDS;
  1151. val = I915_READ(reg);
  1152. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1153. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1154. pipe_name(pipe));
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1157. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1158. }
  1159. static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1160. {
  1161. int reg;
  1162. u32 val;
  1163. assert_pipe_disabled(dev_priv, pipe);
  1164. /* No really, not for ILK+ */
  1165. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1166. /* PLL is protected by panel, make sure we can write it */
  1167. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1168. assert_panel_unlocked(dev_priv, pipe);
  1169. reg = DPLL(pipe);
  1170. val = I915_READ(reg);
  1171. val |= DPLL_VCO_ENABLE;
  1172. /* We do this three times for luck */
  1173. I915_WRITE(reg, val);
  1174. POSTING_READ(reg);
  1175. udelay(150); /* wait for warmup */
  1176. I915_WRITE(reg, val);
  1177. POSTING_READ(reg);
  1178. udelay(150); /* wait for warmup */
  1179. I915_WRITE(reg, val);
  1180. POSTING_READ(reg);
  1181. udelay(150); /* wait for warmup */
  1182. }
  1183. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1184. {
  1185. struct drm_device *dev = crtc->base.dev;
  1186. struct drm_i915_private *dev_priv = dev->dev_private;
  1187. int reg = DPLL(crtc->pipe);
  1188. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1189. assert_pipe_disabled(dev_priv, crtc->pipe);
  1190. /* No really, not for ILK+ */
  1191. BUG_ON(dev_priv->info->gen >= 5);
  1192. /* PLL is protected by panel, make sure we can write it */
  1193. if (IS_MOBILE(dev) && !IS_I830(dev))
  1194. assert_panel_unlocked(dev_priv, crtc->pipe);
  1195. I915_WRITE(reg, dpll);
  1196. /* Wait for the clocks to stabilize. */
  1197. POSTING_READ(reg);
  1198. udelay(150);
  1199. if (INTEL_INFO(dev)->gen >= 4) {
  1200. I915_WRITE(DPLL_MD(crtc->pipe),
  1201. crtc->config.dpll_hw_state.dpll_md);
  1202. } else {
  1203. /* The pixel multiplier can only be updated once the
  1204. * DPLL is enabled and the clocks are stable.
  1205. *
  1206. * So write it again.
  1207. */
  1208. I915_WRITE(reg, dpll);
  1209. }
  1210. /* We do this three times for luck */
  1211. I915_WRITE(reg, dpll);
  1212. POSTING_READ(reg);
  1213. udelay(150); /* wait for warmup */
  1214. I915_WRITE(reg, dpll);
  1215. POSTING_READ(reg);
  1216. udelay(150); /* wait for warmup */
  1217. I915_WRITE(reg, dpll);
  1218. POSTING_READ(reg);
  1219. udelay(150); /* wait for warmup */
  1220. }
  1221. /**
  1222. * intel_disable_pll - disable a PLL
  1223. * @dev_priv: i915 private structure
  1224. * @pipe: pipe PLL to disable
  1225. *
  1226. * Disable the PLL for @pipe, making sure the pipe is off first.
  1227. *
  1228. * Note! This is for pre-ILK only.
  1229. */
  1230. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1231. {
  1232. int reg;
  1233. u32 val;
  1234. /* Don't disable pipe A or pipe A PLLs if needed */
  1235. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1236. return;
  1237. /* Make sure the pipe isn't still relying on us */
  1238. assert_pipe_disabled(dev_priv, pipe);
  1239. reg = DPLL(pipe);
  1240. val = I915_READ(reg);
  1241. val &= ~DPLL_VCO_ENABLE;
  1242. I915_WRITE(reg, val);
  1243. POSTING_READ(reg);
  1244. }
  1245. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1246. {
  1247. u32 port_mask;
  1248. if (!port)
  1249. port_mask = DPLL_PORTB_READY_MASK;
  1250. else
  1251. port_mask = DPLL_PORTC_READY_MASK;
  1252. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1253. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1254. 'B' + port, I915_READ(DPLL(0)));
  1255. }
  1256. /**
  1257. * ironlake_enable_shared_dpll - enable PCH PLL
  1258. * @dev_priv: i915 private structure
  1259. * @pipe: pipe PLL to enable
  1260. *
  1261. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1262. * drives the transcoder clock.
  1263. */
  1264. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1265. {
  1266. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1267. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1268. /* PCH PLLs only available on ILK, SNB and IVB */
  1269. BUG_ON(dev_priv->info->gen < 5);
  1270. if (WARN_ON(pll == NULL))
  1271. return;
  1272. if (WARN_ON(pll->refcount == 0))
  1273. return;
  1274. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1275. pll->name, pll->active, pll->on,
  1276. crtc->base.base.id);
  1277. if (pll->active++) {
  1278. WARN_ON(!pll->on);
  1279. assert_shared_dpll_enabled(dev_priv, pll);
  1280. return;
  1281. }
  1282. WARN_ON(pll->on);
  1283. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1284. pll->enable(dev_priv, pll);
  1285. pll->on = true;
  1286. }
  1287. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1288. {
  1289. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1290. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1291. /* PCH only available on ILK+ */
  1292. BUG_ON(dev_priv->info->gen < 5);
  1293. if (WARN_ON(pll == NULL))
  1294. return;
  1295. if (WARN_ON(pll->refcount == 0))
  1296. return;
  1297. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1298. pll->name, pll->active, pll->on,
  1299. crtc->base.base.id);
  1300. if (WARN_ON(pll->active == 0)) {
  1301. assert_shared_dpll_disabled(dev_priv, pll);
  1302. return;
  1303. }
  1304. assert_shared_dpll_enabled(dev_priv, pll);
  1305. WARN_ON(!pll->on);
  1306. if (--pll->active)
  1307. return;
  1308. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1309. pll->disable(dev_priv, pll);
  1310. pll->on = false;
  1311. }
  1312. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1313. enum pipe pipe)
  1314. {
  1315. struct drm_device *dev = dev_priv->dev;
  1316. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1317. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1318. uint32_t reg, val, pipeconf_val;
  1319. /* PCH only available on ILK+ */
  1320. BUG_ON(dev_priv->info->gen < 5);
  1321. /* Make sure PCH DPLL is enabled */
  1322. assert_shared_dpll_enabled(dev_priv,
  1323. intel_crtc_to_shared_dpll(intel_crtc));
  1324. /* FDI must be feeding us bits for PCH ports */
  1325. assert_fdi_tx_enabled(dev_priv, pipe);
  1326. assert_fdi_rx_enabled(dev_priv, pipe);
  1327. if (HAS_PCH_CPT(dev)) {
  1328. /* Workaround: Set the timing override bit before enabling the
  1329. * pch transcoder. */
  1330. reg = TRANS_CHICKEN2(pipe);
  1331. val = I915_READ(reg);
  1332. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1333. I915_WRITE(reg, val);
  1334. }
  1335. reg = PCH_TRANSCONF(pipe);
  1336. val = I915_READ(reg);
  1337. pipeconf_val = I915_READ(PIPECONF(pipe));
  1338. if (HAS_PCH_IBX(dev_priv->dev)) {
  1339. /*
  1340. * make the BPC in transcoder be consistent with
  1341. * that in pipeconf reg.
  1342. */
  1343. val &= ~PIPECONF_BPC_MASK;
  1344. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1345. }
  1346. val &= ~TRANS_INTERLACE_MASK;
  1347. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1348. if (HAS_PCH_IBX(dev_priv->dev) &&
  1349. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1350. val |= TRANS_LEGACY_INTERLACED_ILK;
  1351. else
  1352. val |= TRANS_INTERLACED;
  1353. else
  1354. val |= TRANS_PROGRESSIVE;
  1355. I915_WRITE(reg, val | TRANS_ENABLE);
  1356. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1357. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1358. }
  1359. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1360. enum transcoder cpu_transcoder)
  1361. {
  1362. u32 val, pipeconf_val;
  1363. /* PCH only available on ILK+ */
  1364. BUG_ON(dev_priv->info->gen < 5);
  1365. /* FDI must be feeding us bits for PCH ports */
  1366. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1367. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1368. /* Workaround: set timing override bit. */
  1369. val = I915_READ(_TRANSA_CHICKEN2);
  1370. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1371. I915_WRITE(_TRANSA_CHICKEN2, val);
  1372. val = TRANS_ENABLE;
  1373. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1374. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1375. PIPECONF_INTERLACED_ILK)
  1376. val |= TRANS_INTERLACED;
  1377. else
  1378. val |= TRANS_PROGRESSIVE;
  1379. I915_WRITE(LPT_TRANSCONF, val);
  1380. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1381. DRM_ERROR("Failed to enable PCH transcoder\n");
  1382. }
  1383. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1384. enum pipe pipe)
  1385. {
  1386. struct drm_device *dev = dev_priv->dev;
  1387. uint32_t reg, val;
  1388. /* FDI relies on the transcoder */
  1389. assert_fdi_tx_disabled(dev_priv, pipe);
  1390. assert_fdi_rx_disabled(dev_priv, pipe);
  1391. /* Ports must be off as well */
  1392. assert_pch_ports_disabled(dev_priv, pipe);
  1393. reg = PCH_TRANSCONF(pipe);
  1394. val = I915_READ(reg);
  1395. val &= ~TRANS_ENABLE;
  1396. I915_WRITE(reg, val);
  1397. /* wait for PCH transcoder off, transcoder state */
  1398. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1399. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1400. if (!HAS_PCH_IBX(dev)) {
  1401. /* Workaround: Clear the timing override chicken bit again. */
  1402. reg = TRANS_CHICKEN2(pipe);
  1403. val = I915_READ(reg);
  1404. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1405. I915_WRITE(reg, val);
  1406. }
  1407. }
  1408. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1409. {
  1410. u32 val;
  1411. val = I915_READ(LPT_TRANSCONF);
  1412. val &= ~TRANS_ENABLE;
  1413. I915_WRITE(LPT_TRANSCONF, val);
  1414. /* wait for PCH transcoder off, transcoder state */
  1415. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1416. DRM_ERROR("Failed to disable PCH transcoder\n");
  1417. /* Workaround: clear timing override bit. */
  1418. val = I915_READ(_TRANSA_CHICKEN2);
  1419. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1420. I915_WRITE(_TRANSA_CHICKEN2, val);
  1421. }
  1422. /**
  1423. * intel_enable_pipe - enable a pipe, asserting requirements
  1424. * @dev_priv: i915 private structure
  1425. * @pipe: pipe to enable
  1426. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1427. *
  1428. * Enable @pipe, making sure that various hardware specific requirements
  1429. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1430. *
  1431. * @pipe should be %PIPE_A or %PIPE_B.
  1432. *
  1433. * Will wait until the pipe is actually running (i.e. first vblank) before
  1434. * returning.
  1435. */
  1436. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1437. bool pch_port)
  1438. {
  1439. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1440. pipe);
  1441. enum pipe pch_transcoder;
  1442. int reg;
  1443. u32 val;
  1444. assert_planes_disabled(dev_priv, pipe);
  1445. assert_sprites_disabled(dev_priv, pipe);
  1446. if (HAS_PCH_LPT(dev_priv->dev))
  1447. pch_transcoder = TRANSCODER_A;
  1448. else
  1449. pch_transcoder = pipe;
  1450. /*
  1451. * A pipe without a PLL won't actually be able to drive bits from
  1452. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1453. * need the check.
  1454. */
  1455. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1456. assert_pll_enabled(dev_priv, pipe);
  1457. else {
  1458. if (pch_port) {
  1459. /* if driving the PCH, we need FDI enabled */
  1460. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1461. assert_fdi_tx_pll_enabled(dev_priv,
  1462. (enum pipe) cpu_transcoder);
  1463. }
  1464. /* FIXME: assert CPU port conditions for SNB+ */
  1465. }
  1466. reg = PIPECONF(cpu_transcoder);
  1467. val = I915_READ(reg);
  1468. if (val & PIPECONF_ENABLE)
  1469. return;
  1470. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1471. intel_wait_for_vblank(dev_priv->dev, pipe);
  1472. }
  1473. /**
  1474. * intel_disable_pipe - disable a pipe, asserting requirements
  1475. * @dev_priv: i915 private structure
  1476. * @pipe: pipe to disable
  1477. *
  1478. * Disable @pipe, making sure that various hardware specific requirements
  1479. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1480. *
  1481. * @pipe should be %PIPE_A or %PIPE_B.
  1482. *
  1483. * Will wait until the pipe has shut down before returning.
  1484. */
  1485. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1486. enum pipe pipe)
  1487. {
  1488. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1489. pipe);
  1490. int reg;
  1491. u32 val;
  1492. /*
  1493. * Make sure planes won't keep trying to pump pixels to us,
  1494. * or we might hang the display.
  1495. */
  1496. assert_planes_disabled(dev_priv, pipe);
  1497. assert_sprites_disabled(dev_priv, pipe);
  1498. /* Don't disable pipe A or pipe A PLLs if needed */
  1499. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1500. return;
  1501. reg = PIPECONF(cpu_transcoder);
  1502. val = I915_READ(reg);
  1503. if ((val & PIPECONF_ENABLE) == 0)
  1504. return;
  1505. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1506. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1507. }
  1508. /*
  1509. * Plane regs are double buffered, going from enabled->disabled needs a
  1510. * trigger in order to latch. The display address reg provides this.
  1511. */
  1512. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1513. enum plane plane)
  1514. {
  1515. if (dev_priv->info->gen >= 4)
  1516. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1517. else
  1518. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1519. }
  1520. /**
  1521. * intel_enable_plane - enable a display plane on a given pipe
  1522. * @dev_priv: i915 private structure
  1523. * @plane: plane to enable
  1524. * @pipe: pipe being fed
  1525. *
  1526. * Enable @plane on @pipe, making sure that @pipe is running first.
  1527. */
  1528. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1529. enum plane plane, enum pipe pipe)
  1530. {
  1531. int reg;
  1532. u32 val;
  1533. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1534. assert_pipe_enabled(dev_priv, pipe);
  1535. reg = DSPCNTR(plane);
  1536. val = I915_READ(reg);
  1537. if (val & DISPLAY_PLANE_ENABLE)
  1538. return;
  1539. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1540. intel_flush_display_plane(dev_priv, plane);
  1541. intel_wait_for_vblank(dev_priv->dev, pipe);
  1542. }
  1543. /**
  1544. * intel_disable_plane - disable a display plane
  1545. * @dev_priv: i915 private structure
  1546. * @plane: plane to disable
  1547. * @pipe: pipe consuming the data
  1548. *
  1549. * Disable @plane; should be an independent operation.
  1550. */
  1551. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1552. enum plane plane, enum pipe pipe)
  1553. {
  1554. int reg;
  1555. u32 val;
  1556. reg = DSPCNTR(plane);
  1557. val = I915_READ(reg);
  1558. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1559. return;
  1560. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1561. intel_flush_display_plane(dev_priv, plane);
  1562. intel_wait_for_vblank(dev_priv->dev, pipe);
  1563. }
  1564. static bool need_vtd_wa(struct drm_device *dev)
  1565. {
  1566. #ifdef CONFIG_INTEL_IOMMU
  1567. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1568. return true;
  1569. #endif
  1570. return false;
  1571. }
  1572. int
  1573. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1574. struct drm_i915_gem_object *obj,
  1575. struct intel_ring_buffer *pipelined)
  1576. {
  1577. struct drm_i915_private *dev_priv = dev->dev_private;
  1578. u32 alignment;
  1579. int ret;
  1580. switch (obj->tiling_mode) {
  1581. case I915_TILING_NONE:
  1582. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1583. alignment = 128 * 1024;
  1584. else if (INTEL_INFO(dev)->gen >= 4)
  1585. alignment = 4 * 1024;
  1586. else
  1587. alignment = 64 * 1024;
  1588. break;
  1589. case I915_TILING_X:
  1590. /* pin() will align the object as required by fence */
  1591. alignment = 0;
  1592. break;
  1593. case I915_TILING_Y:
  1594. /* Despite that we check this in framebuffer_init userspace can
  1595. * screw us over and change the tiling after the fact. Only
  1596. * pinned buffers can't change their tiling. */
  1597. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1598. return -EINVAL;
  1599. default:
  1600. BUG();
  1601. }
  1602. /* Note that the w/a also requires 64 PTE of padding following the
  1603. * bo. We currently fill all unused PTE with the shadow page and so
  1604. * we should always have valid PTE following the scanout preventing
  1605. * the VT-d warning.
  1606. */
  1607. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1608. alignment = 256 * 1024;
  1609. dev_priv->mm.interruptible = false;
  1610. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1611. if (ret)
  1612. goto err_interruptible;
  1613. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1614. * fence, whereas 965+ only requires a fence if using
  1615. * framebuffer compression. For simplicity, we always install
  1616. * a fence as the cost is not that onerous.
  1617. */
  1618. ret = i915_gem_object_get_fence(obj);
  1619. if (ret)
  1620. goto err_unpin;
  1621. i915_gem_object_pin_fence(obj);
  1622. dev_priv->mm.interruptible = true;
  1623. return 0;
  1624. err_unpin:
  1625. i915_gem_object_unpin(obj);
  1626. err_interruptible:
  1627. dev_priv->mm.interruptible = true;
  1628. return ret;
  1629. }
  1630. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1631. {
  1632. i915_gem_object_unpin_fence(obj);
  1633. i915_gem_object_unpin(obj);
  1634. }
  1635. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1636. * is assumed to be a power-of-two. */
  1637. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1638. unsigned int tiling_mode,
  1639. unsigned int cpp,
  1640. unsigned int pitch)
  1641. {
  1642. if (tiling_mode != I915_TILING_NONE) {
  1643. unsigned int tile_rows, tiles;
  1644. tile_rows = *y / 8;
  1645. *y %= 8;
  1646. tiles = *x / (512/cpp);
  1647. *x %= 512/cpp;
  1648. return tile_rows * pitch * 8 + tiles * 4096;
  1649. } else {
  1650. unsigned int offset;
  1651. offset = *y * pitch + *x * cpp;
  1652. *y = 0;
  1653. *x = (offset & 4095) / cpp;
  1654. return offset & -4096;
  1655. }
  1656. }
  1657. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1658. int x, int y)
  1659. {
  1660. struct drm_device *dev = crtc->dev;
  1661. struct drm_i915_private *dev_priv = dev->dev_private;
  1662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1663. struct intel_framebuffer *intel_fb;
  1664. struct drm_i915_gem_object *obj;
  1665. int plane = intel_crtc->plane;
  1666. unsigned long linear_offset;
  1667. u32 dspcntr;
  1668. u32 reg;
  1669. switch (plane) {
  1670. case 0:
  1671. case 1:
  1672. break;
  1673. default:
  1674. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1675. return -EINVAL;
  1676. }
  1677. intel_fb = to_intel_framebuffer(fb);
  1678. obj = intel_fb->obj;
  1679. reg = DSPCNTR(plane);
  1680. dspcntr = I915_READ(reg);
  1681. /* Mask out pixel format bits in case we change it */
  1682. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1683. switch (fb->pixel_format) {
  1684. case DRM_FORMAT_C8:
  1685. dspcntr |= DISPPLANE_8BPP;
  1686. break;
  1687. case DRM_FORMAT_XRGB1555:
  1688. case DRM_FORMAT_ARGB1555:
  1689. dspcntr |= DISPPLANE_BGRX555;
  1690. break;
  1691. case DRM_FORMAT_RGB565:
  1692. dspcntr |= DISPPLANE_BGRX565;
  1693. break;
  1694. case DRM_FORMAT_XRGB8888:
  1695. case DRM_FORMAT_ARGB8888:
  1696. dspcntr |= DISPPLANE_BGRX888;
  1697. break;
  1698. case DRM_FORMAT_XBGR8888:
  1699. case DRM_FORMAT_ABGR8888:
  1700. dspcntr |= DISPPLANE_RGBX888;
  1701. break;
  1702. case DRM_FORMAT_XRGB2101010:
  1703. case DRM_FORMAT_ARGB2101010:
  1704. dspcntr |= DISPPLANE_BGRX101010;
  1705. break;
  1706. case DRM_FORMAT_XBGR2101010:
  1707. case DRM_FORMAT_ABGR2101010:
  1708. dspcntr |= DISPPLANE_RGBX101010;
  1709. break;
  1710. default:
  1711. BUG();
  1712. }
  1713. if (INTEL_INFO(dev)->gen >= 4) {
  1714. if (obj->tiling_mode != I915_TILING_NONE)
  1715. dspcntr |= DISPPLANE_TILED;
  1716. else
  1717. dspcntr &= ~DISPPLANE_TILED;
  1718. }
  1719. if (IS_G4X(dev))
  1720. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1721. I915_WRITE(reg, dspcntr);
  1722. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1723. if (INTEL_INFO(dev)->gen >= 4) {
  1724. intel_crtc->dspaddr_offset =
  1725. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1726. fb->bits_per_pixel / 8,
  1727. fb->pitches[0]);
  1728. linear_offset -= intel_crtc->dspaddr_offset;
  1729. } else {
  1730. intel_crtc->dspaddr_offset = linear_offset;
  1731. }
  1732. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1733. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1734. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1735. if (INTEL_INFO(dev)->gen >= 4) {
  1736. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1737. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1738. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1739. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1740. } else
  1741. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1742. POSTING_READ(reg);
  1743. return 0;
  1744. }
  1745. static int ironlake_update_plane(struct drm_crtc *crtc,
  1746. struct drm_framebuffer *fb, int x, int y)
  1747. {
  1748. struct drm_device *dev = crtc->dev;
  1749. struct drm_i915_private *dev_priv = dev->dev_private;
  1750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1751. struct intel_framebuffer *intel_fb;
  1752. struct drm_i915_gem_object *obj;
  1753. int plane = intel_crtc->plane;
  1754. unsigned long linear_offset;
  1755. u32 dspcntr;
  1756. u32 reg;
  1757. switch (plane) {
  1758. case 0:
  1759. case 1:
  1760. case 2:
  1761. break;
  1762. default:
  1763. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1764. return -EINVAL;
  1765. }
  1766. intel_fb = to_intel_framebuffer(fb);
  1767. obj = intel_fb->obj;
  1768. reg = DSPCNTR(plane);
  1769. dspcntr = I915_READ(reg);
  1770. /* Mask out pixel format bits in case we change it */
  1771. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1772. switch (fb->pixel_format) {
  1773. case DRM_FORMAT_C8:
  1774. dspcntr |= DISPPLANE_8BPP;
  1775. break;
  1776. case DRM_FORMAT_RGB565:
  1777. dspcntr |= DISPPLANE_BGRX565;
  1778. break;
  1779. case DRM_FORMAT_XRGB8888:
  1780. case DRM_FORMAT_ARGB8888:
  1781. dspcntr |= DISPPLANE_BGRX888;
  1782. break;
  1783. case DRM_FORMAT_XBGR8888:
  1784. case DRM_FORMAT_ABGR8888:
  1785. dspcntr |= DISPPLANE_RGBX888;
  1786. break;
  1787. case DRM_FORMAT_XRGB2101010:
  1788. case DRM_FORMAT_ARGB2101010:
  1789. dspcntr |= DISPPLANE_BGRX101010;
  1790. break;
  1791. case DRM_FORMAT_XBGR2101010:
  1792. case DRM_FORMAT_ABGR2101010:
  1793. dspcntr |= DISPPLANE_RGBX101010;
  1794. break;
  1795. default:
  1796. BUG();
  1797. }
  1798. if (obj->tiling_mode != I915_TILING_NONE)
  1799. dspcntr |= DISPPLANE_TILED;
  1800. else
  1801. dspcntr &= ~DISPPLANE_TILED;
  1802. /* must disable */
  1803. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1804. I915_WRITE(reg, dspcntr);
  1805. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1806. intel_crtc->dspaddr_offset =
  1807. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1808. fb->bits_per_pixel / 8,
  1809. fb->pitches[0]);
  1810. linear_offset -= intel_crtc->dspaddr_offset;
  1811. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1812. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1813. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1814. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1815. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1816. if (IS_HASWELL(dev)) {
  1817. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1818. } else {
  1819. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1820. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1821. }
  1822. POSTING_READ(reg);
  1823. return 0;
  1824. }
  1825. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1826. static int
  1827. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1828. int x, int y, enum mode_set_atomic state)
  1829. {
  1830. struct drm_device *dev = crtc->dev;
  1831. struct drm_i915_private *dev_priv = dev->dev_private;
  1832. if (dev_priv->display.disable_fbc)
  1833. dev_priv->display.disable_fbc(dev);
  1834. intel_increase_pllclock(crtc);
  1835. return dev_priv->display.update_plane(crtc, fb, x, y);
  1836. }
  1837. void intel_display_handle_reset(struct drm_device *dev)
  1838. {
  1839. struct drm_i915_private *dev_priv = dev->dev_private;
  1840. struct drm_crtc *crtc;
  1841. /*
  1842. * Flips in the rings have been nuked by the reset,
  1843. * so complete all pending flips so that user space
  1844. * will get its events and not get stuck.
  1845. *
  1846. * Also update the base address of all primary
  1847. * planes to the the last fb to make sure we're
  1848. * showing the correct fb after a reset.
  1849. *
  1850. * Need to make two loops over the crtcs so that we
  1851. * don't try to grab a crtc mutex before the
  1852. * pending_flip_queue really got woken up.
  1853. */
  1854. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1856. enum plane plane = intel_crtc->plane;
  1857. intel_prepare_page_flip(dev, plane);
  1858. intel_finish_page_flip_plane(dev, plane);
  1859. }
  1860. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1861. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1862. mutex_lock(&crtc->mutex);
  1863. if (intel_crtc->active)
  1864. dev_priv->display.update_plane(crtc, crtc->fb,
  1865. crtc->x, crtc->y);
  1866. mutex_unlock(&crtc->mutex);
  1867. }
  1868. }
  1869. static int
  1870. intel_finish_fb(struct drm_framebuffer *old_fb)
  1871. {
  1872. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1873. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1874. bool was_interruptible = dev_priv->mm.interruptible;
  1875. int ret;
  1876. /* Big Hammer, we also need to ensure that any pending
  1877. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1878. * current scanout is retired before unpinning the old
  1879. * framebuffer.
  1880. *
  1881. * This should only fail upon a hung GPU, in which case we
  1882. * can safely continue.
  1883. */
  1884. dev_priv->mm.interruptible = false;
  1885. ret = i915_gem_object_finish_gpu(obj);
  1886. dev_priv->mm.interruptible = was_interruptible;
  1887. return ret;
  1888. }
  1889. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1890. {
  1891. struct drm_device *dev = crtc->dev;
  1892. struct drm_i915_master_private *master_priv;
  1893. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1894. if (!dev->primary->master)
  1895. return;
  1896. master_priv = dev->primary->master->driver_priv;
  1897. if (!master_priv->sarea_priv)
  1898. return;
  1899. switch (intel_crtc->pipe) {
  1900. case 0:
  1901. master_priv->sarea_priv->pipeA_x = x;
  1902. master_priv->sarea_priv->pipeA_y = y;
  1903. break;
  1904. case 1:
  1905. master_priv->sarea_priv->pipeB_x = x;
  1906. master_priv->sarea_priv->pipeB_y = y;
  1907. break;
  1908. default:
  1909. break;
  1910. }
  1911. }
  1912. static int
  1913. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1914. struct drm_framebuffer *fb)
  1915. {
  1916. struct drm_device *dev = crtc->dev;
  1917. struct drm_i915_private *dev_priv = dev->dev_private;
  1918. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1919. struct drm_framebuffer *old_fb;
  1920. int ret;
  1921. /* no fb bound */
  1922. if (!fb) {
  1923. DRM_ERROR("No FB bound\n");
  1924. return 0;
  1925. }
  1926. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1927. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1928. plane_name(intel_crtc->plane),
  1929. INTEL_INFO(dev)->num_pipes);
  1930. return -EINVAL;
  1931. }
  1932. mutex_lock(&dev->struct_mutex);
  1933. ret = intel_pin_and_fence_fb_obj(dev,
  1934. to_intel_framebuffer(fb)->obj,
  1935. NULL);
  1936. if (ret != 0) {
  1937. mutex_unlock(&dev->struct_mutex);
  1938. DRM_ERROR("pin & fence failed\n");
  1939. return ret;
  1940. }
  1941. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1942. if (ret) {
  1943. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1944. mutex_unlock(&dev->struct_mutex);
  1945. DRM_ERROR("failed to update base address\n");
  1946. return ret;
  1947. }
  1948. old_fb = crtc->fb;
  1949. crtc->fb = fb;
  1950. crtc->x = x;
  1951. crtc->y = y;
  1952. if (old_fb) {
  1953. if (intel_crtc->active && old_fb != fb)
  1954. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1955. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1956. }
  1957. intel_update_fbc(dev);
  1958. mutex_unlock(&dev->struct_mutex);
  1959. intel_crtc_update_sarea_pos(crtc, x, y);
  1960. return 0;
  1961. }
  1962. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_private *dev_priv = dev->dev_private;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. int pipe = intel_crtc->pipe;
  1968. u32 reg, temp;
  1969. /* enable normal train */
  1970. reg = FDI_TX_CTL(pipe);
  1971. temp = I915_READ(reg);
  1972. if (IS_IVYBRIDGE(dev)) {
  1973. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1974. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1975. } else {
  1976. temp &= ~FDI_LINK_TRAIN_NONE;
  1977. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1978. }
  1979. I915_WRITE(reg, temp);
  1980. reg = FDI_RX_CTL(pipe);
  1981. temp = I915_READ(reg);
  1982. if (HAS_PCH_CPT(dev)) {
  1983. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1984. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1985. } else {
  1986. temp &= ~FDI_LINK_TRAIN_NONE;
  1987. temp |= FDI_LINK_TRAIN_NONE;
  1988. }
  1989. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1990. /* wait one idle pattern time */
  1991. POSTING_READ(reg);
  1992. udelay(1000);
  1993. /* IVB wants error correction enabled */
  1994. if (IS_IVYBRIDGE(dev))
  1995. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1996. FDI_FE_ERRC_ENABLE);
  1997. }
  1998. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1999. {
  2000. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2001. }
  2002. static void ivb_modeset_global_resources(struct drm_device *dev)
  2003. {
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. struct intel_crtc *pipe_B_crtc =
  2006. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2007. struct intel_crtc *pipe_C_crtc =
  2008. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2009. uint32_t temp;
  2010. /*
  2011. * When everything is off disable fdi C so that we could enable fdi B
  2012. * with all lanes. Note that we don't care about enabled pipes without
  2013. * an enabled pch encoder.
  2014. */
  2015. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2016. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2017. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2018. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2019. temp = I915_READ(SOUTH_CHICKEN1);
  2020. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2021. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2022. I915_WRITE(SOUTH_CHICKEN1, temp);
  2023. }
  2024. }
  2025. /* The FDI link training functions for ILK/Ibexpeak. */
  2026. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2027. {
  2028. struct drm_device *dev = crtc->dev;
  2029. struct drm_i915_private *dev_priv = dev->dev_private;
  2030. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2031. int pipe = intel_crtc->pipe;
  2032. int plane = intel_crtc->plane;
  2033. u32 reg, temp, tries;
  2034. /* FDI needs bits from pipe & plane first */
  2035. assert_pipe_enabled(dev_priv, pipe);
  2036. assert_plane_enabled(dev_priv, plane);
  2037. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2038. for train result */
  2039. reg = FDI_RX_IMR(pipe);
  2040. temp = I915_READ(reg);
  2041. temp &= ~FDI_RX_SYMBOL_LOCK;
  2042. temp &= ~FDI_RX_BIT_LOCK;
  2043. I915_WRITE(reg, temp);
  2044. I915_READ(reg);
  2045. udelay(150);
  2046. /* enable CPU FDI TX and PCH FDI RX */
  2047. reg = FDI_TX_CTL(pipe);
  2048. temp = I915_READ(reg);
  2049. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2050. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2051. temp &= ~FDI_LINK_TRAIN_NONE;
  2052. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2053. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2054. reg = FDI_RX_CTL(pipe);
  2055. temp = I915_READ(reg);
  2056. temp &= ~FDI_LINK_TRAIN_NONE;
  2057. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2058. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2059. POSTING_READ(reg);
  2060. udelay(150);
  2061. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2062. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2063. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2064. FDI_RX_PHASE_SYNC_POINTER_EN);
  2065. reg = FDI_RX_IIR(pipe);
  2066. for (tries = 0; tries < 5; tries++) {
  2067. temp = I915_READ(reg);
  2068. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2069. if ((temp & FDI_RX_BIT_LOCK)) {
  2070. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2071. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2072. break;
  2073. }
  2074. }
  2075. if (tries == 5)
  2076. DRM_ERROR("FDI train 1 fail!\n");
  2077. /* Train 2 */
  2078. reg = FDI_TX_CTL(pipe);
  2079. temp = I915_READ(reg);
  2080. temp &= ~FDI_LINK_TRAIN_NONE;
  2081. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2082. I915_WRITE(reg, temp);
  2083. reg = FDI_RX_CTL(pipe);
  2084. temp = I915_READ(reg);
  2085. temp &= ~FDI_LINK_TRAIN_NONE;
  2086. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2087. I915_WRITE(reg, temp);
  2088. POSTING_READ(reg);
  2089. udelay(150);
  2090. reg = FDI_RX_IIR(pipe);
  2091. for (tries = 0; tries < 5; tries++) {
  2092. temp = I915_READ(reg);
  2093. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2094. if (temp & FDI_RX_SYMBOL_LOCK) {
  2095. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2096. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2097. break;
  2098. }
  2099. }
  2100. if (tries == 5)
  2101. DRM_ERROR("FDI train 2 fail!\n");
  2102. DRM_DEBUG_KMS("FDI train done\n");
  2103. }
  2104. static const int snb_b_fdi_train_param[] = {
  2105. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2106. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2107. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2108. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2109. };
  2110. /* The FDI link training functions for SNB/Cougarpoint. */
  2111. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2112. {
  2113. struct drm_device *dev = crtc->dev;
  2114. struct drm_i915_private *dev_priv = dev->dev_private;
  2115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2116. int pipe = intel_crtc->pipe;
  2117. u32 reg, temp, i, retry;
  2118. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2119. for train result */
  2120. reg = FDI_RX_IMR(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_RX_SYMBOL_LOCK;
  2123. temp &= ~FDI_RX_BIT_LOCK;
  2124. I915_WRITE(reg, temp);
  2125. POSTING_READ(reg);
  2126. udelay(150);
  2127. /* enable CPU FDI TX and PCH FDI RX */
  2128. reg = FDI_TX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2131. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2132. temp &= ~FDI_LINK_TRAIN_NONE;
  2133. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2134. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2135. /* SNB-B */
  2136. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2137. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2138. I915_WRITE(FDI_RX_MISC(pipe),
  2139. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2140. reg = FDI_RX_CTL(pipe);
  2141. temp = I915_READ(reg);
  2142. if (HAS_PCH_CPT(dev)) {
  2143. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2144. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2145. } else {
  2146. temp &= ~FDI_LINK_TRAIN_NONE;
  2147. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2148. }
  2149. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2150. POSTING_READ(reg);
  2151. udelay(150);
  2152. for (i = 0; i < 4; i++) {
  2153. reg = FDI_TX_CTL(pipe);
  2154. temp = I915_READ(reg);
  2155. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2156. temp |= snb_b_fdi_train_param[i];
  2157. I915_WRITE(reg, temp);
  2158. POSTING_READ(reg);
  2159. udelay(500);
  2160. for (retry = 0; retry < 5; retry++) {
  2161. reg = FDI_RX_IIR(pipe);
  2162. temp = I915_READ(reg);
  2163. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2164. if (temp & FDI_RX_BIT_LOCK) {
  2165. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2166. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2167. break;
  2168. }
  2169. udelay(50);
  2170. }
  2171. if (retry < 5)
  2172. break;
  2173. }
  2174. if (i == 4)
  2175. DRM_ERROR("FDI train 1 fail!\n");
  2176. /* Train 2 */
  2177. reg = FDI_TX_CTL(pipe);
  2178. temp = I915_READ(reg);
  2179. temp &= ~FDI_LINK_TRAIN_NONE;
  2180. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2181. if (IS_GEN6(dev)) {
  2182. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2183. /* SNB-B */
  2184. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2185. }
  2186. I915_WRITE(reg, temp);
  2187. reg = FDI_RX_CTL(pipe);
  2188. temp = I915_READ(reg);
  2189. if (HAS_PCH_CPT(dev)) {
  2190. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2191. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2192. } else {
  2193. temp &= ~FDI_LINK_TRAIN_NONE;
  2194. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2195. }
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(150);
  2199. for (i = 0; i < 4; i++) {
  2200. reg = FDI_TX_CTL(pipe);
  2201. temp = I915_READ(reg);
  2202. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2203. temp |= snb_b_fdi_train_param[i];
  2204. I915_WRITE(reg, temp);
  2205. POSTING_READ(reg);
  2206. udelay(500);
  2207. for (retry = 0; retry < 5; retry++) {
  2208. reg = FDI_RX_IIR(pipe);
  2209. temp = I915_READ(reg);
  2210. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2211. if (temp & FDI_RX_SYMBOL_LOCK) {
  2212. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2213. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2214. break;
  2215. }
  2216. udelay(50);
  2217. }
  2218. if (retry < 5)
  2219. break;
  2220. }
  2221. if (i == 4)
  2222. DRM_ERROR("FDI train 2 fail!\n");
  2223. DRM_DEBUG_KMS("FDI train done.\n");
  2224. }
  2225. /* Manual link training for Ivy Bridge A0 parts */
  2226. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2227. {
  2228. struct drm_device *dev = crtc->dev;
  2229. struct drm_i915_private *dev_priv = dev->dev_private;
  2230. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2231. int pipe = intel_crtc->pipe;
  2232. u32 reg, temp, i;
  2233. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2234. for train result */
  2235. reg = FDI_RX_IMR(pipe);
  2236. temp = I915_READ(reg);
  2237. temp &= ~FDI_RX_SYMBOL_LOCK;
  2238. temp &= ~FDI_RX_BIT_LOCK;
  2239. I915_WRITE(reg, temp);
  2240. POSTING_READ(reg);
  2241. udelay(150);
  2242. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2243. I915_READ(FDI_RX_IIR(pipe)));
  2244. /* enable CPU FDI TX and PCH FDI RX */
  2245. reg = FDI_TX_CTL(pipe);
  2246. temp = I915_READ(reg);
  2247. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2248. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2249. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2250. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2251. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2252. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2253. temp |= FDI_COMPOSITE_SYNC;
  2254. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2255. I915_WRITE(FDI_RX_MISC(pipe),
  2256. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2257. reg = FDI_RX_CTL(pipe);
  2258. temp = I915_READ(reg);
  2259. temp &= ~FDI_LINK_TRAIN_AUTO;
  2260. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2261. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2262. temp |= FDI_COMPOSITE_SYNC;
  2263. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2264. POSTING_READ(reg);
  2265. udelay(150);
  2266. for (i = 0; i < 4; i++) {
  2267. reg = FDI_TX_CTL(pipe);
  2268. temp = I915_READ(reg);
  2269. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2270. temp |= snb_b_fdi_train_param[i];
  2271. I915_WRITE(reg, temp);
  2272. POSTING_READ(reg);
  2273. udelay(500);
  2274. reg = FDI_RX_IIR(pipe);
  2275. temp = I915_READ(reg);
  2276. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2277. if (temp & FDI_RX_BIT_LOCK ||
  2278. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2279. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2280. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2281. break;
  2282. }
  2283. }
  2284. if (i == 4)
  2285. DRM_ERROR("FDI train 1 fail!\n");
  2286. /* Train 2 */
  2287. reg = FDI_TX_CTL(pipe);
  2288. temp = I915_READ(reg);
  2289. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2290. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2291. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2292. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2293. I915_WRITE(reg, temp);
  2294. reg = FDI_RX_CTL(pipe);
  2295. temp = I915_READ(reg);
  2296. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2297. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2298. I915_WRITE(reg, temp);
  2299. POSTING_READ(reg);
  2300. udelay(150);
  2301. for (i = 0; i < 4; i++) {
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2305. temp |= snb_b_fdi_train_param[i];
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(500);
  2309. reg = FDI_RX_IIR(pipe);
  2310. temp = I915_READ(reg);
  2311. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2312. if (temp & FDI_RX_SYMBOL_LOCK) {
  2313. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2314. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2315. break;
  2316. }
  2317. }
  2318. if (i == 4)
  2319. DRM_ERROR("FDI train 2 fail!\n");
  2320. DRM_DEBUG_KMS("FDI train done.\n");
  2321. }
  2322. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2323. {
  2324. struct drm_device *dev = intel_crtc->base.dev;
  2325. struct drm_i915_private *dev_priv = dev->dev_private;
  2326. int pipe = intel_crtc->pipe;
  2327. u32 reg, temp;
  2328. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2329. reg = FDI_RX_CTL(pipe);
  2330. temp = I915_READ(reg);
  2331. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2332. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2333. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2334. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2335. POSTING_READ(reg);
  2336. udelay(200);
  2337. /* Switch from Rawclk to PCDclk */
  2338. temp = I915_READ(reg);
  2339. I915_WRITE(reg, temp | FDI_PCDCLK);
  2340. POSTING_READ(reg);
  2341. udelay(200);
  2342. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2343. reg = FDI_TX_CTL(pipe);
  2344. temp = I915_READ(reg);
  2345. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2346. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2347. POSTING_READ(reg);
  2348. udelay(100);
  2349. }
  2350. }
  2351. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2352. {
  2353. struct drm_device *dev = intel_crtc->base.dev;
  2354. struct drm_i915_private *dev_priv = dev->dev_private;
  2355. int pipe = intel_crtc->pipe;
  2356. u32 reg, temp;
  2357. /* Switch from PCDclk to Rawclk */
  2358. reg = FDI_RX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2361. /* Disable CPU FDI TX PLL */
  2362. reg = FDI_TX_CTL(pipe);
  2363. temp = I915_READ(reg);
  2364. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2365. POSTING_READ(reg);
  2366. udelay(100);
  2367. reg = FDI_RX_CTL(pipe);
  2368. temp = I915_READ(reg);
  2369. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2370. /* Wait for the clocks to turn off. */
  2371. POSTING_READ(reg);
  2372. udelay(100);
  2373. }
  2374. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2375. {
  2376. struct drm_device *dev = crtc->dev;
  2377. struct drm_i915_private *dev_priv = dev->dev_private;
  2378. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2379. int pipe = intel_crtc->pipe;
  2380. u32 reg, temp;
  2381. /* disable CPU FDI tx and PCH FDI rx */
  2382. reg = FDI_TX_CTL(pipe);
  2383. temp = I915_READ(reg);
  2384. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2385. POSTING_READ(reg);
  2386. reg = FDI_RX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. temp &= ~(0x7 << 16);
  2389. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2390. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2391. POSTING_READ(reg);
  2392. udelay(100);
  2393. /* Ironlake workaround, disable clock pointer after downing FDI */
  2394. if (HAS_PCH_IBX(dev)) {
  2395. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2396. }
  2397. /* still set train pattern 1 */
  2398. reg = FDI_TX_CTL(pipe);
  2399. temp = I915_READ(reg);
  2400. temp &= ~FDI_LINK_TRAIN_NONE;
  2401. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2402. I915_WRITE(reg, temp);
  2403. reg = FDI_RX_CTL(pipe);
  2404. temp = I915_READ(reg);
  2405. if (HAS_PCH_CPT(dev)) {
  2406. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2407. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2408. } else {
  2409. temp &= ~FDI_LINK_TRAIN_NONE;
  2410. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2411. }
  2412. /* BPC in FDI rx is consistent with that in PIPECONF */
  2413. temp &= ~(0x07 << 16);
  2414. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2415. I915_WRITE(reg, temp);
  2416. POSTING_READ(reg);
  2417. udelay(100);
  2418. }
  2419. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2420. {
  2421. struct drm_device *dev = crtc->dev;
  2422. struct drm_i915_private *dev_priv = dev->dev_private;
  2423. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2424. unsigned long flags;
  2425. bool pending;
  2426. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2427. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2428. return false;
  2429. spin_lock_irqsave(&dev->event_lock, flags);
  2430. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2431. spin_unlock_irqrestore(&dev->event_lock, flags);
  2432. return pending;
  2433. }
  2434. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2435. {
  2436. struct drm_device *dev = crtc->dev;
  2437. struct drm_i915_private *dev_priv = dev->dev_private;
  2438. if (crtc->fb == NULL)
  2439. return;
  2440. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2441. wait_event(dev_priv->pending_flip_queue,
  2442. !intel_crtc_has_pending_flip(crtc));
  2443. mutex_lock(&dev->struct_mutex);
  2444. intel_finish_fb(crtc->fb);
  2445. mutex_unlock(&dev->struct_mutex);
  2446. }
  2447. /* Program iCLKIP clock to the desired frequency */
  2448. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2449. {
  2450. struct drm_device *dev = crtc->dev;
  2451. struct drm_i915_private *dev_priv = dev->dev_private;
  2452. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2453. u32 temp;
  2454. mutex_lock(&dev_priv->dpio_lock);
  2455. /* It is necessary to ungate the pixclk gate prior to programming
  2456. * the divisors, and gate it back when it is done.
  2457. */
  2458. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2459. /* Disable SSCCTL */
  2460. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2461. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2462. SBI_SSCCTL_DISABLE,
  2463. SBI_ICLK);
  2464. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2465. if (crtc->mode.clock == 20000) {
  2466. auxdiv = 1;
  2467. divsel = 0x41;
  2468. phaseinc = 0x20;
  2469. } else {
  2470. /* The iCLK virtual clock root frequency is in MHz,
  2471. * but the crtc->mode.clock in in KHz. To get the divisors,
  2472. * it is necessary to divide one by another, so we
  2473. * convert the virtual clock precision to KHz here for higher
  2474. * precision.
  2475. */
  2476. u32 iclk_virtual_root_freq = 172800 * 1000;
  2477. u32 iclk_pi_range = 64;
  2478. u32 desired_divisor, msb_divisor_value, pi_value;
  2479. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2480. msb_divisor_value = desired_divisor / iclk_pi_range;
  2481. pi_value = desired_divisor % iclk_pi_range;
  2482. auxdiv = 0;
  2483. divsel = msb_divisor_value - 2;
  2484. phaseinc = pi_value;
  2485. }
  2486. /* This should not happen with any sane values */
  2487. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2488. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2489. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2490. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2491. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2492. crtc->mode.clock,
  2493. auxdiv,
  2494. divsel,
  2495. phasedir,
  2496. phaseinc);
  2497. /* Program SSCDIVINTPHASE6 */
  2498. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2499. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2500. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2501. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2502. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2503. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2504. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2505. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2506. /* Program SSCAUXDIV */
  2507. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2508. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2509. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2510. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2511. /* Enable modulator and associated divider */
  2512. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2513. temp &= ~SBI_SSCCTL_DISABLE;
  2514. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2515. /* Wait for initialization time */
  2516. udelay(24);
  2517. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2518. mutex_unlock(&dev_priv->dpio_lock);
  2519. }
  2520. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2521. enum pipe pch_transcoder)
  2522. {
  2523. struct drm_device *dev = crtc->base.dev;
  2524. struct drm_i915_private *dev_priv = dev->dev_private;
  2525. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2526. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2527. I915_READ(HTOTAL(cpu_transcoder)));
  2528. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2529. I915_READ(HBLANK(cpu_transcoder)));
  2530. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2531. I915_READ(HSYNC(cpu_transcoder)));
  2532. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2533. I915_READ(VTOTAL(cpu_transcoder)));
  2534. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2535. I915_READ(VBLANK(cpu_transcoder)));
  2536. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2537. I915_READ(VSYNC(cpu_transcoder)));
  2538. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2539. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2540. }
  2541. /*
  2542. * Enable PCH resources required for PCH ports:
  2543. * - PCH PLLs
  2544. * - FDI training & RX/TX
  2545. * - update transcoder timings
  2546. * - DP transcoding bits
  2547. * - transcoder
  2548. */
  2549. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2550. {
  2551. struct drm_device *dev = crtc->dev;
  2552. struct drm_i915_private *dev_priv = dev->dev_private;
  2553. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2554. int pipe = intel_crtc->pipe;
  2555. u32 reg, temp;
  2556. assert_pch_transcoder_disabled(dev_priv, pipe);
  2557. /* Write the TU size bits before fdi link training, so that error
  2558. * detection works. */
  2559. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2560. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2561. /* For PCH output, training FDI link */
  2562. dev_priv->display.fdi_link_train(crtc);
  2563. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2564. * transcoder, and we actually should do this to not upset any PCH
  2565. * transcoder that already use the clock when we share it.
  2566. *
  2567. * Note that enable_shared_dpll tries to do the right thing, but
  2568. * get_shared_dpll unconditionally resets the pll - we need that to have
  2569. * the right LVDS enable sequence. */
  2570. ironlake_enable_shared_dpll(intel_crtc);
  2571. if (HAS_PCH_CPT(dev)) {
  2572. u32 sel;
  2573. temp = I915_READ(PCH_DPLL_SEL);
  2574. temp |= TRANS_DPLL_ENABLE(pipe);
  2575. sel = TRANS_DPLLB_SEL(pipe);
  2576. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2577. temp |= sel;
  2578. else
  2579. temp &= ~sel;
  2580. I915_WRITE(PCH_DPLL_SEL, temp);
  2581. }
  2582. /* set transcoder timing, panel must allow it */
  2583. assert_panel_unlocked(dev_priv, pipe);
  2584. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2585. intel_fdi_normal_train(crtc);
  2586. /* For PCH DP, enable TRANS_DP_CTL */
  2587. if (HAS_PCH_CPT(dev) &&
  2588. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2589. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2590. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2591. reg = TRANS_DP_CTL(pipe);
  2592. temp = I915_READ(reg);
  2593. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2594. TRANS_DP_SYNC_MASK |
  2595. TRANS_DP_BPC_MASK);
  2596. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2597. TRANS_DP_ENH_FRAMING);
  2598. temp |= bpc << 9; /* same format but at 11:9 */
  2599. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2600. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2601. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2602. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2603. switch (intel_trans_dp_port_sel(crtc)) {
  2604. case PCH_DP_B:
  2605. temp |= TRANS_DP_PORT_SEL_B;
  2606. break;
  2607. case PCH_DP_C:
  2608. temp |= TRANS_DP_PORT_SEL_C;
  2609. break;
  2610. case PCH_DP_D:
  2611. temp |= TRANS_DP_PORT_SEL_D;
  2612. break;
  2613. default:
  2614. BUG();
  2615. }
  2616. I915_WRITE(reg, temp);
  2617. }
  2618. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2619. }
  2620. static void lpt_pch_enable(struct drm_crtc *crtc)
  2621. {
  2622. struct drm_device *dev = crtc->dev;
  2623. struct drm_i915_private *dev_priv = dev->dev_private;
  2624. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2625. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2626. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2627. lpt_program_iclkip(crtc);
  2628. /* Set transcoder timing. */
  2629. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2630. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2631. }
  2632. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2633. {
  2634. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2635. if (pll == NULL)
  2636. return;
  2637. if (pll->refcount == 0) {
  2638. WARN(1, "bad %s refcount\n", pll->name);
  2639. return;
  2640. }
  2641. if (--pll->refcount == 0) {
  2642. WARN_ON(pll->on);
  2643. WARN_ON(pll->active);
  2644. }
  2645. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2646. }
  2647. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2648. {
  2649. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2650. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2651. enum intel_dpll_id i;
  2652. if (pll) {
  2653. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2654. crtc->base.base.id, pll->name);
  2655. intel_put_shared_dpll(crtc);
  2656. }
  2657. if (HAS_PCH_IBX(dev_priv->dev)) {
  2658. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2659. i = crtc->pipe;
  2660. pll = &dev_priv->shared_dplls[i];
  2661. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2662. crtc->base.base.id, pll->name);
  2663. goto found;
  2664. }
  2665. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2666. pll = &dev_priv->shared_dplls[i];
  2667. /* Only want to check enabled timings first */
  2668. if (pll->refcount == 0)
  2669. continue;
  2670. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2671. sizeof(pll->hw_state)) == 0) {
  2672. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2673. crtc->base.base.id,
  2674. pll->name, pll->refcount, pll->active);
  2675. goto found;
  2676. }
  2677. }
  2678. /* Ok no matching timings, maybe there's a free one? */
  2679. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2680. pll = &dev_priv->shared_dplls[i];
  2681. if (pll->refcount == 0) {
  2682. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2683. crtc->base.base.id, pll->name);
  2684. goto found;
  2685. }
  2686. }
  2687. return NULL;
  2688. found:
  2689. crtc->config.shared_dpll = i;
  2690. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2691. pipe_name(crtc->pipe));
  2692. if (pll->active == 0) {
  2693. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2694. sizeof(pll->hw_state));
  2695. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2696. WARN_ON(pll->on);
  2697. assert_shared_dpll_disabled(dev_priv, pll);
  2698. pll->mode_set(dev_priv, pll);
  2699. }
  2700. pll->refcount++;
  2701. return pll;
  2702. }
  2703. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2704. {
  2705. struct drm_i915_private *dev_priv = dev->dev_private;
  2706. int dslreg = PIPEDSL(pipe);
  2707. u32 temp;
  2708. temp = I915_READ(dslreg);
  2709. udelay(500);
  2710. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2711. if (wait_for(I915_READ(dslreg) != temp, 5))
  2712. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2713. }
  2714. }
  2715. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2716. {
  2717. struct drm_device *dev = crtc->base.dev;
  2718. struct drm_i915_private *dev_priv = dev->dev_private;
  2719. int pipe = crtc->pipe;
  2720. if (crtc->config.pch_pfit.size) {
  2721. /* Force use of hard-coded filter coefficients
  2722. * as some pre-programmed values are broken,
  2723. * e.g. x201.
  2724. */
  2725. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2726. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2727. PF_PIPE_SEL_IVB(pipe));
  2728. else
  2729. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2730. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2731. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2732. }
  2733. }
  2734. static void intel_enable_planes(struct drm_crtc *crtc)
  2735. {
  2736. struct drm_device *dev = crtc->dev;
  2737. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2738. struct intel_plane *intel_plane;
  2739. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2740. if (intel_plane->pipe == pipe)
  2741. intel_plane_restore(&intel_plane->base);
  2742. }
  2743. static void intel_disable_planes(struct drm_crtc *crtc)
  2744. {
  2745. struct drm_device *dev = crtc->dev;
  2746. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2747. struct intel_plane *intel_plane;
  2748. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2749. if (intel_plane->pipe == pipe)
  2750. intel_plane_disable(&intel_plane->base);
  2751. }
  2752. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2753. {
  2754. struct drm_device *dev = crtc->dev;
  2755. struct drm_i915_private *dev_priv = dev->dev_private;
  2756. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2757. struct intel_encoder *encoder;
  2758. int pipe = intel_crtc->pipe;
  2759. int plane = intel_crtc->plane;
  2760. WARN_ON(!crtc->enabled);
  2761. if (intel_crtc->active)
  2762. return;
  2763. intel_crtc->active = true;
  2764. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2765. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2766. intel_update_watermarks(dev);
  2767. for_each_encoder_on_crtc(dev, crtc, encoder)
  2768. if (encoder->pre_enable)
  2769. encoder->pre_enable(encoder);
  2770. if (intel_crtc->config.has_pch_encoder) {
  2771. /* Note: FDI PLL enabling _must_ be done before we enable the
  2772. * cpu pipes, hence this is separate from all the other fdi/pch
  2773. * enabling. */
  2774. ironlake_fdi_pll_enable(intel_crtc);
  2775. } else {
  2776. assert_fdi_tx_disabled(dev_priv, pipe);
  2777. assert_fdi_rx_disabled(dev_priv, pipe);
  2778. }
  2779. ironlake_pfit_enable(intel_crtc);
  2780. /*
  2781. * On ILK+ LUT must be loaded before the pipe is running but with
  2782. * clocks enabled
  2783. */
  2784. intel_crtc_load_lut(crtc);
  2785. intel_enable_pipe(dev_priv, pipe,
  2786. intel_crtc->config.has_pch_encoder);
  2787. intel_enable_plane(dev_priv, plane, pipe);
  2788. intel_enable_planes(crtc);
  2789. intel_crtc_update_cursor(crtc, true);
  2790. if (intel_crtc->config.has_pch_encoder)
  2791. ironlake_pch_enable(crtc);
  2792. mutex_lock(&dev->struct_mutex);
  2793. intel_update_fbc(dev);
  2794. mutex_unlock(&dev->struct_mutex);
  2795. for_each_encoder_on_crtc(dev, crtc, encoder)
  2796. encoder->enable(encoder);
  2797. if (HAS_PCH_CPT(dev))
  2798. cpt_verify_modeset(dev, intel_crtc->pipe);
  2799. /*
  2800. * There seems to be a race in PCH platform hw (at least on some
  2801. * outputs) where an enabled pipe still completes any pageflip right
  2802. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2803. * as the first vblank happend, everything works as expected. Hence just
  2804. * wait for one vblank before returning to avoid strange things
  2805. * happening.
  2806. */
  2807. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2808. }
  2809. /* IPS only exists on ULT machines and is tied to pipe A. */
  2810. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2811. {
  2812. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2813. }
  2814. static void hsw_enable_ips(struct intel_crtc *crtc)
  2815. {
  2816. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2817. if (!crtc->config.ips_enabled)
  2818. return;
  2819. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2820. * We guarantee that the plane is enabled by calling intel_enable_ips
  2821. * only after intel_enable_plane. And intel_enable_plane already waits
  2822. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2823. assert_plane_enabled(dev_priv, crtc->plane);
  2824. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2825. }
  2826. static void hsw_disable_ips(struct intel_crtc *crtc)
  2827. {
  2828. struct drm_device *dev = crtc->base.dev;
  2829. struct drm_i915_private *dev_priv = dev->dev_private;
  2830. if (!crtc->config.ips_enabled)
  2831. return;
  2832. assert_plane_enabled(dev_priv, crtc->plane);
  2833. I915_WRITE(IPS_CTL, 0);
  2834. /* We need to wait for a vblank before we can disable the plane. */
  2835. intel_wait_for_vblank(dev, crtc->pipe);
  2836. }
  2837. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2838. {
  2839. struct drm_device *dev = crtc->dev;
  2840. struct drm_i915_private *dev_priv = dev->dev_private;
  2841. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2842. struct intel_encoder *encoder;
  2843. int pipe = intel_crtc->pipe;
  2844. int plane = intel_crtc->plane;
  2845. WARN_ON(!crtc->enabled);
  2846. if (intel_crtc->active)
  2847. return;
  2848. intel_crtc->active = true;
  2849. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2850. if (intel_crtc->config.has_pch_encoder)
  2851. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2852. intel_update_watermarks(dev);
  2853. if (intel_crtc->config.has_pch_encoder)
  2854. dev_priv->display.fdi_link_train(crtc);
  2855. for_each_encoder_on_crtc(dev, crtc, encoder)
  2856. if (encoder->pre_enable)
  2857. encoder->pre_enable(encoder);
  2858. intel_ddi_enable_pipe_clock(intel_crtc);
  2859. ironlake_pfit_enable(intel_crtc);
  2860. /*
  2861. * On ILK+ LUT must be loaded before the pipe is running but with
  2862. * clocks enabled
  2863. */
  2864. intel_crtc_load_lut(crtc);
  2865. intel_ddi_set_pipe_settings(crtc);
  2866. intel_ddi_enable_transcoder_func(crtc);
  2867. intel_enable_pipe(dev_priv, pipe,
  2868. intel_crtc->config.has_pch_encoder);
  2869. intel_enable_plane(dev_priv, plane, pipe);
  2870. intel_enable_planes(crtc);
  2871. intel_crtc_update_cursor(crtc, true);
  2872. hsw_enable_ips(intel_crtc);
  2873. if (intel_crtc->config.has_pch_encoder)
  2874. lpt_pch_enable(crtc);
  2875. mutex_lock(&dev->struct_mutex);
  2876. intel_update_fbc(dev);
  2877. mutex_unlock(&dev->struct_mutex);
  2878. for_each_encoder_on_crtc(dev, crtc, encoder)
  2879. encoder->enable(encoder);
  2880. /*
  2881. * There seems to be a race in PCH platform hw (at least on some
  2882. * outputs) where an enabled pipe still completes any pageflip right
  2883. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2884. * as the first vblank happend, everything works as expected. Hence just
  2885. * wait for one vblank before returning to avoid strange things
  2886. * happening.
  2887. */
  2888. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2889. }
  2890. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2891. {
  2892. struct drm_device *dev = crtc->base.dev;
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. int pipe = crtc->pipe;
  2895. /* To avoid upsetting the power well on haswell only disable the pfit if
  2896. * it's in use. The hw state code will make sure we get this right. */
  2897. if (crtc->config.pch_pfit.size) {
  2898. I915_WRITE(PF_CTL(pipe), 0);
  2899. I915_WRITE(PF_WIN_POS(pipe), 0);
  2900. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2901. }
  2902. }
  2903. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2904. {
  2905. struct drm_device *dev = crtc->dev;
  2906. struct drm_i915_private *dev_priv = dev->dev_private;
  2907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2908. struct intel_encoder *encoder;
  2909. int pipe = intel_crtc->pipe;
  2910. int plane = intel_crtc->plane;
  2911. u32 reg, temp;
  2912. if (!intel_crtc->active)
  2913. return;
  2914. for_each_encoder_on_crtc(dev, crtc, encoder)
  2915. encoder->disable(encoder);
  2916. intel_crtc_wait_for_pending_flips(crtc);
  2917. drm_vblank_off(dev, pipe);
  2918. if (dev_priv->cfb_plane == plane)
  2919. intel_disable_fbc(dev);
  2920. intel_crtc_update_cursor(crtc, false);
  2921. intel_disable_planes(crtc);
  2922. intel_disable_plane(dev_priv, plane, pipe);
  2923. if (intel_crtc->config.has_pch_encoder)
  2924. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2925. intel_disable_pipe(dev_priv, pipe);
  2926. ironlake_pfit_disable(intel_crtc);
  2927. for_each_encoder_on_crtc(dev, crtc, encoder)
  2928. if (encoder->post_disable)
  2929. encoder->post_disable(encoder);
  2930. if (intel_crtc->config.has_pch_encoder) {
  2931. ironlake_fdi_disable(crtc);
  2932. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2933. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2934. if (HAS_PCH_CPT(dev)) {
  2935. /* disable TRANS_DP_CTL */
  2936. reg = TRANS_DP_CTL(pipe);
  2937. temp = I915_READ(reg);
  2938. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2939. TRANS_DP_PORT_SEL_MASK);
  2940. temp |= TRANS_DP_PORT_SEL_NONE;
  2941. I915_WRITE(reg, temp);
  2942. /* disable DPLL_SEL */
  2943. temp = I915_READ(PCH_DPLL_SEL);
  2944. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2945. I915_WRITE(PCH_DPLL_SEL, temp);
  2946. }
  2947. /* disable PCH DPLL */
  2948. intel_disable_shared_dpll(intel_crtc);
  2949. ironlake_fdi_pll_disable(intel_crtc);
  2950. }
  2951. intel_crtc->active = false;
  2952. intel_update_watermarks(dev);
  2953. mutex_lock(&dev->struct_mutex);
  2954. intel_update_fbc(dev);
  2955. mutex_unlock(&dev->struct_mutex);
  2956. }
  2957. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2958. {
  2959. struct drm_device *dev = crtc->dev;
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2962. struct intel_encoder *encoder;
  2963. int pipe = intel_crtc->pipe;
  2964. int plane = intel_crtc->plane;
  2965. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2966. if (!intel_crtc->active)
  2967. return;
  2968. for_each_encoder_on_crtc(dev, crtc, encoder)
  2969. encoder->disable(encoder);
  2970. intel_crtc_wait_for_pending_flips(crtc);
  2971. drm_vblank_off(dev, pipe);
  2972. /* FBC must be disabled before disabling the plane on HSW. */
  2973. if (dev_priv->cfb_plane == plane)
  2974. intel_disable_fbc(dev);
  2975. hsw_disable_ips(intel_crtc);
  2976. intel_crtc_update_cursor(crtc, false);
  2977. intel_disable_planes(crtc);
  2978. intel_disable_plane(dev_priv, plane, pipe);
  2979. if (intel_crtc->config.has_pch_encoder)
  2980. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2981. intel_disable_pipe(dev_priv, pipe);
  2982. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2983. ironlake_pfit_disable(intel_crtc);
  2984. intel_ddi_disable_pipe_clock(intel_crtc);
  2985. for_each_encoder_on_crtc(dev, crtc, encoder)
  2986. if (encoder->post_disable)
  2987. encoder->post_disable(encoder);
  2988. if (intel_crtc->config.has_pch_encoder) {
  2989. lpt_disable_pch_transcoder(dev_priv);
  2990. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2991. intel_ddi_fdi_disable(crtc);
  2992. }
  2993. intel_crtc->active = false;
  2994. intel_update_watermarks(dev);
  2995. mutex_lock(&dev->struct_mutex);
  2996. intel_update_fbc(dev);
  2997. mutex_unlock(&dev->struct_mutex);
  2998. }
  2999. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3000. {
  3001. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3002. intel_put_shared_dpll(intel_crtc);
  3003. }
  3004. static void haswell_crtc_off(struct drm_crtc *crtc)
  3005. {
  3006. intel_ddi_put_crtc_pll(crtc);
  3007. }
  3008. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3009. {
  3010. if (!enable && intel_crtc->overlay) {
  3011. struct drm_device *dev = intel_crtc->base.dev;
  3012. struct drm_i915_private *dev_priv = dev->dev_private;
  3013. mutex_lock(&dev->struct_mutex);
  3014. dev_priv->mm.interruptible = false;
  3015. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3016. dev_priv->mm.interruptible = true;
  3017. mutex_unlock(&dev->struct_mutex);
  3018. }
  3019. /* Let userspace switch the overlay on again. In most cases userspace
  3020. * has to recompute where to put it anyway.
  3021. */
  3022. }
  3023. /**
  3024. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3025. * cursor plane briefly if not already running after enabling the display
  3026. * plane.
  3027. * This workaround avoids occasional blank screens when self refresh is
  3028. * enabled.
  3029. */
  3030. static void
  3031. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3032. {
  3033. u32 cntl = I915_READ(CURCNTR(pipe));
  3034. if ((cntl & CURSOR_MODE) == 0) {
  3035. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3036. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3037. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3038. intel_wait_for_vblank(dev_priv->dev, pipe);
  3039. I915_WRITE(CURCNTR(pipe), cntl);
  3040. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3041. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3042. }
  3043. }
  3044. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3045. {
  3046. struct drm_device *dev = crtc->base.dev;
  3047. struct drm_i915_private *dev_priv = dev->dev_private;
  3048. struct intel_crtc_config *pipe_config = &crtc->config;
  3049. if (!crtc->config.gmch_pfit.control)
  3050. return;
  3051. /*
  3052. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3053. * according to register description and PRM.
  3054. */
  3055. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3056. assert_pipe_disabled(dev_priv, crtc->pipe);
  3057. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3058. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3059. /* Border color in case we don't scale up to the full screen. Black by
  3060. * default, change to something else for debugging. */
  3061. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3062. }
  3063. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3064. {
  3065. struct drm_device *dev = crtc->dev;
  3066. struct drm_i915_private *dev_priv = dev->dev_private;
  3067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3068. struct intel_encoder *encoder;
  3069. int pipe = intel_crtc->pipe;
  3070. int plane = intel_crtc->plane;
  3071. WARN_ON(!crtc->enabled);
  3072. if (intel_crtc->active)
  3073. return;
  3074. intel_crtc->active = true;
  3075. intel_update_watermarks(dev);
  3076. mutex_lock(&dev_priv->dpio_lock);
  3077. for_each_encoder_on_crtc(dev, crtc, encoder)
  3078. if (encoder->pre_pll_enable)
  3079. encoder->pre_pll_enable(encoder);
  3080. vlv_enable_pll(dev_priv, pipe);
  3081. for_each_encoder_on_crtc(dev, crtc, encoder)
  3082. if (encoder->pre_enable)
  3083. encoder->pre_enable(encoder);
  3084. /* VLV wants encoder enabling _before_ the pipe is up. */
  3085. for_each_encoder_on_crtc(dev, crtc, encoder)
  3086. encoder->enable(encoder);
  3087. i9xx_pfit_enable(intel_crtc);
  3088. intel_crtc_load_lut(crtc);
  3089. intel_enable_pipe(dev_priv, pipe, false);
  3090. intel_enable_plane(dev_priv, plane, pipe);
  3091. intel_enable_planes(crtc);
  3092. intel_crtc_update_cursor(crtc, true);
  3093. intel_update_fbc(dev);
  3094. mutex_unlock(&dev_priv->dpio_lock);
  3095. }
  3096. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3097. {
  3098. struct drm_device *dev = crtc->dev;
  3099. struct drm_i915_private *dev_priv = dev->dev_private;
  3100. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3101. struct intel_encoder *encoder;
  3102. int pipe = intel_crtc->pipe;
  3103. int plane = intel_crtc->plane;
  3104. WARN_ON(!crtc->enabled);
  3105. if (intel_crtc->active)
  3106. return;
  3107. intel_crtc->active = true;
  3108. intel_update_watermarks(dev);
  3109. for_each_encoder_on_crtc(dev, crtc, encoder)
  3110. if (encoder->pre_enable)
  3111. encoder->pre_enable(encoder);
  3112. i9xx_enable_pll(intel_crtc);
  3113. i9xx_pfit_enable(intel_crtc);
  3114. intel_crtc_load_lut(crtc);
  3115. intel_enable_pipe(dev_priv, pipe, false);
  3116. intel_enable_plane(dev_priv, plane, pipe);
  3117. intel_enable_planes(crtc);
  3118. /* The fixup needs to happen before cursor is enabled */
  3119. if (IS_G4X(dev))
  3120. g4x_fixup_plane(dev_priv, pipe);
  3121. intel_crtc_update_cursor(crtc, true);
  3122. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3123. intel_crtc_dpms_overlay(intel_crtc, true);
  3124. intel_update_fbc(dev);
  3125. for_each_encoder_on_crtc(dev, crtc, encoder)
  3126. encoder->enable(encoder);
  3127. }
  3128. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3129. {
  3130. struct drm_device *dev = crtc->base.dev;
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. if (!crtc->config.gmch_pfit.control)
  3133. return;
  3134. assert_pipe_disabled(dev_priv, crtc->pipe);
  3135. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3136. I915_READ(PFIT_CONTROL));
  3137. I915_WRITE(PFIT_CONTROL, 0);
  3138. }
  3139. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3140. {
  3141. struct drm_device *dev = crtc->dev;
  3142. struct drm_i915_private *dev_priv = dev->dev_private;
  3143. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3144. struct intel_encoder *encoder;
  3145. int pipe = intel_crtc->pipe;
  3146. int plane = intel_crtc->plane;
  3147. if (!intel_crtc->active)
  3148. return;
  3149. for_each_encoder_on_crtc(dev, crtc, encoder)
  3150. encoder->disable(encoder);
  3151. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3152. intel_crtc_wait_for_pending_flips(crtc);
  3153. drm_vblank_off(dev, pipe);
  3154. if (dev_priv->cfb_plane == plane)
  3155. intel_disable_fbc(dev);
  3156. intel_crtc_dpms_overlay(intel_crtc, false);
  3157. intel_crtc_update_cursor(crtc, false);
  3158. intel_disable_planes(crtc);
  3159. intel_disable_plane(dev_priv, plane, pipe);
  3160. intel_disable_pipe(dev_priv, pipe);
  3161. i9xx_pfit_disable(intel_crtc);
  3162. for_each_encoder_on_crtc(dev, crtc, encoder)
  3163. if (encoder->post_disable)
  3164. encoder->post_disable(encoder);
  3165. intel_disable_pll(dev_priv, pipe);
  3166. intel_crtc->active = false;
  3167. intel_update_fbc(dev);
  3168. intel_update_watermarks(dev);
  3169. }
  3170. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3171. {
  3172. }
  3173. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3174. bool enabled)
  3175. {
  3176. struct drm_device *dev = crtc->dev;
  3177. struct drm_i915_master_private *master_priv;
  3178. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3179. int pipe = intel_crtc->pipe;
  3180. if (!dev->primary->master)
  3181. return;
  3182. master_priv = dev->primary->master->driver_priv;
  3183. if (!master_priv->sarea_priv)
  3184. return;
  3185. switch (pipe) {
  3186. case 0:
  3187. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3188. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3189. break;
  3190. case 1:
  3191. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3192. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3193. break;
  3194. default:
  3195. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3196. break;
  3197. }
  3198. }
  3199. /**
  3200. * Sets the power management mode of the pipe and plane.
  3201. */
  3202. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3203. {
  3204. struct drm_device *dev = crtc->dev;
  3205. struct drm_i915_private *dev_priv = dev->dev_private;
  3206. struct intel_encoder *intel_encoder;
  3207. bool enable = false;
  3208. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3209. enable |= intel_encoder->connectors_active;
  3210. if (enable)
  3211. dev_priv->display.crtc_enable(crtc);
  3212. else
  3213. dev_priv->display.crtc_disable(crtc);
  3214. intel_crtc_update_sarea(crtc, enable);
  3215. }
  3216. static void intel_crtc_disable(struct drm_crtc *crtc)
  3217. {
  3218. struct drm_device *dev = crtc->dev;
  3219. struct drm_connector *connector;
  3220. struct drm_i915_private *dev_priv = dev->dev_private;
  3221. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3222. /* crtc should still be enabled when we disable it. */
  3223. WARN_ON(!crtc->enabled);
  3224. dev_priv->display.crtc_disable(crtc);
  3225. intel_crtc->eld_vld = false;
  3226. intel_crtc_update_sarea(crtc, false);
  3227. dev_priv->display.off(crtc);
  3228. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3229. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3230. if (crtc->fb) {
  3231. mutex_lock(&dev->struct_mutex);
  3232. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3233. mutex_unlock(&dev->struct_mutex);
  3234. crtc->fb = NULL;
  3235. }
  3236. /* Update computed state. */
  3237. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3238. if (!connector->encoder || !connector->encoder->crtc)
  3239. continue;
  3240. if (connector->encoder->crtc != crtc)
  3241. continue;
  3242. connector->dpms = DRM_MODE_DPMS_OFF;
  3243. to_intel_encoder(connector->encoder)->connectors_active = false;
  3244. }
  3245. }
  3246. void intel_modeset_disable(struct drm_device *dev)
  3247. {
  3248. struct drm_crtc *crtc;
  3249. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3250. if (crtc->enabled)
  3251. intel_crtc_disable(crtc);
  3252. }
  3253. }
  3254. void intel_encoder_destroy(struct drm_encoder *encoder)
  3255. {
  3256. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3257. drm_encoder_cleanup(encoder);
  3258. kfree(intel_encoder);
  3259. }
  3260. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3261. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3262. * state of the entire output pipe. */
  3263. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3264. {
  3265. if (mode == DRM_MODE_DPMS_ON) {
  3266. encoder->connectors_active = true;
  3267. intel_crtc_update_dpms(encoder->base.crtc);
  3268. } else {
  3269. encoder->connectors_active = false;
  3270. intel_crtc_update_dpms(encoder->base.crtc);
  3271. }
  3272. }
  3273. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3274. * internal consistency). */
  3275. static void intel_connector_check_state(struct intel_connector *connector)
  3276. {
  3277. if (connector->get_hw_state(connector)) {
  3278. struct intel_encoder *encoder = connector->encoder;
  3279. struct drm_crtc *crtc;
  3280. bool encoder_enabled;
  3281. enum pipe pipe;
  3282. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3283. connector->base.base.id,
  3284. drm_get_connector_name(&connector->base));
  3285. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3286. "wrong connector dpms state\n");
  3287. WARN(connector->base.encoder != &encoder->base,
  3288. "active connector not linked to encoder\n");
  3289. WARN(!encoder->connectors_active,
  3290. "encoder->connectors_active not set\n");
  3291. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3292. WARN(!encoder_enabled, "encoder not enabled\n");
  3293. if (WARN_ON(!encoder->base.crtc))
  3294. return;
  3295. crtc = encoder->base.crtc;
  3296. WARN(!crtc->enabled, "crtc not enabled\n");
  3297. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3298. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3299. "encoder active on the wrong pipe\n");
  3300. }
  3301. }
  3302. /* Even simpler default implementation, if there's really no special case to
  3303. * consider. */
  3304. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3305. {
  3306. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3307. /* All the simple cases only support two dpms states. */
  3308. if (mode != DRM_MODE_DPMS_ON)
  3309. mode = DRM_MODE_DPMS_OFF;
  3310. if (mode == connector->dpms)
  3311. return;
  3312. connector->dpms = mode;
  3313. /* Only need to change hw state when actually enabled */
  3314. if (encoder->base.crtc)
  3315. intel_encoder_dpms(encoder, mode);
  3316. else
  3317. WARN_ON(encoder->connectors_active != false);
  3318. intel_modeset_check_state(connector->dev);
  3319. }
  3320. /* Simple connector->get_hw_state implementation for encoders that support only
  3321. * one connector and no cloning and hence the encoder state determines the state
  3322. * of the connector. */
  3323. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3324. {
  3325. enum pipe pipe = 0;
  3326. struct intel_encoder *encoder = connector->encoder;
  3327. return encoder->get_hw_state(encoder, &pipe);
  3328. }
  3329. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3330. struct intel_crtc_config *pipe_config)
  3331. {
  3332. struct drm_i915_private *dev_priv = dev->dev_private;
  3333. struct intel_crtc *pipe_B_crtc =
  3334. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3335. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3336. pipe_name(pipe), pipe_config->fdi_lanes);
  3337. if (pipe_config->fdi_lanes > 4) {
  3338. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3339. pipe_name(pipe), pipe_config->fdi_lanes);
  3340. return false;
  3341. }
  3342. if (IS_HASWELL(dev)) {
  3343. if (pipe_config->fdi_lanes > 2) {
  3344. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3345. pipe_config->fdi_lanes);
  3346. return false;
  3347. } else {
  3348. return true;
  3349. }
  3350. }
  3351. if (INTEL_INFO(dev)->num_pipes == 2)
  3352. return true;
  3353. /* Ivybridge 3 pipe is really complicated */
  3354. switch (pipe) {
  3355. case PIPE_A:
  3356. return true;
  3357. case PIPE_B:
  3358. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3359. pipe_config->fdi_lanes > 2) {
  3360. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3361. pipe_name(pipe), pipe_config->fdi_lanes);
  3362. return false;
  3363. }
  3364. return true;
  3365. case PIPE_C:
  3366. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3367. pipe_B_crtc->config.fdi_lanes <= 2) {
  3368. if (pipe_config->fdi_lanes > 2) {
  3369. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3370. pipe_name(pipe), pipe_config->fdi_lanes);
  3371. return false;
  3372. }
  3373. } else {
  3374. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3375. return false;
  3376. }
  3377. return true;
  3378. default:
  3379. BUG();
  3380. }
  3381. }
  3382. #define RETRY 1
  3383. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3384. struct intel_crtc_config *pipe_config)
  3385. {
  3386. struct drm_device *dev = intel_crtc->base.dev;
  3387. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3388. int lane, link_bw, fdi_dotclock;
  3389. bool setup_ok, needs_recompute = false;
  3390. retry:
  3391. /* FDI is a binary signal running at ~2.7GHz, encoding
  3392. * each output octet as 10 bits. The actual frequency
  3393. * is stored as a divider into a 100MHz clock, and the
  3394. * mode pixel clock is stored in units of 1KHz.
  3395. * Hence the bw of each lane in terms of the mode signal
  3396. * is:
  3397. */
  3398. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3399. fdi_dotclock = adjusted_mode->clock;
  3400. fdi_dotclock /= pipe_config->pixel_multiplier;
  3401. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3402. pipe_config->pipe_bpp);
  3403. pipe_config->fdi_lanes = lane;
  3404. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3405. link_bw, &pipe_config->fdi_m_n);
  3406. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3407. intel_crtc->pipe, pipe_config);
  3408. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3409. pipe_config->pipe_bpp -= 2*3;
  3410. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3411. pipe_config->pipe_bpp);
  3412. needs_recompute = true;
  3413. pipe_config->bw_constrained = true;
  3414. goto retry;
  3415. }
  3416. if (needs_recompute)
  3417. return RETRY;
  3418. return setup_ok ? 0 : -EINVAL;
  3419. }
  3420. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3421. struct intel_crtc_config *pipe_config)
  3422. {
  3423. pipe_config->ips_enabled = i915_enable_ips &&
  3424. hsw_crtc_supports_ips(crtc) &&
  3425. pipe_config->pipe_bpp == 24;
  3426. }
  3427. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3428. struct intel_crtc_config *pipe_config)
  3429. {
  3430. struct drm_device *dev = crtc->base.dev;
  3431. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3432. if (HAS_PCH_SPLIT(dev)) {
  3433. /* FDI link clock is fixed at 2.7G */
  3434. if (pipe_config->requested_mode.clock * 3
  3435. > IRONLAKE_FDI_FREQ * 4)
  3436. return -EINVAL;
  3437. }
  3438. /* All interlaced capable intel hw wants timings in frames. Note though
  3439. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3440. * timings, so we need to be careful not to clobber these.*/
  3441. if (!pipe_config->timings_set)
  3442. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3443. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3444. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3445. */
  3446. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3447. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3448. return -EINVAL;
  3449. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3450. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3451. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3452. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3453. * for lvds. */
  3454. pipe_config->pipe_bpp = 8*3;
  3455. }
  3456. if (HAS_IPS(dev))
  3457. hsw_compute_ips_config(crtc, pipe_config);
  3458. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3459. * clock survives for now. */
  3460. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3461. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3462. if (pipe_config->has_pch_encoder)
  3463. return ironlake_fdi_compute_config(crtc, pipe_config);
  3464. return 0;
  3465. }
  3466. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3467. {
  3468. return 400000; /* FIXME */
  3469. }
  3470. static int i945_get_display_clock_speed(struct drm_device *dev)
  3471. {
  3472. return 400000;
  3473. }
  3474. static int i915_get_display_clock_speed(struct drm_device *dev)
  3475. {
  3476. return 333000;
  3477. }
  3478. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3479. {
  3480. return 200000;
  3481. }
  3482. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3483. {
  3484. u16 gcfgc = 0;
  3485. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3486. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3487. return 133000;
  3488. else {
  3489. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3490. case GC_DISPLAY_CLOCK_333_MHZ:
  3491. return 333000;
  3492. default:
  3493. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3494. return 190000;
  3495. }
  3496. }
  3497. }
  3498. static int i865_get_display_clock_speed(struct drm_device *dev)
  3499. {
  3500. return 266000;
  3501. }
  3502. static int i855_get_display_clock_speed(struct drm_device *dev)
  3503. {
  3504. u16 hpllcc = 0;
  3505. /* Assume that the hardware is in the high speed state. This
  3506. * should be the default.
  3507. */
  3508. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3509. case GC_CLOCK_133_200:
  3510. case GC_CLOCK_100_200:
  3511. return 200000;
  3512. case GC_CLOCK_166_250:
  3513. return 250000;
  3514. case GC_CLOCK_100_133:
  3515. return 133000;
  3516. }
  3517. /* Shouldn't happen */
  3518. return 0;
  3519. }
  3520. static int i830_get_display_clock_speed(struct drm_device *dev)
  3521. {
  3522. return 133000;
  3523. }
  3524. static void
  3525. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3526. {
  3527. while (*num > DATA_LINK_M_N_MASK ||
  3528. *den > DATA_LINK_M_N_MASK) {
  3529. *num >>= 1;
  3530. *den >>= 1;
  3531. }
  3532. }
  3533. static void compute_m_n(unsigned int m, unsigned int n,
  3534. uint32_t *ret_m, uint32_t *ret_n)
  3535. {
  3536. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3537. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3538. intel_reduce_m_n_ratio(ret_m, ret_n);
  3539. }
  3540. void
  3541. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3542. int pixel_clock, int link_clock,
  3543. struct intel_link_m_n *m_n)
  3544. {
  3545. m_n->tu = 64;
  3546. compute_m_n(bits_per_pixel * pixel_clock,
  3547. link_clock * nlanes * 8,
  3548. &m_n->gmch_m, &m_n->gmch_n);
  3549. compute_m_n(pixel_clock, link_clock,
  3550. &m_n->link_m, &m_n->link_n);
  3551. }
  3552. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3553. {
  3554. if (i915_panel_use_ssc >= 0)
  3555. return i915_panel_use_ssc != 0;
  3556. return dev_priv->vbt.lvds_use_ssc
  3557. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3558. }
  3559. static int vlv_get_refclk(struct drm_crtc *crtc)
  3560. {
  3561. struct drm_device *dev = crtc->dev;
  3562. struct drm_i915_private *dev_priv = dev->dev_private;
  3563. int refclk = 27000; /* for DP & HDMI */
  3564. return 100000; /* only one validated so far */
  3565. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3566. refclk = 96000;
  3567. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3568. if (intel_panel_use_ssc(dev_priv))
  3569. refclk = 100000;
  3570. else
  3571. refclk = 96000;
  3572. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3573. refclk = 100000;
  3574. }
  3575. return refclk;
  3576. }
  3577. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3578. {
  3579. struct drm_device *dev = crtc->dev;
  3580. struct drm_i915_private *dev_priv = dev->dev_private;
  3581. int refclk;
  3582. if (IS_VALLEYVIEW(dev)) {
  3583. refclk = vlv_get_refclk(crtc);
  3584. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3585. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3586. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3587. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3588. refclk / 1000);
  3589. } else if (!IS_GEN2(dev)) {
  3590. refclk = 96000;
  3591. } else {
  3592. refclk = 48000;
  3593. }
  3594. return refclk;
  3595. }
  3596. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3597. {
  3598. return (1 << dpll->n) << 16 | dpll->m2;
  3599. }
  3600. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3601. {
  3602. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3603. }
  3604. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3605. intel_clock_t *reduced_clock)
  3606. {
  3607. struct drm_device *dev = crtc->base.dev;
  3608. struct drm_i915_private *dev_priv = dev->dev_private;
  3609. int pipe = crtc->pipe;
  3610. u32 fp, fp2 = 0;
  3611. if (IS_PINEVIEW(dev)) {
  3612. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3613. if (reduced_clock)
  3614. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3615. } else {
  3616. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3617. if (reduced_clock)
  3618. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3619. }
  3620. I915_WRITE(FP0(pipe), fp);
  3621. crtc->config.dpll_hw_state.fp0 = fp;
  3622. crtc->lowfreq_avail = false;
  3623. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3624. reduced_clock && i915_powersave) {
  3625. I915_WRITE(FP1(pipe), fp2);
  3626. crtc->config.dpll_hw_state.fp1 = fp2;
  3627. crtc->lowfreq_avail = true;
  3628. } else {
  3629. I915_WRITE(FP1(pipe), fp);
  3630. crtc->config.dpll_hw_state.fp1 = fp;
  3631. }
  3632. }
  3633. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3634. {
  3635. u32 reg_val;
  3636. /*
  3637. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3638. * and set it to a reasonable value instead.
  3639. */
  3640. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3641. reg_val &= 0xffffff00;
  3642. reg_val |= 0x00000030;
  3643. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3644. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3645. reg_val &= 0x8cffffff;
  3646. reg_val = 0x8c000000;
  3647. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3648. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3649. reg_val &= 0xffffff00;
  3650. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3651. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3652. reg_val &= 0x00ffffff;
  3653. reg_val |= 0xb0000000;
  3654. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3655. }
  3656. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3657. struct intel_link_m_n *m_n)
  3658. {
  3659. struct drm_device *dev = crtc->base.dev;
  3660. struct drm_i915_private *dev_priv = dev->dev_private;
  3661. int pipe = crtc->pipe;
  3662. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3663. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3664. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3665. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3666. }
  3667. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3668. struct intel_link_m_n *m_n)
  3669. {
  3670. struct drm_device *dev = crtc->base.dev;
  3671. struct drm_i915_private *dev_priv = dev->dev_private;
  3672. int pipe = crtc->pipe;
  3673. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3674. if (INTEL_INFO(dev)->gen >= 5) {
  3675. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3676. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3677. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3678. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3679. } else {
  3680. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3681. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3682. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3683. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3684. }
  3685. }
  3686. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3687. {
  3688. if (crtc->config.has_pch_encoder)
  3689. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3690. else
  3691. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3692. }
  3693. static void vlv_update_pll(struct intel_crtc *crtc)
  3694. {
  3695. struct drm_device *dev = crtc->base.dev;
  3696. struct drm_i915_private *dev_priv = dev->dev_private;
  3697. struct intel_encoder *encoder;
  3698. int pipe = crtc->pipe;
  3699. u32 dpll, mdiv;
  3700. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3701. bool is_hdmi;
  3702. u32 coreclk, reg_val, dpll_md;
  3703. mutex_lock(&dev_priv->dpio_lock);
  3704. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3705. bestn = crtc->config.dpll.n;
  3706. bestm1 = crtc->config.dpll.m1;
  3707. bestm2 = crtc->config.dpll.m2;
  3708. bestp1 = crtc->config.dpll.p1;
  3709. bestp2 = crtc->config.dpll.p2;
  3710. /* See eDP HDMI DPIO driver vbios notes doc */
  3711. /* PLL B needs special handling */
  3712. if (pipe)
  3713. vlv_pllb_recal_opamp(dev_priv);
  3714. /* Set up Tx target for periodic Rcomp update */
  3715. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3716. /* Disable target IRef on PLL */
  3717. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3718. reg_val &= 0x00ffffff;
  3719. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3720. /* Disable fast lock */
  3721. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3722. /* Set idtafcrecal before PLL is enabled */
  3723. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3724. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3725. mdiv |= ((bestn << DPIO_N_SHIFT));
  3726. mdiv |= (1 << DPIO_K_SHIFT);
  3727. /*
  3728. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3729. * but we don't support that).
  3730. * Note: don't use the DAC post divider as it seems unstable.
  3731. */
  3732. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3733. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3734. mdiv |= DPIO_ENABLE_CALIBRATION;
  3735. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3736. /* Set HBR and RBR LPF coefficients */
  3737. if (crtc->config.port_clock == 162000 ||
  3738. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3739. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3740. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3741. 0x005f0021);
  3742. else
  3743. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3744. 0x00d0000f);
  3745. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3746. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3747. /* Use SSC source */
  3748. if (!pipe)
  3749. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3750. 0x0df40000);
  3751. else
  3752. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3753. 0x0df70000);
  3754. } else { /* HDMI or VGA */
  3755. /* Use bend source */
  3756. if (!pipe)
  3757. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3758. 0x0df70000);
  3759. else
  3760. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3761. 0x0df40000);
  3762. }
  3763. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3764. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3765. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3766. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3767. coreclk |= 0x01000000;
  3768. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3769. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3770. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3771. if (encoder->pre_pll_enable)
  3772. encoder->pre_pll_enable(encoder);
  3773. /* Enable DPIO clock input */
  3774. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3775. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3776. if (pipe)
  3777. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3778. dpll |= DPLL_VCO_ENABLE;
  3779. crtc->config.dpll_hw_state.dpll = dpll;
  3780. I915_WRITE(DPLL(pipe), dpll);
  3781. POSTING_READ(DPLL(pipe));
  3782. udelay(150);
  3783. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3784. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3785. dpll_md = (crtc->config.pixel_multiplier - 1)
  3786. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3787. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3788. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3789. POSTING_READ(DPLL_MD(pipe));
  3790. if (crtc->config.has_dp_encoder)
  3791. intel_dp_set_m_n(crtc);
  3792. mutex_unlock(&dev_priv->dpio_lock);
  3793. }
  3794. static void i9xx_update_pll(struct intel_crtc *crtc,
  3795. intel_clock_t *reduced_clock,
  3796. int num_connectors)
  3797. {
  3798. struct drm_device *dev = crtc->base.dev;
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. u32 dpll;
  3801. bool is_sdvo;
  3802. struct dpll *clock = &crtc->config.dpll;
  3803. i9xx_update_pll_dividers(crtc, reduced_clock);
  3804. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3805. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3806. dpll = DPLL_VGA_MODE_DIS;
  3807. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3808. dpll |= DPLLB_MODE_LVDS;
  3809. else
  3810. dpll |= DPLLB_MODE_DAC_SERIAL;
  3811. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3812. dpll |= (crtc->config.pixel_multiplier - 1)
  3813. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3814. }
  3815. if (is_sdvo)
  3816. dpll |= DPLL_DVO_HIGH_SPEED;
  3817. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3818. dpll |= DPLL_DVO_HIGH_SPEED;
  3819. /* compute bitmask from p1 value */
  3820. if (IS_PINEVIEW(dev))
  3821. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3822. else {
  3823. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3824. if (IS_G4X(dev) && reduced_clock)
  3825. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3826. }
  3827. switch (clock->p2) {
  3828. case 5:
  3829. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3830. break;
  3831. case 7:
  3832. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3833. break;
  3834. case 10:
  3835. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3836. break;
  3837. case 14:
  3838. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3839. break;
  3840. }
  3841. if (INTEL_INFO(dev)->gen >= 4)
  3842. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3843. if (crtc->config.sdvo_tv_clock)
  3844. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3845. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3846. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3847. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3848. else
  3849. dpll |= PLL_REF_INPUT_DREFCLK;
  3850. dpll |= DPLL_VCO_ENABLE;
  3851. crtc->config.dpll_hw_state.dpll = dpll;
  3852. if (INTEL_INFO(dev)->gen >= 4) {
  3853. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3854. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3855. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3856. }
  3857. if (crtc->config.has_dp_encoder)
  3858. intel_dp_set_m_n(crtc);
  3859. }
  3860. static void i8xx_update_pll(struct intel_crtc *crtc,
  3861. intel_clock_t *reduced_clock,
  3862. int num_connectors)
  3863. {
  3864. struct drm_device *dev = crtc->base.dev;
  3865. struct drm_i915_private *dev_priv = dev->dev_private;
  3866. u32 dpll;
  3867. struct dpll *clock = &crtc->config.dpll;
  3868. i9xx_update_pll_dividers(crtc, reduced_clock);
  3869. dpll = DPLL_VGA_MODE_DIS;
  3870. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3871. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3872. } else {
  3873. if (clock->p1 == 2)
  3874. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3875. else
  3876. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3877. if (clock->p2 == 4)
  3878. dpll |= PLL_P2_DIVIDE_BY_4;
  3879. }
  3880. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3881. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3882. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3883. else
  3884. dpll |= PLL_REF_INPUT_DREFCLK;
  3885. dpll |= DPLL_VCO_ENABLE;
  3886. crtc->config.dpll_hw_state.dpll = dpll;
  3887. }
  3888. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3889. {
  3890. struct drm_device *dev = intel_crtc->base.dev;
  3891. struct drm_i915_private *dev_priv = dev->dev_private;
  3892. enum pipe pipe = intel_crtc->pipe;
  3893. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3894. struct drm_display_mode *adjusted_mode =
  3895. &intel_crtc->config.adjusted_mode;
  3896. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3897. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3898. /* We need to be careful not to changed the adjusted mode, for otherwise
  3899. * the hw state checker will get angry at the mismatch. */
  3900. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3901. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3902. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3903. /* the chip adds 2 halflines automatically */
  3904. crtc_vtotal -= 1;
  3905. crtc_vblank_end -= 1;
  3906. vsyncshift = adjusted_mode->crtc_hsync_start
  3907. - adjusted_mode->crtc_htotal / 2;
  3908. } else {
  3909. vsyncshift = 0;
  3910. }
  3911. if (INTEL_INFO(dev)->gen > 3)
  3912. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3913. I915_WRITE(HTOTAL(cpu_transcoder),
  3914. (adjusted_mode->crtc_hdisplay - 1) |
  3915. ((adjusted_mode->crtc_htotal - 1) << 16));
  3916. I915_WRITE(HBLANK(cpu_transcoder),
  3917. (adjusted_mode->crtc_hblank_start - 1) |
  3918. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3919. I915_WRITE(HSYNC(cpu_transcoder),
  3920. (adjusted_mode->crtc_hsync_start - 1) |
  3921. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3922. I915_WRITE(VTOTAL(cpu_transcoder),
  3923. (adjusted_mode->crtc_vdisplay - 1) |
  3924. ((crtc_vtotal - 1) << 16));
  3925. I915_WRITE(VBLANK(cpu_transcoder),
  3926. (adjusted_mode->crtc_vblank_start - 1) |
  3927. ((crtc_vblank_end - 1) << 16));
  3928. I915_WRITE(VSYNC(cpu_transcoder),
  3929. (adjusted_mode->crtc_vsync_start - 1) |
  3930. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3931. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3932. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3933. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3934. * bits. */
  3935. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3936. (pipe == PIPE_B || pipe == PIPE_C))
  3937. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3938. /* pipesrc controls the size that is scaled from, which should
  3939. * always be the user's requested size.
  3940. */
  3941. I915_WRITE(PIPESRC(pipe),
  3942. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3943. }
  3944. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3945. struct intel_crtc_config *pipe_config)
  3946. {
  3947. struct drm_device *dev = crtc->base.dev;
  3948. struct drm_i915_private *dev_priv = dev->dev_private;
  3949. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3950. uint32_t tmp;
  3951. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3952. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3953. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3954. tmp = I915_READ(HBLANK(cpu_transcoder));
  3955. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3956. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3957. tmp = I915_READ(HSYNC(cpu_transcoder));
  3958. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3959. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3960. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3961. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3962. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3963. tmp = I915_READ(VBLANK(cpu_transcoder));
  3964. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3965. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3966. tmp = I915_READ(VSYNC(cpu_transcoder));
  3967. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3968. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3969. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3970. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3971. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3972. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  3973. }
  3974. tmp = I915_READ(PIPESRC(crtc->pipe));
  3975. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  3976. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  3977. }
  3978. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3979. {
  3980. struct drm_device *dev = intel_crtc->base.dev;
  3981. struct drm_i915_private *dev_priv = dev->dev_private;
  3982. uint32_t pipeconf;
  3983. pipeconf = 0;
  3984. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3985. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3986. * core speed.
  3987. *
  3988. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3989. * pipe == 0 check?
  3990. */
  3991. if (intel_crtc->config.requested_mode.clock >
  3992. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3993. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3994. }
  3995. /* only g4x and later have fancy bpc/dither controls */
  3996. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  3997. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  3998. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  3999. pipeconf |= PIPECONF_DITHER_EN |
  4000. PIPECONF_DITHER_TYPE_SP;
  4001. switch (intel_crtc->config.pipe_bpp) {
  4002. case 18:
  4003. pipeconf |= PIPECONF_6BPC;
  4004. break;
  4005. case 24:
  4006. pipeconf |= PIPECONF_8BPC;
  4007. break;
  4008. case 30:
  4009. pipeconf |= PIPECONF_10BPC;
  4010. break;
  4011. default:
  4012. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4013. BUG();
  4014. }
  4015. }
  4016. if (HAS_PIPE_CXSR(dev)) {
  4017. if (intel_crtc->lowfreq_avail) {
  4018. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4019. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4020. } else {
  4021. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4022. }
  4023. }
  4024. if (!IS_GEN2(dev) &&
  4025. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4026. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4027. else
  4028. pipeconf |= PIPECONF_PROGRESSIVE;
  4029. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4030. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4031. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4032. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4033. }
  4034. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4035. int x, int y,
  4036. struct drm_framebuffer *fb)
  4037. {
  4038. struct drm_device *dev = crtc->dev;
  4039. struct drm_i915_private *dev_priv = dev->dev_private;
  4040. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4041. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4042. int pipe = intel_crtc->pipe;
  4043. int plane = intel_crtc->plane;
  4044. int refclk, num_connectors = 0;
  4045. intel_clock_t clock, reduced_clock;
  4046. u32 dspcntr;
  4047. bool ok, has_reduced_clock = false;
  4048. bool is_lvds = false;
  4049. struct intel_encoder *encoder;
  4050. const intel_limit_t *limit;
  4051. int ret;
  4052. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4053. switch (encoder->type) {
  4054. case INTEL_OUTPUT_LVDS:
  4055. is_lvds = true;
  4056. break;
  4057. }
  4058. num_connectors++;
  4059. }
  4060. refclk = i9xx_get_refclk(crtc, num_connectors);
  4061. /*
  4062. * Returns a set of divisors for the desired target clock with the given
  4063. * refclk, or FALSE. The returned values represent the clock equation:
  4064. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4065. */
  4066. limit = intel_limit(crtc, refclk);
  4067. ok = dev_priv->display.find_dpll(limit, crtc,
  4068. intel_crtc->config.port_clock,
  4069. refclk, NULL, &clock);
  4070. if (!ok && !intel_crtc->config.clock_set) {
  4071. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4072. return -EINVAL;
  4073. }
  4074. /* Ensure that the cursor is valid for the new mode before changing... */
  4075. intel_crtc_update_cursor(crtc, true);
  4076. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4077. /*
  4078. * Ensure we match the reduced clock's P to the target clock.
  4079. * If the clocks don't match, we can't switch the display clock
  4080. * by using the FP0/FP1. In such case we will disable the LVDS
  4081. * downclock feature.
  4082. */
  4083. has_reduced_clock =
  4084. dev_priv->display.find_dpll(limit, crtc,
  4085. dev_priv->lvds_downclock,
  4086. refclk, &clock,
  4087. &reduced_clock);
  4088. }
  4089. /* Compat-code for transition, will disappear. */
  4090. if (!intel_crtc->config.clock_set) {
  4091. intel_crtc->config.dpll.n = clock.n;
  4092. intel_crtc->config.dpll.m1 = clock.m1;
  4093. intel_crtc->config.dpll.m2 = clock.m2;
  4094. intel_crtc->config.dpll.p1 = clock.p1;
  4095. intel_crtc->config.dpll.p2 = clock.p2;
  4096. }
  4097. if (IS_GEN2(dev))
  4098. i8xx_update_pll(intel_crtc,
  4099. has_reduced_clock ? &reduced_clock : NULL,
  4100. num_connectors);
  4101. else if (IS_VALLEYVIEW(dev))
  4102. vlv_update_pll(intel_crtc);
  4103. else
  4104. i9xx_update_pll(intel_crtc,
  4105. has_reduced_clock ? &reduced_clock : NULL,
  4106. num_connectors);
  4107. /* Set up the display plane register */
  4108. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4109. if (!IS_VALLEYVIEW(dev)) {
  4110. if (pipe == 0)
  4111. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4112. else
  4113. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4114. }
  4115. intel_set_pipe_timings(intel_crtc);
  4116. /* pipesrc and dspsize control the size that is scaled from,
  4117. * which should always be the user's requested size.
  4118. */
  4119. I915_WRITE(DSPSIZE(plane),
  4120. ((mode->vdisplay - 1) << 16) |
  4121. (mode->hdisplay - 1));
  4122. I915_WRITE(DSPPOS(plane), 0);
  4123. i9xx_set_pipeconf(intel_crtc);
  4124. I915_WRITE(DSPCNTR(plane), dspcntr);
  4125. POSTING_READ(DSPCNTR(plane));
  4126. ret = intel_pipe_set_base(crtc, x, y, fb);
  4127. intel_update_watermarks(dev);
  4128. return ret;
  4129. }
  4130. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4131. struct intel_crtc_config *pipe_config)
  4132. {
  4133. struct drm_device *dev = crtc->base.dev;
  4134. struct drm_i915_private *dev_priv = dev->dev_private;
  4135. uint32_t tmp;
  4136. tmp = I915_READ(PFIT_CONTROL);
  4137. if (INTEL_INFO(dev)->gen < 4) {
  4138. if (crtc->pipe != PIPE_B)
  4139. return;
  4140. /* gen2/3 store dither state in pfit control, needs to match */
  4141. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4142. } else {
  4143. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4144. return;
  4145. }
  4146. if (!(tmp & PFIT_ENABLE))
  4147. return;
  4148. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4149. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4150. if (INTEL_INFO(dev)->gen < 5)
  4151. pipe_config->gmch_pfit.lvds_border_bits =
  4152. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4153. }
  4154. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4155. struct intel_crtc_config *pipe_config)
  4156. {
  4157. struct drm_device *dev = crtc->base.dev;
  4158. struct drm_i915_private *dev_priv = dev->dev_private;
  4159. uint32_t tmp;
  4160. pipe_config->cpu_transcoder = crtc->pipe;
  4161. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4162. tmp = I915_READ(PIPECONF(crtc->pipe));
  4163. if (!(tmp & PIPECONF_ENABLE))
  4164. return false;
  4165. intel_get_pipe_timings(crtc, pipe_config);
  4166. i9xx_get_pfit_config(crtc, pipe_config);
  4167. if (INTEL_INFO(dev)->gen >= 4) {
  4168. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4169. pipe_config->pixel_multiplier =
  4170. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4171. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4172. pipe_config->dpll_hw_state.dpll_md = tmp;
  4173. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4174. tmp = I915_READ(DPLL(crtc->pipe));
  4175. pipe_config->pixel_multiplier =
  4176. ((tmp & SDVO_MULTIPLIER_MASK)
  4177. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4178. } else {
  4179. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4180. * port and will be fixed up in the encoder->get_config
  4181. * function. */
  4182. pipe_config->pixel_multiplier = 1;
  4183. }
  4184. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4185. if (!IS_VALLEYVIEW(dev)) {
  4186. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4187. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4188. } else {
  4189. /* Mask out read-only status bits. */
  4190. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4191. DPLL_PORTC_READY_MASK |
  4192. DPLL_PORTB_READY_MASK);
  4193. }
  4194. return true;
  4195. }
  4196. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4197. {
  4198. struct drm_i915_private *dev_priv = dev->dev_private;
  4199. struct drm_mode_config *mode_config = &dev->mode_config;
  4200. struct intel_encoder *encoder;
  4201. u32 val, final;
  4202. bool has_lvds = false;
  4203. bool has_cpu_edp = false;
  4204. bool has_panel = false;
  4205. bool has_ck505 = false;
  4206. bool can_ssc = false;
  4207. /* We need to take the global config into account */
  4208. list_for_each_entry(encoder, &mode_config->encoder_list,
  4209. base.head) {
  4210. switch (encoder->type) {
  4211. case INTEL_OUTPUT_LVDS:
  4212. has_panel = true;
  4213. has_lvds = true;
  4214. break;
  4215. case INTEL_OUTPUT_EDP:
  4216. has_panel = true;
  4217. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4218. has_cpu_edp = true;
  4219. break;
  4220. }
  4221. }
  4222. if (HAS_PCH_IBX(dev)) {
  4223. has_ck505 = dev_priv->vbt.display_clock_mode;
  4224. can_ssc = has_ck505;
  4225. } else {
  4226. has_ck505 = false;
  4227. can_ssc = true;
  4228. }
  4229. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4230. has_panel, has_lvds, has_ck505);
  4231. /* Ironlake: try to setup display ref clock before DPLL
  4232. * enabling. This is only under driver's control after
  4233. * PCH B stepping, previous chipset stepping should be
  4234. * ignoring this setting.
  4235. */
  4236. val = I915_READ(PCH_DREF_CONTROL);
  4237. /* As we must carefully and slowly disable/enable each source in turn,
  4238. * compute the final state we want first and check if we need to
  4239. * make any changes at all.
  4240. */
  4241. final = val;
  4242. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4243. if (has_ck505)
  4244. final |= DREF_NONSPREAD_CK505_ENABLE;
  4245. else
  4246. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4247. final &= ~DREF_SSC_SOURCE_MASK;
  4248. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4249. final &= ~DREF_SSC1_ENABLE;
  4250. if (has_panel) {
  4251. final |= DREF_SSC_SOURCE_ENABLE;
  4252. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4253. final |= DREF_SSC1_ENABLE;
  4254. if (has_cpu_edp) {
  4255. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4256. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4257. else
  4258. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4259. } else
  4260. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4261. } else {
  4262. final |= DREF_SSC_SOURCE_DISABLE;
  4263. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4264. }
  4265. if (final == val)
  4266. return;
  4267. /* Always enable nonspread source */
  4268. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4269. if (has_ck505)
  4270. val |= DREF_NONSPREAD_CK505_ENABLE;
  4271. else
  4272. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4273. if (has_panel) {
  4274. val &= ~DREF_SSC_SOURCE_MASK;
  4275. val |= DREF_SSC_SOURCE_ENABLE;
  4276. /* SSC must be turned on before enabling the CPU output */
  4277. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4278. DRM_DEBUG_KMS("Using SSC on panel\n");
  4279. val |= DREF_SSC1_ENABLE;
  4280. } else
  4281. val &= ~DREF_SSC1_ENABLE;
  4282. /* Get SSC going before enabling the outputs */
  4283. I915_WRITE(PCH_DREF_CONTROL, val);
  4284. POSTING_READ(PCH_DREF_CONTROL);
  4285. udelay(200);
  4286. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4287. /* Enable CPU source on CPU attached eDP */
  4288. if (has_cpu_edp) {
  4289. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4290. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4291. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4292. }
  4293. else
  4294. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4295. } else
  4296. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4297. I915_WRITE(PCH_DREF_CONTROL, val);
  4298. POSTING_READ(PCH_DREF_CONTROL);
  4299. udelay(200);
  4300. } else {
  4301. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4302. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4303. /* Turn off CPU output */
  4304. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4305. I915_WRITE(PCH_DREF_CONTROL, val);
  4306. POSTING_READ(PCH_DREF_CONTROL);
  4307. udelay(200);
  4308. /* Turn off the SSC source */
  4309. val &= ~DREF_SSC_SOURCE_MASK;
  4310. val |= DREF_SSC_SOURCE_DISABLE;
  4311. /* Turn off SSC1 */
  4312. val &= ~DREF_SSC1_ENABLE;
  4313. I915_WRITE(PCH_DREF_CONTROL, val);
  4314. POSTING_READ(PCH_DREF_CONTROL);
  4315. udelay(200);
  4316. }
  4317. BUG_ON(val != final);
  4318. }
  4319. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4320. static void lpt_init_pch_refclk(struct drm_device *dev)
  4321. {
  4322. struct drm_i915_private *dev_priv = dev->dev_private;
  4323. struct drm_mode_config *mode_config = &dev->mode_config;
  4324. struct intel_encoder *encoder;
  4325. bool has_vga = false;
  4326. bool is_sdv = false;
  4327. u32 tmp;
  4328. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4329. switch (encoder->type) {
  4330. case INTEL_OUTPUT_ANALOG:
  4331. has_vga = true;
  4332. break;
  4333. }
  4334. }
  4335. if (!has_vga)
  4336. return;
  4337. mutex_lock(&dev_priv->dpio_lock);
  4338. /* XXX: Rip out SDV support once Haswell ships for real. */
  4339. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4340. is_sdv = true;
  4341. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4342. tmp &= ~SBI_SSCCTL_DISABLE;
  4343. tmp |= SBI_SSCCTL_PATHALT;
  4344. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4345. udelay(24);
  4346. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4347. tmp &= ~SBI_SSCCTL_PATHALT;
  4348. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4349. if (!is_sdv) {
  4350. tmp = I915_READ(SOUTH_CHICKEN2);
  4351. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4352. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4353. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4354. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4355. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4356. tmp = I915_READ(SOUTH_CHICKEN2);
  4357. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4358. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4359. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4360. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4361. 100))
  4362. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4363. }
  4364. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4365. tmp &= ~(0xFF << 24);
  4366. tmp |= (0x12 << 24);
  4367. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4368. if (is_sdv) {
  4369. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4370. tmp |= 0x7FFF;
  4371. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4372. }
  4373. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4374. tmp |= (1 << 11);
  4375. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4376. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4377. tmp |= (1 << 11);
  4378. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4379. if (is_sdv) {
  4380. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4381. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4382. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4383. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4384. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4385. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4386. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4387. tmp |= (0x3F << 8);
  4388. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4389. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4390. tmp |= (0x3F << 8);
  4391. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4392. }
  4393. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4394. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4395. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4396. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4397. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4398. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4399. if (!is_sdv) {
  4400. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4401. tmp &= ~(7 << 13);
  4402. tmp |= (5 << 13);
  4403. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4404. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4405. tmp &= ~(7 << 13);
  4406. tmp |= (5 << 13);
  4407. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4408. }
  4409. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4410. tmp &= ~0xFF;
  4411. tmp |= 0x1C;
  4412. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4413. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4414. tmp &= ~0xFF;
  4415. tmp |= 0x1C;
  4416. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4417. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4418. tmp &= ~(0xFF << 16);
  4419. tmp |= (0x1C << 16);
  4420. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4422. tmp &= ~(0xFF << 16);
  4423. tmp |= (0x1C << 16);
  4424. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4425. if (!is_sdv) {
  4426. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4427. tmp |= (1 << 27);
  4428. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4430. tmp |= (1 << 27);
  4431. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4432. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4433. tmp &= ~(0xF << 28);
  4434. tmp |= (4 << 28);
  4435. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4436. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4437. tmp &= ~(0xF << 28);
  4438. tmp |= (4 << 28);
  4439. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4440. }
  4441. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4442. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4443. tmp |= SBI_DBUFF0_ENABLE;
  4444. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4445. mutex_unlock(&dev_priv->dpio_lock);
  4446. }
  4447. /*
  4448. * Initialize reference clocks when the driver loads
  4449. */
  4450. void intel_init_pch_refclk(struct drm_device *dev)
  4451. {
  4452. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4453. ironlake_init_pch_refclk(dev);
  4454. else if (HAS_PCH_LPT(dev))
  4455. lpt_init_pch_refclk(dev);
  4456. }
  4457. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4458. {
  4459. struct drm_device *dev = crtc->dev;
  4460. struct drm_i915_private *dev_priv = dev->dev_private;
  4461. struct intel_encoder *encoder;
  4462. int num_connectors = 0;
  4463. bool is_lvds = false;
  4464. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4465. switch (encoder->type) {
  4466. case INTEL_OUTPUT_LVDS:
  4467. is_lvds = true;
  4468. break;
  4469. }
  4470. num_connectors++;
  4471. }
  4472. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4473. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4474. dev_priv->vbt.lvds_ssc_freq);
  4475. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4476. }
  4477. return 120000;
  4478. }
  4479. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4480. {
  4481. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4482. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4483. int pipe = intel_crtc->pipe;
  4484. uint32_t val;
  4485. val = 0;
  4486. switch (intel_crtc->config.pipe_bpp) {
  4487. case 18:
  4488. val |= PIPECONF_6BPC;
  4489. break;
  4490. case 24:
  4491. val |= PIPECONF_8BPC;
  4492. break;
  4493. case 30:
  4494. val |= PIPECONF_10BPC;
  4495. break;
  4496. case 36:
  4497. val |= PIPECONF_12BPC;
  4498. break;
  4499. default:
  4500. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4501. BUG();
  4502. }
  4503. if (intel_crtc->config.dither)
  4504. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4505. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4506. val |= PIPECONF_INTERLACED_ILK;
  4507. else
  4508. val |= PIPECONF_PROGRESSIVE;
  4509. if (intel_crtc->config.limited_color_range)
  4510. val |= PIPECONF_COLOR_RANGE_SELECT;
  4511. I915_WRITE(PIPECONF(pipe), val);
  4512. POSTING_READ(PIPECONF(pipe));
  4513. }
  4514. /*
  4515. * Set up the pipe CSC unit.
  4516. *
  4517. * Currently only full range RGB to limited range RGB conversion
  4518. * is supported, but eventually this should handle various
  4519. * RGB<->YCbCr scenarios as well.
  4520. */
  4521. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4522. {
  4523. struct drm_device *dev = crtc->dev;
  4524. struct drm_i915_private *dev_priv = dev->dev_private;
  4525. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4526. int pipe = intel_crtc->pipe;
  4527. uint16_t coeff = 0x7800; /* 1.0 */
  4528. /*
  4529. * TODO: Check what kind of values actually come out of the pipe
  4530. * with these coeff/postoff values and adjust to get the best
  4531. * accuracy. Perhaps we even need to take the bpc value into
  4532. * consideration.
  4533. */
  4534. if (intel_crtc->config.limited_color_range)
  4535. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4536. /*
  4537. * GY/GU and RY/RU should be the other way around according
  4538. * to BSpec, but reality doesn't agree. Just set them up in
  4539. * a way that results in the correct picture.
  4540. */
  4541. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4542. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4543. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4544. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4545. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4546. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4547. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4548. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4549. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4550. if (INTEL_INFO(dev)->gen > 6) {
  4551. uint16_t postoff = 0;
  4552. if (intel_crtc->config.limited_color_range)
  4553. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4554. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4555. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4556. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4557. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4558. } else {
  4559. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4560. if (intel_crtc->config.limited_color_range)
  4561. mode |= CSC_BLACK_SCREEN_OFFSET;
  4562. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4563. }
  4564. }
  4565. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4566. {
  4567. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4568. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4569. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4570. uint32_t val;
  4571. val = 0;
  4572. if (intel_crtc->config.dither)
  4573. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4574. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4575. val |= PIPECONF_INTERLACED_ILK;
  4576. else
  4577. val |= PIPECONF_PROGRESSIVE;
  4578. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4579. POSTING_READ(PIPECONF(cpu_transcoder));
  4580. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4581. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4582. }
  4583. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4584. intel_clock_t *clock,
  4585. bool *has_reduced_clock,
  4586. intel_clock_t *reduced_clock)
  4587. {
  4588. struct drm_device *dev = crtc->dev;
  4589. struct drm_i915_private *dev_priv = dev->dev_private;
  4590. struct intel_encoder *intel_encoder;
  4591. int refclk;
  4592. const intel_limit_t *limit;
  4593. bool ret, is_lvds = false;
  4594. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4595. switch (intel_encoder->type) {
  4596. case INTEL_OUTPUT_LVDS:
  4597. is_lvds = true;
  4598. break;
  4599. }
  4600. }
  4601. refclk = ironlake_get_refclk(crtc);
  4602. /*
  4603. * Returns a set of divisors for the desired target clock with the given
  4604. * refclk, or FALSE. The returned values represent the clock equation:
  4605. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4606. */
  4607. limit = intel_limit(crtc, refclk);
  4608. ret = dev_priv->display.find_dpll(limit, crtc,
  4609. to_intel_crtc(crtc)->config.port_clock,
  4610. refclk, NULL, clock);
  4611. if (!ret)
  4612. return false;
  4613. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4614. /*
  4615. * Ensure we match the reduced clock's P to the target clock.
  4616. * If the clocks don't match, we can't switch the display clock
  4617. * by using the FP0/FP1. In such case we will disable the LVDS
  4618. * downclock feature.
  4619. */
  4620. *has_reduced_clock =
  4621. dev_priv->display.find_dpll(limit, crtc,
  4622. dev_priv->lvds_downclock,
  4623. refclk, clock,
  4624. reduced_clock);
  4625. }
  4626. return true;
  4627. }
  4628. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4629. {
  4630. struct drm_i915_private *dev_priv = dev->dev_private;
  4631. uint32_t temp;
  4632. temp = I915_READ(SOUTH_CHICKEN1);
  4633. if (temp & FDI_BC_BIFURCATION_SELECT)
  4634. return;
  4635. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4636. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4637. temp |= FDI_BC_BIFURCATION_SELECT;
  4638. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4639. I915_WRITE(SOUTH_CHICKEN1, temp);
  4640. POSTING_READ(SOUTH_CHICKEN1);
  4641. }
  4642. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4643. {
  4644. struct drm_device *dev = intel_crtc->base.dev;
  4645. struct drm_i915_private *dev_priv = dev->dev_private;
  4646. switch (intel_crtc->pipe) {
  4647. case PIPE_A:
  4648. break;
  4649. case PIPE_B:
  4650. if (intel_crtc->config.fdi_lanes > 2)
  4651. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4652. else
  4653. cpt_enable_fdi_bc_bifurcation(dev);
  4654. break;
  4655. case PIPE_C:
  4656. cpt_enable_fdi_bc_bifurcation(dev);
  4657. break;
  4658. default:
  4659. BUG();
  4660. }
  4661. }
  4662. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4663. {
  4664. /*
  4665. * Account for spread spectrum to avoid
  4666. * oversubscribing the link. Max center spread
  4667. * is 2.5%; use 5% for safety's sake.
  4668. */
  4669. u32 bps = target_clock * bpp * 21 / 20;
  4670. return bps / (link_bw * 8) + 1;
  4671. }
  4672. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4673. {
  4674. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4675. }
  4676. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4677. u32 *fp,
  4678. intel_clock_t *reduced_clock, u32 *fp2)
  4679. {
  4680. struct drm_crtc *crtc = &intel_crtc->base;
  4681. struct drm_device *dev = crtc->dev;
  4682. struct drm_i915_private *dev_priv = dev->dev_private;
  4683. struct intel_encoder *intel_encoder;
  4684. uint32_t dpll;
  4685. int factor, num_connectors = 0;
  4686. bool is_lvds = false, is_sdvo = false;
  4687. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4688. switch (intel_encoder->type) {
  4689. case INTEL_OUTPUT_LVDS:
  4690. is_lvds = true;
  4691. break;
  4692. case INTEL_OUTPUT_SDVO:
  4693. case INTEL_OUTPUT_HDMI:
  4694. is_sdvo = true;
  4695. break;
  4696. }
  4697. num_connectors++;
  4698. }
  4699. /* Enable autotuning of the PLL clock (if permissible) */
  4700. factor = 21;
  4701. if (is_lvds) {
  4702. if ((intel_panel_use_ssc(dev_priv) &&
  4703. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4704. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4705. factor = 25;
  4706. } else if (intel_crtc->config.sdvo_tv_clock)
  4707. factor = 20;
  4708. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4709. *fp |= FP_CB_TUNE;
  4710. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4711. *fp2 |= FP_CB_TUNE;
  4712. dpll = 0;
  4713. if (is_lvds)
  4714. dpll |= DPLLB_MODE_LVDS;
  4715. else
  4716. dpll |= DPLLB_MODE_DAC_SERIAL;
  4717. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4718. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4719. if (is_sdvo)
  4720. dpll |= DPLL_DVO_HIGH_SPEED;
  4721. if (intel_crtc->config.has_dp_encoder)
  4722. dpll |= DPLL_DVO_HIGH_SPEED;
  4723. /* compute bitmask from p1 value */
  4724. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4725. /* also FPA1 */
  4726. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4727. switch (intel_crtc->config.dpll.p2) {
  4728. case 5:
  4729. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4730. break;
  4731. case 7:
  4732. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4733. break;
  4734. case 10:
  4735. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4736. break;
  4737. case 14:
  4738. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4739. break;
  4740. }
  4741. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4742. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4743. else
  4744. dpll |= PLL_REF_INPUT_DREFCLK;
  4745. return dpll | DPLL_VCO_ENABLE;
  4746. }
  4747. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4748. int x, int y,
  4749. struct drm_framebuffer *fb)
  4750. {
  4751. struct drm_device *dev = crtc->dev;
  4752. struct drm_i915_private *dev_priv = dev->dev_private;
  4753. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4754. int pipe = intel_crtc->pipe;
  4755. int plane = intel_crtc->plane;
  4756. int num_connectors = 0;
  4757. intel_clock_t clock, reduced_clock;
  4758. u32 dpll = 0, fp = 0, fp2 = 0;
  4759. bool ok, has_reduced_clock = false;
  4760. bool is_lvds = false;
  4761. struct intel_encoder *encoder;
  4762. struct intel_shared_dpll *pll;
  4763. int ret;
  4764. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4765. switch (encoder->type) {
  4766. case INTEL_OUTPUT_LVDS:
  4767. is_lvds = true;
  4768. break;
  4769. }
  4770. num_connectors++;
  4771. }
  4772. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4773. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4774. ok = ironlake_compute_clocks(crtc, &clock,
  4775. &has_reduced_clock, &reduced_clock);
  4776. if (!ok && !intel_crtc->config.clock_set) {
  4777. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4778. return -EINVAL;
  4779. }
  4780. /* Compat-code for transition, will disappear. */
  4781. if (!intel_crtc->config.clock_set) {
  4782. intel_crtc->config.dpll.n = clock.n;
  4783. intel_crtc->config.dpll.m1 = clock.m1;
  4784. intel_crtc->config.dpll.m2 = clock.m2;
  4785. intel_crtc->config.dpll.p1 = clock.p1;
  4786. intel_crtc->config.dpll.p2 = clock.p2;
  4787. }
  4788. /* Ensure that the cursor is valid for the new mode before changing... */
  4789. intel_crtc_update_cursor(crtc, true);
  4790. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4791. if (intel_crtc->config.has_pch_encoder) {
  4792. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4793. if (has_reduced_clock)
  4794. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4795. dpll = ironlake_compute_dpll(intel_crtc,
  4796. &fp, &reduced_clock,
  4797. has_reduced_clock ? &fp2 : NULL);
  4798. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4799. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4800. if (has_reduced_clock)
  4801. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4802. else
  4803. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4804. pll = intel_get_shared_dpll(intel_crtc);
  4805. if (pll == NULL) {
  4806. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4807. pipe_name(pipe));
  4808. return -EINVAL;
  4809. }
  4810. } else
  4811. intel_put_shared_dpll(intel_crtc);
  4812. if (intel_crtc->config.has_dp_encoder)
  4813. intel_dp_set_m_n(intel_crtc);
  4814. if (is_lvds && has_reduced_clock && i915_powersave)
  4815. intel_crtc->lowfreq_avail = true;
  4816. else
  4817. intel_crtc->lowfreq_avail = false;
  4818. if (intel_crtc->config.has_pch_encoder) {
  4819. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4820. }
  4821. intel_set_pipe_timings(intel_crtc);
  4822. if (intel_crtc->config.has_pch_encoder) {
  4823. intel_cpu_transcoder_set_m_n(intel_crtc,
  4824. &intel_crtc->config.fdi_m_n);
  4825. }
  4826. if (IS_IVYBRIDGE(dev))
  4827. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4828. ironlake_set_pipeconf(crtc);
  4829. /* Set up the display plane register */
  4830. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4831. POSTING_READ(DSPCNTR(plane));
  4832. ret = intel_pipe_set_base(crtc, x, y, fb);
  4833. intel_update_watermarks(dev);
  4834. return ret;
  4835. }
  4836. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4837. struct intel_crtc_config *pipe_config)
  4838. {
  4839. struct drm_device *dev = crtc->base.dev;
  4840. struct drm_i915_private *dev_priv = dev->dev_private;
  4841. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4842. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4843. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4844. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4845. & ~TU_SIZE_MASK;
  4846. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4847. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4848. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4849. }
  4850. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4851. struct intel_crtc_config *pipe_config)
  4852. {
  4853. struct drm_device *dev = crtc->base.dev;
  4854. struct drm_i915_private *dev_priv = dev->dev_private;
  4855. uint32_t tmp;
  4856. tmp = I915_READ(PF_CTL(crtc->pipe));
  4857. if (tmp & PF_ENABLE) {
  4858. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4859. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4860. /* We currently do not free assignements of panel fitters on
  4861. * ivb/hsw (since we don't use the higher upscaling modes which
  4862. * differentiates them) so just WARN about this case for now. */
  4863. if (IS_GEN7(dev)) {
  4864. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4865. PF_PIPE_SEL_IVB(crtc->pipe));
  4866. }
  4867. }
  4868. }
  4869. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4870. struct intel_crtc_config *pipe_config)
  4871. {
  4872. struct drm_device *dev = crtc->base.dev;
  4873. struct drm_i915_private *dev_priv = dev->dev_private;
  4874. uint32_t tmp;
  4875. pipe_config->cpu_transcoder = crtc->pipe;
  4876. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4877. tmp = I915_READ(PIPECONF(crtc->pipe));
  4878. if (!(tmp & PIPECONF_ENABLE))
  4879. return false;
  4880. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4881. struct intel_shared_dpll *pll;
  4882. pipe_config->has_pch_encoder = true;
  4883. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4884. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4885. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4886. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4887. /* XXX: Can't properly read out the pch dpll pixel multiplier
  4888. * since we don't have state tracking for pch clocks yet. */
  4889. pipe_config->pixel_multiplier = 1;
  4890. if (HAS_PCH_IBX(dev_priv->dev)) {
  4891. pipe_config->shared_dpll = crtc->pipe;
  4892. } else {
  4893. tmp = I915_READ(PCH_DPLL_SEL);
  4894. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4895. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4896. else
  4897. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4898. }
  4899. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4900. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4901. &pipe_config->dpll_hw_state));
  4902. } else {
  4903. pipe_config->pixel_multiplier = 1;
  4904. }
  4905. intel_get_pipe_timings(crtc, pipe_config);
  4906. ironlake_get_pfit_config(crtc, pipe_config);
  4907. return true;
  4908. }
  4909. static void haswell_modeset_global_resources(struct drm_device *dev)
  4910. {
  4911. bool enable = false;
  4912. struct intel_crtc *crtc;
  4913. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4914. if (!crtc->base.enabled)
  4915. continue;
  4916. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4917. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4918. enable = true;
  4919. }
  4920. intel_set_power_well(dev, enable);
  4921. }
  4922. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4923. int x, int y,
  4924. struct drm_framebuffer *fb)
  4925. {
  4926. struct drm_device *dev = crtc->dev;
  4927. struct drm_i915_private *dev_priv = dev->dev_private;
  4928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4929. int plane = intel_crtc->plane;
  4930. int ret;
  4931. if (!intel_ddi_pll_mode_set(crtc))
  4932. return -EINVAL;
  4933. /* Ensure that the cursor is valid for the new mode before changing... */
  4934. intel_crtc_update_cursor(crtc, true);
  4935. if (intel_crtc->config.has_dp_encoder)
  4936. intel_dp_set_m_n(intel_crtc);
  4937. intel_crtc->lowfreq_avail = false;
  4938. intel_set_pipe_timings(intel_crtc);
  4939. if (intel_crtc->config.has_pch_encoder) {
  4940. intel_cpu_transcoder_set_m_n(intel_crtc,
  4941. &intel_crtc->config.fdi_m_n);
  4942. }
  4943. haswell_set_pipeconf(crtc);
  4944. intel_set_pipe_csc(crtc);
  4945. /* Set up the display plane register */
  4946. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4947. POSTING_READ(DSPCNTR(plane));
  4948. ret = intel_pipe_set_base(crtc, x, y, fb);
  4949. intel_update_watermarks(dev);
  4950. return ret;
  4951. }
  4952. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4953. struct intel_crtc_config *pipe_config)
  4954. {
  4955. struct drm_device *dev = crtc->base.dev;
  4956. struct drm_i915_private *dev_priv = dev->dev_private;
  4957. enum intel_display_power_domain pfit_domain;
  4958. uint32_t tmp;
  4959. pipe_config->cpu_transcoder = crtc->pipe;
  4960. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4961. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4962. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4963. enum pipe trans_edp_pipe;
  4964. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4965. default:
  4966. WARN(1, "unknown pipe linked to edp transcoder\n");
  4967. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4968. case TRANS_DDI_EDP_INPUT_A_ON:
  4969. trans_edp_pipe = PIPE_A;
  4970. break;
  4971. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  4972. trans_edp_pipe = PIPE_B;
  4973. break;
  4974. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  4975. trans_edp_pipe = PIPE_C;
  4976. break;
  4977. }
  4978. if (trans_edp_pipe == crtc->pipe)
  4979. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  4980. }
  4981. if (!intel_display_power_enabled(dev,
  4982. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  4983. return false;
  4984. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  4985. if (!(tmp & PIPECONF_ENABLE))
  4986. return false;
  4987. /*
  4988. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  4989. * DDI E. So just check whether this pipe is wired to DDI E and whether
  4990. * the PCH transcoder is on.
  4991. */
  4992. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  4993. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  4994. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  4995. pipe_config->has_pch_encoder = true;
  4996. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  4997. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4998. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4999. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5000. }
  5001. intel_get_pipe_timings(crtc, pipe_config);
  5002. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5003. if (intel_display_power_enabled(dev, pfit_domain))
  5004. ironlake_get_pfit_config(crtc, pipe_config);
  5005. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5006. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5007. pipe_config->pixel_multiplier = 1;
  5008. return true;
  5009. }
  5010. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5011. int x, int y,
  5012. struct drm_framebuffer *fb)
  5013. {
  5014. struct drm_device *dev = crtc->dev;
  5015. struct drm_i915_private *dev_priv = dev->dev_private;
  5016. struct drm_encoder_helper_funcs *encoder_funcs;
  5017. struct intel_encoder *encoder;
  5018. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5019. struct drm_display_mode *adjusted_mode =
  5020. &intel_crtc->config.adjusted_mode;
  5021. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5022. int pipe = intel_crtc->pipe;
  5023. int ret;
  5024. drm_vblank_pre_modeset(dev, pipe);
  5025. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5026. drm_vblank_post_modeset(dev, pipe);
  5027. if (ret != 0)
  5028. return ret;
  5029. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5030. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5031. encoder->base.base.id,
  5032. drm_get_encoder_name(&encoder->base),
  5033. mode->base.id, mode->name);
  5034. if (encoder->mode_set) {
  5035. encoder->mode_set(encoder);
  5036. } else {
  5037. encoder_funcs = encoder->base.helper_private;
  5038. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5039. }
  5040. }
  5041. return 0;
  5042. }
  5043. static bool intel_eld_uptodate(struct drm_connector *connector,
  5044. int reg_eldv, uint32_t bits_eldv,
  5045. int reg_elda, uint32_t bits_elda,
  5046. int reg_edid)
  5047. {
  5048. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5049. uint8_t *eld = connector->eld;
  5050. uint32_t i;
  5051. i = I915_READ(reg_eldv);
  5052. i &= bits_eldv;
  5053. if (!eld[0])
  5054. return !i;
  5055. if (!i)
  5056. return false;
  5057. i = I915_READ(reg_elda);
  5058. i &= ~bits_elda;
  5059. I915_WRITE(reg_elda, i);
  5060. for (i = 0; i < eld[2]; i++)
  5061. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5062. return false;
  5063. return true;
  5064. }
  5065. static void g4x_write_eld(struct drm_connector *connector,
  5066. struct drm_crtc *crtc)
  5067. {
  5068. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5069. uint8_t *eld = connector->eld;
  5070. uint32_t eldv;
  5071. uint32_t len;
  5072. uint32_t i;
  5073. i = I915_READ(G4X_AUD_VID_DID);
  5074. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5075. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5076. else
  5077. eldv = G4X_ELDV_DEVCTG;
  5078. if (intel_eld_uptodate(connector,
  5079. G4X_AUD_CNTL_ST, eldv,
  5080. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5081. G4X_HDMIW_HDMIEDID))
  5082. return;
  5083. i = I915_READ(G4X_AUD_CNTL_ST);
  5084. i &= ~(eldv | G4X_ELD_ADDR);
  5085. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5086. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5087. if (!eld[0])
  5088. return;
  5089. len = min_t(uint8_t, eld[2], len);
  5090. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5091. for (i = 0; i < len; i++)
  5092. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5093. i = I915_READ(G4X_AUD_CNTL_ST);
  5094. i |= eldv;
  5095. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5096. }
  5097. static void haswell_write_eld(struct drm_connector *connector,
  5098. struct drm_crtc *crtc)
  5099. {
  5100. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5101. uint8_t *eld = connector->eld;
  5102. struct drm_device *dev = crtc->dev;
  5103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5104. uint32_t eldv;
  5105. uint32_t i;
  5106. int len;
  5107. int pipe = to_intel_crtc(crtc)->pipe;
  5108. int tmp;
  5109. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5110. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5111. int aud_config = HSW_AUD_CFG(pipe);
  5112. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5113. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5114. /* Audio output enable */
  5115. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5116. tmp = I915_READ(aud_cntrl_st2);
  5117. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5118. I915_WRITE(aud_cntrl_st2, tmp);
  5119. /* Wait for 1 vertical blank */
  5120. intel_wait_for_vblank(dev, pipe);
  5121. /* Set ELD valid state */
  5122. tmp = I915_READ(aud_cntrl_st2);
  5123. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5124. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5125. I915_WRITE(aud_cntrl_st2, tmp);
  5126. tmp = I915_READ(aud_cntrl_st2);
  5127. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5128. /* Enable HDMI mode */
  5129. tmp = I915_READ(aud_config);
  5130. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5131. /* clear N_programing_enable and N_value_index */
  5132. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5133. I915_WRITE(aud_config, tmp);
  5134. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5135. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5136. intel_crtc->eld_vld = true;
  5137. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5138. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5139. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5140. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5141. } else
  5142. I915_WRITE(aud_config, 0);
  5143. if (intel_eld_uptodate(connector,
  5144. aud_cntrl_st2, eldv,
  5145. aud_cntl_st, IBX_ELD_ADDRESS,
  5146. hdmiw_hdmiedid))
  5147. return;
  5148. i = I915_READ(aud_cntrl_st2);
  5149. i &= ~eldv;
  5150. I915_WRITE(aud_cntrl_st2, i);
  5151. if (!eld[0])
  5152. return;
  5153. i = I915_READ(aud_cntl_st);
  5154. i &= ~IBX_ELD_ADDRESS;
  5155. I915_WRITE(aud_cntl_st, i);
  5156. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5157. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5158. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5159. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5160. for (i = 0; i < len; i++)
  5161. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5162. i = I915_READ(aud_cntrl_st2);
  5163. i |= eldv;
  5164. I915_WRITE(aud_cntrl_st2, i);
  5165. }
  5166. static void ironlake_write_eld(struct drm_connector *connector,
  5167. struct drm_crtc *crtc)
  5168. {
  5169. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5170. uint8_t *eld = connector->eld;
  5171. uint32_t eldv;
  5172. uint32_t i;
  5173. int len;
  5174. int hdmiw_hdmiedid;
  5175. int aud_config;
  5176. int aud_cntl_st;
  5177. int aud_cntrl_st2;
  5178. int pipe = to_intel_crtc(crtc)->pipe;
  5179. if (HAS_PCH_IBX(connector->dev)) {
  5180. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5181. aud_config = IBX_AUD_CFG(pipe);
  5182. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5183. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5184. } else {
  5185. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5186. aud_config = CPT_AUD_CFG(pipe);
  5187. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5188. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5189. }
  5190. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5191. i = I915_READ(aud_cntl_st);
  5192. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5193. if (!i) {
  5194. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5195. /* operate blindly on all ports */
  5196. eldv = IBX_ELD_VALIDB;
  5197. eldv |= IBX_ELD_VALIDB << 4;
  5198. eldv |= IBX_ELD_VALIDB << 8;
  5199. } else {
  5200. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5201. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5202. }
  5203. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5204. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5205. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5206. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5207. } else
  5208. I915_WRITE(aud_config, 0);
  5209. if (intel_eld_uptodate(connector,
  5210. aud_cntrl_st2, eldv,
  5211. aud_cntl_st, IBX_ELD_ADDRESS,
  5212. hdmiw_hdmiedid))
  5213. return;
  5214. i = I915_READ(aud_cntrl_st2);
  5215. i &= ~eldv;
  5216. I915_WRITE(aud_cntrl_st2, i);
  5217. if (!eld[0])
  5218. return;
  5219. i = I915_READ(aud_cntl_st);
  5220. i &= ~IBX_ELD_ADDRESS;
  5221. I915_WRITE(aud_cntl_st, i);
  5222. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5223. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5224. for (i = 0; i < len; i++)
  5225. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5226. i = I915_READ(aud_cntrl_st2);
  5227. i |= eldv;
  5228. I915_WRITE(aud_cntrl_st2, i);
  5229. }
  5230. void intel_write_eld(struct drm_encoder *encoder,
  5231. struct drm_display_mode *mode)
  5232. {
  5233. struct drm_crtc *crtc = encoder->crtc;
  5234. struct drm_connector *connector;
  5235. struct drm_device *dev = encoder->dev;
  5236. struct drm_i915_private *dev_priv = dev->dev_private;
  5237. connector = drm_select_eld(encoder, mode);
  5238. if (!connector)
  5239. return;
  5240. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5241. connector->base.id,
  5242. drm_get_connector_name(connector),
  5243. connector->encoder->base.id,
  5244. drm_get_encoder_name(connector->encoder));
  5245. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5246. if (dev_priv->display.write_eld)
  5247. dev_priv->display.write_eld(connector, crtc);
  5248. }
  5249. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5250. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5251. {
  5252. struct drm_device *dev = crtc->dev;
  5253. struct drm_i915_private *dev_priv = dev->dev_private;
  5254. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5255. enum pipe pipe = intel_crtc->pipe;
  5256. int palreg = PALETTE(pipe);
  5257. int i;
  5258. bool reenable_ips = false;
  5259. /* The clocks have to be on to load the palette. */
  5260. if (!crtc->enabled || !intel_crtc->active)
  5261. return;
  5262. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5263. assert_pll_enabled(dev_priv, pipe);
  5264. /* use legacy palette for Ironlake */
  5265. if (HAS_PCH_SPLIT(dev))
  5266. palreg = LGC_PALETTE(pipe);
  5267. /* Workaround : Do not read or write the pipe palette/gamma data while
  5268. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5269. */
  5270. if (intel_crtc->config.ips_enabled &&
  5271. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5272. GAMMA_MODE_MODE_SPLIT)) {
  5273. hsw_disable_ips(intel_crtc);
  5274. reenable_ips = true;
  5275. }
  5276. for (i = 0; i < 256; i++) {
  5277. I915_WRITE(palreg + 4 * i,
  5278. (intel_crtc->lut_r[i] << 16) |
  5279. (intel_crtc->lut_g[i] << 8) |
  5280. intel_crtc->lut_b[i]);
  5281. }
  5282. if (reenable_ips)
  5283. hsw_enable_ips(intel_crtc);
  5284. }
  5285. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5286. {
  5287. struct drm_device *dev = crtc->dev;
  5288. struct drm_i915_private *dev_priv = dev->dev_private;
  5289. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5290. bool visible = base != 0;
  5291. u32 cntl;
  5292. if (intel_crtc->cursor_visible == visible)
  5293. return;
  5294. cntl = I915_READ(_CURACNTR);
  5295. if (visible) {
  5296. /* On these chipsets we can only modify the base whilst
  5297. * the cursor is disabled.
  5298. */
  5299. I915_WRITE(_CURABASE, base);
  5300. cntl &= ~(CURSOR_FORMAT_MASK);
  5301. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5302. cntl |= CURSOR_ENABLE |
  5303. CURSOR_GAMMA_ENABLE |
  5304. CURSOR_FORMAT_ARGB;
  5305. } else
  5306. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5307. I915_WRITE(_CURACNTR, cntl);
  5308. intel_crtc->cursor_visible = visible;
  5309. }
  5310. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5311. {
  5312. struct drm_device *dev = crtc->dev;
  5313. struct drm_i915_private *dev_priv = dev->dev_private;
  5314. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5315. int pipe = intel_crtc->pipe;
  5316. bool visible = base != 0;
  5317. if (intel_crtc->cursor_visible != visible) {
  5318. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5319. if (base) {
  5320. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5321. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5322. cntl |= pipe << 28; /* Connect to correct pipe */
  5323. } else {
  5324. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5325. cntl |= CURSOR_MODE_DISABLE;
  5326. }
  5327. I915_WRITE(CURCNTR(pipe), cntl);
  5328. intel_crtc->cursor_visible = visible;
  5329. }
  5330. /* and commit changes on next vblank */
  5331. I915_WRITE(CURBASE(pipe), base);
  5332. }
  5333. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5334. {
  5335. struct drm_device *dev = crtc->dev;
  5336. struct drm_i915_private *dev_priv = dev->dev_private;
  5337. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5338. int pipe = intel_crtc->pipe;
  5339. bool visible = base != 0;
  5340. if (intel_crtc->cursor_visible != visible) {
  5341. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5342. if (base) {
  5343. cntl &= ~CURSOR_MODE;
  5344. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5345. } else {
  5346. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5347. cntl |= CURSOR_MODE_DISABLE;
  5348. }
  5349. if (IS_HASWELL(dev))
  5350. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5351. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5352. intel_crtc->cursor_visible = visible;
  5353. }
  5354. /* and commit changes on next vblank */
  5355. I915_WRITE(CURBASE_IVB(pipe), base);
  5356. }
  5357. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5358. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5359. bool on)
  5360. {
  5361. struct drm_device *dev = crtc->dev;
  5362. struct drm_i915_private *dev_priv = dev->dev_private;
  5363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5364. int pipe = intel_crtc->pipe;
  5365. int x = intel_crtc->cursor_x;
  5366. int y = intel_crtc->cursor_y;
  5367. u32 base, pos;
  5368. bool visible;
  5369. pos = 0;
  5370. if (on && crtc->enabled && crtc->fb) {
  5371. base = intel_crtc->cursor_addr;
  5372. if (x > (int) crtc->fb->width)
  5373. base = 0;
  5374. if (y > (int) crtc->fb->height)
  5375. base = 0;
  5376. } else
  5377. base = 0;
  5378. if (x < 0) {
  5379. if (x + intel_crtc->cursor_width < 0)
  5380. base = 0;
  5381. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5382. x = -x;
  5383. }
  5384. pos |= x << CURSOR_X_SHIFT;
  5385. if (y < 0) {
  5386. if (y + intel_crtc->cursor_height < 0)
  5387. base = 0;
  5388. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5389. y = -y;
  5390. }
  5391. pos |= y << CURSOR_Y_SHIFT;
  5392. visible = base != 0;
  5393. if (!visible && !intel_crtc->cursor_visible)
  5394. return;
  5395. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5396. I915_WRITE(CURPOS_IVB(pipe), pos);
  5397. ivb_update_cursor(crtc, base);
  5398. } else {
  5399. I915_WRITE(CURPOS(pipe), pos);
  5400. if (IS_845G(dev) || IS_I865G(dev))
  5401. i845_update_cursor(crtc, base);
  5402. else
  5403. i9xx_update_cursor(crtc, base);
  5404. }
  5405. }
  5406. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5407. struct drm_file *file,
  5408. uint32_t handle,
  5409. uint32_t width, uint32_t height)
  5410. {
  5411. struct drm_device *dev = crtc->dev;
  5412. struct drm_i915_private *dev_priv = dev->dev_private;
  5413. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5414. struct drm_i915_gem_object *obj;
  5415. uint32_t addr;
  5416. int ret;
  5417. /* if we want to turn off the cursor ignore width and height */
  5418. if (!handle) {
  5419. DRM_DEBUG_KMS("cursor off\n");
  5420. addr = 0;
  5421. obj = NULL;
  5422. mutex_lock(&dev->struct_mutex);
  5423. goto finish;
  5424. }
  5425. /* Currently we only support 64x64 cursors */
  5426. if (width != 64 || height != 64) {
  5427. DRM_ERROR("we currently only support 64x64 cursors\n");
  5428. return -EINVAL;
  5429. }
  5430. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5431. if (&obj->base == NULL)
  5432. return -ENOENT;
  5433. if (obj->base.size < width * height * 4) {
  5434. DRM_ERROR("buffer is to small\n");
  5435. ret = -ENOMEM;
  5436. goto fail;
  5437. }
  5438. /* we only need to pin inside GTT if cursor is non-phy */
  5439. mutex_lock(&dev->struct_mutex);
  5440. if (!dev_priv->info->cursor_needs_physical) {
  5441. unsigned alignment;
  5442. if (obj->tiling_mode) {
  5443. DRM_ERROR("cursor cannot be tiled\n");
  5444. ret = -EINVAL;
  5445. goto fail_locked;
  5446. }
  5447. /* Note that the w/a also requires 2 PTE of padding following
  5448. * the bo. We currently fill all unused PTE with the shadow
  5449. * page and so we should always have valid PTE following the
  5450. * cursor preventing the VT-d warning.
  5451. */
  5452. alignment = 0;
  5453. if (need_vtd_wa(dev))
  5454. alignment = 64*1024;
  5455. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5456. if (ret) {
  5457. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5458. goto fail_locked;
  5459. }
  5460. ret = i915_gem_object_put_fence(obj);
  5461. if (ret) {
  5462. DRM_ERROR("failed to release fence for cursor");
  5463. goto fail_unpin;
  5464. }
  5465. addr = obj->gtt_offset;
  5466. } else {
  5467. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5468. ret = i915_gem_attach_phys_object(dev, obj,
  5469. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5470. align);
  5471. if (ret) {
  5472. DRM_ERROR("failed to attach phys object\n");
  5473. goto fail_locked;
  5474. }
  5475. addr = obj->phys_obj->handle->busaddr;
  5476. }
  5477. if (IS_GEN2(dev))
  5478. I915_WRITE(CURSIZE, (height << 12) | width);
  5479. finish:
  5480. if (intel_crtc->cursor_bo) {
  5481. if (dev_priv->info->cursor_needs_physical) {
  5482. if (intel_crtc->cursor_bo != obj)
  5483. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5484. } else
  5485. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5486. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5487. }
  5488. mutex_unlock(&dev->struct_mutex);
  5489. intel_crtc->cursor_addr = addr;
  5490. intel_crtc->cursor_bo = obj;
  5491. intel_crtc->cursor_width = width;
  5492. intel_crtc->cursor_height = height;
  5493. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5494. return 0;
  5495. fail_unpin:
  5496. i915_gem_object_unpin(obj);
  5497. fail_locked:
  5498. mutex_unlock(&dev->struct_mutex);
  5499. fail:
  5500. drm_gem_object_unreference_unlocked(&obj->base);
  5501. return ret;
  5502. }
  5503. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5504. {
  5505. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5506. intel_crtc->cursor_x = x;
  5507. intel_crtc->cursor_y = y;
  5508. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5509. return 0;
  5510. }
  5511. /** Sets the color ramps on behalf of RandR */
  5512. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5513. u16 blue, int regno)
  5514. {
  5515. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5516. intel_crtc->lut_r[regno] = red >> 8;
  5517. intel_crtc->lut_g[regno] = green >> 8;
  5518. intel_crtc->lut_b[regno] = blue >> 8;
  5519. }
  5520. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5521. u16 *blue, int regno)
  5522. {
  5523. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5524. *red = intel_crtc->lut_r[regno] << 8;
  5525. *green = intel_crtc->lut_g[regno] << 8;
  5526. *blue = intel_crtc->lut_b[regno] << 8;
  5527. }
  5528. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5529. u16 *blue, uint32_t start, uint32_t size)
  5530. {
  5531. int end = (start + size > 256) ? 256 : start + size, i;
  5532. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5533. for (i = start; i < end; i++) {
  5534. intel_crtc->lut_r[i] = red[i] >> 8;
  5535. intel_crtc->lut_g[i] = green[i] >> 8;
  5536. intel_crtc->lut_b[i] = blue[i] >> 8;
  5537. }
  5538. intel_crtc_load_lut(crtc);
  5539. }
  5540. /* VESA 640x480x72Hz mode to set on the pipe */
  5541. static struct drm_display_mode load_detect_mode = {
  5542. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5543. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5544. };
  5545. static struct drm_framebuffer *
  5546. intel_framebuffer_create(struct drm_device *dev,
  5547. struct drm_mode_fb_cmd2 *mode_cmd,
  5548. struct drm_i915_gem_object *obj)
  5549. {
  5550. struct intel_framebuffer *intel_fb;
  5551. int ret;
  5552. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5553. if (!intel_fb) {
  5554. drm_gem_object_unreference_unlocked(&obj->base);
  5555. return ERR_PTR(-ENOMEM);
  5556. }
  5557. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5558. if (ret) {
  5559. drm_gem_object_unreference_unlocked(&obj->base);
  5560. kfree(intel_fb);
  5561. return ERR_PTR(ret);
  5562. }
  5563. return &intel_fb->base;
  5564. }
  5565. static u32
  5566. intel_framebuffer_pitch_for_width(int width, int bpp)
  5567. {
  5568. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5569. return ALIGN(pitch, 64);
  5570. }
  5571. static u32
  5572. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5573. {
  5574. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5575. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5576. }
  5577. static struct drm_framebuffer *
  5578. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5579. struct drm_display_mode *mode,
  5580. int depth, int bpp)
  5581. {
  5582. struct drm_i915_gem_object *obj;
  5583. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5584. obj = i915_gem_alloc_object(dev,
  5585. intel_framebuffer_size_for_mode(mode, bpp));
  5586. if (obj == NULL)
  5587. return ERR_PTR(-ENOMEM);
  5588. mode_cmd.width = mode->hdisplay;
  5589. mode_cmd.height = mode->vdisplay;
  5590. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5591. bpp);
  5592. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5593. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5594. }
  5595. static struct drm_framebuffer *
  5596. mode_fits_in_fbdev(struct drm_device *dev,
  5597. struct drm_display_mode *mode)
  5598. {
  5599. struct drm_i915_private *dev_priv = dev->dev_private;
  5600. struct drm_i915_gem_object *obj;
  5601. struct drm_framebuffer *fb;
  5602. if (dev_priv->fbdev == NULL)
  5603. return NULL;
  5604. obj = dev_priv->fbdev->ifb.obj;
  5605. if (obj == NULL)
  5606. return NULL;
  5607. fb = &dev_priv->fbdev->ifb.base;
  5608. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5609. fb->bits_per_pixel))
  5610. return NULL;
  5611. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5612. return NULL;
  5613. return fb;
  5614. }
  5615. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5616. struct drm_display_mode *mode,
  5617. struct intel_load_detect_pipe *old)
  5618. {
  5619. struct intel_crtc *intel_crtc;
  5620. struct intel_encoder *intel_encoder =
  5621. intel_attached_encoder(connector);
  5622. struct drm_crtc *possible_crtc;
  5623. struct drm_encoder *encoder = &intel_encoder->base;
  5624. struct drm_crtc *crtc = NULL;
  5625. struct drm_device *dev = encoder->dev;
  5626. struct drm_framebuffer *fb;
  5627. int i = -1;
  5628. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5629. connector->base.id, drm_get_connector_name(connector),
  5630. encoder->base.id, drm_get_encoder_name(encoder));
  5631. /*
  5632. * Algorithm gets a little messy:
  5633. *
  5634. * - if the connector already has an assigned crtc, use it (but make
  5635. * sure it's on first)
  5636. *
  5637. * - try to find the first unused crtc that can drive this connector,
  5638. * and use that if we find one
  5639. */
  5640. /* See if we already have a CRTC for this connector */
  5641. if (encoder->crtc) {
  5642. crtc = encoder->crtc;
  5643. mutex_lock(&crtc->mutex);
  5644. old->dpms_mode = connector->dpms;
  5645. old->load_detect_temp = false;
  5646. /* Make sure the crtc and connector are running */
  5647. if (connector->dpms != DRM_MODE_DPMS_ON)
  5648. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5649. return true;
  5650. }
  5651. /* Find an unused one (if possible) */
  5652. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5653. i++;
  5654. if (!(encoder->possible_crtcs & (1 << i)))
  5655. continue;
  5656. if (!possible_crtc->enabled) {
  5657. crtc = possible_crtc;
  5658. break;
  5659. }
  5660. }
  5661. /*
  5662. * If we didn't find an unused CRTC, don't use any.
  5663. */
  5664. if (!crtc) {
  5665. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5666. return false;
  5667. }
  5668. mutex_lock(&crtc->mutex);
  5669. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5670. to_intel_connector(connector)->new_encoder = intel_encoder;
  5671. intel_crtc = to_intel_crtc(crtc);
  5672. old->dpms_mode = connector->dpms;
  5673. old->load_detect_temp = true;
  5674. old->release_fb = NULL;
  5675. if (!mode)
  5676. mode = &load_detect_mode;
  5677. /* We need a framebuffer large enough to accommodate all accesses
  5678. * that the plane may generate whilst we perform load detection.
  5679. * We can not rely on the fbcon either being present (we get called
  5680. * during its initialisation to detect all boot displays, or it may
  5681. * not even exist) or that it is large enough to satisfy the
  5682. * requested mode.
  5683. */
  5684. fb = mode_fits_in_fbdev(dev, mode);
  5685. if (fb == NULL) {
  5686. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5687. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5688. old->release_fb = fb;
  5689. } else
  5690. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5691. if (IS_ERR(fb)) {
  5692. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5693. mutex_unlock(&crtc->mutex);
  5694. return false;
  5695. }
  5696. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5697. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5698. if (old->release_fb)
  5699. old->release_fb->funcs->destroy(old->release_fb);
  5700. mutex_unlock(&crtc->mutex);
  5701. return false;
  5702. }
  5703. /* let the connector get through one full cycle before testing */
  5704. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5705. return true;
  5706. }
  5707. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5708. struct intel_load_detect_pipe *old)
  5709. {
  5710. struct intel_encoder *intel_encoder =
  5711. intel_attached_encoder(connector);
  5712. struct drm_encoder *encoder = &intel_encoder->base;
  5713. struct drm_crtc *crtc = encoder->crtc;
  5714. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5715. connector->base.id, drm_get_connector_name(connector),
  5716. encoder->base.id, drm_get_encoder_name(encoder));
  5717. if (old->load_detect_temp) {
  5718. to_intel_connector(connector)->new_encoder = NULL;
  5719. intel_encoder->new_crtc = NULL;
  5720. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5721. if (old->release_fb) {
  5722. drm_framebuffer_unregister_private(old->release_fb);
  5723. drm_framebuffer_unreference(old->release_fb);
  5724. }
  5725. mutex_unlock(&crtc->mutex);
  5726. return;
  5727. }
  5728. /* Switch crtc and encoder back off if necessary */
  5729. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5730. connector->funcs->dpms(connector, old->dpms_mode);
  5731. mutex_unlock(&crtc->mutex);
  5732. }
  5733. /* Returns the clock of the currently programmed mode of the given pipe. */
  5734. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5735. {
  5736. struct drm_i915_private *dev_priv = dev->dev_private;
  5737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5738. int pipe = intel_crtc->pipe;
  5739. u32 dpll = I915_READ(DPLL(pipe));
  5740. u32 fp;
  5741. intel_clock_t clock;
  5742. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5743. fp = I915_READ(FP0(pipe));
  5744. else
  5745. fp = I915_READ(FP1(pipe));
  5746. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5747. if (IS_PINEVIEW(dev)) {
  5748. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5749. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5750. } else {
  5751. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5752. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5753. }
  5754. if (!IS_GEN2(dev)) {
  5755. if (IS_PINEVIEW(dev))
  5756. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5757. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5758. else
  5759. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5760. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5761. switch (dpll & DPLL_MODE_MASK) {
  5762. case DPLLB_MODE_DAC_SERIAL:
  5763. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5764. 5 : 10;
  5765. break;
  5766. case DPLLB_MODE_LVDS:
  5767. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5768. 7 : 14;
  5769. break;
  5770. default:
  5771. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5772. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5773. return 0;
  5774. }
  5775. if (IS_PINEVIEW(dev))
  5776. pineview_clock(96000, &clock);
  5777. else
  5778. i9xx_clock(96000, &clock);
  5779. } else {
  5780. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5781. if (is_lvds) {
  5782. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5783. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5784. clock.p2 = 14;
  5785. if ((dpll & PLL_REF_INPUT_MASK) ==
  5786. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5787. /* XXX: might not be 66MHz */
  5788. i9xx_clock(66000, &clock);
  5789. } else
  5790. i9xx_clock(48000, &clock);
  5791. } else {
  5792. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5793. clock.p1 = 2;
  5794. else {
  5795. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5796. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5797. }
  5798. if (dpll & PLL_P2_DIVIDE_BY_4)
  5799. clock.p2 = 4;
  5800. else
  5801. clock.p2 = 2;
  5802. i9xx_clock(48000, &clock);
  5803. }
  5804. }
  5805. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5806. * i830PllIsValid() because it relies on the xf86_config connector
  5807. * configuration being accurate, which it isn't necessarily.
  5808. */
  5809. return clock.dot;
  5810. }
  5811. /** Returns the currently programmed mode of the given pipe. */
  5812. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5813. struct drm_crtc *crtc)
  5814. {
  5815. struct drm_i915_private *dev_priv = dev->dev_private;
  5816. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5817. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5818. struct drm_display_mode *mode;
  5819. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5820. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5821. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5822. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5823. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5824. if (!mode)
  5825. return NULL;
  5826. mode->clock = intel_crtc_clock_get(dev, crtc);
  5827. mode->hdisplay = (htot & 0xffff) + 1;
  5828. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5829. mode->hsync_start = (hsync & 0xffff) + 1;
  5830. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5831. mode->vdisplay = (vtot & 0xffff) + 1;
  5832. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5833. mode->vsync_start = (vsync & 0xffff) + 1;
  5834. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5835. drm_mode_set_name(mode);
  5836. return mode;
  5837. }
  5838. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5839. {
  5840. struct drm_device *dev = crtc->dev;
  5841. drm_i915_private_t *dev_priv = dev->dev_private;
  5842. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5843. int pipe = intel_crtc->pipe;
  5844. int dpll_reg = DPLL(pipe);
  5845. int dpll;
  5846. if (HAS_PCH_SPLIT(dev))
  5847. return;
  5848. if (!dev_priv->lvds_downclock_avail)
  5849. return;
  5850. dpll = I915_READ(dpll_reg);
  5851. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5852. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5853. assert_panel_unlocked(dev_priv, pipe);
  5854. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5855. I915_WRITE(dpll_reg, dpll);
  5856. intel_wait_for_vblank(dev, pipe);
  5857. dpll = I915_READ(dpll_reg);
  5858. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5859. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5860. }
  5861. }
  5862. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5863. {
  5864. struct drm_device *dev = crtc->dev;
  5865. drm_i915_private_t *dev_priv = dev->dev_private;
  5866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5867. if (HAS_PCH_SPLIT(dev))
  5868. return;
  5869. if (!dev_priv->lvds_downclock_avail)
  5870. return;
  5871. /*
  5872. * Since this is called by a timer, we should never get here in
  5873. * the manual case.
  5874. */
  5875. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5876. int pipe = intel_crtc->pipe;
  5877. int dpll_reg = DPLL(pipe);
  5878. int dpll;
  5879. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5880. assert_panel_unlocked(dev_priv, pipe);
  5881. dpll = I915_READ(dpll_reg);
  5882. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5883. I915_WRITE(dpll_reg, dpll);
  5884. intel_wait_for_vblank(dev, pipe);
  5885. dpll = I915_READ(dpll_reg);
  5886. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5887. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5888. }
  5889. }
  5890. void intel_mark_busy(struct drm_device *dev)
  5891. {
  5892. i915_update_gfx_val(dev->dev_private);
  5893. }
  5894. void intel_mark_idle(struct drm_device *dev)
  5895. {
  5896. struct drm_crtc *crtc;
  5897. if (!i915_powersave)
  5898. return;
  5899. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5900. if (!crtc->fb)
  5901. continue;
  5902. intel_decrease_pllclock(crtc);
  5903. }
  5904. }
  5905. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  5906. struct intel_ring_buffer *ring)
  5907. {
  5908. struct drm_device *dev = obj->base.dev;
  5909. struct drm_crtc *crtc;
  5910. if (!i915_powersave)
  5911. return;
  5912. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5913. if (!crtc->fb)
  5914. continue;
  5915. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  5916. continue;
  5917. intel_increase_pllclock(crtc);
  5918. if (ring && intel_fbc_enabled(dev))
  5919. ring->fbc_dirty = true;
  5920. }
  5921. }
  5922. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5923. {
  5924. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5925. struct drm_device *dev = crtc->dev;
  5926. struct intel_unpin_work *work;
  5927. unsigned long flags;
  5928. spin_lock_irqsave(&dev->event_lock, flags);
  5929. work = intel_crtc->unpin_work;
  5930. intel_crtc->unpin_work = NULL;
  5931. spin_unlock_irqrestore(&dev->event_lock, flags);
  5932. if (work) {
  5933. cancel_work_sync(&work->work);
  5934. kfree(work);
  5935. }
  5936. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5937. drm_crtc_cleanup(crtc);
  5938. kfree(intel_crtc);
  5939. }
  5940. static void intel_unpin_work_fn(struct work_struct *__work)
  5941. {
  5942. struct intel_unpin_work *work =
  5943. container_of(__work, struct intel_unpin_work, work);
  5944. struct drm_device *dev = work->crtc->dev;
  5945. mutex_lock(&dev->struct_mutex);
  5946. intel_unpin_fb_obj(work->old_fb_obj);
  5947. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5948. drm_gem_object_unreference(&work->old_fb_obj->base);
  5949. intel_update_fbc(dev);
  5950. mutex_unlock(&dev->struct_mutex);
  5951. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5952. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5953. kfree(work);
  5954. }
  5955. static void do_intel_finish_page_flip(struct drm_device *dev,
  5956. struct drm_crtc *crtc)
  5957. {
  5958. drm_i915_private_t *dev_priv = dev->dev_private;
  5959. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5960. struct intel_unpin_work *work;
  5961. unsigned long flags;
  5962. /* Ignore early vblank irqs */
  5963. if (intel_crtc == NULL)
  5964. return;
  5965. spin_lock_irqsave(&dev->event_lock, flags);
  5966. work = intel_crtc->unpin_work;
  5967. /* Ensure we don't miss a work->pending update ... */
  5968. smp_rmb();
  5969. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5970. spin_unlock_irqrestore(&dev->event_lock, flags);
  5971. return;
  5972. }
  5973. /* and that the unpin work is consistent wrt ->pending. */
  5974. smp_rmb();
  5975. intel_crtc->unpin_work = NULL;
  5976. if (work->event)
  5977. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5978. drm_vblank_put(dev, intel_crtc->pipe);
  5979. spin_unlock_irqrestore(&dev->event_lock, flags);
  5980. wake_up_all(&dev_priv->pending_flip_queue);
  5981. queue_work(dev_priv->wq, &work->work);
  5982. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5983. }
  5984. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5985. {
  5986. drm_i915_private_t *dev_priv = dev->dev_private;
  5987. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5988. do_intel_finish_page_flip(dev, crtc);
  5989. }
  5990. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5991. {
  5992. drm_i915_private_t *dev_priv = dev->dev_private;
  5993. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5994. do_intel_finish_page_flip(dev, crtc);
  5995. }
  5996. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5997. {
  5998. drm_i915_private_t *dev_priv = dev->dev_private;
  5999. struct intel_crtc *intel_crtc =
  6000. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6001. unsigned long flags;
  6002. /* NB: An MMIO update of the plane base pointer will also
  6003. * generate a page-flip completion irq, i.e. every modeset
  6004. * is also accompanied by a spurious intel_prepare_page_flip().
  6005. */
  6006. spin_lock_irqsave(&dev->event_lock, flags);
  6007. if (intel_crtc->unpin_work)
  6008. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6009. spin_unlock_irqrestore(&dev->event_lock, flags);
  6010. }
  6011. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6012. {
  6013. /* Ensure that the work item is consistent when activating it ... */
  6014. smp_wmb();
  6015. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6016. /* and that it is marked active as soon as the irq could fire. */
  6017. smp_wmb();
  6018. }
  6019. static int intel_gen2_queue_flip(struct drm_device *dev,
  6020. struct drm_crtc *crtc,
  6021. struct drm_framebuffer *fb,
  6022. struct drm_i915_gem_object *obj)
  6023. {
  6024. struct drm_i915_private *dev_priv = dev->dev_private;
  6025. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6026. u32 flip_mask;
  6027. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6028. int ret;
  6029. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6030. if (ret)
  6031. goto err;
  6032. ret = intel_ring_begin(ring, 6);
  6033. if (ret)
  6034. goto err_unpin;
  6035. /* Can't queue multiple flips, so wait for the previous
  6036. * one to finish before executing the next.
  6037. */
  6038. if (intel_crtc->plane)
  6039. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6040. else
  6041. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6042. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6043. intel_ring_emit(ring, MI_NOOP);
  6044. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6045. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6046. intel_ring_emit(ring, fb->pitches[0]);
  6047. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6048. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6049. intel_mark_page_flip_active(intel_crtc);
  6050. intel_ring_advance(ring);
  6051. return 0;
  6052. err_unpin:
  6053. intel_unpin_fb_obj(obj);
  6054. err:
  6055. return ret;
  6056. }
  6057. static int intel_gen3_queue_flip(struct drm_device *dev,
  6058. struct drm_crtc *crtc,
  6059. struct drm_framebuffer *fb,
  6060. struct drm_i915_gem_object *obj)
  6061. {
  6062. struct drm_i915_private *dev_priv = dev->dev_private;
  6063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6064. u32 flip_mask;
  6065. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6066. int ret;
  6067. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6068. if (ret)
  6069. goto err;
  6070. ret = intel_ring_begin(ring, 6);
  6071. if (ret)
  6072. goto err_unpin;
  6073. if (intel_crtc->plane)
  6074. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6075. else
  6076. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6077. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6078. intel_ring_emit(ring, MI_NOOP);
  6079. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6080. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6081. intel_ring_emit(ring, fb->pitches[0]);
  6082. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6083. intel_ring_emit(ring, MI_NOOP);
  6084. intel_mark_page_flip_active(intel_crtc);
  6085. intel_ring_advance(ring);
  6086. return 0;
  6087. err_unpin:
  6088. intel_unpin_fb_obj(obj);
  6089. err:
  6090. return ret;
  6091. }
  6092. static int intel_gen4_queue_flip(struct drm_device *dev,
  6093. struct drm_crtc *crtc,
  6094. struct drm_framebuffer *fb,
  6095. struct drm_i915_gem_object *obj)
  6096. {
  6097. struct drm_i915_private *dev_priv = dev->dev_private;
  6098. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6099. uint32_t pf, pipesrc;
  6100. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6101. int ret;
  6102. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6103. if (ret)
  6104. goto err;
  6105. ret = intel_ring_begin(ring, 4);
  6106. if (ret)
  6107. goto err_unpin;
  6108. /* i965+ uses the linear or tiled offsets from the
  6109. * Display Registers (which do not change across a page-flip)
  6110. * so we need only reprogram the base address.
  6111. */
  6112. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6113. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6114. intel_ring_emit(ring, fb->pitches[0]);
  6115. intel_ring_emit(ring,
  6116. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6117. obj->tiling_mode);
  6118. /* XXX Enabling the panel-fitter across page-flip is so far
  6119. * untested on non-native modes, so ignore it for now.
  6120. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6121. */
  6122. pf = 0;
  6123. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6124. intel_ring_emit(ring, pf | pipesrc);
  6125. intel_mark_page_flip_active(intel_crtc);
  6126. intel_ring_advance(ring);
  6127. return 0;
  6128. err_unpin:
  6129. intel_unpin_fb_obj(obj);
  6130. err:
  6131. return ret;
  6132. }
  6133. static int intel_gen6_queue_flip(struct drm_device *dev,
  6134. struct drm_crtc *crtc,
  6135. struct drm_framebuffer *fb,
  6136. struct drm_i915_gem_object *obj)
  6137. {
  6138. struct drm_i915_private *dev_priv = dev->dev_private;
  6139. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6140. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6141. uint32_t pf, pipesrc;
  6142. int ret;
  6143. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6144. if (ret)
  6145. goto err;
  6146. ret = intel_ring_begin(ring, 4);
  6147. if (ret)
  6148. goto err_unpin;
  6149. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6150. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6151. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6152. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6153. /* Contrary to the suggestions in the documentation,
  6154. * "Enable Panel Fitter" does not seem to be required when page
  6155. * flipping with a non-native mode, and worse causes a normal
  6156. * modeset to fail.
  6157. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6158. */
  6159. pf = 0;
  6160. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6161. intel_ring_emit(ring, pf | pipesrc);
  6162. intel_mark_page_flip_active(intel_crtc);
  6163. intel_ring_advance(ring);
  6164. return 0;
  6165. err_unpin:
  6166. intel_unpin_fb_obj(obj);
  6167. err:
  6168. return ret;
  6169. }
  6170. /*
  6171. * On gen7 we currently use the blit ring because (in early silicon at least)
  6172. * the render ring doesn't give us interrpts for page flip completion, which
  6173. * means clients will hang after the first flip is queued. Fortunately the
  6174. * blit ring generates interrupts properly, so use it instead.
  6175. */
  6176. static int intel_gen7_queue_flip(struct drm_device *dev,
  6177. struct drm_crtc *crtc,
  6178. struct drm_framebuffer *fb,
  6179. struct drm_i915_gem_object *obj)
  6180. {
  6181. struct drm_i915_private *dev_priv = dev->dev_private;
  6182. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6183. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6184. uint32_t plane_bit = 0;
  6185. int ret;
  6186. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6187. if (ret)
  6188. goto err;
  6189. switch(intel_crtc->plane) {
  6190. case PLANE_A:
  6191. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6192. break;
  6193. case PLANE_B:
  6194. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6195. break;
  6196. case PLANE_C:
  6197. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6198. break;
  6199. default:
  6200. WARN_ONCE(1, "unknown plane in flip command\n");
  6201. ret = -ENODEV;
  6202. goto err_unpin;
  6203. }
  6204. ret = intel_ring_begin(ring, 4);
  6205. if (ret)
  6206. goto err_unpin;
  6207. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6208. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6209. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6210. intel_ring_emit(ring, (MI_NOOP));
  6211. intel_mark_page_flip_active(intel_crtc);
  6212. intel_ring_advance(ring);
  6213. return 0;
  6214. err_unpin:
  6215. intel_unpin_fb_obj(obj);
  6216. err:
  6217. return ret;
  6218. }
  6219. static int intel_default_queue_flip(struct drm_device *dev,
  6220. struct drm_crtc *crtc,
  6221. struct drm_framebuffer *fb,
  6222. struct drm_i915_gem_object *obj)
  6223. {
  6224. return -ENODEV;
  6225. }
  6226. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6227. struct drm_framebuffer *fb,
  6228. struct drm_pending_vblank_event *event)
  6229. {
  6230. struct drm_device *dev = crtc->dev;
  6231. struct drm_i915_private *dev_priv = dev->dev_private;
  6232. struct drm_framebuffer *old_fb = crtc->fb;
  6233. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6234. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6235. struct intel_unpin_work *work;
  6236. unsigned long flags;
  6237. int ret;
  6238. /* Can't change pixel format via MI display flips. */
  6239. if (fb->pixel_format != crtc->fb->pixel_format)
  6240. return -EINVAL;
  6241. /*
  6242. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6243. * Note that pitch changes could also affect these register.
  6244. */
  6245. if (INTEL_INFO(dev)->gen > 3 &&
  6246. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6247. fb->pitches[0] != crtc->fb->pitches[0]))
  6248. return -EINVAL;
  6249. work = kzalloc(sizeof *work, GFP_KERNEL);
  6250. if (work == NULL)
  6251. return -ENOMEM;
  6252. work->event = event;
  6253. work->crtc = crtc;
  6254. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6255. INIT_WORK(&work->work, intel_unpin_work_fn);
  6256. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6257. if (ret)
  6258. goto free_work;
  6259. /* We borrow the event spin lock for protecting unpin_work */
  6260. spin_lock_irqsave(&dev->event_lock, flags);
  6261. if (intel_crtc->unpin_work) {
  6262. spin_unlock_irqrestore(&dev->event_lock, flags);
  6263. kfree(work);
  6264. drm_vblank_put(dev, intel_crtc->pipe);
  6265. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6266. return -EBUSY;
  6267. }
  6268. intel_crtc->unpin_work = work;
  6269. spin_unlock_irqrestore(&dev->event_lock, flags);
  6270. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6271. flush_workqueue(dev_priv->wq);
  6272. ret = i915_mutex_lock_interruptible(dev);
  6273. if (ret)
  6274. goto cleanup;
  6275. /* Reference the objects for the scheduled work. */
  6276. drm_gem_object_reference(&work->old_fb_obj->base);
  6277. drm_gem_object_reference(&obj->base);
  6278. crtc->fb = fb;
  6279. work->pending_flip_obj = obj;
  6280. work->enable_stall_check = true;
  6281. atomic_inc(&intel_crtc->unpin_work_count);
  6282. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6283. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6284. if (ret)
  6285. goto cleanup_pending;
  6286. intel_disable_fbc(dev);
  6287. intel_mark_fb_busy(obj, NULL);
  6288. mutex_unlock(&dev->struct_mutex);
  6289. trace_i915_flip_request(intel_crtc->plane, obj);
  6290. return 0;
  6291. cleanup_pending:
  6292. atomic_dec(&intel_crtc->unpin_work_count);
  6293. crtc->fb = old_fb;
  6294. drm_gem_object_unreference(&work->old_fb_obj->base);
  6295. drm_gem_object_unreference(&obj->base);
  6296. mutex_unlock(&dev->struct_mutex);
  6297. cleanup:
  6298. spin_lock_irqsave(&dev->event_lock, flags);
  6299. intel_crtc->unpin_work = NULL;
  6300. spin_unlock_irqrestore(&dev->event_lock, flags);
  6301. drm_vblank_put(dev, intel_crtc->pipe);
  6302. free_work:
  6303. kfree(work);
  6304. return ret;
  6305. }
  6306. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6307. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6308. .load_lut = intel_crtc_load_lut,
  6309. };
  6310. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6311. struct drm_crtc *crtc)
  6312. {
  6313. struct drm_device *dev;
  6314. struct drm_crtc *tmp;
  6315. int crtc_mask = 1;
  6316. WARN(!crtc, "checking null crtc?\n");
  6317. dev = crtc->dev;
  6318. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6319. if (tmp == crtc)
  6320. break;
  6321. crtc_mask <<= 1;
  6322. }
  6323. if (encoder->possible_crtcs & crtc_mask)
  6324. return true;
  6325. return false;
  6326. }
  6327. /**
  6328. * intel_modeset_update_staged_output_state
  6329. *
  6330. * Updates the staged output configuration state, e.g. after we've read out the
  6331. * current hw state.
  6332. */
  6333. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6334. {
  6335. struct intel_encoder *encoder;
  6336. struct intel_connector *connector;
  6337. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6338. base.head) {
  6339. connector->new_encoder =
  6340. to_intel_encoder(connector->base.encoder);
  6341. }
  6342. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6343. base.head) {
  6344. encoder->new_crtc =
  6345. to_intel_crtc(encoder->base.crtc);
  6346. }
  6347. }
  6348. /**
  6349. * intel_modeset_commit_output_state
  6350. *
  6351. * This function copies the stage display pipe configuration to the real one.
  6352. */
  6353. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6354. {
  6355. struct intel_encoder *encoder;
  6356. struct intel_connector *connector;
  6357. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6358. base.head) {
  6359. connector->base.encoder = &connector->new_encoder->base;
  6360. }
  6361. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6362. base.head) {
  6363. encoder->base.crtc = &encoder->new_crtc->base;
  6364. }
  6365. }
  6366. static void
  6367. connected_sink_compute_bpp(struct intel_connector * connector,
  6368. struct intel_crtc_config *pipe_config)
  6369. {
  6370. int bpp = pipe_config->pipe_bpp;
  6371. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6372. connector->base.base.id,
  6373. drm_get_connector_name(&connector->base));
  6374. /* Don't use an invalid EDID bpc value */
  6375. if (connector->base.display_info.bpc &&
  6376. connector->base.display_info.bpc * 3 < bpp) {
  6377. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6378. bpp, connector->base.display_info.bpc*3);
  6379. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6380. }
  6381. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6382. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6383. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6384. bpp);
  6385. pipe_config->pipe_bpp = 24;
  6386. }
  6387. }
  6388. static int
  6389. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6390. struct drm_framebuffer *fb,
  6391. struct intel_crtc_config *pipe_config)
  6392. {
  6393. struct drm_device *dev = crtc->base.dev;
  6394. struct intel_connector *connector;
  6395. int bpp;
  6396. switch (fb->pixel_format) {
  6397. case DRM_FORMAT_C8:
  6398. bpp = 8*3; /* since we go through a colormap */
  6399. break;
  6400. case DRM_FORMAT_XRGB1555:
  6401. case DRM_FORMAT_ARGB1555:
  6402. /* checked in intel_framebuffer_init already */
  6403. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6404. return -EINVAL;
  6405. case DRM_FORMAT_RGB565:
  6406. bpp = 6*3; /* min is 18bpp */
  6407. break;
  6408. case DRM_FORMAT_XBGR8888:
  6409. case DRM_FORMAT_ABGR8888:
  6410. /* checked in intel_framebuffer_init already */
  6411. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6412. return -EINVAL;
  6413. case DRM_FORMAT_XRGB8888:
  6414. case DRM_FORMAT_ARGB8888:
  6415. bpp = 8*3;
  6416. break;
  6417. case DRM_FORMAT_XRGB2101010:
  6418. case DRM_FORMAT_ARGB2101010:
  6419. case DRM_FORMAT_XBGR2101010:
  6420. case DRM_FORMAT_ABGR2101010:
  6421. /* checked in intel_framebuffer_init already */
  6422. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6423. return -EINVAL;
  6424. bpp = 10*3;
  6425. break;
  6426. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6427. default:
  6428. DRM_DEBUG_KMS("unsupported depth\n");
  6429. return -EINVAL;
  6430. }
  6431. pipe_config->pipe_bpp = bpp;
  6432. /* Clamp display bpp to EDID value */
  6433. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6434. base.head) {
  6435. if (!connector->new_encoder ||
  6436. connector->new_encoder->new_crtc != crtc)
  6437. continue;
  6438. connected_sink_compute_bpp(connector, pipe_config);
  6439. }
  6440. return bpp;
  6441. }
  6442. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6443. struct intel_crtc_config *pipe_config,
  6444. const char *context)
  6445. {
  6446. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6447. context, pipe_name(crtc->pipe));
  6448. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6449. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6450. pipe_config->pipe_bpp, pipe_config->dither);
  6451. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6452. pipe_config->has_pch_encoder,
  6453. pipe_config->fdi_lanes,
  6454. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6455. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6456. pipe_config->fdi_m_n.tu);
  6457. DRM_DEBUG_KMS("requested mode:\n");
  6458. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6459. DRM_DEBUG_KMS("adjusted mode:\n");
  6460. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6461. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6462. pipe_config->gmch_pfit.control,
  6463. pipe_config->gmch_pfit.pgm_ratios,
  6464. pipe_config->gmch_pfit.lvds_border_bits);
  6465. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6466. pipe_config->pch_pfit.pos,
  6467. pipe_config->pch_pfit.size);
  6468. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6469. }
  6470. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6471. {
  6472. int num_encoders = 0;
  6473. bool uncloneable_encoders = false;
  6474. struct intel_encoder *encoder;
  6475. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6476. base.head) {
  6477. if (&encoder->new_crtc->base != crtc)
  6478. continue;
  6479. num_encoders++;
  6480. if (!encoder->cloneable)
  6481. uncloneable_encoders = true;
  6482. }
  6483. return !(num_encoders > 1 && uncloneable_encoders);
  6484. }
  6485. static struct intel_crtc_config *
  6486. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6487. struct drm_framebuffer *fb,
  6488. struct drm_display_mode *mode)
  6489. {
  6490. struct drm_device *dev = crtc->dev;
  6491. struct drm_encoder_helper_funcs *encoder_funcs;
  6492. struct intel_encoder *encoder;
  6493. struct intel_crtc_config *pipe_config;
  6494. int plane_bpp, ret = -EINVAL;
  6495. bool retry = true;
  6496. if (!check_encoder_cloning(crtc)) {
  6497. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6498. return ERR_PTR(-EINVAL);
  6499. }
  6500. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6501. if (!pipe_config)
  6502. return ERR_PTR(-ENOMEM);
  6503. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6504. drm_mode_copy(&pipe_config->requested_mode, mode);
  6505. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6506. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6507. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6508. * plane pixel format and any sink constraints into account. Returns the
  6509. * source plane bpp so that dithering can be selected on mismatches
  6510. * after encoders and crtc also have had their say. */
  6511. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6512. fb, pipe_config);
  6513. if (plane_bpp < 0)
  6514. goto fail;
  6515. encoder_retry:
  6516. /* Ensure the port clock defaults are reset when retrying. */
  6517. pipe_config->port_clock = 0;
  6518. pipe_config->pixel_multiplier = 1;
  6519. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6520. * adjust it according to limitations or connector properties, and also
  6521. * a chance to reject the mode entirely.
  6522. */
  6523. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6524. base.head) {
  6525. if (&encoder->new_crtc->base != crtc)
  6526. continue;
  6527. if (encoder->compute_config) {
  6528. if (!(encoder->compute_config(encoder, pipe_config))) {
  6529. DRM_DEBUG_KMS("Encoder config failure\n");
  6530. goto fail;
  6531. }
  6532. continue;
  6533. }
  6534. encoder_funcs = encoder->base.helper_private;
  6535. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6536. &pipe_config->requested_mode,
  6537. &pipe_config->adjusted_mode))) {
  6538. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6539. goto fail;
  6540. }
  6541. }
  6542. /* Set default port clock if not overwritten by the encoder. Needs to be
  6543. * done afterwards in case the encoder adjusts the mode. */
  6544. if (!pipe_config->port_clock)
  6545. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6546. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6547. if (ret < 0) {
  6548. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6549. goto fail;
  6550. }
  6551. if (ret == RETRY) {
  6552. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6553. ret = -EINVAL;
  6554. goto fail;
  6555. }
  6556. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6557. retry = false;
  6558. goto encoder_retry;
  6559. }
  6560. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6561. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6562. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6563. return pipe_config;
  6564. fail:
  6565. kfree(pipe_config);
  6566. return ERR_PTR(ret);
  6567. }
  6568. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6569. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6570. static void
  6571. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6572. unsigned *prepare_pipes, unsigned *disable_pipes)
  6573. {
  6574. struct intel_crtc *intel_crtc;
  6575. struct drm_device *dev = crtc->dev;
  6576. struct intel_encoder *encoder;
  6577. struct intel_connector *connector;
  6578. struct drm_crtc *tmp_crtc;
  6579. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6580. /* Check which crtcs have changed outputs connected to them, these need
  6581. * to be part of the prepare_pipes mask. We don't (yet) support global
  6582. * modeset across multiple crtcs, so modeset_pipes will only have one
  6583. * bit set at most. */
  6584. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6585. base.head) {
  6586. if (connector->base.encoder == &connector->new_encoder->base)
  6587. continue;
  6588. if (connector->base.encoder) {
  6589. tmp_crtc = connector->base.encoder->crtc;
  6590. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6591. }
  6592. if (connector->new_encoder)
  6593. *prepare_pipes |=
  6594. 1 << connector->new_encoder->new_crtc->pipe;
  6595. }
  6596. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6597. base.head) {
  6598. if (encoder->base.crtc == &encoder->new_crtc->base)
  6599. continue;
  6600. if (encoder->base.crtc) {
  6601. tmp_crtc = encoder->base.crtc;
  6602. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6603. }
  6604. if (encoder->new_crtc)
  6605. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6606. }
  6607. /* Check for any pipes that will be fully disabled ... */
  6608. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6609. base.head) {
  6610. bool used = false;
  6611. /* Don't try to disable disabled crtcs. */
  6612. if (!intel_crtc->base.enabled)
  6613. continue;
  6614. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6615. base.head) {
  6616. if (encoder->new_crtc == intel_crtc)
  6617. used = true;
  6618. }
  6619. if (!used)
  6620. *disable_pipes |= 1 << intel_crtc->pipe;
  6621. }
  6622. /* set_mode is also used to update properties on life display pipes. */
  6623. intel_crtc = to_intel_crtc(crtc);
  6624. if (crtc->enabled)
  6625. *prepare_pipes |= 1 << intel_crtc->pipe;
  6626. /*
  6627. * For simplicity do a full modeset on any pipe where the output routing
  6628. * changed. We could be more clever, but that would require us to be
  6629. * more careful with calling the relevant encoder->mode_set functions.
  6630. */
  6631. if (*prepare_pipes)
  6632. *modeset_pipes = *prepare_pipes;
  6633. /* ... and mask these out. */
  6634. *modeset_pipes &= ~(*disable_pipes);
  6635. *prepare_pipes &= ~(*disable_pipes);
  6636. /*
  6637. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6638. * obies this rule, but the modeset restore mode of
  6639. * intel_modeset_setup_hw_state does not.
  6640. */
  6641. *modeset_pipes &= 1 << intel_crtc->pipe;
  6642. *prepare_pipes &= 1 << intel_crtc->pipe;
  6643. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6644. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6645. }
  6646. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6647. {
  6648. struct drm_encoder *encoder;
  6649. struct drm_device *dev = crtc->dev;
  6650. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6651. if (encoder->crtc == crtc)
  6652. return true;
  6653. return false;
  6654. }
  6655. static void
  6656. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6657. {
  6658. struct intel_encoder *intel_encoder;
  6659. struct intel_crtc *intel_crtc;
  6660. struct drm_connector *connector;
  6661. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6662. base.head) {
  6663. if (!intel_encoder->base.crtc)
  6664. continue;
  6665. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6666. if (prepare_pipes & (1 << intel_crtc->pipe))
  6667. intel_encoder->connectors_active = false;
  6668. }
  6669. intel_modeset_commit_output_state(dev);
  6670. /* Update computed state. */
  6671. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6672. base.head) {
  6673. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6674. }
  6675. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6676. if (!connector->encoder || !connector->encoder->crtc)
  6677. continue;
  6678. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6679. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6680. struct drm_property *dpms_property =
  6681. dev->mode_config.dpms_property;
  6682. connector->dpms = DRM_MODE_DPMS_ON;
  6683. drm_object_property_set_value(&connector->base,
  6684. dpms_property,
  6685. DRM_MODE_DPMS_ON);
  6686. intel_encoder = to_intel_encoder(connector->encoder);
  6687. intel_encoder->connectors_active = true;
  6688. }
  6689. }
  6690. }
  6691. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6692. list_for_each_entry((intel_crtc), \
  6693. &(dev)->mode_config.crtc_list, \
  6694. base.head) \
  6695. if (mask & (1 <<(intel_crtc)->pipe))
  6696. static bool
  6697. intel_pipe_config_compare(struct drm_device *dev,
  6698. struct intel_crtc_config *current_config,
  6699. struct intel_crtc_config *pipe_config)
  6700. {
  6701. #define PIPE_CONF_CHECK_X(name) \
  6702. if (current_config->name != pipe_config->name) { \
  6703. DRM_ERROR("mismatch in " #name " " \
  6704. "(expected 0x%08x, found 0x%08x)\n", \
  6705. current_config->name, \
  6706. pipe_config->name); \
  6707. return false; \
  6708. }
  6709. #define PIPE_CONF_CHECK_I(name) \
  6710. if (current_config->name != pipe_config->name) { \
  6711. DRM_ERROR("mismatch in " #name " " \
  6712. "(expected %i, found %i)\n", \
  6713. current_config->name, \
  6714. pipe_config->name); \
  6715. return false; \
  6716. }
  6717. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6718. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6719. DRM_ERROR("mismatch in " #name " " \
  6720. "(expected %i, found %i)\n", \
  6721. current_config->name & (mask), \
  6722. pipe_config->name & (mask)); \
  6723. return false; \
  6724. }
  6725. #define PIPE_CONF_QUIRK(quirk) \
  6726. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6727. PIPE_CONF_CHECK_I(cpu_transcoder);
  6728. PIPE_CONF_CHECK_I(has_pch_encoder);
  6729. PIPE_CONF_CHECK_I(fdi_lanes);
  6730. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6731. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6732. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6733. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6734. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6735. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6736. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6737. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6738. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6739. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6740. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6741. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6742. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6743. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6744. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6745. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6746. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6747. if (!HAS_PCH_SPLIT(dev))
  6748. PIPE_CONF_CHECK_I(pixel_multiplier);
  6749. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6750. DRM_MODE_FLAG_INTERLACE);
  6751. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6752. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6753. DRM_MODE_FLAG_PHSYNC);
  6754. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6755. DRM_MODE_FLAG_NHSYNC);
  6756. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6757. DRM_MODE_FLAG_PVSYNC);
  6758. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6759. DRM_MODE_FLAG_NVSYNC);
  6760. }
  6761. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6762. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6763. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6764. /* pfit ratios are autocomputed by the hw on gen4+ */
  6765. if (INTEL_INFO(dev)->gen < 4)
  6766. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6767. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6768. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6769. PIPE_CONF_CHECK_I(pch_pfit.size);
  6770. PIPE_CONF_CHECK_I(ips_enabled);
  6771. PIPE_CONF_CHECK_I(shared_dpll);
  6772. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6773. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  6774. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6775. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6776. #undef PIPE_CONF_CHECK_X
  6777. #undef PIPE_CONF_CHECK_I
  6778. #undef PIPE_CONF_CHECK_FLAGS
  6779. #undef PIPE_CONF_QUIRK
  6780. return true;
  6781. }
  6782. static void
  6783. check_connector_state(struct drm_device *dev)
  6784. {
  6785. struct intel_connector *connector;
  6786. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6787. base.head) {
  6788. /* This also checks the encoder/connector hw state with the
  6789. * ->get_hw_state callbacks. */
  6790. intel_connector_check_state(connector);
  6791. WARN(&connector->new_encoder->base != connector->base.encoder,
  6792. "connector's staged encoder doesn't match current encoder\n");
  6793. }
  6794. }
  6795. static void
  6796. check_encoder_state(struct drm_device *dev)
  6797. {
  6798. struct intel_encoder *encoder;
  6799. struct intel_connector *connector;
  6800. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6801. base.head) {
  6802. bool enabled = false;
  6803. bool active = false;
  6804. enum pipe pipe, tracked_pipe;
  6805. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6806. encoder->base.base.id,
  6807. drm_get_encoder_name(&encoder->base));
  6808. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6809. "encoder's stage crtc doesn't match current crtc\n");
  6810. WARN(encoder->connectors_active && !encoder->base.crtc,
  6811. "encoder's active_connectors set, but no crtc\n");
  6812. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6813. base.head) {
  6814. if (connector->base.encoder != &encoder->base)
  6815. continue;
  6816. enabled = true;
  6817. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6818. active = true;
  6819. }
  6820. WARN(!!encoder->base.crtc != enabled,
  6821. "encoder's enabled state mismatch "
  6822. "(expected %i, found %i)\n",
  6823. !!encoder->base.crtc, enabled);
  6824. WARN(active && !encoder->base.crtc,
  6825. "active encoder with no crtc\n");
  6826. WARN(encoder->connectors_active != active,
  6827. "encoder's computed active state doesn't match tracked active state "
  6828. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6829. active = encoder->get_hw_state(encoder, &pipe);
  6830. WARN(active != encoder->connectors_active,
  6831. "encoder's hw state doesn't match sw tracking "
  6832. "(expected %i, found %i)\n",
  6833. encoder->connectors_active, active);
  6834. if (!encoder->base.crtc)
  6835. continue;
  6836. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6837. WARN(active && pipe != tracked_pipe,
  6838. "active encoder's pipe doesn't match"
  6839. "(expected %i, found %i)\n",
  6840. tracked_pipe, pipe);
  6841. }
  6842. }
  6843. static void
  6844. check_crtc_state(struct drm_device *dev)
  6845. {
  6846. drm_i915_private_t *dev_priv = dev->dev_private;
  6847. struct intel_crtc *crtc;
  6848. struct intel_encoder *encoder;
  6849. struct intel_crtc_config pipe_config;
  6850. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6851. base.head) {
  6852. bool enabled = false;
  6853. bool active = false;
  6854. memset(&pipe_config, 0, sizeof(pipe_config));
  6855. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6856. crtc->base.base.id);
  6857. WARN(crtc->active && !crtc->base.enabled,
  6858. "active crtc, but not enabled in sw tracking\n");
  6859. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6860. base.head) {
  6861. if (encoder->base.crtc != &crtc->base)
  6862. continue;
  6863. enabled = true;
  6864. if (encoder->connectors_active)
  6865. active = true;
  6866. }
  6867. WARN(active != crtc->active,
  6868. "crtc's computed active state doesn't match tracked active state "
  6869. "(expected %i, found %i)\n", active, crtc->active);
  6870. WARN(enabled != crtc->base.enabled,
  6871. "crtc's computed enabled state doesn't match tracked enabled state "
  6872. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6873. active = dev_priv->display.get_pipe_config(crtc,
  6874. &pipe_config);
  6875. /* hw state is inconsistent with the pipe A quirk */
  6876. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  6877. active = crtc->active;
  6878. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6879. base.head) {
  6880. if (encoder->base.crtc != &crtc->base)
  6881. continue;
  6882. if (encoder->get_config)
  6883. encoder->get_config(encoder, &pipe_config);
  6884. }
  6885. WARN(crtc->active != active,
  6886. "crtc active state doesn't match with hw state "
  6887. "(expected %i, found %i)\n", crtc->active, active);
  6888. if (active &&
  6889. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6890. WARN(1, "pipe state doesn't match!\n");
  6891. intel_dump_pipe_config(crtc, &pipe_config,
  6892. "[hw state]");
  6893. intel_dump_pipe_config(crtc, &crtc->config,
  6894. "[sw state]");
  6895. }
  6896. }
  6897. }
  6898. static void
  6899. check_shared_dpll_state(struct drm_device *dev)
  6900. {
  6901. drm_i915_private_t *dev_priv = dev->dev_private;
  6902. struct intel_crtc *crtc;
  6903. struct intel_dpll_hw_state dpll_hw_state;
  6904. int i;
  6905. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  6906. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  6907. int enabled_crtcs = 0, active_crtcs = 0;
  6908. bool active;
  6909. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  6910. DRM_DEBUG_KMS("%s\n", pll->name);
  6911. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  6912. WARN(pll->active > pll->refcount,
  6913. "more active pll users than references: %i vs %i\n",
  6914. pll->active, pll->refcount);
  6915. WARN(pll->active && !pll->on,
  6916. "pll in active use but not on in sw tracking\n");
  6917. WARN(pll->on != active,
  6918. "pll on state mismatch (expected %i, found %i)\n",
  6919. pll->on, active);
  6920. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6921. base.head) {
  6922. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  6923. enabled_crtcs++;
  6924. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  6925. active_crtcs++;
  6926. }
  6927. WARN(pll->active != active_crtcs,
  6928. "pll active crtcs mismatch (expected %i, found %i)\n",
  6929. pll->active, active_crtcs);
  6930. WARN(pll->refcount != enabled_crtcs,
  6931. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  6932. pll->refcount, enabled_crtcs);
  6933. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  6934. sizeof(dpll_hw_state)),
  6935. "pll hw state mismatch\n");
  6936. }
  6937. }
  6938. void
  6939. intel_modeset_check_state(struct drm_device *dev)
  6940. {
  6941. check_connector_state(dev);
  6942. check_encoder_state(dev);
  6943. check_crtc_state(dev);
  6944. check_shared_dpll_state(dev);
  6945. }
  6946. static int __intel_set_mode(struct drm_crtc *crtc,
  6947. struct drm_display_mode *mode,
  6948. int x, int y, struct drm_framebuffer *fb)
  6949. {
  6950. struct drm_device *dev = crtc->dev;
  6951. drm_i915_private_t *dev_priv = dev->dev_private;
  6952. struct drm_display_mode *saved_mode, *saved_hwmode;
  6953. struct intel_crtc_config *pipe_config = NULL;
  6954. struct intel_crtc *intel_crtc;
  6955. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6956. int ret = 0;
  6957. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6958. if (!saved_mode)
  6959. return -ENOMEM;
  6960. saved_hwmode = saved_mode + 1;
  6961. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6962. &prepare_pipes, &disable_pipes);
  6963. *saved_hwmode = crtc->hwmode;
  6964. *saved_mode = crtc->mode;
  6965. /* Hack: Because we don't (yet) support global modeset on multiple
  6966. * crtcs, we don't keep track of the new mode for more than one crtc.
  6967. * Hence simply check whether any bit is set in modeset_pipes in all the
  6968. * pieces of code that are not yet converted to deal with mutliple crtcs
  6969. * changing their mode at the same time. */
  6970. if (modeset_pipes) {
  6971. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6972. if (IS_ERR(pipe_config)) {
  6973. ret = PTR_ERR(pipe_config);
  6974. pipe_config = NULL;
  6975. goto out;
  6976. }
  6977. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6978. "[modeset]");
  6979. }
  6980. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6981. intel_crtc_disable(&intel_crtc->base);
  6982. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6983. if (intel_crtc->base.enabled)
  6984. dev_priv->display.crtc_disable(&intel_crtc->base);
  6985. }
  6986. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6987. * to set it here already despite that we pass it down the callchain.
  6988. */
  6989. if (modeset_pipes) {
  6990. crtc->mode = *mode;
  6991. /* mode_set/enable/disable functions rely on a correct pipe
  6992. * config. */
  6993. to_intel_crtc(crtc)->config = *pipe_config;
  6994. }
  6995. /* Only after disabling all output pipelines that will be changed can we
  6996. * update the the output configuration. */
  6997. intel_modeset_update_state(dev, prepare_pipes);
  6998. if (dev_priv->display.modeset_global_resources)
  6999. dev_priv->display.modeset_global_resources(dev);
  7000. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7001. * on the DPLL.
  7002. */
  7003. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7004. ret = intel_crtc_mode_set(&intel_crtc->base,
  7005. x, y, fb);
  7006. if (ret)
  7007. goto done;
  7008. }
  7009. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7010. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7011. dev_priv->display.crtc_enable(&intel_crtc->base);
  7012. if (modeset_pipes) {
  7013. /* Store real post-adjustment hardware mode. */
  7014. crtc->hwmode = pipe_config->adjusted_mode;
  7015. /* Calculate and store various constants which
  7016. * are later needed by vblank and swap-completion
  7017. * timestamping. They are derived from true hwmode.
  7018. */
  7019. drm_calc_timestamping_constants(crtc);
  7020. }
  7021. /* FIXME: add subpixel order */
  7022. done:
  7023. if (ret && crtc->enabled) {
  7024. crtc->hwmode = *saved_hwmode;
  7025. crtc->mode = *saved_mode;
  7026. }
  7027. out:
  7028. kfree(pipe_config);
  7029. kfree(saved_mode);
  7030. return ret;
  7031. }
  7032. int intel_set_mode(struct drm_crtc *crtc,
  7033. struct drm_display_mode *mode,
  7034. int x, int y, struct drm_framebuffer *fb)
  7035. {
  7036. int ret;
  7037. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7038. if (ret == 0)
  7039. intel_modeset_check_state(crtc->dev);
  7040. return ret;
  7041. }
  7042. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7043. {
  7044. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7045. }
  7046. #undef for_each_intel_crtc_masked
  7047. static void intel_set_config_free(struct intel_set_config *config)
  7048. {
  7049. if (!config)
  7050. return;
  7051. kfree(config->save_connector_encoders);
  7052. kfree(config->save_encoder_crtcs);
  7053. kfree(config);
  7054. }
  7055. static int intel_set_config_save_state(struct drm_device *dev,
  7056. struct intel_set_config *config)
  7057. {
  7058. struct drm_encoder *encoder;
  7059. struct drm_connector *connector;
  7060. int count;
  7061. config->save_encoder_crtcs =
  7062. kcalloc(dev->mode_config.num_encoder,
  7063. sizeof(struct drm_crtc *), GFP_KERNEL);
  7064. if (!config->save_encoder_crtcs)
  7065. return -ENOMEM;
  7066. config->save_connector_encoders =
  7067. kcalloc(dev->mode_config.num_connector,
  7068. sizeof(struct drm_encoder *), GFP_KERNEL);
  7069. if (!config->save_connector_encoders)
  7070. return -ENOMEM;
  7071. /* Copy data. Note that driver private data is not affected.
  7072. * Should anything bad happen only the expected state is
  7073. * restored, not the drivers personal bookkeeping.
  7074. */
  7075. count = 0;
  7076. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7077. config->save_encoder_crtcs[count++] = encoder->crtc;
  7078. }
  7079. count = 0;
  7080. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7081. config->save_connector_encoders[count++] = connector->encoder;
  7082. }
  7083. return 0;
  7084. }
  7085. static void intel_set_config_restore_state(struct drm_device *dev,
  7086. struct intel_set_config *config)
  7087. {
  7088. struct intel_encoder *encoder;
  7089. struct intel_connector *connector;
  7090. int count;
  7091. count = 0;
  7092. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7093. encoder->new_crtc =
  7094. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7095. }
  7096. count = 0;
  7097. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7098. connector->new_encoder =
  7099. to_intel_encoder(config->save_connector_encoders[count++]);
  7100. }
  7101. }
  7102. static bool
  7103. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7104. int num_connectors)
  7105. {
  7106. int i;
  7107. for (i = 0; i < num_connectors; i++)
  7108. if (connectors[i].encoder &&
  7109. connectors[i].encoder->crtc == crtc &&
  7110. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7111. return true;
  7112. return false;
  7113. }
  7114. static void
  7115. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7116. struct intel_set_config *config)
  7117. {
  7118. /* We should be able to check here if the fb has the same properties
  7119. * and then just flip_or_move it */
  7120. if (set->connectors != NULL &&
  7121. is_crtc_connector_off(set->crtc, *set->connectors,
  7122. set->num_connectors)) {
  7123. config->mode_changed = true;
  7124. } else if (set->crtc->fb != set->fb) {
  7125. /* If we have no fb then treat it as a full mode set */
  7126. if (set->crtc->fb == NULL) {
  7127. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7128. config->mode_changed = true;
  7129. } else if (set->fb == NULL) {
  7130. config->mode_changed = true;
  7131. } else if (set->fb->pixel_format !=
  7132. set->crtc->fb->pixel_format) {
  7133. config->mode_changed = true;
  7134. } else {
  7135. config->fb_changed = true;
  7136. }
  7137. }
  7138. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7139. config->fb_changed = true;
  7140. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7141. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7142. drm_mode_debug_printmodeline(&set->crtc->mode);
  7143. drm_mode_debug_printmodeline(set->mode);
  7144. config->mode_changed = true;
  7145. }
  7146. }
  7147. static int
  7148. intel_modeset_stage_output_state(struct drm_device *dev,
  7149. struct drm_mode_set *set,
  7150. struct intel_set_config *config)
  7151. {
  7152. struct drm_crtc *new_crtc;
  7153. struct intel_connector *connector;
  7154. struct intel_encoder *encoder;
  7155. int count, ro;
  7156. /* The upper layers ensure that we either disable a crtc or have a list
  7157. * of connectors. For paranoia, double-check this. */
  7158. WARN_ON(!set->fb && (set->num_connectors != 0));
  7159. WARN_ON(set->fb && (set->num_connectors == 0));
  7160. count = 0;
  7161. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7162. base.head) {
  7163. /* Otherwise traverse passed in connector list and get encoders
  7164. * for them. */
  7165. for (ro = 0; ro < set->num_connectors; ro++) {
  7166. if (set->connectors[ro] == &connector->base) {
  7167. connector->new_encoder = connector->encoder;
  7168. break;
  7169. }
  7170. }
  7171. /* If we disable the crtc, disable all its connectors. Also, if
  7172. * the connector is on the changing crtc but not on the new
  7173. * connector list, disable it. */
  7174. if ((!set->fb || ro == set->num_connectors) &&
  7175. connector->base.encoder &&
  7176. connector->base.encoder->crtc == set->crtc) {
  7177. connector->new_encoder = NULL;
  7178. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7179. connector->base.base.id,
  7180. drm_get_connector_name(&connector->base));
  7181. }
  7182. if (&connector->new_encoder->base != connector->base.encoder) {
  7183. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7184. config->mode_changed = true;
  7185. }
  7186. }
  7187. /* connector->new_encoder is now updated for all connectors. */
  7188. /* Update crtc of enabled connectors. */
  7189. count = 0;
  7190. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7191. base.head) {
  7192. if (!connector->new_encoder)
  7193. continue;
  7194. new_crtc = connector->new_encoder->base.crtc;
  7195. for (ro = 0; ro < set->num_connectors; ro++) {
  7196. if (set->connectors[ro] == &connector->base)
  7197. new_crtc = set->crtc;
  7198. }
  7199. /* Make sure the new CRTC will work with the encoder */
  7200. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7201. new_crtc)) {
  7202. return -EINVAL;
  7203. }
  7204. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7205. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7206. connector->base.base.id,
  7207. drm_get_connector_name(&connector->base),
  7208. new_crtc->base.id);
  7209. }
  7210. /* Check for any encoders that needs to be disabled. */
  7211. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7212. base.head) {
  7213. list_for_each_entry(connector,
  7214. &dev->mode_config.connector_list,
  7215. base.head) {
  7216. if (connector->new_encoder == encoder) {
  7217. WARN_ON(!connector->new_encoder->new_crtc);
  7218. goto next_encoder;
  7219. }
  7220. }
  7221. encoder->new_crtc = NULL;
  7222. next_encoder:
  7223. /* Only now check for crtc changes so we don't miss encoders
  7224. * that will be disabled. */
  7225. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7226. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7227. config->mode_changed = true;
  7228. }
  7229. }
  7230. /* Now we've also updated encoder->new_crtc for all encoders. */
  7231. return 0;
  7232. }
  7233. static int intel_crtc_set_config(struct drm_mode_set *set)
  7234. {
  7235. struct drm_device *dev;
  7236. struct drm_mode_set save_set;
  7237. struct intel_set_config *config;
  7238. int ret;
  7239. BUG_ON(!set);
  7240. BUG_ON(!set->crtc);
  7241. BUG_ON(!set->crtc->helper_private);
  7242. /* Enforce sane interface api - has been abused by the fb helper. */
  7243. BUG_ON(!set->mode && set->fb);
  7244. BUG_ON(set->fb && set->num_connectors == 0);
  7245. if (set->fb) {
  7246. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7247. set->crtc->base.id, set->fb->base.id,
  7248. (int)set->num_connectors, set->x, set->y);
  7249. } else {
  7250. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7251. }
  7252. dev = set->crtc->dev;
  7253. ret = -ENOMEM;
  7254. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7255. if (!config)
  7256. goto out_config;
  7257. ret = intel_set_config_save_state(dev, config);
  7258. if (ret)
  7259. goto out_config;
  7260. save_set.crtc = set->crtc;
  7261. save_set.mode = &set->crtc->mode;
  7262. save_set.x = set->crtc->x;
  7263. save_set.y = set->crtc->y;
  7264. save_set.fb = set->crtc->fb;
  7265. /* Compute whether we need a full modeset, only an fb base update or no
  7266. * change at all. In the future we might also check whether only the
  7267. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7268. * such cases. */
  7269. intel_set_config_compute_mode_changes(set, config);
  7270. ret = intel_modeset_stage_output_state(dev, set, config);
  7271. if (ret)
  7272. goto fail;
  7273. if (config->mode_changed) {
  7274. ret = intel_set_mode(set->crtc, set->mode,
  7275. set->x, set->y, set->fb);
  7276. } else if (config->fb_changed) {
  7277. intel_crtc_wait_for_pending_flips(set->crtc);
  7278. ret = intel_pipe_set_base(set->crtc,
  7279. set->x, set->y, set->fb);
  7280. }
  7281. if (ret) {
  7282. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7283. set->crtc->base.id, ret);
  7284. fail:
  7285. intel_set_config_restore_state(dev, config);
  7286. /* Try to restore the config */
  7287. if (config->mode_changed &&
  7288. intel_set_mode(save_set.crtc, save_set.mode,
  7289. save_set.x, save_set.y, save_set.fb))
  7290. DRM_ERROR("failed to restore config after modeset failure\n");
  7291. }
  7292. out_config:
  7293. intel_set_config_free(config);
  7294. return ret;
  7295. }
  7296. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7297. .cursor_set = intel_crtc_cursor_set,
  7298. .cursor_move = intel_crtc_cursor_move,
  7299. .gamma_set = intel_crtc_gamma_set,
  7300. .set_config = intel_crtc_set_config,
  7301. .destroy = intel_crtc_destroy,
  7302. .page_flip = intel_crtc_page_flip,
  7303. };
  7304. static void intel_cpu_pll_init(struct drm_device *dev)
  7305. {
  7306. if (HAS_DDI(dev))
  7307. intel_ddi_pll_init(dev);
  7308. }
  7309. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7310. struct intel_shared_dpll *pll,
  7311. struct intel_dpll_hw_state *hw_state)
  7312. {
  7313. uint32_t val;
  7314. val = I915_READ(PCH_DPLL(pll->id));
  7315. hw_state->dpll = val;
  7316. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7317. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7318. return val & DPLL_VCO_ENABLE;
  7319. }
  7320. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7321. struct intel_shared_dpll *pll)
  7322. {
  7323. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7324. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7325. }
  7326. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7327. struct intel_shared_dpll *pll)
  7328. {
  7329. /* PCH refclock must be enabled first */
  7330. assert_pch_refclk_enabled(dev_priv);
  7331. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7332. /* Wait for the clocks to stabilize. */
  7333. POSTING_READ(PCH_DPLL(pll->id));
  7334. udelay(150);
  7335. /* The pixel multiplier can only be updated once the
  7336. * DPLL is enabled and the clocks are stable.
  7337. *
  7338. * So write it again.
  7339. */
  7340. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7341. POSTING_READ(PCH_DPLL(pll->id));
  7342. udelay(200);
  7343. }
  7344. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7345. struct intel_shared_dpll *pll)
  7346. {
  7347. struct drm_device *dev = dev_priv->dev;
  7348. struct intel_crtc *crtc;
  7349. /* Make sure no transcoder isn't still depending on us. */
  7350. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7351. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7352. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7353. }
  7354. I915_WRITE(PCH_DPLL(pll->id), 0);
  7355. POSTING_READ(PCH_DPLL(pll->id));
  7356. udelay(200);
  7357. }
  7358. static char *ibx_pch_dpll_names[] = {
  7359. "PCH DPLL A",
  7360. "PCH DPLL B",
  7361. };
  7362. static void ibx_pch_dpll_init(struct drm_device *dev)
  7363. {
  7364. struct drm_i915_private *dev_priv = dev->dev_private;
  7365. int i;
  7366. dev_priv->num_shared_dpll = 2;
  7367. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7368. dev_priv->shared_dplls[i].id = i;
  7369. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7370. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7371. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7372. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7373. dev_priv->shared_dplls[i].get_hw_state =
  7374. ibx_pch_dpll_get_hw_state;
  7375. }
  7376. }
  7377. static void intel_shared_dpll_init(struct drm_device *dev)
  7378. {
  7379. struct drm_i915_private *dev_priv = dev->dev_private;
  7380. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7381. ibx_pch_dpll_init(dev);
  7382. else
  7383. dev_priv->num_shared_dpll = 0;
  7384. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7385. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7386. dev_priv->num_shared_dpll);
  7387. }
  7388. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7389. {
  7390. drm_i915_private_t *dev_priv = dev->dev_private;
  7391. struct intel_crtc *intel_crtc;
  7392. int i;
  7393. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7394. if (intel_crtc == NULL)
  7395. return;
  7396. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7397. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7398. for (i = 0; i < 256; i++) {
  7399. intel_crtc->lut_r[i] = i;
  7400. intel_crtc->lut_g[i] = i;
  7401. intel_crtc->lut_b[i] = i;
  7402. }
  7403. /* Swap pipes & planes for FBC on pre-965 */
  7404. intel_crtc->pipe = pipe;
  7405. intel_crtc->plane = pipe;
  7406. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7407. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7408. intel_crtc->plane = !pipe;
  7409. }
  7410. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7411. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7412. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7413. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7414. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7415. }
  7416. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7417. struct drm_file *file)
  7418. {
  7419. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7420. struct drm_mode_object *drmmode_obj;
  7421. struct intel_crtc *crtc;
  7422. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7423. return -ENODEV;
  7424. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7425. DRM_MODE_OBJECT_CRTC);
  7426. if (!drmmode_obj) {
  7427. DRM_ERROR("no such CRTC id\n");
  7428. return -EINVAL;
  7429. }
  7430. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7431. pipe_from_crtc_id->pipe = crtc->pipe;
  7432. return 0;
  7433. }
  7434. static int intel_encoder_clones(struct intel_encoder *encoder)
  7435. {
  7436. struct drm_device *dev = encoder->base.dev;
  7437. struct intel_encoder *source_encoder;
  7438. int index_mask = 0;
  7439. int entry = 0;
  7440. list_for_each_entry(source_encoder,
  7441. &dev->mode_config.encoder_list, base.head) {
  7442. if (encoder == source_encoder)
  7443. index_mask |= (1 << entry);
  7444. /* Intel hw has only one MUX where enocoders could be cloned. */
  7445. if (encoder->cloneable && source_encoder->cloneable)
  7446. index_mask |= (1 << entry);
  7447. entry++;
  7448. }
  7449. return index_mask;
  7450. }
  7451. static bool has_edp_a(struct drm_device *dev)
  7452. {
  7453. struct drm_i915_private *dev_priv = dev->dev_private;
  7454. if (!IS_MOBILE(dev))
  7455. return false;
  7456. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7457. return false;
  7458. if (IS_GEN5(dev) &&
  7459. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7460. return false;
  7461. return true;
  7462. }
  7463. static void intel_setup_outputs(struct drm_device *dev)
  7464. {
  7465. struct drm_i915_private *dev_priv = dev->dev_private;
  7466. struct intel_encoder *encoder;
  7467. bool dpd_is_edp = false;
  7468. intel_lvds_init(dev);
  7469. if (!IS_ULT(dev))
  7470. intel_crt_init(dev);
  7471. if (HAS_DDI(dev)) {
  7472. int found;
  7473. /* Haswell uses DDI functions to detect digital outputs */
  7474. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7475. /* DDI A only supports eDP */
  7476. if (found)
  7477. intel_ddi_init(dev, PORT_A);
  7478. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7479. * register */
  7480. found = I915_READ(SFUSE_STRAP);
  7481. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7482. intel_ddi_init(dev, PORT_B);
  7483. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7484. intel_ddi_init(dev, PORT_C);
  7485. if (found & SFUSE_STRAP_DDID_DETECTED)
  7486. intel_ddi_init(dev, PORT_D);
  7487. } else if (HAS_PCH_SPLIT(dev)) {
  7488. int found;
  7489. dpd_is_edp = intel_dpd_is_edp(dev);
  7490. if (has_edp_a(dev))
  7491. intel_dp_init(dev, DP_A, PORT_A);
  7492. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7493. /* PCH SDVOB multiplex with HDMIB */
  7494. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7495. if (!found)
  7496. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7497. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7498. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7499. }
  7500. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7501. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7502. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7503. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7504. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7505. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7506. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7507. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7508. } else if (IS_VALLEYVIEW(dev)) {
  7509. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7510. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7511. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7512. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7513. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7514. PORT_B);
  7515. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7516. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7517. }
  7518. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7519. bool found = false;
  7520. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7521. DRM_DEBUG_KMS("probing SDVOB\n");
  7522. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7523. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7524. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7525. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7526. }
  7527. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7528. intel_dp_init(dev, DP_B, PORT_B);
  7529. }
  7530. /* Before G4X SDVOC doesn't have its own detect register */
  7531. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7532. DRM_DEBUG_KMS("probing SDVOC\n");
  7533. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7534. }
  7535. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7536. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7537. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7538. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7539. }
  7540. if (SUPPORTS_INTEGRATED_DP(dev))
  7541. intel_dp_init(dev, DP_C, PORT_C);
  7542. }
  7543. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7544. (I915_READ(DP_D) & DP_DETECTED))
  7545. intel_dp_init(dev, DP_D, PORT_D);
  7546. } else if (IS_GEN2(dev))
  7547. intel_dvo_init(dev);
  7548. if (SUPPORTS_TV(dev))
  7549. intel_tv_init(dev);
  7550. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7551. encoder->base.possible_crtcs = encoder->crtc_mask;
  7552. encoder->base.possible_clones =
  7553. intel_encoder_clones(encoder);
  7554. }
  7555. intel_init_pch_refclk(dev);
  7556. drm_helper_move_panel_connectors_to_head(dev);
  7557. }
  7558. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7559. {
  7560. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7561. drm_framebuffer_cleanup(fb);
  7562. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7563. kfree(intel_fb);
  7564. }
  7565. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7566. struct drm_file *file,
  7567. unsigned int *handle)
  7568. {
  7569. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7570. struct drm_i915_gem_object *obj = intel_fb->obj;
  7571. return drm_gem_handle_create(file, &obj->base, handle);
  7572. }
  7573. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7574. .destroy = intel_user_framebuffer_destroy,
  7575. .create_handle = intel_user_framebuffer_create_handle,
  7576. };
  7577. int intel_framebuffer_init(struct drm_device *dev,
  7578. struct intel_framebuffer *intel_fb,
  7579. struct drm_mode_fb_cmd2 *mode_cmd,
  7580. struct drm_i915_gem_object *obj)
  7581. {
  7582. int pitch_limit;
  7583. int ret;
  7584. if (obj->tiling_mode == I915_TILING_Y) {
  7585. DRM_DEBUG("hardware does not support tiling Y\n");
  7586. return -EINVAL;
  7587. }
  7588. if (mode_cmd->pitches[0] & 63) {
  7589. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7590. mode_cmd->pitches[0]);
  7591. return -EINVAL;
  7592. }
  7593. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7594. pitch_limit = 32*1024;
  7595. } else if (INTEL_INFO(dev)->gen >= 4) {
  7596. if (obj->tiling_mode)
  7597. pitch_limit = 16*1024;
  7598. else
  7599. pitch_limit = 32*1024;
  7600. } else if (INTEL_INFO(dev)->gen >= 3) {
  7601. if (obj->tiling_mode)
  7602. pitch_limit = 8*1024;
  7603. else
  7604. pitch_limit = 16*1024;
  7605. } else
  7606. /* XXX DSPC is limited to 4k tiled */
  7607. pitch_limit = 8*1024;
  7608. if (mode_cmd->pitches[0] > pitch_limit) {
  7609. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7610. obj->tiling_mode ? "tiled" : "linear",
  7611. mode_cmd->pitches[0], pitch_limit);
  7612. return -EINVAL;
  7613. }
  7614. if (obj->tiling_mode != I915_TILING_NONE &&
  7615. mode_cmd->pitches[0] != obj->stride) {
  7616. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7617. mode_cmd->pitches[0], obj->stride);
  7618. return -EINVAL;
  7619. }
  7620. /* Reject formats not supported by any plane early. */
  7621. switch (mode_cmd->pixel_format) {
  7622. case DRM_FORMAT_C8:
  7623. case DRM_FORMAT_RGB565:
  7624. case DRM_FORMAT_XRGB8888:
  7625. case DRM_FORMAT_ARGB8888:
  7626. break;
  7627. case DRM_FORMAT_XRGB1555:
  7628. case DRM_FORMAT_ARGB1555:
  7629. if (INTEL_INFO(dev)->gen > 3) {
  7630. DRM_DEBUG("unsupported pixel format: %s\n",
  7631. drm_get_format_name(mode_cmd->pixel_format));
  7632. return -EINVAL;
  7633. }
  7634. break;
  7635. case DRM_FORMAT_XBGR8888:
  7636. case DRM_FORMAT_ABGR8888:
  7637. case DRM_FORMAT_XRGB2101010:
  7638. case DRM_FORMAT_ARGB2101010:
  7639. case DRM_FORMAT_XBGR2101010:
  7640. case DRM_FORMAT_ABGR2101010:
  7641. if (INTEL_INFO(dev)->gen < 4) {
  7642. DRM_DEBUG("unsupported pixel format: %s\n",
  7643. drm_get_format_name(mode_cmd->pixel_format));
  7644. return -EINVAL;
  7645. }
  7646. break;
  7647. case DRM_FORMAT_YUYV:
  7648. case DRM_FORMAT_UYVY:
  7649. case DRM_FORMAT_YVYU:
  7650. case DRM_FORMAT_VYUY:
  7651. if (INTEL_INFO(dev)->gen < 5) {
  7652. DRM_DEBUG("unsupported pixel format: %s\n",
  7653. drm_get_format_name(mode_cmd->pixel_format));
  7654. return -EINVAL;
  7655. }
  7656. break;
  7657. default:
  7658. DRM_DEBUG("unsupported pixel format: %s\n",
  7659. drm_get_format_name(mode_cmd->pixel_format));
  7660. return -EINVAL;
  7661. }
  7662. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7663. if (mode_cmd->offsets[0] != 0)
  7664. return -EINVAL;
  7665. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7666. intel_fb->obj = obj;
  7667. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7668. if (ret) {
  7669. DRM_ERROR("framebuffer init failed %d\n", ret);
  7670. return ret;
  7671. }
  7672. return 0;
  7673. }
  7674. static struct drm_framebuffer *
  7675. intel_user_framebuffer_create(struct drm_device *dev,
  7676. struct drm_file *filp,
  7677. struct drm_mode_fb_cmd2 *mode_cmd)
  7678. {
  7679. struct drm_i915_gem_object *obj;
  7680. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7681. mode_cmd->handles[0]));
  7682. if (&obj->base == NULL)
  7683. return ERR_PTR(-ENOENT);
  7684. return intel_framebuffer_create(dev, mode_cmd, obj);
  7685. }
  7686. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7687. .fb_create = intel_user_framebuffer_create,
  7688. .output_poll_changed = intel_fb_output_poll_changed,
  7689. };
  7690. /* Set up chip specific display functions */
  7691. static void intel_init_display(struct drm_device *dev)
  7692. {
  7693. struct drm_i915_private *dev_priv = dev->dev_private;
  7694. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7695. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7696. else if (IS_VALLEYVIEW(dev))
  7697. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7698. else if (IS_PINEVIEW(dev))
  7699. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7700. else
  7701. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7702. if (HAS_DDI(dev)) {
  7703. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7704. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7705. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7706. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7707. dev_priv->display.off = haswell_crtc_off;
  7708. dev_priv->display.update_plane = ironlake_update_plane;
  7709. } else if (HAS_PCH_SPLIT(dev)) {
  7710. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7711. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7712. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7713. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7714. dev_priv->display.off = ironlake_crtc_off;
  7715. dev_priv->display.update_plane = ironlake_update_plane;
  7716. } else if (IS_VALLEYVIEW(dev)) {
  7717. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7718. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7719. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7720. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7721. dev_priv->display.off = i9xx_crtc_off;
  7722. dev_priv->display.update_plane = i9xx_update_plane;
  7723. } else {
  7724. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7725. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7726. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7727. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7728. dev_priv->display.off = i9xx_crtc_off;
  7729. dev_priv->display.update_plane = i9xx_update_plane;
  7730. }
  7731. /* Returns the core display clock speed */
  7732. if (IS_VALLEYVIEW(dev))
  7733. dev_priv->display.get_display_clock_speed =
  7734. valleyview_get_display_clock_speed;
  7735. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7736. dev_priv->display.get_display_clock_speed =
  7737. i945_get_display_clock_speed;
  7738. else if (IS_I915G(dev))
  7739. dev_priv->display.get_display_clock_speed =
  7740. i915_get_display_clock_speed;
  7741. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7742. dev_priv->display.get_display_clock_speed =
  7743. i9xx_misc_get_display_clock_speed;
  7744. else if (IS_I915GM(dev))
  7745. dev_priv->display.get_display_clock_speed =
  7746. i915gm_get_display_clock_speed;
  7747. else if (IS_I865G(dev))
  7748. dev_priv->display.get_display_clock_speed =
  7749. i865_get_display_clock_speed;
  7750. else if (IS_I85X(dev))
  7751. dev_priv->display.get_display_clock_speed =
  7752. i855_get_display_clock_speed;
  7753. else /* 852, 830 */
  7754. dev_priv->display.get_display_clock_speed =
  7755. i830_get_display_clock_speed;
  7756. if (HAS_PCH_SPLIT(dev)) {
  7757. if (IS_GEN5(dev)) {
  7758. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7759. dev_priv->display.write_eld = ironlake_write_eld;
  7760. } else if (IS_GEN6(dev)) {
  7761. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7762. dev_priv->display.write_eld = ironlake_write_eld;
  7763. } else if (IS_IVYBRIDGE(dev)) {
  7764. /* FIXME: detect B0+ stepping and use auto training */
  7765. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7766. dev_priv->display.write_eld = ironlake_write_eld;
  7767. dev_priv->display.modeset_global_resources =
  7768. ivb_modeset_global_resources;
  7769. } else if (IS_HASWELL(dev)) {
  7770. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7771. dev_priv->display.write_eld = haswell_write_eld;
  7772. dev_priv->display.modeset_global_resources =
  7773. haswell_modeset_global_resources;
  7774. }
  7775. } else if (IS_G4X(dev)) {
  7776. dev_priv->display.write_eld = g4x_write_eld;
  7777. }
  7778. /* Default just returns -ENODEV to indicate unsupported */
  7779. dev_priv->display.queue_flip = intel_default_queue_flip;
  7780. switch (INTEL_INFO(dev)->gen) {
  7781. case 2:
  7782. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7783. break;
  7784. case 3:
  7785. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7786. break;
  7787. case 4:
  7788. case 5:
  7789. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7790. break;
  7791. case 6:
  7792. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7793. break;
  7794. case 7:
  7795. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7796. break;
  7797. }
  7798. }
  7799. /*
  7800. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7801. * resume, or other times. This quirk makes sure that's the case for
  7802. * affected systems.
  7803. */
  7804. static void quirk_pipea_force(struct drm_device *dev)
  7805. {
  7806. struct drm_i915_private *dev_priv = dev->dev_private;
  7807. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7808. DRM_INFO("applying pipe a force quirk\n");
  7809. }
  7810. /*
  7811. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7812. */
  7813. static void quirk_ssc_force_disable(struct drm_device *dev)
  7814. {
  7815. struct drm_i915_private *dev_priv = dev->dev_private;
  7816. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7817. DRM_INFO("applying lvds SSC disable quirk\n");
  7818. }
  7819. /*
  7820. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7821. * brightness value
  7822. */
  7823. static void quirk_invert_brightness(struct drm_device *dev)
  7824. {
  7825. struct drm_i915_private *dev_priv = dev->dev_private;
  7826. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7827. DRM_INFO("applying inverted panel brightness quirk\n");
  7828. }
  7829. struct intel_quirk {
  7830. int device;
  7831. int subsystem_vendor;
  7832. int subsystem_device;
  7833. void (*hook)(struct drm_device *dev);
  7834. };
  7835. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7836. struct intel_dmi_quirk {
  7837. void (*hook)(struct drm_device *dev);
  7838. const struct dmi_system_id (*dmi_id_list)[];
  7839. };
  7840. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7841. {
  7842. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7843. return 1;
  7844. }
  7845. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7846. {
  7847. .dmi_id_list = &(const struct dmi_system_id[]) {
  7848. {
  7849. .callback = intel_dmi_reverse_brightness,
  7850. .ident = "NCR Corporation",
  7851. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7852. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7853. },
  7854. },
  7855. { } /* terminating entry */
  7856. },
  7857. .hook = quirk_invert_brightness,
  7858. },
  7859. };
  7860. static struct intel_quirk intel_quirks[] = {
  7861. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7862. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7863. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7864. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7865. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7866. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7867. /* 830/845 need to leave pipe A & dpll A up */
  7868. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7869. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7870. /* Lenovo U160 cannot use SSC on LVDS */
  7871. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7872. /* Sony Vaio Y cannot use SSC on LVDS */
  7873. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7874. /* Acer Aspire 5734Z must invert backlight brightness */
  7875. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7876. /* Acer/eMachines G725 */
  7877. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7878. /* Acer/eMachines e725 */
  7879. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7880. /* Acer/Packard Bell NCL20 */
  7881. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7882. /* Acer Aspire 4736Z */
  7883. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7884. };
  7885. static void intel_init_quirks(struct drm_device *dev)
  7886. {
  7887. struct pci_dev *d = dev->pdev;
  7888. int i;
  7889. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7890. struct intel_quirk *q = &intel_quirks[i];
  7891. if (d->device == q->device &&
  7892. (d->subsystem_vendor == q->subsystem_vendor ||
  7893. q->subsystem_vendor == PCI_ANY_ID) &&
  7894. (d->subsystem_device == q->subsystem_device ||
  7895. q->subsystem_device == PCI_ANY_ID))
  7896. q->hook(dev);
  7897. }
  7898. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7899. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7900. intel_dmi_quirks[i].hook(dev);
  7901. }
  7902. }
  7903. /* Disable the VGA plane that we never use */
  7904. static void i915_disable_vga(struct drm_device *dev)
  7905. {
  7906. struct drm_i915_private *dev_priv = dev->dev_private;
  7907. u8 sr1;
  7908. u32 vga_reg = i915_vgacntrl_reg(dev);
  7909. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7910. outb(SR01, VGA_SR_INDEX);
  7911. sr1 = inb(VGA_SR_DATA);
  7912. outb(sr1 | 1<<5, VGA_SR_DATA);
  7913. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7914. udelay(300);
  7915. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7916. POSTING_READ(vga_reg);
  7917. }
  7918. void intel_modeset_init_hw(struct drm_device *dev)
  7919. {
  7920. intel_init_power_well(dev);
  7921. intel_prepare_ddi(dev);
  7922. intel_init_clock_gating(dev);
  7923. mutex_lock(&dev->struct_mutex);
  7924. intel_enable_gt_powersave(dev);
  7925. mutex_unlock(&dev->struct_mutex);
  7926. }
  7927. void intel_modeset_suspend_hw(struct drm_device *dev)
  7928. {
  7929. intel_suspend_hw(dev);
  7930. }
  7931. void intel_modeset_init(struct drm_device *dev)
  7932. {
  7933. struct drm_i915_private *dev_priv = dev->dev_private;
  7934. int i, j, ret;
  7935. drm_mode_config_init(dev);
  7936. dev->mode_config.min_width = 0;
  7937. dev->mode_config.min_height = 0;
  7938. dev->mode_config.preferred_depth = 24;
  7939. dev->mode_config.prefer_shadow = 1;
  7940. dev->mode_config.funcs = &intel_mode_funcs;
  7941. intel_init_quirks(dev);
  7942. intel_init_pm(dev);
  7943. if (INTEL_INFO(dev)->num_pipes == 0)
  7944. return;
  7945. intel_init_display(dev);
  7946. if (IS_GEN2(dev)) {
  7947. dev->mode_config.max_width = 2048;
  7948. dev->mode_config.max_height = 2048;
  7949. } else if (IS_GEN3(dev)) {
  7950. dev->mode_config.max_width = 4096;
  7951. dev->mode_config.max_height = 4096;
  7952. } else {
  7953. dev->mode_config.max_width = 8192;
  7954. dev->mode_config.max_height = 8192;
  7955. }
  7956. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7957. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7958. INTEL_INFO(dev)->num_pipes,
  7959. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7960. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7961. intel_crtc_init(dev, i);
  7962. for (j = 0; j < dev_priv->num_plane; j++) {
  7963. ret = intel_plane_init(dev, i, j);
  7964. if (ret)
  7965. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7966. pipe_name(i), sprite_name(i, j), ret);
  7967. }
  7968. }
  7969. intel_cpu_pll_init(dev);
  7970. intel_shared_dpll_init(dev);
  7971. /* Just disable it once at startup */
  7972. i915_disable_vga(dev);
  7973. intel_setup_outputs(dev);
  7974. /* Just in case the BIOS is doing something questionable. */
  7975. intel_disable_fbc(dev);
  7976. }
  7977. static void
  7978. intel_connector_break_all_links(struct intel_connector *connector)
  7979. {
  7980. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7981. connector->base.encoder = NULL;
  7982. connector->encoder->connectors_active = false;
  7983. connector->encoder->base.crtc = NULL;
  7984. }
  7985. static void intel_enable_pipe_a(struct drm_device *dev)
  7986. {
  7987. struct intel_connector *connector;
  7988. struct drm_connector *crt = NULL;
  7989. struct intel_load_detect_pipe load_detect_temp;
  7990. /* We can't just switch on the pipe A, we need to set things up with a
  7991. * proper mode and output configuration. As a gross hack, enable pipe A
  7992. * by enabling the load detect pipe once. */
  7993. list_for_each_entry(connector,
  7994. &dev->mode_config.connector_list,
  7995. base.head) {
  7996. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7997. crt = &connector->base;
  7998. break;
  7999. }
  8000. }
  8001. if (!crt)
  8002. return;
  8003. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8004. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8005. }
  8006. static bool
  8007. intel_check_plane_mapping(struct intel_crtc *crtc)
  8008. {
  8009. struct drm_device *dev = crtc->base.dev;
  8010. struct drm_i915_private *dev_priv = dev->dev_private;
  8011. u32 reg, val;
  8012. if (INTEL_INFO(dev)->num_pipes == 1)
  8013. return true;
  8014. reg = DSPCNTR(!crtc->plane);
  8015. val = I915_READ(reg);
  8016. if ((val & DISPLAY_PLANE_ENABLE) &&
  8017. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8018. return false;
  8019. return true;
  8020. }
  8021. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8022. {
  8023. struct drm_device *dev = crtc->base.dev;
  8024. struct drm_i915_private *dev_priv = dev->dev_private;
  8025. u32 reg;
  8026. /* Clear any frame start delays used for debugging left by the BIOS */
  8027. reg = PIPECONF(crtc->config.cpu_transcoder);
  8028. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8029. /* We need to sanitize the plane -> pipe mapping first because this will
  8030. * disable the crtc (and hence change the state) if it is wrong. Note
  8031. * that gen4+ has a fixed plane -> pipe mapping. */
  8032. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8033. struct intel_connector *connector;
  8034. bool plane;
  8035. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8036. crtc->base.base.id);
  8037. /* Pipe has the wrong plane attached and the plane is active.
  8038. * Temporarily change the plane mapping and disable everything
  8039. * ... */
  8040. plane = crtc->plane;
  8041. crtc->plane = !plane;
  8042. dev_priv->display.crtc_disable(&crtc->base);
  8043. crtc->plane = plane;
  8044. /* ... and break all links. */
  8045. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8046. base.head) {
  8047. if (connector->encoder->base.crtc != &crtc->base)
  8048. continue;
  8049. intel_connector_break_all_links(connector);
  8050. }
  8051. WARN_ON(crtc->active);
  8052. crtc->base.enabled = false;
  8053. }
  8054. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8055. crtc->pipe == PIPE_A && !crtc->active) {
  8056. /* BIOS forgot to enable pipe A, this mostly happens after
  8057. * resume. Force-enable the pipe to fix this, the update_dpms
  8058. * call below we restore the pipe to the right state, but leave
  8059. * the required bits on. */
  8060. intel_enable_pipe_a(dev);
  8061. }
  8062. /* Adjust the state of the output pipe according to whether we
  8063. * have active connectors/encoders. */
  8064. intel_crtc_update_dpms(&crtc->base);
  8065. if (crtc->active != crtc->base.enabled) {
  8066. struct intel_encoder *encoder;
  8067. /* This can happen either due to bugs in the get_hw_state
  8068. * functions or because the pipe is force-enabled due to the
  8069. * pipe A quirk. */
  8070. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8071. crtc->base.base.id,
  8072. crtc->base.enabled ? "enabled" : "disabled",
  8073. crtc->active ? "enabled" : "disabled");
  8074. crtc->base.enabled = crtc->active;
  8075. /* Because we only establish the connector -> encoder ->
  8076. * crtc links if something is active, this means the
  8077. * crtc is now deactivated. Break the links. connector
  8078. * -> encoder links are only establish when things are
  8079. * actually up, hence no need to break them. */
  8080. WARN_ON(crtc->active);
  8081. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8082. WARN_ON(encoder->connectors_active);
  8083. encoder->base.crtc = NULL;
  8084. }
  8085. }
  8086. }
  8087. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8088. {
  8089. struct intel_connector *connector;
  8090. struct drm_device *dev = encoder->base.dev;
  8091. /* We need to check both for a crtc link (meaning that the
  8092. * encoder is active and trying to read from a pipe) and the
  8093. * pipe itself being active. */
  8094. bool has_active_crtc = encoder->base.crtc &&
  8095. to_intel_crtc(encoder->base.crtc)->active;
  8096. if (encoder->connectors_active && !has_active_crtc) {
  8097. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8098. encoder->base.base.id,
  8099. drm_get_encoder_name(&encoder->base));
  8100. /* Connector is active, but has no active pipe. This is
  8101. * fallout from our resume register restoring. Disable
  8102. * the encoder manually again. */
  8103. if (encoder->base.crtc) {
  8104. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8105. encoder->base.base.id,
  8106. drm_get_encoder_name(&encoder->base));
  8107. encoder->disable(encoder);
  8108. }
  8109. /* Inconsistent output/port/pipe state happens presumably due to
  8110. * a bug in one of the get_hw_state functions. Or someplace else
  8111. * in our code, like the register restore mess on resume. Clamp
  8112. * things to off as a safer default. */
  8113. list_for_each_entry(connector,
  8114. &dev->mode_config.connector_list,
  8115. base.head) {
  8116. if (connector->encoder != encoder)
  8117. continue;
  8118. intel_connector_break_all_links(connector);
  8119. }
  8120. }
  8121. /* Enabled encoders without active connectors will be fixed in
  8122. * the crtc fixup. */
  8123. }
  8124. void i915_redisable_vga(struct drm_device *dev)
  8125. {
  8126. struct drm_i915_private *dev_priv = dev->dev_private;
  8127. u32 vga_reg = i915_vgacntrl_reg(dev);
  8128. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8129. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8130. i915_disable_vga(dev);
  8131. }
  8132. }
  8133. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8134. {
  8135. struct drm_i915_private *dev_priv = dev->dev_private;
  8136. enum pipe pipe;
  8137. struct intel_crtc *crtc;
  8138. struct intel_encoder *encoder;
  8139. struct intel_connector *connector;
  8140. int i;
  8141. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8142. base.head) {
  8143. memset(&crtc->config, 0, sizeof(crtc->config));
  8144. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8145. &crtc->config);
  8146. crtc->base.enabled = crtc->active;
  8147. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8148. crtc->base.base.id,
  8149. crtc->active ? "enabled" : "disabled");
  8150. }
  8151. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8152. if (HAS_DDI(dev))
  8153. intel_ddi_setup_hw_pll_state(dev);
  8154. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8155. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8156. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8157. pll->active = 0;
  8158. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8159. base.head) {
  8160. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8161. pll->active++;
  8162. }
  8163. pll->refcount = pll->active;
  8164. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8165. pll->name, pll->refcount);
  8166. }
  8167. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8168. base.head) {
  8169. pipe = 0;
  8170. if (encoder->get_hw_state(encoder, &pipe)) {
  8171. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8172. encoder->base.crtc = &crtc->base;
  8173. if (encoder->get_config)
  8174. encoder->get_config(encoder, &crtc->config);
  8175. } else {
  8176. encoder->base.crtc = NULL;
  8177. }
  8178. encoder->connectors_active = false;
  8179. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8180. encoder->base.base.id,
  8181. drm_get_encoder_name(&encoder->base),
  8182. encoder->base.crtc ? "enabled" : "disabled",
  8183. pipe);
  8184. }
  8185. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8186. base.head) {
  8187. if (connector->get_hw_state(connector)) {
  8188. connector->base.dpms = DRM_MODE_DPMS_ON;
  8189. connector->encoder->connectors_active = true;
  8190. connector->base.encoder = &connector->encoder->base;
  8191. } else {
  8192. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8193. connector->base.encoder = NULL;
  8194. }
  8195. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8196. connector->base.base.id,
  8197. drm_get_connector_name(&connector->base),
  8198. connector->base.encoder ? "enabled" : "disabled");
  8199. }
  8200. }
  8201. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8202. * and i915 state tracking structures. */
  8203. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8204. bool force_restore)
  8205. {
  8206. struct drm_i915_private *dev_priv = dev->dev_private;
  8207. enum pipe pipe;
  8208. struct drm_plane *plane;
  8209. struct intel_crtc *crtc;
  8210. struct intel_encoder *encoder;
  8211. intel_modeset_readout_hw_state(dev);
  8212. /* HW state is read out, now we need to sanitize this mess. */
  8213. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8214. base.head) {
  8215. intel_sanitize_encoder(encoder);
  8216. }
  8217. for_each_pipe(pipe) {
  8218. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8219. intel_sanitize_crtc(crtc);
  8220. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8221. }
  8222. if (force_restore) {
  8223. /*
  8224. * We need to use raw interfaces for restoring state to avoid
  8225. * checking (bogus) intermediate states.
  8226. */
  8227. for_each_pipe(pipe) {
  8228. struct drm_crtc *crtc =
  8229. dev_priv->pipe_to_crtc_mapping[pipe];
  8230. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8231. crtc->fb);
  8232. }
  8233. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8234. intel_plane_restore(plane);
  8235. i915_redisable_vga(dev);
  8236. } else {
  8237. intel_modeset_update_staged_output_state(dev);
  8238. }
  8239. intel_modeset_check_state(dev);
  8240. drm_mode_config_reset(dev);
  8241. }
  8242. void intel_modeset_gem_init(struct drm_device *dev)
  8243. {
  8244. intel_modeset_init_hw(dev);
  8245. intel_setup_overlay(dev);
  8246. intel_modeset_setup_hw_state(dev, false);
  8247. }
  8248. void intel_modeset_cleanup(struct drm_device *dev)
  8249. {
  8250. struct drm_i915_private *dev_priv = dev->dev_private;
  8251. struct drm_crtc *crtc;
  8252. struct intel_crtc *intel_crtc;
  8253. /*
  8254. * Interrupts and polling as the first thing to avoid creating havoc.
  8255. * Too much stuff here (turning of rps, connectors, ...) would
  8256. * experience fancy races otherwise.
  8257. */
  8258. drm_irq_uninstall(dev);
  8259. cancel_work_sync(&dev_priv->hotplug_work);
  8260. /*
  8261. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8262. * poll handlers. Hence disable polling after hpd handling is shut down.
  8263. */
  8264. drm_kms_helper_poll_fini(dev);
  8265. mutex_lock(&dev->struct_mutex);
  8266. intel_unregister_dsm_handler();
  8267. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8268. /* Skip inactive CRTCs */
  8269. if (!crtc->fb)
  8270. continue;
  8271. intel_crtc = to_intel_crtc(crtc);
  8272. intel_increase_pllclock(crtc);
  8273. }
  8274. intel_disable_fbc(dev);
  8275. intel_disable_gt_powersave(dev);
  8276. ironlake_teardown_rc6(dev);
  8277. mutex_unlock(&dev->struct_mutex);
  8278. /* flush any delayed tasks or pending work */
  8279. flush_scheduled_work();
  8280. /* destroy backlight, if any, before the connectors */
  8281. intel_panel_destroy_backlight(dev);
  8282. drm_mode_config_cleanup(dev);
  8283. intel_cleanup_overlay(dev);
  8284. }
  8285. /*
  8286. * Return which encoder is currently attached for connector.
  8287. */
  8288. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8289. {
  8290. return &intel_attached_encoder(connector)->base;
  8291. }
  8292. void intel_connector_attach_encoder(struct intel_connector *connector,
  8293. struct intel_encoder *encoder)
  8294. {
  8295. connector->encoder = encoder;
  8296. drm_mode_connector_attach_encoder(&connector->base,
  8297. &encoder->base);
  8298. }
  8299. /*
  8300. * set vga decode state - true == enable VGA decode
  8301. */
  8302. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8303. {
  8304. struct drm_i915_private *dev_priv = dev->dev_private;
  8305. u16 gmch_ctrl;
  8306. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8307. if (state)
  8308. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8309. else
  8310. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8311. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8312. return 0;
  8313. }
  8314. #ifdef CONFIG_DEBUG_FS
  8315. #include <linux/seq_file.h>
  8316. struct intel_display_error_state {
  8317. u32 power_well_driver;
  8318. struct intel_cursor_error_state {
  8319. u32 control;
  8320. u32 position;
  8321. u32 base;
  8322. u32 size;
  8323. } cursor[I915_MAX_PIPES];
  8324. struct intel_pipe_error_state {
  8325. enum transcoder cpu_transcoder;
  8326. u32 conf;
  8327. u32 source;
  8328. u32 htotal;
  8329. u32 hblank;
  8330. u32 hsync;
  8331. u32 vtotal;
  8332. u32 vblank;
  8333. u32 vsync;
  8334. } pipe[I915_MAX_PIPES];
  8335. struct intel_plane_error_state {
  8336. u32 control;
  8337. u32 stride;
  8338. u32 size;
  8339. u32 pos;
  8340. u32 addr;
  8341. u32 surface;
  8342. u32 tile_offset;
  8343. } plane[I915_MAX_PIPES];
  8344. };
  8345. struct intel_display_error_state *
  8346. intel_display_capture_error_state(struct drm_device *dev)
  8347. {
  8348. drm_i915_private_t *dev_priv = dev->dev_private;
  8349. struct intel_display_error_state *error;
  8350. enum transcoder cpu_transcoder;
  8351. int i;
  8352. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8353. if (error == NULL)
  8354. return NULL;
  8355. if (HAS_POWER_WELL(dev))
  8356. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8357. for_each_pipe(i) {
  8358. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8359. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8360. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8361. error->cursor[i].control = I915_READ(CURCNTR(i));
  8362. error->cursor[i].position = I915_READ(CURPOS(i));
  8363. error->cursor[i].base = I915_READ(CURBASE(i));
  8364. } else {
  8365. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8366. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8367. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8368. }
  8369. error->plane[i].control = I915_READ(DSPCNTR(i));
  8370. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8371. if (INTEL_INFO(dev)->gen <= 3) {
  8372. error->plane[i].size = I915_READ(DSPSIZE(i));
  8373. error->plane[i].pos = I915_READ(DSPPOS(i));
  8374. }
  8375. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8376. error->plane[i].addr = I915_READ(DSPADDR(i));
  8377. if (INTEL_INFO(dev)->gen >= 4) {
  8378. error->plane[i].surface = I915_READ(DSPSURF(i));
  8379. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8380. }
  8381. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8382. error->pipe[i].source = I915_READ(PIPESRC(i));
  8383. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8384. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8385. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8386. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8387. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8388. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8389. }
  8390. /* In the code above we read the registers without checking if the power
  8391. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8392. * prevent the next I915_WRITE from detecting it and printing an error
  8393. * message. */
  8394. if (HAS_POWER_WELL(dev))
  8395. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8396. return error;
  8397. }
  8398. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8399. void
  8400. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8401. struct drm_device *dev,
  8402. struct intel_display_error_state *error)
  8403. {
  8404. int i;
  8405. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8406. if (HAS_POWER_WELL(dev))
  8407. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8408. error->power_well_driver);
  8409. for_each_pipe(i) {
  8410. err_printf(m, "Pipe [%d]:\n", i);
  8411. err_printf(m, " CPU transcoder: %c\n",
  8412. transcoder_name(error->pipe[i].cpu_transcoder));
  8413. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8414. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8415. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8416. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8417. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8418. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8419. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8420. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8421. err_printf(m, "Plane [%d]:\n", i);
  8422. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8423. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8424. if (INTEL_INFO(dev)->gen <= 3) {
  8425. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8426. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8427. }
  8428. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8429. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8430. if (INTEL_INFO(dev)->gen >= 4) {
  8431. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8432. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8433. }
  8434. err_printf(m, "Cursor [%d]:\n", i);
  8435. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8436. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8437. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8438. }
  8439. }
  8440. #endif