x86.c 125 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <trace/events/kvm.h>
  40. #undef TRACE_INCLUDE_FILE
  41. #define CREATE_TRACE_POINTS
  42. #include "trace.h"
  43. #include <asm/uaccess.h>
  44. #include <asm/msr.h>
  45. #include <asm/desc.h>
  46. #include <asm/mtrr.h>
  47. #include <asm/mce.h>
  48. #define MAX_IO_MSRS 256
  49. #define CR0_RESERVED_BITS \
  50. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  51. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  52. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  53. #define CR4_RESERVED_BITS \
  54. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  55. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  56. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  57. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  58. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  59. #define KVM_MAX_MCE_BANKS 32
  60. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  61. /* EFER defaults:
  62. * - enable syscall per default because its emulated by KVM
  63. * - enable LME and LMA per default on 64 bit KVM
  64. */
  65. #ifdef CONFIG_X86_64
  66. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  67. #else
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  69. #endif
  70. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  71. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  72. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  73. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  74. struct kvm_cpuid_entry2 __user *entries);
  75. struct kvm_x86_ops *kvm_x86_ops;
  76. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  77. int ignore_msrs = 0;
  78. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  79. #define KVM_NR_SHARED_MSRS 16
  80. struct kvm_shared_msrs_global {
  81. int nr;
  82. struct kvm_shared_msr {
  83. u32 msr;
  84. u64 value;
  85. } msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. u64 current_value[KVM_NR_SHARED_MSRS];
  91. };
  92. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  93. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  94. struct kvm_stats_debugfs_item debugfs_entries[] = {
  95. { "pf_fixed", VCPU_STAT(pf_fixed) },
  96. { "pf_guest", VCPU_STAT(pf_guest) },
  97. { "tlb_flush", VCPU_STAT(tlb_flush) },
  98. { "invlpg", VCPU_STAT(invlpg) },
  99. { "exits", VCPU_STAT(exits) },
  100. { "io_exits", VCPU_STAT(io_exits) },
  101. { "mmio_exits", VCPU_STAT(mmio_exits) },
  102. { "signal_exits", VCPU_STAT(signal_exits) },
  103. { "irq_window", VCPU_STAT(irq_window_exits) },
  104. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  105. { "halt_exits", VCPU_STAT(halt_exits) },
  106. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  107. { "hypercalls", VCPU_STAT(hypercalls) },
  108. { "request_irq", VCPU_STAT(request_irq_exits) },
  109. { "irq_exits", VCPU_STAT(irq_exits) },
  110. { "host_state_reload", VCPU_STAT(host_state_reload) },
  111. { "efer_reload", VCPU_STAT(efer_reload) },
  112. { "fpu_reload", VCPU_STAT(fpu_reload) },
  113. { "insn_emulation", VCPU_STAT(insn_emulation) },
  114. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  115. { "irq_injections", VCPU_STAT(irq_injections) },
  116. { "nmi_injections", VCPU_STAT(nmi_injections) },
  117. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  118. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  119. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  120. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  121. { "mmu_flooded", VM_STAT(mmu_flooded) },
  122. { "mmu_recycled", VM_STAT(mmu_recycled) },
  123. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  124. { "mmu_unsync", VM_STAT(mmu_unsync) },
  125. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  126. { "largepages", VM_STAT(lpages) },
  127. { NULL }
  128. };
  129. static void kvm_on_user_return(struct user_return_notifier *urn)
  130. {
  131. unsigned slot;
  132. struct kvm_shared_msr *global;
  133. struct kvm_shared_msrs *locals
  134. = container_of(urn, struct kvm_shared_msrs, urn);
  135. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  136. global = &shared_msrs_global.msrs[slot];
  137. if (global->value != locals->current_value[slot]) {
  138. wrmsrl(global->msr, global->value);
  139. locals->current_value[slot] = global->value;
  140. }
  141. }
  142. locals->registered = false;
  143. user_return_notifier_unregister(urn);
  144. }
  145. void kvm_define_shared_msr(unsigned slot, u32 msr)
  146. {
  147. int cpu;
  148. u64 value;
  149. if (slot >= shared_msrs_global.nr)
  150. shared_msrs_global.nr = slot + 1;
  151. shared_msrs_global.msrs[slot].msr = msr;
  152. rdmsrl_safe(msr, &value);
  153. shared_msrs_global.msrs[slot].value = value;
  154. for_each_online_cpu(cpu)
  155. per_cpu(shared_msrs, cpu).current_value[slot] = value;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  158. static void kvm_shared_msr_cpu_online(void)
  159. {
  160. unsigned i;
  161. struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
  162. for (i = 0; i < shared_msrs_global.nr; ++i)
  163. locals->current_value[i] = shared_msrs_global.msrs[i].value;
  164. }
  165. void kvm_set_shared_msr(unsigned slot, u64 value)
  166. {
  167. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  168. if (value == smsr->current_value[slot])
  169. return;
  170. smsr->current_value[slot] = value;
  171. wrmsrl(shared_msrs_global.msrs[slot].msr, value);
  172. if (!smsr->registered) {
  173. smsr->urn.on_user_return = kvm_on_user_return;
  174. user_return_notifier_register(&smsr->urn);
  175. smsr->registered = true;
  176. }
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  179. unsigned long segment_base(u16 selector)
  180. {
  181. struct descriptor_table gdt;
  182. struct desc_struct *d;
  183. unsigned long table_base;
  184. unsigned long v;
  185. if (selector == 0)
  186. return 0;
  187. kvm_get_gdt(&gdt);
  188. table_base = gdt.base;
  189. if (selector & 4) { /* from ldt */
  190. u16 ldt_selector = kvm_read_ldt();
  191. table_base = segment_base(ldt_selector);
  192. }
  193. d = (struct desc_struct *)(table_base + (selector & ~7));
  194. v = get_desc_base(d);
  195. #ifdef CONFIG_X86_64
  196. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  197. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  198. #endif
  199. return v;
  200. }
  201. EXPORT_SYMBOL_GPL(segment_base);
  202. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  203. {
  204. if (irqchip_in_kernel(vcpu->kvm))
  205. return vcpu->arch.apic_base;
  206. else
  207. return vcpu->arch.apic_base;
  208. }
  209. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  210. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  211. {
  212. /* TODO: reserve bits check */
  213. if (irqchip_in_kernel(vcpu->kvm))
  214. kvm_lapic_set_base(vcpu, data);
  215. else
  216. vcpu->arch.apic_base = data;
  217. }
  218. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  219. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  220. {
  221. WARN_ON(vcpu->arch.exception.pending);
  222. vcpu->arch.exception.pending = true;
  223. vcpu->arch.exception.has_error_code = false;
  224. vcpu->arch.exception.nr = nr;
  225. }
  226. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  227. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  228. u32 error_code)
  229. {
  230. ++vcpu->stat.pf_guest;
  231. if (vcpu->arch.exception.pending) {
  232. switch(vcpu->arch.exception.nr) {
  233. case DF_VECTOR:
  234. /* triple fault -> shutdown */
  235. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  236. return;
  237. case PF_VECTOR:
  238. vcpu->arch.exception.nr = DF_VECTOR;
  239. vcpu->arch.exception.error_code = 0;
  240. return;
  241. default:
  242. /* replace previous exception with a new one in a hope
  243. that instruction re-execution will regenerate lost
  244. exception */
  245. vcpu->arch.exception.pending = false;
  246. break;
  247. }
  248. }
  249. vcpu->arch.cr2 = addr;
  250. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  251. }
  252. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  253. {
  254. vcpu->arch.nmi_pending = 1;
  255. }
  256. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  257. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  258. {
  259. WARN_ON(vcpu->arch.exception.pending);
  260. vcpu->arch.exception.pending = true;
  261. vcpu->arch.exception.has_error_code = true;
  262. vcpu->arch.exception.nr = nr;
  263. vcpu->arch.exception.error_code = error_code;
  264. }
  265. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  266. /*
  267. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  268. * a #GP and return false.
  269. */
  270. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  271. {
  272. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  273. return true;
  274. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  275. return false;
  276. }
  277. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  278. /*
  279. * Load the pae pdptrs. Return true is they are all valid.
  280. */
  281. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  282. {
  283. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  284. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  285. int i;
  286. int ret;
  287. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  288. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  289. offset * sizeof(u64), sizeof(pdpte));
  290. if (ret < 0) {
  291. ret = 0;
  292. goto out;
  293. }
  294. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  295. if (is_present_gpte(pdpte[i]) &&
  296. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  297. ret = 0;
  298. goto out;
  299. }
  300. }
  301. ret = 1;
  302. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  303. __set_bit(VCPU_EXREG_PDPTR,
  304. (unsigned long *)&vcpu->arch.regs_avail);
  305. __set_bit(VCPU_EXREG_PDPTR,
  306. (unsigned long *)&vcpu->arch.regs_dirty);
  307. out:
  308. return ret;
  309. }
  310. EXPORT_SYMBOL_GPL(load_pdptrs);
  311. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  312. {
  313. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  314. bool changed = true;
  315. int r;
  316. if (is_long_mode(vcpu) || !is_pae(vcpu))
  317. return false;
  318. if (!test_bit(VCPU_EXREG_PDPTR,
  319. (unsigned long *)&vcpu->arch.regs_avail))
  320. return true;
  321. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  322. if (r < 0)
  323. goto out;
  324. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  325. out:
  326. return changed;
  327. }
  328. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  329. {
  330. if (cr0 & CR0_RESERVED_BITS) {
  331. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  332. cr0, vcpu->arch.cr0);
  333. kvm_inject_gp(vcpu, 0);
  334. return;
  335. }
  336. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  337. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  342. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  343. "and a clear PE flag\n");
  344. kvm_inject_gp(vcpu, 0);
  345. return;
  346. }
  347. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  348. #ifdef CONFIG_X86_64
  349. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  350. int cs_db, cs_l;
  351. if (!is_pae(vcpu)) {
  352. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  353. "in long mode while PAE is disabled\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  358. if (cs_l) {
  359. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  360. "in long mode while CS.L == 1\n");
  361. kvm_inject_gp(vcpu, 0);
  362. return;
  363. }
  364. } else
  365. #endif
  366. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  367. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  368. "reserved bits\n");
  369. kvm_inject_gp(vcpu, 0);
  370. return;
  371. }
  372. }
  373. kvm_x86_ops->set_cr0(vcpu, cr0);
  374. vcpu->arch.cr0 = cr0;
  375. kvm_mmu_reset_context(vcpu);
  376. return;
  377. }
  378. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  379. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  380. {
  381. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  382. }
  383. EXPORT_SYMBOL_GPL(kvm_lmsw);
  384. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  385. {
  386. unsigned long old_cr4 = vcpu->arch.cr4;
  387. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  388. if (cr4 & CR4_RESERVED_BITS) {
  389. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  390. kvm_inject_gp(vcpu, 0);
  391. return;
  392. }
  393. if (is_long_mode(vcpu)) {
  394. if (!(cr4 & X86_CR4_PAE)) {
  395. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  396. "in long mode\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  401. && ((cr4 ^ old_cr4) & pdptr_bits)
  402. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  403. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  404. kvm_inject_gp(vcpu, 0);
  405. return;
  406. }
  407. if (cr4 & X86_CR4_VMXE) {
  408. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  409. kvm_inject_gp(vcpu, 0);
  410. return;
  411. }
  412. kvm_x86_ops->set_cr4(vcpu, cr4);
  413. vcpu->arch.cr4 = cr4;
  414. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  415. kvm_mmu_reset_context(vcpu);
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  418. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  419. {
  420. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  421. kvm_mmu_sync_roots(vcpu);
  422. kvm_mmu_flush_tlb(vcpu);
  423. return;
  424. }
  425. if (is_long_mode(vcpu)) {
  426. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  427. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  428. kvm_inject_gp(vcpu, 0);
  429. return;
  430. }
  431. } else {
  432. if (is_pae(vcpu)) {
  433. if (cr3 & CR3_PAE_RESERVED_BITS) {
  434. printk(KERN_DEBUG
  435. "set_cr3: #GP, reserved bits\n");
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  440. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  441. "reserved bits\n");
  442. kvm_inject_gp(vcpu, 0);
  443. return;
  444. }
  445. }
  446. /*
  447. * We don't check reserved bits in nonpae mode, because
  448. * this isn't enforced, and VMware depends on this.
  449. */
  450. }
  451. /*
  452. * Does the new cr3 value map to physical memory? (Note, we
  453. * catch an invalid cr3 even in real-mode, because it would
  454. * cause trouble later on when we turn on paging anyway.)
  455. *
  456. * A real CPU would silently accept an invalid cr3 and would
  457. * attempt to use it - with largely undefined (and often hard
  458. * to debug) behavior on the guest side.
  459. */
  460. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  461. kvm_inject_gp(vcpu, 0);
  462. else {
  463. vcpu->arch.cr3 = cr3;
  464. vcpu->arch.mmu.new_cr3(vcpu);
  465. }
  466. }
  467. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  468. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  469. {
  470. if (cr8 & CR8_RESERVED_BITS) {
  471. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  472. kvm_inject_gp(vcpu, 0);
  473. return;
  474. }
  475. if (irqchip_in_kernel(vcpu->kvm))
  476. kvm_lapic_set_tpr(vcpu, cr8);
  477. else
  478. vcpu->arch.cr8 = cr8;
  479. }
  480. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  481. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  482. {
  483. if (irqchip_in_kernel(vcpu->kvm))
  484. return kvm_lapic_get_cr8(vcpu);
  485. else
  486. return vcpu->arch.cr8;
  487. }
  488. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  489. static inline u32 bit(int bitno)
  490. {
  491. return 1 << (bitno & 31);
  492. }
  493. /*
  494. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  495. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  496. *
  497. * This list is modified at module load time to reflect the
  498. * capabilities of the host cpu. This capabilities test skips MSRs that are
  499. * kvm-specific. Those are put in the beginning of the list.
  500. */
  501. #define KVM_SAVE_MSRS_BEGIN 2
  502. static u32 msrs_to_save[] = {
  503. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  504. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  505. MSR_K6_STAR,
  506. #ifdef CONFIG_X86_64
  507. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  508. #endif
  509. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  510. };
  511. static unsigned num_msrs_to_save;
  512. static u32 emulated_msrs[] = {
  513. MSR_IA32_MISC_ENABLE,
  514. };
  515. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  516. {
  517. if (efer & efer_reserved_bits) {
  518. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  519. efer);
  520. kvm_inject_gp(vcpu, 0);
  521. return;
  522. }
  523. if (is_paging(vcpu)
  524. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  525. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  526. kvm_inject_gp(vcpu, 0);
  527. return;
  528. }
  529. if (efer & EFER_FFXSR) {
  530. struct kvm_cpuid_entry2 *feat;
  531. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  532. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  533. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  534. kvm_inject_gp(vcpu, 0);
  535. return;
  536. }
  537. }
  538. if (efer & EFER_SVME) {
  539. struct kvm_cpuid_entry2 *feat;
  540. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  541. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  542. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  543. kvm_inject_gp(vcpu, 0);
  544. return;
  545. }
  546. }
  547. kvm_x86_ops->set_efer(vcpu, efer);
  548. efer &= ~EFER_LMA;
  549. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  550. vcpu->arch.shadow_efer = efer;
  551. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  552. kvm_mmu_reset_context(vcpu);
  553. }
  554. void kvm_enable_efer_bits(u64 mask)
  555. {
  556. efer_reserved_bits &= ~mask;
  557. }
  558. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  559. /*
  560. * Writes msr value into into the appropriate "register".
  561. * Returns 0 on success, non-0 otherwise.
  562. * Assumes vcpu_load() was already called.
  563. */
  564. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  565. {
  566. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  567. }
  568. /*
  569. * Adapt set_msr() to msr_io()'s calling convention
  570. */
  571. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  572. {
  573. return kvm_set_msr(vcpu, index, *data);
  574. }
  575. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  576. {
  577. static int version;
  578. struct pvclock_wall_clock wc;
  579. struct timespec now, sys, boot;
  580. if (!wall_clock)
  581. return;
  582. version++;
  583. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  584. /*
  585. * The guest calculates current wall clock time by adding
  586. * system time (updated by kvm_write_guest_time below) to the
  587. * wall clock specified here. guest system time equals host
  588. * system time for us, thus we must fill in host boot time here.
  589. */
  590. now = current_kernel_time();
  591. ktime_get_ts(&sys);
  592. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  593. wc.sec = boot.tv_sec;
  594. wc.nsec = boot.tv_nsec;
  595. wc.version = version;
  596. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  597. version++;
  598. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  599. }
  600. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  601. {
  602. uint32_t quotient, remainder;
  603. /* Don't try to replace with do_div(), this one calculates
  604. * "(dividend << 32) / divisor" */
  605. __asm__ ( "divl %4"
  606. : "=a" (quotient), "=d" (remainder)
  607. : "0" (0), "1" (dividend), "r" (divisor) );
  608. return quotient;
  609. }
  610. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  611. {
  612. uint64_t nsecs = 1000000000LL;
  613. int32_t shift = 0;
  614. uint64_t tps64;
  615. uint32_t tps32;
  616. tps64 = tsc_khz * 1000LL;
  617. while (tps64 > nsecs*2) {
  618. tps64 >>= 1;
  619. shift--;
  620. }
  621. tps32 = (uint32_t)tps64;
  622. while (tps32 <= (uint32_t)nsecs) {
  623. tps32 <<= 1;
  624. shift++;
  625. }
  626. hv_clock->tsc_shift = shift;
  627. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  628. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  629. __func__, tsc_khz, hv_clock->tsc_shift,
  630. hv_clock->tsc_to_system_mul);
  631. }
  632. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  633. static void kvm_write_guest_time(struct kvm_vcpu *v)
  634. {
  635. struct timespec ts;
  636. unsigned long flags;
  637. struct kvm_vcpu_arch *vcpu = &v->arch;
  638. void *shared_kaddr;
  639. unsigned long this_tsc_khz;
  640. if ((!vcpu->time_page))
  641. return;
  642. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  643. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  644. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  645. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  646. }
  647. put_cpu_var(cpu_tsc_khz);
  648. /* Keep irq disabled to prevent changes to the clock */
  649. local_irq_save(flags);
  650. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  651. ktime_get_ts(&ts);
  652. local_irq_restore(flags);
  653. /* With all the info we got, fill in the values */
  654. vcpu->hv_clock.system_time = ts.tv_nsec +
  655. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  656. /*
  657. * The interface expects us to write an even number signaling that the
  658. * update is finished. Since the guest won't see the intermediate
  659. * state, we just increase by 2 at the end.
  660. */
  661. vcpu->hv_clock.version += 2;
  662. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  663. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  664. sizeof(vcpu->hv_clock));
  665. kunmap_atomic(shared_kaddr, KM_USER0);
  666. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  667. }
  668. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  669. {
  670. struct kvm_vcpu_arch *vcpu = &v->arch;
  671. if (!vcpu->time_page)
  672. return 0;
  673. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  674. return 1;
  675. }
  676. static bool msr_mtrr_valid(unsigned msr)
  677. {
  678. switch (msr) {
  679. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  680. case MSR_MTRRfix64K_00000:
  681. case MSR_MTRRfix16K_80000:
  682. case MSR_MTRRfix16K_A0000:
  683. case MSR_MTRRfix4K_C0000:
  684. case MSR_MTRRfix4K_C8000:
  685. case MSR_MTRRfix4K_D0000:
  686. case MSR_MTRRfix4K_D8000:
  687. case MSR_MTRRfix4K_E0000:
  688. case MSR_MTRRfix4K_E8000:
  689. case MSR_MTRRfix4K_F0000:
  690. case MSR_MTRRfix4K_F8000:
  691. case MSR_MTRRdefType:
  692. case MSR_IA32_CR_PAT:
  693. return true;
  694. case 0x2f8:
  695. return true;
  696. }
  697. return false;
  698. }
  699. static bool valid_pat_type(unsigned t)
  700. {
  701. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  702. }
  703. static bool valid_mtrr_type(unsigned t)
  704. {
  705. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  706. }
  707. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  708. {
  709. int i;
  710. if (!msr_mtrr_valid(msr))
  711. return false;
  712. if (msr == MSR_IA32_CR_PAT) {
  713. for (i = 0; i < 8; i++)
  714. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  715. return false;
  716. return true;
  717. } else if (msr == MSR_MTRRdefType) {
  718. if (data & ~0xcff)
  719. return false;
  720. return valid_mtrr_type(data & 0xff);
  721. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  722. for (i = 0; i < 8 ; i++)
  723. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  724. return false;
  725. return true;
  726. }
  727. /* variable MTRRs */
  728. return valid_mtrr_type(data & 0xff);
  729. }
  730. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  731. {
  732. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  733. if (!mtrr_valid(vcpu, msr, data))
  734. return 1;
  735. if (msr == MSR_MTRRdefType) {
  736. vcpu->arch.mtrr_state.def_type = data;
  737. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  738. } else if (msr == MSR_MTRRfix64K_00000)
  739. p[0] = data;
  740. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  741. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  742. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  743. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  744. else if (msr == MSR_IA32_CR_PAT)
  745. vcpu->arch.pat = data;
  746. else { /* Variable MTRRs */
  747. int idx, is_mtrr_mask;
  748. u64 *pt;
  749. idx = (msr - 0x200) / 2;
  750. is_mtrr_mask = msr - 0x200 - 2 * idx;
  751. if (!is_mtrr_mask)
  752. pt =
  753. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  754. else
  755. pt =
  756. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  757. *pt = data;
  758. }
  759. kvm_mmu_reset_context(vcpu);
  760. return 0;
  761. }
  762. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  763. {
  764. u64 mcg_cap = vcpu->arch.mcg_cap;
  765. unsigned bank_num = mcg_cap & 0xff;
  766. switch (msr) {
  767. case MSR_IA32_MCG_STATUS:
  768. vcpu->arch.mcg_status = data;
  769. break;
  770. case MSR_IA32_MCG_CTL:
  771. if (!(mcg_cap & MCG_CTL_P))
  772. return 1;
  773. if (data != 0 && data != ~(u64)0)
  774. return -1;
  775. vcpu->arch.mcg_ctl = data;
  776. break;
  777. default:
  778. if (msr >= MSR_IA32_MC0_CTL &&
  779. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  780. u32 offset = msr - MSR_IA32_MC0_CTL;
  781. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  782. if ((offset & 0x3) == 0 &&
  783. data != 0 && data != ~(u64)0)
  784. return -1;
  785. vcpu->arch.mce_banks[offset] = data;
  786. break;
  787. }
  788. return 1;
  789. }
  790. return 0;
  791. }
  792. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  793. {
  794. struct kvm *kvm = vcpu->kvm;
  795. int lm = is_long_mode(vcpu);
  796. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  797. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  798. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  799. : kvm->arch.xen_hvm_config.blob_size_32;
  800. u32 page_num = data & ~PAGE_MASK;
  801. u64 page_addr = data & PAGE_MASK;
  802. u8 *page;
  803. int r;
  804. r = -E2BIG;
  805. if (page_num >= blob_size)
  806. goto out;
  807. r = -ENOMEM;
  808. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  809. if (!page)
  810. goto out;
  811. r = -EFAULT;
  812. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  813. goto out_free;
  814. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  815. goto out_free;
  816. r = 0;
  817. out_free:
  818. kfree(page);
  819. out:
  820. return r;
  821. }
  822. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  823. {
  824. switch (msr) {
  825. case MSR_EFER:
  826. set_efer(vcpu, data);
  827. break;
  828. case MSR_K7_HWCR:
  829. data &= ~(u64)0x40; /* ignore flush filter disable */
  830. if (data != 0) {
  831. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  832. data);
  833. return 1;
  834. }
  835. break;
  836. case MSR_FAM10H_MMIO_CONF_BASE:
  837. if (data != 0) {
  838. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  839. "0x%llx\n", data);
  840. return 1;
  841. }
  842. break;
  843. case MSR_AMD64_NB_CFG:
  844. break;
  845. case MSR_IA32_DEBUGCTLMSR:
  846. if (!data) {
  847. /* We support the non-activated case already */
  848. break;
  849. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  850. /* Values other than LBR and BTF are vendor-specific,
  851. thus reserved and should throw a #GP */
  852. return 1;
  853. }
  854. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  855. __func__, data);
  856. break;
  857. case MSR_IA32_UCODE_REV:
  858. case MSR_IA32_UCODE_WRITE:
  859. case MSR_VM_HSAVE_PA:
  860. case MSR_AMD64_PATCH_LOADER:
  861. break;
  862. case 0x200 ... 0x2ff:
  863. return set_msr_mtrr(vcpu, msr, data);
  864. case MSR_IA32_APICBASE:
  865. kvm_set_apic_base(vcpu, data);
  866. break;
  867. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  868. return kvm_x2apic_msr_write(vcpu, msr, data);
  869. case MSR_IA32_MISC_ENABLE:
  870. vcpu->arch.ia32_misc_enable_msr = data;
  871. break;
  872. case MSR_KVM_WALL_CLOCK:
  873. vcpu->kvm->arch.wall_clock = data;
  874. kvm_write_wall_clock(vcpu->kvm, data);
  875. break;
  876. case MSR_KVM_SYSTEM_TIME: {
  877. if (vcpu->arch.time_page) {
  878. kvm_release_page_dirty(vcpu->arch.time_page);
  879. vcpu->arch.time_page = NULL;
  880. }
  881. vcpu->arch.time = data;
  882. /* we verify if the enable bit is set... */
  883. if (!(data & 1))
  884. break;
  885. /* ...but clean it before doing the actual write */
  886. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  887. vcpu->arch.time_page =
  888. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  889. if (is_error_page(vcpu->arch.time_page)) {
  890. kvm_release_page_clean(vcpu->arch.time_page);
  891. vcpu->arch.time_page = NULL;
  892. }
  893. kvm_request_guest_time_update(vcpu);
  894. break;
  895. }
  896. case MSR_IA32_MCG_CTL:
  897. case MSR_IA32_MCG_STATUS:
  898. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  899. return set_msr_mce(vcpu, msr, data);
  900. /* Performance counters are not protected by a CPUID bit,
  901. * so we should check all of them in the generic path for the sake of
  902. * cross vendor migration.
  903. * Writing a zero into the event select MSRs disables them,
  904. * which we perfectly emulate ;-). Any other value should be at least
  905. * reported, some guests depend on them.
  906. */
  907. case MSR_P6_EVNTSEL0:
  908. case MSR_P6_EVNTSEL1:
  909. case MSR_K7_EVNTSEL0:
  910. case MSR_K7_EVNTSEL1:
  911. case MSR_K7_EVNTSEL2:
  912. case MSR_K7_EVNTSEL3:
  913. if (data != 0)
  914. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  915. "0x%x data 0x%llx\n", msr, data);
  916. break;
  917. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  918. * so we ignore writes to make it happy.
  919. */
  920. case MSR_P6_PERFCTR0:
  921. case MSR_P6_PERFCTR1:
  922. case MSR_K7_PERFCTR0:
  923. case MSR_K7_PERFCTR1:
  924. case MSR_K7_PERFCTR2:
  925. case MSR_K7_PERFCTR3:
  926. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  927. "0x%x data 0x%llx\n", msr, data);
  928. break;
  929. default:
  930. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  931. return xen_hvm_config(vcpu, data);
  932. if (!ignore_msrs) {
  933. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  934. msr, data);
  935. return 1;
  936. } else {
  937. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  938. msr, data);
  939. break;
  940. }
  941. }
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  945. /*
  946. * Reads an msr value (of 'msr_index') into 'pdata'.
  947. * Returns 0 on success, non-0 otherwise.
  948. * Assumes vcpu_load() was already called.
  949. */
  950. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  951. {
  952. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  953. }
  954. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  955. {
  956. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  957. if (!msr_mtrr_valid(msr))
  958. return 1;
  959. if (msr == MSR_MTRRdefType)
  960. *pdata = vcpu->arch.mtrr_state.def_type +
  961. (vcpu->arch.mtrr_state.enabled << 10);
  962. else if (msr == MSR_MTRRfix64K_00000)
  963. *pdata = p[0];
  964. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  965. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  966. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  967. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  968. else if (msr == MSR_IA32_CR_PAT)
  969. *pdata = vcpu->arch.pat;
  970. else { /* Variable MTRRs */
  971. int idx, is_mtrr_mask;
  972. u64 *pt;
  973. idx = (msr - 0x200) / 2;
  974. is_mtrr_mask = msr - 0x200 - 2 * idx;
  975. if (!is_mtrr_mask)
  976. pt =
  977. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  978. else
  979. pt =
  980. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  981. *pdata = *pt;
  982. }
  983. return 0;
  984. }
  985. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  986. {
  987. u64 data;
  988. u64 mcg_cap = vcpu->arch.mcg_cap;
  989. unsigned bank_num = mcg_cap & 0xff;
  990. switch (msr) {
  991. case MSR_IA32_P5_MC_ADDR:
  992. case MSR_IA32_P5_MC_TYPE:
  993. data = 0;
  994. break;
  995. case MSR_IA32_MCG_CAP:
  996. data = vcpu->arch.mcg_cap;
  997. break;
  998. case MSR_IA32_MCG_CTL:
  999. if (!(mcg_cap & MCG_CTL_P))
  1000. return 1;
  1001. data = vcpu->arch.mcg_ctl;
  1002. break;
  1003. case MSR_IA32_MCG_STATUS:
  1004. data = vcpu->arch.mcg_status;
  1005. break;
  1006. default:
  1007. if (msr >= MSR_IA32_MC0_CTL &&
  1008. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1009. u32 offset = msr - MSR_IA32_MC0_CTL;
  1010. data = vcpu->arch.mce_banks[offset];
  1011. break;
  1012. }
  1013. return 1;
  1014. }
  1015. *pdata = data;
  1016. return 0;
  1017. }
  1018. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1019. {
  1020. u64 data;
  1021. switch (msr) {
  1022. case MSR_IA32_PLATFORM_ID:
  1023. case MSR_IA32_UCODE_REV:
  1024. case MSR_IA32_EBL_CR_POWERON:
  1025. case MSR_IA32_DEBUGCTLMSR:
  1026. case MSR_IA32_LASTBRANCHFROMIP:
  1027. case MSR_IA32_LASTBRANCHTOIP:
  1028. case MSR_IA32_LASTINTFROMIP:
  1029. case MSR_IA32_LASTINTTOIP:
  1030. case MSR_K8_SYSCFG:
  1031. case MSR_K7_HWCR:
  1032. case MSR_VM_HSAVE_PA:
  1033. case MSR_P6_PERFCTR0:
  1034. case MSR_P6_PERFCTR1:
  1035. case MSR_P6_EVNTSEL0:
  1036. case MSR_P6_EVNTSEL1:
  1037. case MSR_K7_EVNTSEL0:
  1038. case MSR_K7_PERFCTR0:
  1039. case MSR_K8_INT_PENDING_MSG:
  1040. case MSR_AMD64_NB_CFG:
  1041. case MSR_FAM10H_MMIO_CONF_BASE:
  1042. data = 0;
  1043. break;
  1044. case MSR_MTRRcap:
  1045. data = 0x500 | KVM_NR_VAR_MTRR;
  1046. break;
  1047. case 0x200 ... 0x2ff:
  1048. return get_msr_mtrr(vcpu, msr, pdata);
  1049. case 0xcd: /* fsb frequency */
  1050. data = 3;
  1051. break;
  1052. case MSR_IA32_APICBASE:
  1053. data = kvm_get_apic_base(vcpu);
  1054. break;
  1055. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1056. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1057. break;
  1058. case MSR_IA32_MISC_ENABLE:
  1059. data = vcpu->arch.ia32_misc_enable_msr;
  1060. break;
  1061. case MSR_IA32_PERF_STATUS:
  1062. /* TSC increment by tick */
  1063. data = 1000ULL;
  1064. /* CPU multiplier */
  1065. data |= (((uint64_t)4ULL) << 40);
  1066. break;
  1067. case MSR_EFER:
  1068. data = vcpu->arch.shadow_efer;
  1069. break;
  1070. case MSR_KVM_WALL_CLOCK:
  1071. data = vcpu->kvm->arch.wall_clock;
  1072. break;
  1073. case MSR_KVM_SYSTEM_TIME:
  1074. data = vcpu->arch.time;
  1075. break;
  1076. case MSR_IA32_P5_MC_ADDR:
  1077. case MSR_IA32_P5_MC_TYPE:
  1078. case MSR_IA32_MCG_CAP:
  1079. case MSR_IA32_MCG_CTL:
  1080. case MSR_IA32_MCG_STATUS:
  1081. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1082. return get_msr_mce(vcpu, msr, pdata);
  1083. default:
  1084. if (!ignore_msrs) {
  1085. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1086. return 1;
  1087. } else {
  1088. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1089. data = 0;
  1090. }
  1091. break;
  1092. }
  1093. *pdata = data;
  1094. return 0;
  1095. }
  1096. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1097. /*
  1098. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1099. *
  1100. * @return number of msrs set successfully.
  1101. */
  1102. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1103. struct kvm_msr_entry *entries,
  1104. int (*do_msr)(struct kvm_vcpu *vcpu,
  1105. unsigned index, u64 *data))
  1106. {
  1107. int i;
  1108. vcpu_load(vcpu);
  1109. down_read(&vcpu->kvm->slots_lock);
  1110. for (i = 0; i < msrs->nmsrs; ++i)
  1111. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1112. break;
  1113. up_read(&vcpu->kvm->slots_lock);
  1114. vcpu_put(vcpu);
  1115. return i;
  1116. }
  1117. /*
  1118. * Read or write a bunch of msrs. Parameters are user addresses.
  1119. *
  1120. * @return number of msrs set successfully.
  1121. */
  1122. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1123. int (*do_msr)(struct kvm_vcpu *vcpu,
  1124. unsigned index, u64 *data),
  1125. int writeback)
  1126. {
  1127. struct kvm_msrs msrs;
  1128. struct kvm_msr_entry *entries;
  1129. int r, n;
  1130. unsigned size;
  1131. r = -EFAULT;
  1132. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1133. goto out;
  1134. r = -E2BIG;
  1135. if (msrs.nmsrs >= MAX_IO_MSRS)
  1136. goto out;
  1137. r = -ENOMEM;
  1138. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1139. entries = vmalloc(size);
  1140. if (!entries)
  1141. goto out;
  1142. r = -EFAULT;
  1143. if (copy_from_user(entries, user_msrs->entries, size))
  1144. goto out_free;
  1145. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1146. if (r < 0)
  1147. goto out_free;
  1148. r = -EFAULT;
  1149. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1150. goto out_free;
  1151. r = n;
  1152. out_free:
  1153. vfree(entries);
  1154. out:
  1155. return r;
  1156. }
  1157. int kvm_dev_ioctl_check_extension(long ext)
  1158. {
  1159. int r;
  1160. switch (ext) {
  1161. case KVM_CAP_IRQCHIP:
  1162. case KVM_CAP_HLT:
  1163. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1164. case KVM_CAP_SET_TSS_ADDR:
  1165. case KVM_CAP_EXT_CPUID:
  1166. case KVM_CAP_CLOCKSOURCE:
  1167. case KVM_CAP_PIT:
  1168. case KVM_CAP_NOP_IO_DELAY:
  1169. case KVM_CAP_MP_STATE:
  1170. case KVM_CAP_SYNC_MMU:
  1171. case KVM_CAP_REINJECT_CONTROL:
  1172. case KVM_CAP_IRQ_INJECT_STATUS:
  1173. case KVM_CAP_ASSIGN_DEV_IRQ:
  1174. case KVM_CAP_IRQFD:
  1175. case KVM_CAP_IOEVENTFD:
  1176. case KVM_CAP_PIT2:
  1177. case KVM_CAP_PIT_STATE2:
  1178. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1179. case KVM_CAP_XEN_HVM:
  1180. case KVM_CAP_ADJUST_CLOCK:
  1181. r = 1;
  1182. break;
  1183. case KVM_CAP_COALESCED_MMIO:
  1184. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1185. break;
  1186. case KVM_CAP_VAPIC:
  1187. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1188. break;
  1189. case KVM_CAP_NR_VCPUS:
  1190. r = KVM_MAX_VCPUS;
  1191. break;
  1192. case KVM_CAP_NR_MEMSLOTS:
  1193. r = KVM_MEMORY_SLOTS;
  1194. break;
  1195. case KVM_CAP_PV_MMU: /* obsolete */
  1196. r = 0;
  1197. break;
  1198. case KVM_CAP_IOMMU:
  1199. r = iommu_found();
  1200. break;
  1201. case KVM_CAP_MCE:
  1202. r = KVM_MAX_MCE_BANKS;
  1203. break;
  1204. default:
  1205. r = 0;
  1206. break;
  1207. }
  1208. return r;
  1209. }
  1210. long kvm_arch_dev_ioctl(struct file *filp,
  1211. unsigned int ioctl, unsigned long arg)
  1212. {
  1213. void __user *argp = (void __user *)arg;
  1214. long r;
  1215. switch (ioctl) {
  1216. case KVM_GET_MSR_INDEX_LIST: {
  1217. struct kvm_msr_list __user *user_msr_list = argp;
  1218. struct kvm_msr_list msr_list;
  1219. unsigned n;
  1220. r = -EFAULT;
  1221. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1222. goto out;
  1223. n = msr_list.nmsrs;
  1224. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1225. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1226. goto out;
  1227. r = -E2BIG;
  1228. if (n < msr_list.nmsrs)
  1229. goto out;
  1230. r = -EFAULT;
  1231. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1232. num_msrs_to_save * sizeof(u32)))
  1233. goto out;
  1234. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1235. &emulated_msrs,
  1236. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1237. goto out;
  1238. r = 0;
  1239. break;
  1240. }
  1241. case KVM_GET_SUPPORTED_CPUID: {
  1242. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1243. struct kvm_cpuid2 cpuid;
  1244. r = -EFAULT;
  1245. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1246. goto out;
  1247. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1248. cpuid_arg->entries);
  1249. if (r)
  1250. goto out;
  1251. r = -EFAULT;
  1252. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1253. goto out;
  1254. r = 0;
  1255. break;
  1256. }
  1257. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1258. u64 mce_cap;
  1259. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1260. r = -EFAULT;
  1261. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1262. goto out;
  1263. r = 0;
  1264. break;
  1265. }
  1266. default:
  1267. r = -EINVAL;
  1268. }
  1269. out:
  1270. return r;
  1271. }
  1272. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1273. {
  1274. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1275. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1276. unsigned long khz = cpufreq_quick_get(cpu);
  1277. if (!khz)
  1278. khz = tsc_khz;
  1279. per_cpu(cpu_tsc_khz, cpu) = khz;
  1280. }
  1281. kvm_request_guest_time_update(vcpu);
  1282. }
  1283. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1284. {
  1285. kvm_x86_ops->vcpu_put(vcpu);
  1286. kvm_put_guest_fpu(vcpu);
  1287. }
  1288. static int is_efer_nx(void)
  1289. {
  1290. unsigned long long efer = 0;
  1291. rdmsrl_safe(MSR_EFER, &efer);
  1292. return efer & EFER_NX;
  1293. }
  1294. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1295. {
  1296. int i;
  1297. struct kvm_cpuid_entry2 *e, *entry;
  1298. entry = NULL;
  1299. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1300. e = &vcpu->arch.cpuid_entries[i];
  1301. if (e->function == 0x80000001) {
  1302. entry = e;
  1303. break;
  1304. }
  1305. }
  1306. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1307. entry->edx &= ~(1 << 20);
  1308. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1309. }
  1310. }
  1311. /* when an old userspace process fills a new kernel module */
  1312. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1313. struct kvm_cpuid *cpuid,
  1314. struct kvm_cpuid_entry __user *entries)
  1315. {
  1316. int r, i;
  1317. struct kvm_cpuid_entry *cpuid_entries;
  1318. r = -E2BIG;
  1319. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1320. goto out;
  1321. r = -ENOMEM;
  1322. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1323. if (!cpuid_entries)
  1324. goto out;
  1325. r = -EFAULT;
  1326. if (copy_from_user(cpuid_entries, entries,
  1327. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1328. goto out_free;
  1329. for (i = 0; i < cpuid->nent; i++) {
  1330. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1331. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1332. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1333. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1334. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1335. vcpu->arch.cpuid_entries[i].index = 0;
  1336. vcpu->arch.cpuid_entries[i].flags = 0;
  1337. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1338. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1339. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1340. }
  1341. vcpu->arch.cpuid_nent = cpuid->nent;
  1342. cpuid_fix_nx_cap(vcpu);
  1343. r = 0;
  1344. kvm_apic_set_version(vcpu);
  1345. out_free:
  1346. vfree(cpuid_entries);
  1347. out:
  1348. return r;
  1349. }
  1350. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1351. struct kvm_cpuid2 *cpuid,
  1352. struct kvm_cpuid_entry2 __user *entries)
  1353. {
  1354. int r;
  1355. r = -E2BIG;
  1356. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1357. goto out;
  1358. r = -EFAULT;
  1359. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1360. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1361. goto out;
  1362. vcpu->arch.cpuid_nent = cpuid->nent;
  1363. kvm_apic_set_version(vcpu);
  1364. return 0;
  1365. out:
  1366. return r;
  1367. }
  1368. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1369. struct kvm_cpuid2 *cpuid,
  1370. struct kvm_cpuid_entry2 __user *entries)
  1371. {
  1372. int r;
  1373. r = -E2BIG;
  1374. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1375. goto out;
  1376. r = -EFAULT;
  1377. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1378. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1379. goto out;
  1380. return 0;
  1381. out:
  1382. cpuid->nent = vcpu->arch.cpuid_nent;
  1383. return r;
  1384. }
  1385. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1386. u32 index)
  1387. {
  1388. entry->function = function;
  1389. entry->index = index;
  1390. cpuid_count(entry->function, entry->index,
  1391. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1392. entry->flags = 0;
  1393. }
  1394. #define F(x) bit(X86_FEATURE_##x)
  1395. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1396. u32 index, int *nent, int maxnent)
  1397. {
  1398. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1399. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1400. #ifdef CONFIG_X86_64
  1401. unsigned f_lm = F(LM);
  1402. #else
  1403. unsigned f_lm = 0;
  1404. #endif
  1405. /* cpuid 1.edx */
  1406. const u32 kvm_supported_word0_x86_features =
  1407. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1408. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1409. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1410. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1411. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1412. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1413. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1414. 0 /* HTT, TM, Reserved, PBE */;
  1415. /* cpuid 0x80000001.edx */
  1416. const u32 kvm_supported_word1_x86_features =
  1417. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1418. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1419. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1420. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1421. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1422. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1423. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1424. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1425. /* cpuid 1.ecx */
  1426. const u32 kvm_supported_word4_x86_features =
  1427. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1428. 0 /* DS-CPL, VMX, SMX, EST */ |
  1429. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1430. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1431. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1432. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1433. 0 /* Reserved, XSAVE, OSXSAVE */;
  1434. /* cpuid 0x80000001.ecx */
  1435. const u32 kvm_supported_word6_x86_features =
  1436. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1437. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1438. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1439. 0 /* SKINIT */ | 0 /* WDT */;
  1440. /* all calls to cpuid_count() should be made on the same cpu */
  1441. get_cpu();
  1442. do_cpuid_1_ent(entry, function, index);
  1443. ++*nent;
  1444. switch (function) {
  1445. case 0:
  1446. entry->eax = min(entry->eax, (u32)0xb);
  1447. break;
  1448. case 1:
  1449. entry->edx &= kvm_supported_word0_x86_features;
  1450. entry->ecx &= kvm_supported_word4_x86_features;
  1451. /* we support x2apic emulation even if host does not support
  1452. * it since we emulate x2apic in software */
  1453. entry->ecx |= F(X2APIC);
  1454. break;
  1455. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1456. * may return different values. This forces us to get_cpu() before
  1457. * issuing the first command, and also to emulate this annoying behavior
  1458. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1459. case 2: {
  1460. int t, times = entry->eax & 0xff;
  1461. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1462. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1463. for (t = 1; t < times && *nent < maxnent; ++t) {
  1464. do_cpuid_1_ent(&entry[t], function, 0);
  1465. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1466. ++*nent;
  1467. }
  1468. break;
  1469. }
  1470. /* function 4 and 0xb have additional index. */
  1471. case 4: {
  1472. int i, cache_type;
  1473. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1474. /* read more entries until cache_type is zero */
  1475. for (i = 1; *nent < maxnent; ++i) {
  1476. cache_type = entry[i - 1].eax & 0x1f;
  1477. if (!cache_type)
  1478. break;
  1479. do_cpuid_1_ent(&entry[i], function, i);
  1480. entry[i].flags |=
  1481. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1482. ++*nent;
  1483. }
  1484. break;
  1485. }
  1486. case 0xb: {
  1487. int i, level_type;
  1488. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1489. /* read more entries until level_type is zero */
  1490. for (i = 1; *nent < maxnent; ++i) {
  1491. level_type = entry[i - 1].ecx & 0xff00;
  1492. if (!level_type)
  1493. break;
  1494. do_cpuid_1_ent(&entry[i], function, i);
  1495. entry[i].flags |=
  1496. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1497. ++*nent;
  1498. }
  1499. break;
  1500. }
  1501. case 0x80000000:
  1502. entry->eax = min(entry->eax, 0x8000001a);
  1503. break;
  1504. case 0x80000001:
  1505. entry->edx &= kvm_supported_word1_x86_features;
  1506. entry->ecx &= kvm_supported_word6_x86_features;
  1507. break;
  1508. }
  1509. put_cpu();
  1510. }
  1511. #undef F
  1512. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1513. struct kvm_cpuid_entry2 __user *entries)
  1514. {
  1515. struct kvm_cpuid_entry2 *cpuid_entries;
  1516. int limit, nent = 0, r = -E2BIG;
  1517. u32 func;
  1518. if (cpuid->nent < 1)
  1519. goto out;
  1520. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1521. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1522. r = -ENOMEM;
  1523. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1524. if (!cpuid_entries)
  1525. goto out;
  1526. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1527. limit = cpuid_entries[0].eax;
  1528. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1529. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1530. &nent, cpuid->nent);
  1531. r = -E2BIG;
  1532. if (nent >= cpuid->nent)
  1533. goto out_free;
  1534. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1535. limit = cpuid_entries[nent - 1].eax;
  1536. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1537. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1538. &nent, cpuid->nent);
  1539. r = -E2BIG;
  1540. if (nent >= cpuid->nent)
  1541. goto out_free;
  1542. r = -EFAULT;
  1543. if (copy_to_user(entries, cpuid_entries,
  1544. nent * sizeof(struct kvm_cpuid_entry2)))
  1545. goto out_free;
  1546. cpuid->nent = nent;
  1547. r = 0;
  1548. out_free:
  1549. vfree(cpuid_entries);
  1550. out:
  1551. return r;
  1552. }
  1553. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1554. struct kvm_lapic_state *s)
  1555. {
  1556. vcpu_load(vcpu);
  1557. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1558. vcpu_put(vcpu);
  1559. return 0;
  1560. }
  1561. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1562. struct kvm_lapic_state *s)
  1563. {
  1564. vcpu_load(vcpu);
  1565. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1566. kvm_apic_post_state_restore(vcpu);
  1567. update_cr8_intercept(vcpu);
  1568. vcpu_put(vcpu);
  1569. return 0;
  1570. }
  1571. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1572. struct kvm_interrupt *irq)
  1573. {
  1574. if (irq->irq < 0 || irq->irq >= 256)
  1575. return -EINVAL;
  1576. if (irqchip_in_kernel(vcpu->kvm))
  1577. return -ENXIO;
  1578. vcpu_load(vcpu);
  1579. kvm_queue_interrupt(vcpu, irq->irq, false);
  1580. vcpu_put(vcpu);
  1581. return 0;
  1582. }
  1583. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1584. {
  1585. vcpu_load(vcpu);
  1586. kvm_inject_nmi(vcpu);
  1587. vcpu_put(vcpu);
  1588. return 0;
  1589. }
  1590. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1591. struct kvm_tpr_access_ctl *tac)
  1592. {
  1593. if (tac->flags)
  1594. return -EINVAL;
  1595. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1596. return 0;
  1597. }
  1598. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1599. u64 mcg_cap)
  1600. {
  1601. int r;
  1602. unsigned bank_num = mcg_cap & 0xff, bank;
  1603. r = -EINVAL;
  1604. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1605. goto out;
  1606. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1607. goto out;
  1608. r = 0;
  1609. vcpu->arch.mcg_cap = mcg_cap;
  1610. /* Init IA32_MCG_CTL to all 1s */
  1611. if (mcg_cap & MCG_CTL_P)
  1612. vcpu->arch.mcg_ctl = ~(u64)0;
  1613. /* Init IA32_MCi_CTL to all 1s */
  1614. for (bank = 0; bank < bank_num; bank++)
  1615. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1616. out:
  1617. return r;
  1618. }
  1619. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1620. struct kvm_x86_mce *mce)
  1621. {
  1622. u64 mcg_cap = vcpu->arch.mcg_cap;
  1623. unsigned bank_num = mcg_cap & 0xff;
  1624. u64 *banks = vcpu->arch.mce_banks;
  1625. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1626. return -EINVAL;
  1627. /*
  1628. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1629. * reporting is disabled
  1630. */
  1631. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1632. vcpu->arch.mcg_ctl != ~(u64)0)
  1633. return 0;
  1634. banks += 4 * mce->bank;
  1635. /*
  1636. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1637. * reporting is disabled for the bank
  1638. */
  1639. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1640. return 0;
  1641. if (mce->status & MCI_STATUS_UC) {
  1642. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1643. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1644. printk(KERN_DEBUG "kvm: set_mce: "
  1645. "injects mce exception while "
  1646. "previous one is in progress!\n");
  1647. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1648. return 0;
  1649. }
  1650. if (banks[1] & MCI_STATUS_VAL)
  1651. mce->status |= MCI_STATUS_OVER;
  1652. banks[2] = mce->addr;
  1653. banks[3] = mce->misc;
  1654. vcpu->arch.mcg_status = mce->mcg_status;
  1655. banks[1] = mce->status;
  1656. kvm_queue_exception(vcpu, MC_VECTOR);
  1657. } else if (!(banks[1] & MCI_STATUS_VAL)
  1658. || !(banks[1] & MCI_STATUS_UC)) {
  1659. if (banks[1] & MCI_STATUS_VAL)
  1660. mce->status |= MCI_STATUS_OVER;
  1661. banks[2] = mce->addr;
  1662. banks[3] = mce->misc;
  1663. banks[1] = mce->status;
  1664. } else
  1665. banks[1] |= MCI_STATUS_OVER;
  1666. return 0;
  1667. }
  1668. long kvm_arch_vcpu_ioctl(struct file *filp,
  1669. unsigned int ioctl, unsigned long arg)
  1670. {
  1671. struct kvm_vcpu *vcpu = filp->private_data;
  1672. void __user *argp = (void __user *)arg;
  1673. int r;
  1674. struct kvm_lapic_state *lapic = NULL;
  1675. switch (ioctl) {
  1676. case KVM_GET_LAPIC: {
  1677. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1678. r = -ENOMEM;
  1679. if (!lapic)
  1680. goto out;
  1681. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1682. if (r)
  1683. goto out;
  1684. r = -EFAULT;
  1685. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1686. goto out;
  1687. r = 0;
  1688. break;
  1689. }
  1690. case KVM_SET_LAPIC: {
  1691. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1692. r = -ENOMEM;
  1693. if (!lapic)
  1694. goto out;
  1695. r = -EFAULT;
  1696. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1697. goto out;
  1698. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1699. if (r)
  1700. goto out;
  1701. r = 0;
  1702. break;
  1703. }
  1704. case KVM_INTERRUPT: {
  1705. struct kvm_interrupt irq;
  1706. r = -EFAULT;
  1707. if (copy_from_user(&irq, argp, sizeof irq))
  1708. goto out;
  1709. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1710. if (r)
  1711. goto out;
  1712. r = 0;
  1713. break;
  1714. }
  1715. case KVM_NMI: {
  1716. r = kvm_vcpu_ioctl_nmi(vcpu);
  1717. if (r)
  1718. goto out;
  1719. r = 0;
  1720. break;
  1721. }
  1722. case KVM_SET_CPUID: {
  1723. struct kvm_cpuid __user *cpuid_arg = argp;
  1724. struct kvm_cpuid cpuid;
  1725. r = -EFAULT;
  1726. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1727. goto out;
  1728. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1729. if (r)
  1730. goto out;
  1731. break;
  1732. }
  1733. case KVM_SET_CPUID2: {
  1734. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1735. struct kvm_cpuid2 cpuid;
  1736. r = -EFAULT;
  1737. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1738. goto out;
  1739. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1740. cpuid_arg->entries);
  1741. if (r)
  1742. goto out;
  1743. break;
  1744. }
  1745. case KVM_GET_CPUID2: {
  1746. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1747. struct kvm_cpuid2 cpuid;
  1748. r = -EFAULT;
  1749. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1750. goto out;
  1751. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1752. cpuid_arg->entries);
  1753. if (r)
  1754. goto out;
  1755. r = -EFAULT;
  1756. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1757. goto out;
  1758. r = 0;
  1759. break;
  1760. }
  1761. case KVM_GET_MSRS:
  1762. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1763. break;
  1764. case KVM_SET_MSRS:
  1765. r = msr_io(vcpu, argp, do_set_msr, 0);
  1766. break;
  1767. case KVM_TPR_ACCESS_REPORTING: {
  1768. struct kvm_tpr_access_ctl tac;
  1769. r = -EFAULT;
  1770. if (copy_from_user(&tac, argp, sizeof tac))
  1771. goto out;
  1772. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1773. if (r)
  1774. goto out;
  1775. r = -EFAULT;
  1776. if (copy_to_user(argp, &tac, sizeof tac))
  1777. goto out;
  1778. r = 0;
  1779. break;
  1780. };
  1781. case KVM_SET_VAPIC_ADDR: {
  1782. struct kvm_vapic_addr va;
  1783. r = -EINVAL;
  1784. if (!irqchip_in_kernel(vcpu->kvm))
  1785. goto out;
  1786. r = -EFAULT;
  1787. if (copy_from_user(&va, argp, sizeof va))
  1788. goto out;
  1789. r = 0;
  1790. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1791. break;
  1792. }
  1793. case KVM_X86_SETUP_MCE: {
  1794. u64 mcg_cap;
  1795. r = -EFAULT;
  1796. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1797. goto out;
  1798. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1799. break;
  1800. }
  1801. case KVM_X86_SET_MCE: {
  1802. struct kvm_x86_mce mce;
  1803. r = -EFAULT;
  1804. if (copy_from_user(&mce, argp, sizeof mce))
  1805. goto out;
  1806. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1807. break;
  1808. }
  1809. default:
  1810. r = -EINVAL;
  1811. }
  1812. out:
  1813. kfree(lapic);
  1814. return r;
  1815. }
  1816. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1817. {
  1818. int ret;
  1819. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1820. return -1;
  1821. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1822. return ret;
  1823. }
  1824. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1825. u64 ident_addr)
  1826. {
  1827. kvm->arch.ept_identity_map_addr = ident_addr;
  1828. return 0;
  1829. }
  1830. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1831. u32 kvm_nr_mmu_pages)
  1832. {
  1833. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1834. return -EINVAL;
  1835. down_write(&kvm->slots_lock);
  1836. spin_lock(&kvm->mmu_lock);
  1837. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1838. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1839. spin_unlock(&kvm->mmu_lock);
  1840. up_write(&kvm->slots_lock);
  1841. return 0;
  1842. }
  1843. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1844. {
  1845. return kvm->arch.n_alloc_mmu_pages;
  1846. }
  1847. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1848. {
  1849. int i;
  1850. struct kvm_mem_alias *alias;
  1851. for (i = 0; i < kvm->arch.naliases; ++i) {
  1852. alias = &kvm->arch.aliases[i];
  1853. if (gfn >= alias->base_gfn
  1854. && gfn < alias->base_gfn + alias->npages)
  1855. return alias->target_gfn + gfn - alias->base_gfn;
  1856. }
  1857. return gfn;
  1858. }
  1859. /*
  1860. * Set a new alias region. Aliases map a portion of physical memory into
  1861. * another portion. This is useful for memory windows, for example the PC
  1862. * VGA region.
  1863. */
  1864. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1865. struct kvm_memory_alias *alias)
  1866. {
  1867. int r, n;
  1868. struct kvm_mem_alias *p;
  1869. r = -EINVAL;
  1870. /* General sanity checks */
  1871. if (alias->memory_size & (PAGE_SIZE - 1))
  1872. goto out;
  1873. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1874. goto out;
  1875. if (alias->slot >= KVM_ALIAS_SLOTS)
  1876. goto out;
  1877. if (alias->guest_phys_addr + alias->memory_size
  1878. < alias->guest_phys_addr)
  1879. goto out;
  1880. if (alias->target_phys_addr + alias->memory_size
  1881. < alias->target_phys_addr)
  1882. goto out;
  1883. down_write(&kvm->slots_lock);
  1884. spin_lock(&kvm->mmu_lock);
  1885. p = &kvm->arch.aliases[alias->slot];
  1886. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1887. p->npages = alias->memory_size >> PAGE_SHIFT;
  1888. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1889. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1890. if (kvm->arch.aliases[n - 1].npages)
  1891. break;
  1892. kvm->arch.naliases = n;
  1893. spin_unlock(&kvm->mmu_lock);
  1894. kvm_mmu_zap_all(kvm);
  1895. up_write(&kvm->slots_lock);
  1896. return 0;
  1897. out:
  1898. return r;
  1899. }
  1900. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1901. {
  1902. int r;
  1903. r = 0;
  1904. switch (chip->chip_id) {
  1905. case KVM_IRQCHIP_PIC_MASTER:
  1906. memcpy(&chip->chip.pic,
  1907. &pic_irqchip(kvm)->pics[0],
  1908. sizeof(struct kvm_pic_state));
  1909. break;
  1910. case KVM_IRQCHIP_PIC_SLAVE:
  1911. memcpy(&chip->chip.pic,
  1912. &pic_irqchip(kvm)->pics[1],
  1913. sizeof(struct kvm_pic_state));
  1914. break;
  1915. case KVM_IRQCHIP_IOAPIC:
  1916. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1917. break;
  1918. default:
  1919. r = -EINVAL;
  1920. break;
  1921. }
  1922. return r;
  1923. }
  1924. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1925. {
  1926. int r;
  1927. r = 0;
  1928. switch (chip->chip_id) {
  1929. case KVM_IRQCHIP_PIC_MASTER:
  1930. spin_lock(&pic_irqchip(kvm)->lock);
  1931. memcpy(&pic_irqchip(kvm)->pics[0],
  1932. &chip->chip.pic,
  1933. sizeof(struct kvm_pic_state));
  1934. spin_unlock(&pic_irqchip(kvm)->lock);
  1935. break;
  1936. case KVM_IRQCHIP_PIC_SLAVE:
  1937. spin_lock(&pic_irqchip(kvm)->lock);
  1938. memcpy(&pic_irqchip(kvm)->pics[1],
  1939. &chip->chip.pic,
  1940. sizeof(struct kvm_pic_state));
  1941. spin_unlock(&pic_irqchip(kvm)->lock);
  1942. break;
  1943. case KVM_IRQCHIP_IOAPIC:
  1944. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  1945. break;
  1946. default:
  1947. r = -EINVAL;
  1948. break;
  1949. }
  1950. kvm_pic_update_irq(pic_irqchip(kvm));
  1951. return r;
  1952. }
  1953. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1954. {
  1955. int r = 0;
  1956. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1957. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1958. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1959. return r;
  1960. }
  1961. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1962. {
  1963. int r = 0;
  1964. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1965. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1966. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1967. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1968. return r;
  1969. }
  1970. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1971. {
  1972. int r = 0;
  1973. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1974. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1975. sizeof(ps->channels));
  1976. ps->flags = kvm->arch.vpit->pit_state.flags;
  1977. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1978. return r;
  1979. }
  1980. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1981. {
  1982. int r = 0, start = 0;
  1983. u32 prev_legacy, cur_legacy;
  1984. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1985. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1986. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1987. if (!prev_legacy && cur_legacy)
  1988. start = 1;
  1989. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1990. sizeof(kvm->arch.vpit->pit_state.channels));
  1991. kvm->arch.vpit->pit_state.flags = ps->flags;
  1992. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1993. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1994. return r;
  1995. }
  1996. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1997. struct kvm_reinject_control *control)
  1998. {
  1999. if (!kvm->arch.vpit)
  2000. return -ENXIO;
  2001. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2002. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2003. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2004. return 0;
  2005. }
  2006. /*
  2007. * Get (and clear) the dirty memory log for a memory slot.
  2008. */
  2009. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2010. struct kvm_dirty_log *log)
  2011. {
  2012. int r;
  2013. int n;
  2014. struct kvm_memory_slot *memslot;
  2015. int is_dirty = 0;
  2016. down_write(&kvm->slots_lock);
  2017. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  2018. if (r)
  2019. goto out;
  2020. /* If nothing is dirty, don't bother messing with page tables. */
  2021. if (is_dirty) {
  2022. spin_lock(&kvm->mmu_lock);
  2023. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2024. spin_unlock(&kvm->mmu_lock);
  2025. memslot = &kvm->memslots[log->slot];
  2026. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2027. memset(memslot->dirty_bitmap, 0, n);
  2028. }
  2029. r = 0;
  2030. out:
  2031. up_write(&kvm->slots_lock);
  2032. return r;
  2033. }
  2034. long kvm_arch_vm_ioctl(struct file *filp,
  2035. unsigned int ioctl, unsigned long arg)
  2036. {
  2037. struct kvm *kvm = filp->private_data;
  2038. void __user *argp = (void __user *)arg;
  2039. int r = -ENOTTY;
  2040. /*
  2041. * This union makes it completely explicit to gcc-3.x
  2042. * that these two variables' stack usage should be
  2043. * combined, not added together.
  2044. */
  2045. union {
  2046. struct kvm_pit_state ps;
  2047. struct kvm_pit_state2 ps2;
  2048. struct kvm_memory_alias alias;
  2049. struct kvm_pit_config pit_config;
  2050. } u;
  2051. switch (ioctl) {
  2052. case KVM_SET_TSS_ADDR:
  2053. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2054. if (r < 0)
  2055. goto out;
  2056. break;
  2057. case KVM_SET_IDENTITY_MAP_ADDR: {
  2058. u64 ident_addr;
  2059. r = -EFAULT;
  2060. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2061. goto out;
  2062. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2063. if (r < 0)
  2064. goto out;
  2065. break;
  2066. }
  2067. case KVM_SET_MEMORY_REGION: {
  2068. struct kvm_memory_region kvm_mem;
  2069. struct kvm_userspace_memory_region kvm_userspace_mem;
  2070. r = -EFAULT;
  2071. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2072. goto out;
  2073. kvm_userspace_mem.slot = kvm_mem.slot;
  2074. kvm_userspace_mem.flags = kvm_mem.flags;
  2075. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2076. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2077. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2078. if (r)
  2079. goto out;
  2080. break;
  2081. }
  2082. case KVM_SET_NR_MMU_PAGES:
  2083. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2084. if (r)
  2085. goto out;
  2086. break;
  2087. case KVM_GET_NR_MMU_PAGES:
  2088. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2089. break;
  2090. case KVM_SET_MEMORY_ALIAS:
  2091. r = -EFAULT;
  2092. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2093. goto out;
  2094. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2095. if (r)
  2096. goto out;
  2097. break;
  2098. case KVM_CREATE_IRQCHIP:
  2099. r = -ENOMEM;
  2100. kvm->arch.vpic = kvm_create_pic(kvm);
  2101. if (kvm->arch.vpic) {
  2102. r = kvm_ioapic_init(kvm);
  2103. if (r) {
  2104. kfree(kvm->arch.vpic);
  2105. kvm->arch.vpic = NULL;
  2106. goto out;
  2107. }
  2108. } else
  2109. goto out;
  2110. r = kvm_setup_default_irq_routing(kvm);
  2111. if (r) {
  2112. kfree(kvm->arch.vpic);
  2113. kfree(kvm->arch.vioapic);
  2114. goto out;
  2115. }
  2116. break;
  2117. case KVM_CREATE_PIT:
  2118. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2119. goto create_pit;
  2120. case KVM_CREATE_PIT2:
  2121. r = -EFAULT;
  2122. if (copy_from_user(&u.pit_config, argp,
  2123. sizeof(struct kvm_pit_config)))
  2124. goto out;
  2125. create_pit:
  2126. down_write(&kvm->slots_lock);
  2127. r = -EEXIST;
  2128. if (kvm->arch.vpit)
  2129. goto create_pit_unlock;
  2130. r = -ENOMEM;
  2131. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2132. if (kvm->arch.vpit)
  2133. r = 0;
  2134. create_pit_unlock:
  2135. up_write(&kvm->slots_lock);
  2136. break;
  2137. case KVM_IRQ_LINE_STATUS:
  2138. case KVM_IRQ_LINE: {
  2139. struct kvm_irq_level irq_event;
  2140. r = -EFAULT;
  2141. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2142. goto out;
  2143. if (irqchip_in_kernel(kvm)) {
  2144. __s32 status;
  2145. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2146. irq_event.irq, irq_event.level);
  2147. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2148. irq_event.status = status;
  2149. if (copy_to_user(argp, &irq_event,
  2150. sizeof irq_event))
  2151. goto out;
  2152. }
  2153. r = 0;
  2154. }
  2155. break;
  2156. }
  2157. case KVM_GET_IRQCHIP: {
  2158. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2159. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2160. r = -ENOMEM;
  2161. if (!chip)
  2162. goto out;
  2163. r = -EFAULT;
  2164. if (copy_from_user(chip, argp, sizeof *chip))
  2165. goto get_irqchip_out;
  2166. r = -ENXIO;
  2167. if (!irqchip_in_kernel(kvm))
  2168. goto get_irqchip_out;
  2169. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2170. if (r)
  2171. goto get_irqchip_out;
  2172. r = -EFAULT;
  2173. if (copy_to_user(argp, chip, sizeof *chip))
  2174. goto get_irqchip_out;
  2175. r = 0;
  2176. get_irqchip_out:
  2177. kfree(chip);
  2178. if (r)
  2179. goto out;
  2180. break;
  2181. }
  2182. case KVM_SET_IRQCHIP: {
  2183. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2184. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2185. r = -ENOMEM;
  2186. if (!chip)
  2187. goto out;
  2188. r = -EFAULT;
  2189. if (copy_from_user(chip, argp, sizeof *chip))
  2190. goto set_irqchip_out;
  2191. r = -ENXIO;
  2192. if (!irqchip_in_kernel(kvm))
  2193. goto set_irqchip_out;
  2194. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2195. if (r)
  2196. goto set_irqchip_out;
  2197. r = 0;
  2198. set_irqchip_out:
  2199. kfree(chip);
  2200. if (r)
  2201. goto out;
  2202. break;
  2203. }
  2204. case KVM_GET_PIT: {
  2205. r = -EFAULT;
  2206. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2207. goto out;
  2208. r = -ENXIO;
  2209. if (!kvm->arch.vpit)
  2210. goto out;
  2211. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2212. if (r)
  2213. goto out;
  2214. r = -EFAULT;
  2215. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2216. goto out;
  2217. r = 0;
  2218. break;
  2219. }
  2220. case KVM_SET_PIT: {
  2221. r = -EFAULT;
  2222. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2223. goto out;
  2224. r = -ENXIO;
  2225. if (!kvm->arch.vpit)
  2226. goto out;
  2227. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2228. if (r)
  2229. goto out;
  2230. r = 0;
  2231. break;
  2232. }
  2233. case KVM_GET_PIT2: {
  2234. r = -ENXIO;
  2235. if (!kvm->arch.vpit)
  2236. goto out;
  2237. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2238. if (r)
  2239. goto out;
  2240. r = -EFAULT;
  2241. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2242. goto out;
  2243. r = 0;
  2244. break;
  2245. }
  2246. case KVM_SET_PIT2: {
  2247. r = -EFAULT;
  2248. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2249. goto out;
  2250. r = -ENXIO;
  2251. if (!kvm->arch.vpit)
  2252. goto out;
  2253. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2254. if (r)
  2255. goto out;
  2256. r = 0;
  2257. break;
  2258. }
  2259. case KVM_REINJECT_CONTROL: {
  2260. struct kvm_reinject_control control;
  2261. r = -EFAULT;
  2262. if (copy_from_user(&control, argp, sizeof(control)))
  2263. goto out;
  2264. r = kvm_vm_ioctl_reinject(kvm, &control);
  2265. if (r)
  2266. goto out;
  2267. r = 0;
  2268. break;
  2269. }
  2270. case KVM_XEN_HVM_CONFIG: {
  2271. r = -EFAULT;
  2272. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2273. sizeof(struct kvm_xen_hvm_config)))
  2274. goto out;
  2275. r = -EINVAL;
  2276. if (kvm->arch.xen_hvm_config.flags)
  2277. goto out;
  2278. r = 0;
  2279. break;
  2280. }
  2281. case KVM_SET_CLOCK: {
  2282. struct timespec now;
  2283. struct kvm_clock_data user_ns;
  2284. u64 now_ns;
  2285. s64 delta;
  2286. r = -EFAULT;
  2287. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2288. goto out;
  2289. r = -EINVAL;
  2290. if (user_ns.flags)
  2291. goto out;
  2292. r = 0;
  2293. ktime_get_ts(&now);
  2294. now_ns = timespec_to_ns(&now);
  2295. delta = user_ns.clock - now_ns;
  2296. kvm->arch.kvmclock_offset = delta;
  2297. break;
  2298. }
  2299. case KVM_GET_CLOCK: {
  2300. struct timespec now;
  2301. struct kvm_clock_data user_ns;
  2302. u64 now_ns;
  2303. ktime_get_ts(&now);
  2304. now_ns = timespec_to_ns(&now);
  2305. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2306. user_ns.flags = 0;
  2307. r = -EFAULT;
  2308. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2309. goto out;
  2310. r = 0;
  2311. break;
  2312. }
  2313. default:
  2314. ;
  2315. }
  2316. out:
  2317. return r;
  2318. }
  2319. static void kvm_init_msr_list(void)
  2320. {
  2321. u32 dummy[2];
  2322. unsigned i, j;
  2323. /* skip the first msrs in the list. KVM-specific */
  2324. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2325. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2326. continue;
  2327. if (j < i)
  2328. msrs_to_save[j] = msrs_to_save[i];
  2329. j++;
  2330. }
  2331. num_msrs_to_save = j;
  2332. }
  2333. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2334. const void *v)
  2335. {
  2336. if (vcpu->arch.apic &&
  2337. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2338. return 0;
  2339. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2340. }
  2341. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2342. {
  2343. if (vcpu->arch.apic &&
  2344. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2345. return 0;
  2346. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2347. }
  2348. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2349. struct kvm_vcpu *vcpu)
  2350. {
  2351. void *data = val;
  2352. int r = X86EMUL_CONTINUE;
  2353. while (bytes) {
  2354. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2355. unsigned offset = addr & (PAGE_SIZE-1);
  2356. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2357. int ret;
  2358. if (gpa == UNMAPPED_GVA) {
  2359. r = X86EMUL_PROPAGATE_FAULT;
  2360. goto out;
  2361. }
  2362. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2363. if (ret < 0) {
  2364. r = X86EMUL_UNHANDLEABLE;
  2365. goto out;
  2366. }
  2367. bytes -= toread;
  2368. data += toread;
  2369. addr += toread;
  2370. }
  2371. out:
  2372. return r;
  2373. }
  2374. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2375. struct kvm_vcpu *vcpu)
  2376. {
  2377. void *data = val;
  2378. int r = X86EMUL_CONTINUE;
  2379. while (bytes) {
  2380. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2381. unsigned offset = addr & (PAGE_SIZE-1);
  2382. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2383. int ret;
  2384. if (gpa == UNMAPPED_GVA) {
  2385. r = X86EMUL_PROPAGATE_FAULT;
  2386. goto out;
  2387. }
  2388. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2389. if (ret < 0) {
  2390. r = X86EMUL_UNHANDLEABLE;
  2391. goto out;
  2392. }
  2393. bytes -= towrite;
  2394. data += towrite;
  2395. addr += towrite;
  2396. }
  2397. out:
  2398. return r;
  2399. }
  2400. static int emulator_read_emulated(unsigned long addr,
  2401. void *val,
  2402. unsigned int bytes,
  2403. struct kvm_vcpu *vcpu)
  2404. {
  2405. gpa_t gpa;
  2406. if (vcpu->mmio_read_completed) {
  2407. memcpy(val, vcpu->mmio_data, bytes);
  2408. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2409. vcpu->mmio_phys_addr, *(u64 *)val);
  2410. vcpu->mmio_read_completed = 0;
  2411. return X86EMUL_CONTINUE;
  2412. }
  2413. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2414. /* For APIC access vmexit */
  2415. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2416. goto mmio;
  2417. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2418. == X86EMUL_CONTINUE)
  2419. return X86EMUL_CONTINUE;
  2420. if (gpa == UNMAPPED_GVA)
  2421. return X86EMUL_PROPAGATE_FAULT;
  2422. mmio:
  2423. /*
  2424. * Is this MMIO handled locally?
  2425. */
  2426. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2427. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2428. return X86EMUL_CONTINUE;
  2429. }
  2430. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2431. vcpu->mmio_needed = 1;
  2432. vcpu->mmio_phys_addr = gpa;
  2433. vcpu->mmio_size = bytes;
  2434. vcpu->mmio_is_write = 0;
  2435. return X86EMUL_UNHANDLEABLE;
  2436. }
  2437. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2438. const void *val, int bytes)
  2439. {
  2440. int ret;
  2441. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2442. if (ret < 0)
  2443. return 0;
  2444. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2445. return 1;
  2446. }
  2447. static int emulator_write_emulated_onepage(unsigned long addr,
  2448. const void *val,
  2449. unsigned int bytes,
  2450. struct kvm_vcpu *vcpu)
  2451. {
  2452. gpa_t gpa;
  2453. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2454. if (gpa == UNMAPPED_GVA) {
  2455. kvm_inject_page_fault(vcpu, addr, 2);
  2456. return X86EMUL_PROPAGATE_FAULT;
  2457. }
  2458. /* For APIC access vmexit */
  2459. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2460. goto mmio;
  2461. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2462. return X86EMUL_CONTINUE;
  2463. mmio:
  2464. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2465. /*
  2466. * Is this MMIO handled locally?
  2467. */
  2468. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2469. return X86EMUL_CONTINUE;
  2470. vcpu->mmio_needed = 1;
  2471. vcpu->mmio_phys_addr = gpa;
  2472. vcpu->mmio_size = bytes;
  2473. vcpu->mmio_is_write = 1;
  2474. memcpy(vcpu->mmio_data, val, bytes);
  2475. return X86EMUL_CONTINUE;
  2476. }
  2477. int emulator_write_emulated(unsigned long addr,
  2478. const void *val,
  2479. unsigned int bytes,
  2480. struct kvm_vcpu *vcpu)
  2481. {
  2482. /* Crossing a page boundary? */
  2483. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2484. int rc, now;
  2485. now = -addr & ~PAGE_MASK;
  2486. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2487. if (rc != X86EMUL_CONTINUE)
  2488. return rc;
  2489. addr += now;
  2490. val += now;
  2491. bytes -= now;
  2492. }
  2493. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2494. }
  2495. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2496. static int emulator_cmpxchg_emulated(unsigned long addr,
  2497. const void *old,
  2498. const void *new,
  2499. unsigned int bytes,
  2500. struct kvm_vcpu *vcpu)
  2501. {
  2502. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2503. #ifndef CONFIG_X86_64
  2504. /* guests cmpxchg8b have to be emulated atomically */
  2505. if (bytes == 8) {
  2506. gpa_t gpa;
  2507. struct page *page;
  2508. char *kaddr;
  2509. u64 val;
  2510. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2511. if (gpa == UNMAPPED_GVA ||
  2512. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2513. goto emul_write;
  2514. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2515. goto emul_write;
  2516. val = *(u64 *)new;
  2517. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2518. kaddr = kmap_atomic(page, KM_USER0);
  2519. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2520. kunmap_atomic(kaddr, KM_USER0);
  2521. kvm_release_page_dirty(page);
  2522. }
  2523. emul_write:
  2524. #endif
  2525. return emulator_write_emulated(addr, new, bytes, vcpu);
  2526. }
  2527. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2528. {
  2529. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2530. }
  2531. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2532. {
  2533. kvm_mmu_invlpg(vcpu, address);
  2534. return X86EMUL_CONTINUE;
  2535. }
  2536. int emulate_clts(struct kvm_vcpu *vcpu)
  2537. {
  2538. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2539. return X86EMUL_CONTINUE;
  2540. }
  2541. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2542. {
  2543. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2544. switch (dr) {
  2545. case 0 ... 3:
  2546. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2547. return X86EMUL_CONTINUE;
  2548. default:
  2549. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2550. return X86EMUL_UNHANDLEABLE;
  2551. }
  2552. }
  2553. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2554. {
  2555. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2556. int exception;
  2557. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2558. if (exception) {
  2559. /* FIXME: better handling */
  2560. return X86EMUL_UNHANDLEABLE;
  2561. }
  2562. return X86EMUL_CONTINUE;
  2563. }
  2564. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2565. {
  2566. u8 opcodes[4];
  2567. unsigned long rip = kvm_rip_read(vcpu);
  2568. unsigned long rip_linear;
  2569. if (!printk_ratelimit())
  2570. return;
  2571. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2572. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2573. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2574. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2575. }
  2576. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2577. static struct x86_emulate_ops emulate_ops = {
  2578. .read_std = kvm_read_guest_virt,
  2579. .read_emulated = emulator_read_emulated,
  2580. .write_emulated = emulator_write_emulated,
  2581. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2582. };
  2583. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2584. {
  2585. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2586. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2587. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2588. vcpu->arch.regs_dirty = ~0;
  2589. }
  2590. int emulate_instruction(struct kvm_vcpu *vcpu,
  2591. unsigned long cr2,
  2592. u16 error_code,
  2593. int emulation_type)
  2594. {
  2595. int r, shadow_mask;
  2596. struct decode_cache *c;
  2597. struct kvm_run *run = vcpu->run;
  2598. kvm_clear_exception_queue(vcpu);
  2599. vcpu->arch.mmio_fault_cr2 = cr2;
  2600. /*
  2601. * TODO: fix emulate.c to use guest_read/write_register
  2602. * instead of direct ->regs accesses, can save hundred cycles
  2603. * on Intel for instructions that don't read/change RSP, for
  2604. * for example.
  2605. */
  2606. cache_all_regs(vcpu);
  2607. vcpu->mmio_is_write = 0;
  2608. vcpu->arch.pio.string = 0;
  2609. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2610. int cs_db, cs_l;
  2611. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2612. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2613. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2614. vcpu->arch.emulate_ctxt.mode =
  2615. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2616. ? X86EMUL_MODE_REAL : cs_l
  2617. ? X86EMUL_MODE_PROT64 : cs_db
  2618. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2619. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2620. /* Only allow emulation of specific instructions on #UD
  2621. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2622. c = &vcpu->arch.emulate_ctxt.decode;
  2623. if (emulation_type & EMULTYPE_TRAP_UD) {
  2624. if (!c->twobyte)
  2625. return EMULATE_FAIL;
  2626. switch (c->b) {
  2627. case 0x01: /* VMMCALL */
  2628. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2629. return EMULATE_FAIL;
  2630. break;
  2631. case 0x34: /* sysenter */
  2632. case 0x35: /* sysexit */
  2633. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2634. return EMULATE_FAIL;
  2635. break;
  2636. case 0x05: /* syscall */
  2637. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2638. return EMULATE_FAIL;
  2639. break;
  2640. default:
  2641. return EMULATE_FAIL;
  2642. }
  2643. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2644. return EMULATE_FAIL;
  2645. }
  2646. ++vcpu->stat.insn_emulation;
  2647. if (r) {
  2648. ++vcpu->stat.insn_emulation_fail;
  2649. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2650. return EMULATE_DONE;
  2651. return EMULATE_FAIL;
  2652. }
  2653. }
  2654. if (emulation_type & EMULTYPE_SKIP) {
  2655. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2656. return EMULATE_DONE;
  2657. }
  2658. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2659. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2660. if (r == 0)
  2661. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2662. if (vcpu->arch.pio.string)
  2663. return EMULATE_DO_MMIO;
  2664. if ((r || vcpu->mmio_is_write) && run) {
  2665. run->exit_reason = KVM_EXIT_MMIO;
  2666. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2667. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2668. run->mmio.len = vcpu->mmio_size;
  2669. run->mmio.is_write = vcpu->mmio_is_write;
  2670. }
  2671. if (r) {
  2672. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2673. return EMULATE_DONE;
  2674. if (!vcpu->mmio_needed) {
  2675. kvm_report_emulation_failure(vcpu, "mmio");
  2676. return EMULATE_FAIL;
  2677. }
  2678. return EMULATE_DO_MMIO;
  2679. }
  2680. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2681. if (vcpu->mmio_is_write) {
  2682. vcpu->mmio_needed = 0;
  2683. return EMULATE_DO_MMIO;
  2684. }
  2685. return EMULATE_DONE;
  2686. }
  2687. EXPORT_SYMBOL_GPL(emulate_instruction);
  2688. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2689. {
  2690. void *p = vcpu->arch.pio_data;
  2691. gva_t q = vcpu->arch.pio.guest_gva;
  2692. unsigned bytes;
  2693. int ret;
  2694. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2695. if (vcpu->arch.pio.in)
  2696. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2697. else
  2698. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2699. return ret;
  2700. }
  2701. int complete_pio(struct kvm_vcpu *vcpu)
  2702. {
  2703. struct kvm_pio_request *io = &vcpu->arch.pio;
  2704. long delta;
  2705. int r;
  2706. unsigned long val;
  2707. if (!io->string) {
  2708. if (io->in) {
  2709. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2710. memcpy(&val, vcpu->arch.pio_data, io->size);
  2711. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2712. }
  2713. } else {
  2714. if (io->in) {
  2715. r = pio_copy_data(vcpu);
  2716. if (r)
  2717. return r;
  2718. }
  2719. delta = 1;
  2720. if (io->rep) {
  2721. delta *= io->cur_count;
  2722. /*
  2723. * The size of the register should really depend on
  2724. * current address size.
  2725. */
  2726. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2727. val -= delta;
  2728. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2729. }
  2730. if (io->down)
  2731. delta = -delta;
  2732. delta *= io->size;
  2733. if (io->in) {
  2734. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2735. val += delta;
  2736. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2737. } else {
  2738. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2739. val += delta;
  2740. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2741. }
  2742. }
  2743. io->count -= io->cur_count;
  2744. io->cur_count = 0;
  2745. return 0;
  2746. }
  2747. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2748. {
  2749. /* TODO: String I/O for in kernel device */
  2750. int r;
  2751. if (vcpu->arch.pio.in)
  2752. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2753. vcpu->arch.pio.size, pd);
  2754. else
  2755. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2756. vcpu->arch.pio.size, pd);
  2757. return r;
  2758. }
  2759. static int pio_string_write(struct kvm_vcpu *vcpu)
  2760. {
  2761. struct kvm_pio_request *io = &vcpu->arch.pio;
  2762. void *pd = vcpu->arch.pio_data;
  2763. int i, r = 0;
  2764. for (i = 0; i < io->cur_count; i++) {
  2765. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2766. io->port, io->size, pd)) {
  2767. r = -EOPNOTSUPP;
  2768. break;
  2769. }
  2770. pd += io->size;
  2771. }
  2772. return r;
  2773. }
  2774. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2775. {
  2776. unsigned long val;
  2777. vcpu->run->exit_reason = KVM_EXIT_IO;
  2778. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2779. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2780. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2781. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2782. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2783. vcpu->arch.pio.in = in;
  2784. vcpu->arch.pio.string = 0;
  2785. vcpu->arch.pio.down = 0;
  2786. vcpu->arch.pio.rep = 0;
  2787. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2788. size, 1);
  2789. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2790. memcpy(vcpu->arch.pio_data, &val, 4);
  2791. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2792. complete_pio(vcpu);
  2793. return 1;
  2794. }
  2795. return 0;
  2796. }
  2797. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2798. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2799. int size, unsigned long count, int down,
  2800. gva_t address, int rep, unsigned port)
  2801. {
  2802. unsigned now, in_page;
  2803. int ret = 0;
  2804. vcpu->run->exit_reason = KVM_EXIT_IO;
  2805. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2806. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2807. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2808. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2809. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2810. vcpu->arch.pio.in = in;
  2811. vcpu->arch.pio.string = 1;
  2812. vcpu->arch.pio.down = down;
  2813. vcpu->arch.pio.rep = rep;
  2814. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2815. size, count);
  2816. if (!count) {
  2817. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2818. return 1;
  2819. }
  2820. if (!down)
  2821. in_page = PAGE_SIZE - offset_in_page(address);
  2822. else
  2823. in_page = offset_in_page(address) + size;
  2824. now = min(count, (unsigned long)in_page / size);
  2825. if (!now)
  2826. now = 1;
  2827. if (down) {
  2828. /*
  2829. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2830. */
  2831. pr_unimpl(vcpu, "guest string pio down\n");
  2832. kvm_inject_gp(vcpu, 0);
  2833. return 1;
  2834. }
  2835. vcpu->run->io.count = now;
  2836. vcpu->arch.pio.cur_count = now;
  2837. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2838. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2839. vcpu->arch.pio.guest_gva = address;
  2840. if (!vcpu->arch.pio.in) {
  2841. /* string PIO write */
  2842. ret = pio_copy_data(vcpu);
  2843. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2844. kvm_inject_gp(vcpu, 0);
  2845. return 1;
  2846. }
  2847. if (ret == 0 && !pio_string_write(vcpu)) {
  2848. complete_pio(vcpu);
  2849. if (vcpu->arch.pio.count == 0)
  2850. ret = 1;
  2851. }
  2852. }
  2853. /* no string PIO read support yet */
  2854. return ret;
  2855. }
  2856. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2857. static void bounce_off(void *info)
  2858. {
  2859. /* nothing */
  2860. }
  2861. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2862. void *data)
  2863. {
  2864. struct cpufreq_freqs *freq = data;
  2865. struct kvm *kvm;
  2866. struct kvm_vcpu *vcpu;
  2867. int i, send_ipi = 0;
  2868. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2869. return 0;
  2870. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2871. return 0;
  2872. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2873. spin_lock(&kvm_lock);
  2874. list_for_each_entry(kvm, &vm_list, vm_list) {
  2875. kvm_for_each_vcpu(i, vcpu, kvm) {
  2876. if (vcpu->cpu != freq->cpu)
  2877. continue;
  2878. if (!kvm_request_guest_time_update(vcpu))
  2879. continue;
  2880. if (vcpu->cpu != smp_processor_id())
  2881. send_ipi++;
  2882. }
  2883. }
  2884. spin_unlock(&kvm_lock);
  2885. if (freq->old < freq->new && send_ipi) {
  2886. /*
  2887. * We upscale the frequency. Must make the guest
  2888. * doesn't see old kvmclock values while running with
  2889. * the new frequency, otherwise we risk the guest sees
  2890. * time go backwards.
  2891. *
  2892. * In case we update the frequency for another cpu
  2893. * (which might be in guest context) send an interrupt
  2894. * to kick the cpu out of guest context. Next time
  2895. * guest context is entered kvmclock will be updated,
  2896. * so the guest will not see stale values.
  2897. */
  2898. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2899. }
  2900. return 0;
  2901. }
  2902. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2903. .notifier_call = kvmclock_cpufreq_notifier
  2904. };
  2905. static void kvm_timer_init(void)
  2906. {
  2907. int cpu;
  2908. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2909. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2910. CPUFREQ_TRANSITION_NOTIFIER);
  2911. for_each_online_cpu(cpu) {
  2912. unsigned long khz = cpufreq_get(cpu);
  2913. if (!khz)
  2914. khz = tsc_khz;
  2915. per_cpu(cpu_tsc_khz, cpu) = khz;
  2916. }
  2917. } else {
  2918. for_each_possible_cpu(cpu)
  2919. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2920. }
  2921. }
  2922. int kvm_arch_init(void *opaque)
  2923. {
  2924. int r;
  2925. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2926. if (kvm_x86_ops) {
  2927. printk(KERN_ERR "kvm: already loaded the other module\n");
  2928. r = -EEXIST;
  2929. goto out;
  2930. }
  2931. if (!ops->cpu_has_kvm_support()) {
  2932. printk(KERN_ERR "kvm: no hardware support\n");
  2933. r = -EOPNOTSUPP;
  2934. goto out;
  2935. }
  2936. if (ops->disabled_by_bios()) {
  2937. printk(KERN_ERR "kvm: disabled by bios\n");
  2938. r = -EOPNOTSUPP;
  2939. goto out;
  2940. }
  2941. r = kvm_mmu_module_init();
  2942. if (r)
  2943. goto out;
  2944. kvm_init_msr_list();
  2945. kvm_x86_ops = ops;
  2946. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2947. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2948. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2949. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2950. kvm_timer_init();
  2951. return 0;
  2952. out:
  2953. return r;
  2954. }
  2955. void kvm_arch_exit(void)
  2956. {
  2957. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2958. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2959. CPUFREQ_TRANSITION_NOTIFIER);
  2960. kvm_x86_ops = NULL;
  2961. kvm_mmu_module_exit();
  2962. }
  2963. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2964. {
  2965. ++vcpu->stat.halt_exits;
  2966. if (irqchip_in_kernel(vcpu->kvm)) {
  2967. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2968. return 1;
  2969. } else {
  2970. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2971. return 0;
  2972. }
  2973. }
  2974. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2975. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2976. unsigned long a1)
  2977. {
  2978. if (is_long_mode(vcpu))
  2979. return a0;
  2980. else
  2981. return a0 | ((gpa_t)a1 << 32);
  2982. }
  2983. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2984. {
  2985. unsigned long nr, a0, a1, a2, a3, ret;
  2986. int r = 1;
  2987. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2988. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2989. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2990. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2991. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2992. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2993. if (!is_long_mode(vcpu)) {
  2994. nr &= 0xFFFFFFFF;
  2995. a0 &= 0xFFFFFFFF;
  2996. a1 &= 0xFFFFFFFF;
  2997. a2 &= 0xFFFFFFFF;
  2998. a3 &= 0xFFFFFFFF;
  2999. }
  3000. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3001. ret = -KVM_EPERM;
  3002. goto out;
  3003. }
  3004. switch (nr) {
  3005. case KVM_HC_VAPIC_POLL_IRQ:
  3006. ret = 0;
  3007. break;
  3008. case KVM_HC_MMU_OP:
  3009. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3010. break;
  3011. default:
  3012. ret = -KVM_ENOSYS;
  3013. break;
  3014. }
  3015. out:
  3016. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3017. ++vcpu->stat.hypercalls;
  3018. return r;
  3019. }
  3020. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3021. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3022. {
  3023. char instruction[3];
  3024. int ret = 0;
  3025. unsigned long rip = kvm_rip_read(vcpu);
  3026. /*
  3027. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3028. * to ensure that the updated hypercall appears atomically across all
  3029. * VCPUs.
  3030. */
  3031. kvm_mmu_zap_all(vcpu->kvm);
  3032. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3033. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3034. != X86EMUL_CONTINUE)
  3035. ret = -EFAULT;
  3036. return ret;
  3037. }
  3038. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3039. {
  3040. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3041. }
  3042. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3043. {
  3044. struct descriptor_table dt = { limit, base };
  3045. kvm_x86_ops->set_gdt(vcpu, &dt);
  3046. }
  3047. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3048. {
  3049. struct descriptor_table dt = { limit, base };
  3050. kvm_x86_ops->set_idt(vcpu, &dt);
  3051. }
  3052. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3053. unsigned long *rflags)
  3054. {
  3055. kvm_lmsw(vcpu, msw);
  3056. *rflags = kvm_get_rflags(vcpu);
  3057. }
  3058. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3059. {
  3060. unsigned long value;
  3061. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3062. switch (cr) {
  3063. case 0:
  3064. value = vcpu->arch.cr0;
  3065. break;
  3066. case 2:
  3067. value = vcpu->arch.cr2;
  3068. break;
  3069. case 3:
  3070. value = vcpu->arch.cr3;
  3071. break;
  3072. case 4:
  3073. value = vcpu->arch.cr4;
  3074. break;
  3075. case 8:
  3076. value = kvm_get_cr8(vcpu);
  3077. break;
  3078. default:
  3079. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3080. return 0;
  3081. }
  3082. return value;
  3083. }
  3084. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3085. unsigned long *rflags)
  3086. {
  3087. switch (cr) {
  3088. case 0:
  3089. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3090. *rflags = kvm_get_rflags(vcpu);
  3091. break;
  3092. case 2:
  3093. vcpu->arch.cr2 = val;
  3094. break;
  3095. case 3:
  3096. kvm_set_cr3(vcpu, val);
  3097. break;
  3098. case 4:
  3099. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  3100. break;
  3101. case 8:
  3102. kvm_set_cr8(vcpu, val & 0xfUL);
  3103. break;
  3104. default:
  3105. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3106. }
  3107. }
  3108. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3109. {
  3110. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3111. int j, nent = vcpu->arch.cpuid_nent;
  3112. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3113. /* when no next entry is found, the current entry[i] is reselected */
  3114. for (j = i + 1; ; j = (j + 1) % nent) {
  3115. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3116. if (ej->function == e->function) {
  3117. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3118. return j;
  3119. }
  3120. }
  3121. return 0; /* silence gcc, even though control never reaches here */
  3122. }
  3123. /* find an entry with matching function, matching index (if needed), and that
  3124. * should be read next (if it's stateful) */
  3125. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3126. u32 function, u32 index)
  3127. {
  3128. if (e->function != function)
  3129. return 0;
  3130. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3131. return 0;
  3132. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3133. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3134. return 0;
  3135. return 1;
  3136. }
  3137. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3138. u32 function, u32 index)
  3139. {
  3140. int i;
  3141. struct kvm_cpuid_entry2 *best = NULL;
  3142. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3143. struct kvm_cpuid_entry2 *e;
  3144. e = &vcpu->arch.cpuid_entries[i];
  3145. if (is_matching_cpuid_entry(e, function, index)) {
  3146. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3147. move_to_next_stateful_cpuid_entry(vcpu, i);
  3148. best = e;
  3149. break;
  3150. }
  3151. /*
  3152. * Both basic or both extended?
  3153. */
  3154. if (((e->function ^ function) & 0x80000000) == 0)
  3155. if (!best || e->function > best->function)
  3156. best = e;
  3157. }
  3158. return best;
  3159. }
  3160. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3161. {
  3162. struct kvm_cpuid_entry2 *best;
  3163. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3164. if (best)
  3165. return best->eax & 0xff;
  3166. return 36;
  3167. }
  3168. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3169. {
  3170. u32 function, index;
  3171. struct kvm_cpuid_entry2 *best;
  3172. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3173. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3174. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3175. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3176. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3177. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3178. best = kvm_find_cpuid_entry(vcpu, function, index);
  3179. if (best) {
  3180. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3181. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3182. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3183. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3184. }
  3185. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3186. trace_kvm_cpuid(function,
  3187. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3188. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3189. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3190. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3191. }
  3192. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3193. /*
  3194. * Check if userspace requested an interrupt window, and that the
  3195. * interrupt window is open.
  3196. *
  3197. * No need to exit to userspace if we already have an interrupt queued.
  3198. */
  3199. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3200. {
  3201. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3202. vcpu->run->request_interrupt_window &&
  3203. kvm_arch_interrupt_allowed(vcpu));
  3204. }
  3205. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3206. {
  3207. struct kvm_run *kvm_run = vcpu->run;
  3208. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3209. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3210. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3211. if (irqchip_in_kernel(vcpu->kvm))
  3212. kvm_run->ready_for_interrupt_injection = 1;
  3213. else
  3214. kvm_run->ready_for_interrupt_injection =
  3215. kvm_arch_interrupt_allowed(vcpu) &&
  3216. !kvm_cpu_has_interrupt(vcpu) &&
  3217. !kvm_event_needs_reinjection(vcpu);
  3218. }
  3219. static void vapic_enter(struct kvm_vcpu *vcpu)
  3220. {
  3221. struct kvm_lapic *apic = vcpu->arch.apic;
  3222. struct page *page;
  3223. if (!apic || !apic->vapic_addr)
  3224. return;
  3225. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3226. vcpu->arch.apic->vapic_page = page;
  3227. }
  3228. static void vapic_exit(struct kvm_vcpu *vcpu)
  3229. {
  3230. struct kvm_lapic *apic = vcpu->arch.apic;
  3231. if (!apic || !apic->vapic_addr)
  3232. return;
  3233. down_read(&vcpu->kvm->slots_lock);
  3234. kvm_release_page_dirty(apic->vapic_page);
  3235. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3236. up_read(&vcpu->kvm->slots_lock);
  3237. }
  3238. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3239. {
  3240. int max_irr, tpr;
  3241. if (!kvm_x86_ops->update_cr8_intercept)
  3242. return;
  3243. if (!vcpu->arch.apic)
  3244. return;
  3245. if (!vcpu->arch.apic->vapic_addr)
  3246. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3247. else
  3248. max_irr = -1;
  3249. if (max_irr != -1)
  3250. max_irr >>= 4;
  3251. tpr = kvm_lapic_get_cr8(vcpu);
  3252. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3253. }
  3254. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3255. {
  3256. /* try to reinject previous events if any */
  3257. if (vcpu->arch.exception.pending) {
  3258. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3259. vcpu->arch.exception.has_error_code,
  3260. vcpu->arch.exception.error_code);
  3261. return;
  3262. }
  3263. if (vcpu->arch.nmi_injected) {
  3264. kvm_x86_ops->set_nmi(vcpu);
  3265. return;
  3266. }
  3267. if (vcpu->arch.interrupt.pending) {
  3268. kvm_x86_ops->set_irq(vcpu);
  3269. return;
  3270. }
  3271. /* try to inject new event if pending */
  3272. if (vcpu->arch.nmi_pending) {
  3273. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3274. vcpu->arch.nmi_pending = false;
  3275. vcpu->arch.nmi_injected = true;
  3276. kvm_x86_ops->set_nmi(vcpu);
  3277. }
  3278. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3279. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3280. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3281. false);
  3282. kvm_x86_ops->set_irq(vcpu);
  3283. }
  3284. }
  3285. }
  3286. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3287. {
  3288. int r;
  3289. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3290. vcpu->run->request_interrupt_window;
  3291. if (vcpu->requests)
  3292. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3293. kvm_mmu_unload(vcpu);
  3294. r = kvm_mmu_reload(vcpu);
  3295. if (unlikely(r))
  3296. goto out;
  3297. if (vcpu->requests) {
  3298. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3299. __kvm_migrate_timers(vcpu);
  3300. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3301. kvm_write_guest_time(vcpu);
  3302. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3303. kvm_mmu_sync_roots(vcpu);
  3304. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3305. kvm_x86_ops->tlb_flush(vcpu);
  3306. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3307. &vcpu->requests)) {
  3308. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3309. r = 0;
  3310. goto out;
  3311. }
  3312. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3313. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3314. r = 0;
  3315. goto out;
  3316. }
  3317. }
  3318. preempt_disable();
  3319. kvm_x86_ops->prepare_guest_switch(vcpu);
  3320. kvm_load_guest_fpu(vcpu);
  3321. local_irq_disable();
  3322. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3323. smp_mb__after_clear_bit();
  3324. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3325. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3326. local_irq_enable();
  3327. preempt_enable();
  3328. r = 1;
  3329. goto out;
  3330. }
  3331. inject_pending_event(vcpu);
  3332. /* enable NMI/IRQ window open exits if needed */
  3333. if (vcpu->arch.nmi_pending)
  3334. kvm_x86_ops->enable_nmi_window(vcpu);
  3335. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3336. kvm_x86_ops->enable_irq_window(vcpu);
  3337. if (kvm_lapic_enabled(vcpu)) {
  3338. update_cr8_intercept(vcpu);
  3339. kvm_lapic_sync_to_vapic(vcpu);
  3340. }
  3341. up_read(&vcpu->kvm->slots_lock);
  3342. kvm_guest_enter();
  3343. if (unlikely(vcpu->arch.switch_db_regs)) {
  3344. set_debugreg(0, 7);
  3345. set_debugreg(vcpu->arch.eff_db[0], 0);
  3346. set_debugreg(vcpu->arch.eff_db[1], 1);
  3347. set_debugreg(vcpu->arch.eff_db[2], 2);
  3348. set_debugreg(vcpu->arch.eff_db[3], 3);
  3349. }
  3350. trace_kvm_entry(vcpu->vcpu_id);
  3351. kvm_x86_ops->run(vcpu);
  3352. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3353. set_debugreg(current->thread.debugreg0, 0);
  3354. set_debugreg(current->thread.debugreg1, 1);
  3355. set_debugreg(current->thread.debugreg2, 2);
  3356. set_debugreg(current->thread.debugreg3, 3);
  3357. set_debugreg(current->thread.debugreg6, 6);
  3358. set_debugreg(current->thread.debugreg7, 7);
  3359. }
  3360. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3361. local_irq_enable();
  3362. ++vcpu->stat.exits;
  3363. /*
  3364. * We must have an instruction between local_irq_enable() and
  3365. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3366. * the interrupt shadow. The stat.exits increment will do nicely.
  3367. * But we need to prevent reordering, hence this barrier():
  3368. */
  3369. barrier();
  3370. kvm_guest_exit();
  3371. preempt_enable();
  3372. down_read(&vcpu->kvm->slots_lock);
  3373. /*
  3374. * Profile KVM exit RIPs:
  3375. */
  3376. if (unlikely(prof_on == KVM_PROFILING)) {
  3377. unsigned long rip = kvm_rip_read(vcpu);
  3378. profile_hit(KVM_PROFILING, (void *)rip);
  3379. }
  3380. kvm_lapic_sync_from_vapic(vcpu);
  3381. r = kvm_x86_ops->handle_exit(vcpu);
  3382. out:
  3383. return r;
  3384. }
  3385. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3386. {
  3387. int r;
  3388. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3389. pr_debug("vcpu %d received sipi with vector # %x\n",
  3390. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3391. kvm_lapic_reset(vcpu);
  3392. r = kvm_arch_vcpu_reset(vcpu);
  3393. if (r)
  3394. return r;
  3395. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3396. }
  3397. down_read(&vcpu->kvm->slots_lock);
  3398. vapic_enter(vcpu);
  3399. r = 1;
  3400. while (r > 0) {
  3401. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3402. r = vcpu_enter_guest(vcpu);
  3403. else {
  3404. up_read(&vcpu->kvm->slots_lock);
  3405. kvm_vcpu_block(vcpu);
  3406. down_read(&vcpu->kvm->slots_lock);
  3407. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3408. {
  3409. switch(vcpu->arch.mp_state) {
  3410. case KVM_MP_STATE_HALTED:
  3411. vcpu->arch.mp_state =
  3412. KVM_MP_STATE_RUNNABLE;
  3413. case KVM_MP_STATE_RUNNABLE:
  3414. break;
  3415. case KVM_MP_STATE_SIPI_RECEIVED:
  3416. default:
  3417. r = -EINTR;
  3418. break;
  3419. }
  3420. }
  3421. }
  3422. if (r <= 0)
  3423. break;
  3424. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3425. if (kvm_cpu_has_pending_timer(vcpu))
  3426. kvm_inject_pending_timer_irqs(vcpu);
  3427. if (dm_request_for_irq_injection(vcpu)) {
  3428. r = -EINTR;
  3429. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3430. ++vcpu->stat.request_irq_exits;
  3431. }
  3432. if (signal_pending(current)) {
  3433. r = -EINTR;
  3434. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3435. ++vcpu->stat.signal_exits;
  3436. }
  3437. if (need_resched()) {
  3438. up_read(&vcpu->kvm->slots_lock);
  3439. kvm_resched(vcpu);
  3440. down_read(&vcpu->kvm->slots_lock);
  3441. }
  3442. }
  3443. up_read(&vcpu->kvm->slots_lock);
  3444. post_kvm_run_save(vcpu);
  3445. vapic_exit(vcpu);
  3446. return r;
  3447. }
  3448. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3449. {
  3450. int r;
  3451. sigset_t sigsaved;
  3452. vcpu_load(vcpu);
  3453. if (vcpu->sigset_active)
  3454. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3455. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3456. kvm_vcpu_block(vcpu);
  3457. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3458. r = -EAGAIN;
  3459. goto out;
  3460. }
  3461. /* re-sync apic's tpr */
  3462. if (!irqchip_in_kernel(vcpu->kvm))
  3463. kvm_set_cr8(vcpu, kvm_run->cr8);
  3464. if (vcpu->arch.pio.cur_count) {
  3465. r = complete_pio(vcpu);
  3466. if (r)
  3467. goto out;
  3468. }
  3469. if (vcpu->mmio_needed) {
  3470. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3471. vcpu->mmio_read_completed = 1;
  3472. vcpu->mmio_needed = 0;
  3473. down_read(&vcpu->kvm->slots_lock);
  3474. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3475. EMULTYPE_NO_DECODE);
  3476. up_read(&vcpu->kvm->slots_lock);
  3477. if (r == EMULATE_DO_MMIO) {
  3478. /*
  3479. * Read-modify-write. Back to userspace.
  3480. */
  3481. r = 0;
  3482. goto out;
  3483. }
  3484. }
  3485. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3486. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3487. kvm_run->hypercall.ret);
  3488. r = __vcpu_run(vcpu);
  3489. out:
  3490. if (vcpu->sigset_active)
  3491. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3492. vcpu_put(vcpu);
  3493. return r;
  3494. }
  3495. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3496. {
  3497. vcpu_load(vcpu);
  3498. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3499. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3500. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3501. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3502. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3503. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3504. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3505. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3506. #ifdef CONFIG_X86_64
  3507. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3508. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3509. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3510. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3511. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3512. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3513. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3514. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3515. #endif
  3516. regs->rip = kvm_rip_read(vcpu);
  3517. regs->rflags = kvm_get_rflags(vcpu);
  3518. vcpu_put(vcpu);
  3519. return 0;
  3520. }
  3521. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3522. {
  3523. vcpu_load(vcpu);
  3524. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3525. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3526. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3527. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3528. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3529. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3530. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3531. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3532. #ifdef CONFIG_X86_64
  3533. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3534. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3535. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3536. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3537. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3538. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3539. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3540. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3541. #endif
  3542. kvm_rip_write(vcpu, regs->rip);
  3543. kvm_set_rflags(vcpu, regs->rflags);
  3544. vcpu->arch.exception.pending = false;
  3545. vcpu_put(vcpu);
  3546. return 0;
  3547. }
  3548. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3549. struct kvm_segment *var, int seg)
  3550. {
  3551. kvm_x86_ops->get_segment(vcpu, var, seg);
  3552. }
  3553. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3554. {
  3555. struct kvm_segment cs;
  3556. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3557. *db = cs.db;
  3558. *l = cs.l;
  3559. }
  3560. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3561. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3562. struct kvm_sregs *sregs)
  3563. {
  3564. struct descriptor_table dt;
  3565. vcpu_load(vcpu);
  3566. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3567. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3568. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3569. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3570. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3571. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3572. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3573. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3574. kvm_x86_ops->get_idt(vcpu, &dt);
  3575. sregs->idt.limit = dt.limit;
  3576. sregs->idt.base = dt.base;
  3577. kvm_x86_ops->get_gdt(vcpu, &dt);
  3578. sregs->gdt.limit = dt.limit;
  3579. sregs->gdt.base = dt.base;
  3580. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3581. sregs->cr0 = vcpu->arch.cr0;
  3582. sregs->cr2 = vcpu->arch.cr2;
  3583. sregs->cr3 = vcpu->arch.cr3;
  3584. sregs->cr4 = vcpu->arch.cr4;
  3585. sregs->cr8 = kvm_get_cr8(vcpu);
  3586. sregs->efer = vcpu->arch.shadow_efer;
  3587. sregs->apic_base = kvm_get_apic_base(vcpu);
  3588. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3589. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3590. set_bit(vcpu->arch.interrupt.nr,
  3591. (unsigned long *)sregs->interrupt_bitmap);
  3592. vcpu_put(vcpu);
  3593. return 0;
  3594. }
  3595. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3596. struct kvm_mp_state *mp_state)
  3597. {
  3598. vcpu_load(vcpu);
  3599. mp_state->mp_state = vcpu->arch.mp_state;
  3600. vcpu_put(vcpu);
  3601. return 0;
  3602. }
  3603. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3604. struct kvm_mp_state *mp_state)
  3605. {
  3606. vcpu_load(vcpu);
  3607. vcpu->arch.mp_state = mp_state->mp_state;
  3608. vcpu_put(vcpu);
  3609. return 0;
  3610. }
  3611. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3612. struct kvm_segment *var, int seg)
  3613. {
  3614. kvm_x86_ops->set_segment(vcpu, var, seg);
  3615. }
  3616. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3617. struct kvm_segment *kvm_desct)
  3618. {
  3619. kvm_desct->base = get_desc_base(seg_desc);
  3620. kvm_desct->limit = get_desc_limit(seg_desc);
  3621. if (seg_desc->g) {
  3622. kvm_desct->limit <<= 12;
  3623. kvm_desct->limit |= 0xfff;
  3624. }
  3625. kvm_desct->selector = selector;
  3626. kvm_desct->type = seg_desc->type;
  3627. kvm_desct->present = seg_desc->p;
  3628. kvm_desct->dpl = seg_desc->dpl;
  3629. kvm_desct->db = seg_desc->d;
  3630. kvm_desct->s = seg_desc->s;
  3631. kvm_desct->l = seg_desc->l;
  3632. kvm_desct->g = seg_desc->g;
  3633. kvm_desct->avl = seg_desc->avl;
  3634. if (!selector)
  3635. kvm_desct->unusable = 1;
  3636. else
  3637. kvm_desct->unusable = 0;
  3638. kvm_desct->padding = 0;
  3639. }
  3640. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3641. u16 selector,
  3642. struct descriptor_table *dtable)
  3643. {
  3644. if (selector & 1 << 2) {
  3645. struct kvm_segment kvm_seg;
  3646. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3647. if (kvm_seg.unusable)
  3648. dtable->limit = 0;
  3649. else
  3650. dtable->limit = kvm_seg.limit;
  3651. dtable->base = kvm_seg.base;
  3652. }
  3653. else
  3654. kvm_x86_ops->get_gdt(vcpu, dtable);
  3655. }
  3656. /* allowed just for 8 bytes segments */
  3657. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3658. struct desc_struct *seg_desc)
  3659. {
  3660. struct descriptor_table dtable;
  3661. u16 index = selector >> 3;
  3662. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3663. if (dtable.limit < index * 8 + 7) {
  3664. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3665. return 1;
  3666. }
  3667. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3668. }
  3669. /* allowed just for 8 bytes segments */
  3670. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3671. struct desc_struct *seg_desc)
  3672. {
  3673. struct descriptor_table dtable;
  3674. u16 index = selector >> 3;
  3675. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3676. if (dtable.limit < index * 8 + 7)
  3677. return 1;
  3678. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3679. }
  3680. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3681. struct desc_struct *seg_desc)
  3682. {
  3683. u32 base_addr = get_desc_base(seg_desc);
  3684. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3685. }
  3686. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3687. {
  3688. struct kvm_segment kvm_seg;
  3689. kvm_get_segment(vcpu, &kvm_seg, seg);
  3690. return kvm_seg.selector;
  3691. }
  3692. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3693. u16 selector,
  3694. struct kvm_segment *kvm_seg)
  3695. {
  3696. struct desc_struct seg_desc;
  3697. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3698. return 1;
  3699. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3700. return 0;
  3701. }
  3702. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3703. {
  3704. struct kvm_segment segvar = {
  3705. .base = selector << 4,
  3706. .limit = 0xffff,
  3707. .selector = selector,
  3708. .type = 3,
  3709. .present = 1,
  3710. .dpl = 3,
  3711. .db = 0,
  3712. .s = 1,
  3713. .l = 0,
  3714. .g = 0,
  3715. .avl = 0,
  3716. .unusable = 0,
  3717. };
  3718. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3719. return 0;
  3720. }
  3721. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3722. {
  3723. return (seg != VCPU_SREG_LDTR) &&
  3724. (seg != VCPU_SREG_TR) &&
  3725. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3726. }
  3727. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3728. int type_bits, int seg)
  3729. {
  3730. struct kvm_segment kvm_seg;
  3731. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3732. return kvm_load_realmode_segment(vcpu, selector, seg);
  3733. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3734. return 1;
  3735. kvm_seg.type |= type_bits;
  3736. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3737. seg != VCPU_SREG_LDTR)
  3738. if (!kvm_seg.s)
  3739. kvm_seg.unusable = 1;
  3740. kvm_set_segment(vcpu, &kvm_seg, seg);
  3741. return 0;
  3742. }
  3743. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3744. struct tss_segment_32 *tss)
  3745. {
  3746. tss->cr3 = vcpu->arch.cr3;
  3747. tss->eip = kvm_rip_read(vcpu);
  3748. tss->eflags = kvm_get_rflags(vcpu);
  3749. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3750. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3751. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3752. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3753. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3754. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3755. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3756. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3757. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3758. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3759. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3760. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3761. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3762. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3763. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3764. }
  3765. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3766. struct tss_segment_32 *tss)
  3767. {
  3768. kvm_set_cr3(vcpu, tss->cr3);
  3769. kvm_rip_write(vcpu, tss->eip);
  3770. kvm_set_rflags(vcpu, tss->eflags | 2);
  3771. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3772. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3773. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3774. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3775. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3776. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3777. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3778. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3779. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3780. return 1;
  3781. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3782. return 1;
  3783. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3784. return 1;
  3785. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3786. return 1;
  3787. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3788. return 1;
  3789. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3790. return 1;
  3791. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3792. return 1;
  3793. return 0;
  3794. }
  3795. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3796. struct tss_segment_16 *tss)
  3797. {
  3798. tss->ip = kvm_rip_read(vcpu);
  3799. tss->flag = kvm_get_rflags(vcpu);
  3800. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3801. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3802. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3803. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3804. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3805. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3806. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3807. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3808. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3809. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3810. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3811. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3812. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3813. }
  3814. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3815. struct tss_segment_16 *tss)
  3816. {
  3817. kvm_rip_write(vcpu, tss->ip);
  3818. kvm_set_rflags(vcpu, tss->flag | 2);
  3819. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3820. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3821. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3822. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3823. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3824. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3825. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3826. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3827. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3828. return 1;
  3829. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3830. return 1;
  3831. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3832. return 1;
  3833. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3834. return 1;
  3835. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3836. return 1;
  3837. return 0;
  3838. }
  3839. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3840. u16 old_tss_sel, u32 old_tss_base,
  3841. struct desc_struct *nseg_desc)
  3842. {
  3843. struct tss_segment_16 tss_segment_16;
  3844. int ret = 0;
  3845. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3846. sizeof tss_segment_16))
  3847. goto out;
  3848. save_state_to_tss16(vcpu, &tss_segment_16);
  3849. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3850. sizeof tss_segment_16))
  3851. goto out;
  3852. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3853. &tss_segment_16, sizeof tss_segment_16))
  3854. goto out;
  3855. if (old_tss_sel != 0xffff) {
  3856. tss_segment_16.prev_task_link = old_tss_sel;
  3857. if (kvm_write_guest(vcpu->kvm,
  3858. get_tss_base_addr(vcpu, nseg_desc),
  3859. &tss_segment_16.prev_task_link,
  3860. sizeof tss_segment_16.prev_task_link))
  3861. goto out;
  3862. }
  3863. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3864. goto out;
  3865. ret = 1;
  3866. out:
  3867. return ret;
  3868. }
  3869. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3870. u16 old_tss_sel, u32 old_tss_base,
  3871. struct desc_struct *nseg_desc)
  3872. {
  3873. struct tss_segment_32 tss_segment_32;
  3874. int ret = 0;
  3875. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3876. sizeof tss_segment_32))
  3877. goto out;
  3878. save_state_to_tss32(vcpu, &tss_segment_32);
  3879. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3880. sizeof tss_segment_32))
  3881. goto out;
  3882. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3883. &tss_segment_32, sizeof tss_segment_32))
  3884. goto out;
  3885. if (old_tss_sel != 0xffff) {
  3886. tss_segment_32.prev_task_link = old_tss_sel;
  3887. if (kvm_write_guest(vcpu->kvm,
  3888. get_tss_base_addr(vcpu, nseg_desc),
  3889. &tss_segment_32.prev_task_link,
  3890. sizeof tss_segment_32.prev_task_link))
  3891. goto out;
  3892. }
  3893. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3894. goto out;
  3895. ret = 1;
  3896. out:
  3897. return ret;
  3898. }
  3899. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3900. {
  3901. struct kvm_segment tr_seg;
  3902. struct desc_struct cseg_desc;
  3903. struct desc_struct nseg_desc;
  3904. int ret = 0;
  3905. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3906. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3907. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3908. /* FIXME: Handle errors. Failure to read either TSS or their
  3909. * descriptors should generate a pagefault.
  3910. */
  3911. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3912. goto out;
  3913. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3914. goto out;
  3915. if (reason != TASK_SWITCH_IRET) {
  3916. int cpl;
  3917. cpl = kvm_x86_ops->get_cpl(vcpu);
  3918. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3919. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3920. return 1;
  3921. }
  3922. }
  3923. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3924. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3925. return 1;
  3926. }
  3927. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3928. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3929. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3930. }
  3931. if (reason == TASK_SWITCH_IRET) {
  3932. u32 eflags = kvm_get_rflags(vcpu);
  3933. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3934. }
  3935. /* set back link to prev task only if NT bit is set in eflags
  3936. note that old_tss_sel is not used afetr this point */
  3937. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3938. old_tss_sel = 0xffff;
  3939. if (nseg_desc.type & 8)
  3940. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3941. old_tss_base, &nseg_desc);
  3942. else
  3943. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3944. old_tss_base, &nseg_desc);
  3945. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3946. u32 eflags = kvm_get_rflags(vcpu);
  3947. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3948. }
  3949. if (reason != TASK_SWITCH_IRET) {
  3950. nseg_desc.type |= (1 << 1);
  3951. save_guest_segment_descriptor(vcpu, tss_selector,
  3952. &nseg_desc);
  3953. }
  3954. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3955. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3956. tr_seg.type = 11;
  3957. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3958. out:
  3959. return ret;
  3960. }
  3961. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3962. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3963. struct kvm_sregs *sregs)
  3964. {
  3965. int mmu_reset_needed = 0;
  3966. int pending_vec, max_bits;
  3967. struct descriptor_table dt;
  3968. vcpu_load(vcpu);
  3969. dt.limit = sregs->idt.limit;
  3970. dt.base = sregs->idt.base;
  3971. kvm_x86_ops->set_idt(vcpu, &dt);
  3972. dt.limit = sregs->gdt.limit;
  3973. dt.base = sregs->gdt.base;
  3974. kvm_x86_ops->set_gdt(vcpu, &dt);
  3975. vcpu->arch.cr2 = sregs->cr2;
  3976. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3977. vcpu->arch.cr3 = sregs->cr3;
  3978. kvm_set_cr8(vcpu, sregs->cr8);
  3979. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3980. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3981. kvm_set_apic_base(vcpu, sregs->apic_base);
  3982. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3983. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3984. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3985. vcpu->arch.cr0 = sregs->cr0;
  3986. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3987. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3988. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3989. load_pdptrs(vcpu, vcpu->arch.cr3);
  3990. if (mmu_reset_needed)
  3991. kvm_mmu_reset_context(vcpu);
  3992. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3993. pending_vec = find_first_bit(
  3994. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3995. if (pending_vec < max_bits) {
  3996. kvm_queue_interrupt(vcpu, pending_vec, false);
  3997. pr_debug("Set back pending irq %d\n", pending_vec);
  3998. if (irqchip_in_kernel(vcpu->kvm))
  3999. kvm_pic_clear_isr_ack(vcpu->kvm);
  4000. }
  4001. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4002. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4003. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4004. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4005. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4006. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4007. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4008. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4009. update_cr8_intercept(vcpu);
  4010. /* Older userspace won't unhalt the vcpu on reset. */
  4011. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4012. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4013. !(vcpu->arch.cr0 & X86_CR0_PE))
  4014. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4015. vcpu_put(vcpu);
  4016. return 0;
  4017. }
  4018. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4019. struct kvm_guest_debug *dbg)
  4020. {
  4021. unsigned long rflags;
  4022. int i;
  4023. vcpu_load(vcpu);
  4024. /*
  4025. * Read rflags as long as potentially injected trace flags are still
  4026. * filtered out.
  4027. */
  4028. rflags = kvm_get_rflags(vcpu);
  4029. vcpu->guest_debug = dbg->control;
  4030. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4031. vcpu->guest_debug = 0;
  4032. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4033. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4034. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4035. vcpu->arch.switch_db_regs =
  4036. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4037. } else {
  4038. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4039. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4040. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4041. }
  4042. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4043. vcpu->arch.singlestep_cs =
  4044. get_segment_selector(vcpu, VCPU_SREG_CS);
  4045. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4046. }
  4047. /*
  4048. * Trigger an rflags update that will inject or remove the trace
  4049. * flags.
  4050. */
  4051. kvm_set_rflags(vcpu, rflags);
  4052. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4053. if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
  4054. kvm_queue_exception(vcpu, DB_VECTOR);
  4055. else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
  4056. kvm_queue_exception(vcpu, BP_VECTOR);
  4057. vcpu_put(vcpu);
  4058. return 0;
  4059. }
  4060. /*
  4061. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4062. * we have asm/x86/processor.h
  4063. */
  4064. struct fxsave {
  4065. u16 cwd;
  4066. u16 swd;
  4067. u16 twd;
  4068. u16 fop;
  4069. u64 rip;
  4070. u64 rdp;
  4071. u32 mxcsr;
  4072. u32 mxcsr_mask;
  4073. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4074. #ifdef CONFIG_X86_64
  4075. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4076. #else
  4077. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4078. #endif
  4079. };
  4080. /*
  4081. * Translate a guest virtual address to a guest physical address.
  4082. */
  4083. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4084. struct kvm_translation *tr)
  4085. {
  4086. unsigned long vaddr = tr->linear_address;
  4087. gpa_t gpa;
  4088. vcpu_load(vcpu);
  4089. down_read(&vcpu->kvm->slots_lock);
  4090. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4091. up_read(&vcpu->kvm->slots_lock);
  4092. tr->physical_address = gpa;
  4093. tr->valid = gpa != UNMAPPED_GVA;
  4094. tr->writeable = 1;
  4095. tr->usermode = 0;
  4096. vcpu_put(vcpu);
  4097. return 0;
  4098. }
  4099. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4100. {
  4101. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4102. vcpu_load(vcpu);
  4103. memcpy(fpu->fpr, fxsave->st_space, 128);
  4104. fpu->fcw = fxsave->cwd;
  4105. fpu->fsw = fxsave->swd;
  4106. fpu->ftwx = fxsave->twd;
  4107. fpu->last_opcode = fxsave->fop;
  4108. fpu->last_ip = fxsave->rip;
  4109. fpu->last_dp = fxsave->rdp;
  4110. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4111. vcpu_put(vcpu);
  4112. return 0;
  4113. }
  4114. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4115. {
  4116. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4117. vcpu_load(vcpu);
  4118. memcpy(fxsave->st_space, fpu->fpr, 128);
  4119. fxsave->cwd = fpu->fcw;
  4120. fxsave->swd = fpu->fsw;
  4121. fxsave->twd = fpu->ftwx;
  4122. fxsave->fop = fpu->last_opcode;
  4123. fxsave->rip = fpu->last_ip;
  4124. fxsave->rdp = fpu->last_dp;
  4125. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4126. vcpu_put(vcpu);
  4127. return 0;
  4128. }
  4129. void fx_init(struct kvm_vcpu *vcpu)
  4130. {
  4131. unsigned after_mxcsr_mask;
  4132. /*
  4133. * Touch the fpu the first time in non atomic context as if
  4134. * this is the first fpu instruction the exception handler
  4135. * will fire before the instruction returns and it'll have to
  4136. * allocate ram with GFP_KERNEL.
  4137. */
  4138. if (!used_math())
  4139. kvm_fx_save(&vcpu->arch.host_fx_image);
  4140. /* Initialize guest FPU by resetting ours and saving into guest's */
  4141. preempt_disable();
  4142. kvm_fx_save(&vcpu->arch.host_fx_image);
  4143. kvm_fx_finit();
  4144. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4145. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4146. preempt_enable();
  4147. vcpu->arch.cr0 |= X86_CR0_ET;
  4148. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4149. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4150. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4151. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4152. }
  4153. EXPORT_SYMBOL_GPL(fx_init);
  4154. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4155. {
  4156. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4157. return;
  4158. vcpu->guest_fpu_loaded = 1;
  4159. kvm_fx_save(&vcpu->arch.host_fx_image);
  4160. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4161. }
  4162. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4163. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4164. {
  4165. if (!vcpu->guest_fpu_loaded)
  4166. return;
  4167. vcpu->guest_fpu_loaded = 0;
  4168. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4169. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4170. ++vcpu->stat.fpu_reload;
  4171. }
  4172. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4173. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4174. {
  4175. if (vcpu->arch.time_page) {
  4176. kvm_release_page_dirty(vcpu->arch.time_page);
  4177. vcpu->arch.time_page = NULL;
  4178. }
  4179. kvm_x86_ops->vcpu_free(vcpu);
  4180. }
  4181. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4182. unsigned int id)
  4183. {
  4184. return kvm_x86_ops->vcpu_create(kvm, id);
  4185. }
  4186. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4187. {
  4188. int r;
  4189. /* We do fxsave: this must be aligned. */
  4190. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4191. vcpu->arch.mtrr_state.have_fixed = 1;
  4192. vcpu_load(vcpu);
  4193. r = kvm_arch_vcpu_reset(vcpu);
  4194. if (r == 0)
  4195. r = kvm_mmu_setup(vcpu);
  4196. vcpu_put(vcpu);
  4197. if (r < 0)
  4198. goto free_vcpu;
  4199. return 0;
  4200. free_vcpu:
  4201. kvm_x86_ops->vcpu_free(vcpu);
  4202. return r;
  4203. }
  4204. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4205. {
  4206. vcpu_load(vcpu);
  4207. kvm_mmu_unload(vcpu);
  4208. vcpu_put(vcpu);
  4209. kvm_x86_ops->vcpu_free(vcpu);
  4210. }
  4211. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4212. {
  4213. vcpu->arch.nmi_pending = false;
  4214. vcpu->arch.nmi_injected = false;
  4215. vcpu->arch.switch_db_regs = 0;
  4216. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4217. vcpu->arch.dr6 = DR6_FIXED_1;
  4218. vcpu->arch.dr7 = DR7_FIXED_1;
  4219. return kvm_x86_ops->vcpu_reset(vcpu);
  4220. }
  4221. int kvm_arch_hardware_enable(void *garbage)
  4222. {
  4223. /*
  4224. * Since this may be called from a hotplug notifcation,
  4225. * we can't get the CPU frequency directly.
  4226. */
  4227. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4228. int cpu = raw_smp_processor_id();
  4229. per_cpu(cpu_tsc_khz, cpu) = 0;
  4230. }
  4231. kvm_shared_msr_cpu_online();
  4232. return kvm_x86_ops->hardware_enable(garbage);
  4233. }
  4234. void kvm_arch_hardware_disable(void *garbage)
  4235. {
  4236. kvm_x86_ops->hardware_disable(garbage);
  4237. }
  4238. int kvm_arch_hardware_setup(void)
  4239. {
  4240. return kvm_x86_ops->hardware_setup();
  4241. }
  4242. void kvm_arch_hardware_unsetup(void)
  4243. {
  4244. kvm_x86_ops->hardware_unsetup();
  4245. }
  4246. void kvm_arch_check_processor_compat(void *rtn)
  4247. {
  4248. kvm_x86_ops->check_processor_compatibility(rtn);
  4249. }
  4250. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4251. {
  4252. struct page *page;
  4253. struct kvm *kvm;
  4254. int r;
  4255. BUG_ON(vcpu->kvm == NULL);
  4256. kvm = vcpu->kvm;
  4257. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4258. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4259. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4260. else
  4261. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4262. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4263. if (!page) {
  4264. r = -ENOMEM;
  4265. goto fail;
  4266. }
  4267. vcpu->arch.pio_data = page_address(page);
  4268. r = kvm_mmu_create(vcpu);
  4269. if (r < 0)
  4270. goto fail_free_pio_data;
  4271. if (irqchip_in_kernel(kvm)) {
  4272. r = kvm_create_lapic(vcpu);
  4273. if (r < 0)
  4274. goto fail_mmu_destroy;
  4275. }
  4276. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4277. GFP_KERNEL);
  4278. if (!vcpu->arch.mce_banks) {
  4279. r = -ENOMEM;
  4280. goto fail_mmu_destroy;
  4281. }
  4282. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4283. return 0;
  4284. fail_mmu_destroy:
  4285. kvm_mmu_destroy(vcpu);
  4286. fail_free_pio_data:
  4287. free_page((unsigned long)vcpu->arch.pio_data);
  4288. fail:
  4289. return r;
  4290. }
  4291. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4292. {
  4293. kvm_free_lapic(vcpu);
  4294. down_read(&vcpu->kvm->slots_lock);
  4295. kvm_mmu_destroy(vcpu);
  4296. up_read(&vcpu->kvm->slots_lock);
  4297. free_page((unsigned long)vcpu->arch.pio_data);
  4298. }
  4299. struct kvm *kvm_arch_create_vm(void)
  4300. {
  4301. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4302. if (!kvm)
  4303. return ERR_PTR(-ENOMEM);
  4304. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4305. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4306. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4307. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4308. rdtscll(kvm->arch.vm_init_tsc);
  4309. return kvm;
  4310. }
  4311. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4312. {
  4313. vcpu_load(vcpu);
  4314. kvm_mmu_unload(vcpu);
  4315. vcpu_put(vcpu);
  4316. }
  4317. static void kvm_free_vcpus(struct kvm *kvm)
  4318. {
  4319. unsigned int i;
  4320. struct kvm_vcpu *vcpu;
  4321. /*
  4322. * Unpin any mmu pages first.
  4323. */
  4324. kvm_for_each_vcpu(i, vcpu, kvm)
  4325. kvm_unload_vcpu_mmu(vcpu);
  4326. kvm_for_each_vcpu(i, vcpu, kvm)
  4327. kvm_arch_vcpu_free(vcpu);
  4328. mutex_lock(&kvm->lock);
  4329. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4330. kvm->vcpus[i] = NULL;
  4331. atomic_set(&kvm->online_vcpus, 0);
  4332. mutex_unlock(&kvm->lock);
  4333. }
  4334. void kvm_arch_sync_events(struct kvm *kvm)
  4335. {
  4336. kvm_free_all_assigned_devices(kvm);
  4337. }
  4338. void kvm_arch_destroy_vm(struct kvm *kvm)
  4339. {
  4340. kvm_iommu_unmap_guest(kvm);
  4341. kvm_free_pit(kvm);
  4342. kfree(kvm->arch.vpic);
  4343. kfree(kvm->arch.vioapic);
  4344. kvm_free_vcpus(kvm);
  4345. kvm_free_physmem(kvm);
  4346. if (kvm->arch.apic_access_page)
  4347. put_page(kvm->arch.apic_access_page);
  4348. if (kvm->arch.ept_identity_pagetable)
  4349. put_page(kvm->arch.ept_identity_pagetable);
  4350. kfree(kvm);
  4351. }
  4352. int kvm_arch_set_memory_region(struct kvm *kvm,
  4353. struct kvm_userspace_memory_region *mem,
  4354. struct kvm_memory_slot old,
  4355. int user_alloc)
  4356. {
  4357. int npages = mem->memory_size >> PAGE_SHIFT;
  4358. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4359. /*To keep backward compatibility with older userspace,
  4360. *x86 needs to hanlde !user_alloc case.
  4361. */
  4362. if (!user_alloc) {
  4363. if (npages && !old.rmap) {
  4364. unsigned long userspace_addr;
  4365. down_write(&current->mm->mmap_sem);
  4366. userspace_addr = do_mmap(NULL, 0,
  4367. npages * PAGE_SIZE,
  4368. PROT_READ | PROT_WRITE,
  4369. MAP_PRIVATE | MAP_ANONYMOUS,
  4370. 0);
  4371. up_write(&current->mm->mmap_sem);
  4372. if (IS_ERR((void *)userspace_addr))
  4373. return PTR_ERR((void *)userspace_addr);
  4374. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4375. spin_lock(&kvm->mmu_lock);
  4376. memslot->userspace_addr = userspace_addr;
  4377. spin_unlock(&kvm->mmu_lock);
  4378. } else {
  4379. if (!old.user_alloc && old.rmap) {
  4380. int ret;
  4381. down_write(&current->mm->mmap_sem);
  4382. ret = do_munmap(current->mm, old.userspace_addr,
  4383. old.npages * PAGE_SIZE);
  4384. up_write(&current->mm->mmap_sem);
  4385. if (ret < 0)
  4386. printk(KERN_WARNING
  4387. "kvm_vm_ioctl_set_memory_region: "
  4388. "failed to munmap memory\n");
  4389. }
  4390. }
  4391. }
  4392. spin_lock(&kvm->mmu_lock);
  4393. if (!kvm->arch.n_requested_mmu_pages) {
  4394. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4395. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4396. }
  4397. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4398. spin_unlock(&kvm->mmu_lock);
  4399. return 0;
  4400. }
  4401. void kvm_arch_flush_shadow(struct kvm *kvm)
  4402. {
  4403. kvm_mmu_zap_all(kvm);
  4404. kvm_reload_remote_mmus(kvm);
  4405. }
  4406. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4407. {
  4408. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4409. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4410. || vcpu->arch.nmi_pending ||
  4411. (kvm_arch_interrupt_allowed(vcpu) &&
  4412. kvm_cpu_has_interrupt(vcpu));
  4413. }
  4414. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4415. {
  4416. int me;
  4417. int cpu = vcpu->cpu;
  4418. if (waitqueue_active(&vcpu->wq)) {
  4419. wake_up_interruptible(&vcpu->wq);
  4420. ++vcpu->stat.halt_wakeup;
  4421. }
  4422. me = get_cpu();
  4423. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4424. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4425. smp_send_reschedule(cpu);
  4426. put_cpu();
  4427. }
  4428. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4429. {
  4430. return kvm_x86_ops->interrupt_allowed(vcpu);
  4431. }
  4432. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4433. {
  4434. unsigned long rflags;
  4435. rflags = kvm_x86_ops->get_rflags(vcpu);
  4436. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4437. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4438. return rflags;
  4439. }
  4440. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4441. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4442. {
  4443. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4444. vcpu->arch.singlestep_cs ==
  4445. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4446. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4447. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4448. kvm_x86_ops->set_rflags(vcpu, rflags);
  4449. }
  4450. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4451. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4452. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4453. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4454. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4455. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4456. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4457. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4458. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4459. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4460. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4461. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);