forcedeth.c 150 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. *
  115. * Known bugs:
  116. * We suspect that on some hardware no TX done interrupts are generated.
  117. * This means recovery from netif_stop_queue only happens if the hw timer
  118. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  119. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  120. * If your hardware reliably generates tx done interrupts, then you can remove
  121. * DEV_NEED_TIMERIRQ from the driver_data flags.
  122. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  123. * superfluous timer interrupts from the nic.
  124. */
  125. #ifdef CONFIG_FORCEDETH_NAPI
  126. #define DRIVERNAPI "-NAPI"
  127. #else
  128. #define DRIVERNAPI
  129. #endif
  130. #define FORCEDETH_VERSION "0.59"
  131. #define DRV_NAME "forcedeth"
  132. #include <linux/module.h>
  133. #include <linux/types.h>
  134. #include <linux/pci.h>
  135. #include <linux/interrupt.h>
  136. #include <linux/netdevice.h>
  137. #include <linux/etherdevice.h>
  138. #include <linux/delay.h>
  139. #include <linux/spinlock.h>
  140. #include <linux/ethtool.h>
  141. #include <linux/timer.h>
  142. #include <linux/skbuff.h>
  143. #include <linux/mii.h>
  144. #include <linux/random.h>
  145. #include <linux/init.h>
  146. #include <linux/if_vlan.h>
  147. #include <linux/dma-mapping.h>
  148. #include <asm/irq.h>
  149. #include <asm/io.h>
  150. #include <asm/uaccess.h>
  151. #include <asm/system.h>
  152. #if 0
  153. #define dprintk printk
  154. #else
  155. #define dprintk(x...) do { } while (0)
  156. #endif
  157. /*
  158. * Hardware access:
  159. */
  160. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  161. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  162. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  163. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  164. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  165. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  166. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  167. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  168. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  169. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  170. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  171. #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
  172. #define DEV_HAS_MGMT_UNIT 0x1000 /* device supports management unit */
  173. enum {
  174. NvRegIrqStatus = 0x000,
  175. #define NVREG_IRQSTAT_MIIEVENT 0x040
  176. #define NVREG_IRQSTAT_MASK 0x81ff
  177. NvRegIrqMask = 0x004,
  178. #define NVREG_IRQ_RX_ERROR 0x0001
  179. #define NVREG_IRQ_RX 0x0002
  180. #define NVREG_IRQ_RX_NOBUF 0x0004
  181. #define NVREG_IRQ_TX_ERR 0x0008
  182. #define NVREG_IRQ_TX_OK 0x0010
  183. #define NVREG_IRQ_TIMER 0x0020
  184. #define NVREG_IRQ_LINK 0x0040
  185. #define NVREG_IRQ_RX_FORCED 0x0080
  186. #define NVREG_IRQ_TX_FORCED 0x0100
  187. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  188. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  189. #define NVREG_IRQMASK_CPU 0x0040
  190. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  191. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  192. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  193. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  194. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  195. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  196. NvRegUnknownSetupReg6 = 0x008,
  197. #define NVREG_UNKSETUP6_VAL 3
  198. /*
  199. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  200. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  201. */
  202. NvRegPollingInterval = 0x00c,
  203. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  204. #define NVREG_POLL_DEFAULT_CPU 13
  205. NvRegMSIMap0 = 0x020,
  206. NvRegMSIMap1 = 0x024,
  207. NvRegMSIIrqMask = 0x030,
  208. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  209. NvRegMisc1 = 0x080,
  210. #define NVREG_MISC1_PAUSE_TX 0x01
  211. #define NVREG_MISC1_HD 0x02
  212. #define NVREG_MISC1_FORCE 0x3b0f3c
  213. NvRegMacReset = 0x3c,
  214. #define NVREG_MAC_RESET_ASSERT 0x0F3
  215. NvRegTransmitterControl = 0x084,
  216. #define NVREG_XMITCTL_START 0x01
  217. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  218. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  219. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  220. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  221. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  222. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  223. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  224. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  225. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  226. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  227. NvRegTransmitterStatus = 0x088,
  228. #define NVREG_XMITSTAT_BUSY 0x01
  229. NvRegPacketFilterFlags = 0x8c,
  230. #define NVREG_PFF_PAUSE_RX 0x08
  231. #define NVREG_PFF_ALWAYS 0x7F0000
  232. #define NVREG_PFF_PROMISC 0x80
  233. #define NVREG_PFF_MYADDR 0x20
  234. #define NVREG_PFF_LOOPBACK 0x10
  235. NvRegOffloadConfig = 0x90,
  236. #define NVREG_OFFLOAD_HOMEPHY 0x601
  237. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  238. NvRegReceiverControl = 0x094,
  239. #define NVREG_RCVCTL_START 0x01
  240. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  241. NvRegReceiverStatus = 0x98,
  242. #define NVREG_RCVSTAT_BUSY 0x01
  243. NvRegRandomSeed = 0x9c,
  244. #define NVREG_RNDSEED_MASK 0x00ff
  245. #define NVREG_RNDSEED_FORCE 0x7f00
  246. #define NVREG_RNDSEED_FORCE2 0x2d00
  247. #define NVREG_RNDSEED_FORCE3 0x7400
  248. NvRegTxDeferral = 0xA0,
  249. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  250. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  251. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  252. NvRegRxDeferral = 0xA4,
  253. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  254. NvRegMacAddrA = 0xA8,
  255. NvRegMacAddrB = 0xAC,
  256. NvRegMulticastAddrA = 0xB0,
  257. #define NVREG_MCASTADDRA_FORCE 0x01
  258. NvRegMulticastAddrB = 0xB4,
  259. NvRegMulticastMaskA = 0xB8,
  260. NvRegMulticastMaskB = 0xBC,
  261. NvRegPhyInterface = 0xC0,
  262. #define PHY_RGMII 0x10000000
  263. NvRegTxRingPhysAddr = 0x100,
  264. NvRegRxRingPhysAddr = 0x104,
  265. NvRegRingSizes = 0x108,
  266. #define NVREG_RINGSZ_TXSHIFT 0
  267. #define NVREG_RINGSZ_RXSHIFT 16
  268. NvRegTransmitPoll = 0x10c,
  269. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  270. NvRegLinkSpeed = 0x110,
  271. #define NVREG_LINKSPEED_FORCE 0x10000
  272. #define NVREG_LINKSPEED_10 1000
  273. #define NVREG_LINKSPEED_100 100
  274. #define NVREG_LINKSPEED_1000 50
  275. #define NVREG_LINKSPEED_MASK (0xFFF)
  276. NvRegUnknownSetupReg5 = 0x130,
  277. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  278. NvRegTxWatermark = 0x13c,
  279. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  280. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  281. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  282. NvRegTxRxControl = 0x144,
  283. #define NVREG_TXRXCTL_KICK 0x0001
  284. #define NVREG_TXRXCTL_BIT1 0x0002
  285. #define NVREG_TXRXCTL_BIT2 0x0004
  286. #define NVREG_TXRXCTL_IDLE 0x0008
  287. #define NVREG_TXRXCTL_RESET 0x0010
  288. #define NVREG_TXRXCTL_RXCHECK 0x0400
  289. #define NVREG_TXRXCTL_DESC_1 0
  290. #define NVREG_TXRXCTL_DESC_2 0x002100
  291. #define NVREG_TXRXCTL_DESC_3 0xc02200
  292. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  293. #define NVREG_TXRXCTL_VLANINS 0x00080
  294. NvRegTxRingPhysAddrHigh = 0x148,
  295. NvRegRxRingPhysAddrHigh = 0x14C,
  296. NvRegTxPauseFrame = 0x170,
  297. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  298. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  299. NvRegMIIStatus = 0x180,
  300. #define NVREG_MIISTAT_ERROR 0x0001
  301. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  302. #define NVREG_MIISTAT_MASK 0x000f
  303. #define NVREG_MIISTAT_MASK2 0x000f
  304. NvRegMIIMask = 0x184,
  305. #define NVREG_MII_LINKCHANGE 0x0008
  306. NvRegAdapterControl = 0x188,
  307. #define NVREG_ADAPTCTL_START 0x02
  308. #define NVREG_ADAPTCTL_LINKUP 0x04
  309. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  310. #define NVREG_ADAPTCTL_RUNNING 0x100000
  311. #define NVREG_ADAPTCTL_PHYSHIFT 24
  312. NvRegMIISpeed = 0x18c,
  313. #define NVREG_MIISPEED_BIT8 (1<<8)
  314. #define NVREG_MIIDELAY 5
  315. NvRegMIIControl = 0x190,
  316. #define NVREG_MIICTL_INUSE 0x08000
  317. #define NVREG_MIICTL_WRITE 0x00400
  318. #define NVREG_MIICTL_ADDRSHIFT 5
  319. NvRegMIIData = 0x194,
  320. NvRegWakeUpFlags = 0x200,
  321. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  322. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  323. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  324. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  325. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  326. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  327. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  328. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  329. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  330. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  331. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  332. NvRegPatternCRC = 0x204,
  333. NvRegPatternMask = 0x208,
  334. NvRegPowerCap = 0x268,
  335. #define NVREG_POWERCAP_D3SUPP (1<<30)
  336. #define NVREG_POWERCAP_D2SUPP (1<<26)
  337. #define NVREG_POWERCAP_D1SUPP (1<<25)
  338. NvRegPowerState = 0x26c,
  339. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  340. #define NVREG_POWERSTATE_VALID 0x0100
  341. #define NVREG_POWERSTATE_MASK 0x0003
  342. #define NVREG_POWERSTATE_D0 0x0000
  343. #define NVREG_POWERSTATE_D1 0x0001
  344. #define NVREG_POWERSTATE_D2 0x0002
  345. #define NVREG_POWERSTATE_D3 0x0003
  346. NvRegTxCnt = 0x280,
  347. NvRegTxZeroReXmt = 0x284,
  348. NvRegTxOneReXmt = 0x288,
  349. NvRegTxManyReXmt = 0x28c,
  350. NvRegTxLateCol = 0x290,
  351. NvRegTxUnderflow = 0x294,
  352. NvRegTxLossCarrier = 0x298,
  353. NvRegTxExcessDef = 0x29c,
  354. NvRegTxRetryErr = 0x2a0,
  355. NvRegRxFrameErr = 0x2a4,
  356. NvRegRxExtraByte = 0x2a8,
  357. NvRegRxLateCol = 0x2ac,
  358. NvRegRxRunt = 0x2b0,
  359. NvRegRxFrameTooLong = 0x2b4,
  360. NvRegRxOverflow = 0x2b8,
  361. NvRegRxFCSErr = 0x2bc,
  362. NvRegRxFrameAlignErr = 0x2c0,
  363. NvRegRxLenErr = 0x2c4,
  364. NvRegRxUnicast = 0x2c8,
  365. NvRegRxMulticast = 0x2cc,
  366. NvRegRxBroadcast = 0x2d0,
  367. NvRegTxDef = 0x2d4,
  368. NvRegTxFrame = 0x2d8,
  369. NvRegRxCnt = 0x2dc,
  370. NvRegTxPause = 0x2e0,
  371. NvRegRxPause = 0x2e4,
  372. NvRegRxDropFrame = 0x2e8,
  373. NvRegVlanControl = 0x300,
  374. #define NVREG_VLANCONTROL_ENABLE 0x2000
  375. NvRegMSIXMap0 = 0x3e0,
  376. NvRegMSIXMap1 = 0x3e4,
  377. NvRegMSIXIrqStatus = 0x3f0,
  378. NvRegPowerState2 = 0x600,
  379. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  380. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  381. };
  382. /* Big endian: should work, but is untested */
  383. struct ring_desc {
  384. __le32 buf;
  385. __le32 flaglen;
  386. };
  387. struct ring_desc_ex {
  388. __le32 bufhigh;
  389. __le32 buflow;
  390. __le32 txvlan;
  391. __le32 flaglen;
  392. };
  393. union ring_type {
  394. struct ring_desc* orig;
  395. struct ring_desc_ex* ex;
  396. };
  397. #define FLAG_MASK_V1 0xffff0000
  398. #define FLAG_MASK_V2 0xffffc000
  399. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  400. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  401. #define NV_TX_LASTPACKET (1<<16)
  402. #define NV_TX_RETRYERROR (1<<19)
  403. #define NV_TX_FORCED_INTERRUPT (1<<24)
  404. #define NV_TX_DEFERRED (1<<26)
  405. #define NV_TX_CARRIERLOST (1<<27)
  406. #define NV_TX_LATECOLLISION (1<<28)
  407. #define NV_TX_UNDERFLOW (1<<29)
  408. #define NV_TX_ERROR (1<<30)
  409. #define NV_TX_VALID (1<<31)
  410. #define NV_TX2_LASTPACKET (1<<29)
  411. #define NV_TX2_RETRYERROR (1<<18)
  412. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  413. #define NV_TX2_DEFERRED (1<<25)
  414. #define NV_TX2_CARRIERLOST (1<<26)
  415. #define NV_TX2_LATECOLLISION (1<<27)
  416. #define NV_TX2_UNDERFLOW (1<<28)
  417. /* error and valid are the same for both */
  418. #define NV_TX2_ERROR (1<<30)
  419. #define NV_TX2_VALID (1<<31)
  420. #define NV_TX2_TSO (1<<28)
  421. #define NV_TX2_TSO_SHIFT 14
  422. #define NV_TX2_TSO_MAX_SHIFT 14
  423. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  424. #define NV_TX2_CHECKSUM_L3 (1<<27)
  425. #define NV_TX2_CHECKSUM_L4 (1<<26)
  426. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  427. #define NV_RX_DESCRIPTORVALID (1<<16)
  428. #define NV_RX_MISSEDFRAME (1<<17)
  429. #define NV_RX_SUBSTRACT1 (1<<18)
  430. #define NV_RX_ERROR1 (1<<23)
  431. #define NV_RX_ERROR2 (1<<24)
  432. #define NV_RX_ERROR3 (1<<25)
  433. #define NV_RX_ERROR4 (1<<26)
  434. #define NV_RX_CRCERR (1<<27)
  435. #define NV_RX_OVERFLOW (1<<28)
  436. #define NV_RX_FRAMINGERR (1<<29)
  437. #define NV_RX_ERROR (1<<30)
  438. #define NV_RX_AVAIL (1<<31)
  439. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  440. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  441. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  442. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  443. #define NV_RX2_DESCRIPTORVALID (1<<29)
  444. #define NV_RX2_SUBSTRACT1 (1<<25)
  445. #define NV_RX2_ERROR1 (1<<18)
  446. #define NV_RX2_ERROR2 (1<<19)
  447. #define NV_RX2_ERROR3 (1<<20)
  448. #define NV_RX2_ERROR4 (1<<21)
  449. #define NV_RX2_CRCERR (1<<22)
  450. #define NV_RX2_OVERFLOW (1<<23)
  451. #define NV_RX2_FRAMINGERR (1<<24)
  452. /* error and avail are the same for both */
  453. #define NV_RX2_ERROR (1<<30)
  454. #define NV_RX2_AVAIL (1<<31)
  455. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  456. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  457. /* Miscelaneous hardware related defines: */
  458. #define NV_PCI_REGSZ_VER1 0x270
  459. #define NV_PCI_REGSZ_VER2 0x604
  460. /* various timeout delays: all in usec */
  461. #define NV_TXRX_RESET_DELAY 4
  462. #define NV_TXSTOP_DELAY1 10
  463. #define NV_TXSTOP_DELAY1MAX 500000
  464. #define NV_TXSTOP_DELAY2 100
  465. #define NV_RXSTOP_DELAY1 10
  466. #define NV_RXSTOP_DELAY1MAX 500000
  467. #define NV_RXSTOP_DELAY2 100
  468. #define NV_SETUP5_DELAY 5
  469. #define NV_SETUP5_DELAYMAX 50000
  470. #define NV_POWERUP_DELAY 5
  471. #define NV_POWERUP_DELAYMAX 5000
  472. #define NV_MIIBUSY_DELAY 50
  473. #define NV_MIIPHY_DELAY 10
  474. #define NV_MIIPHY_DELAYMAX 10000
  475. #define NV_MAC_RESET_DELAY 64
  476. #define NV_WAKEUPPATTERNS 5
  477. #define NV_WAKEUPMASKENTRIES 4
  478. /* General driver defaults */
  479. #define NV_WATCHDOG_TIMEO (5*HZ)
  480. #define RX_RING_DEFAULT 128
  481. #define TX_RING_DEFAULT 256
  482. #define RX_RING_MIN 128
  483. #define TX_RING_MIN 64
  484. #define RING_MAX_DESC_VER_1 1024
  485. #define RING_MAX_DESC_VER_2_3 16384
  486. /*
  487. * Difference between the get and put pointers for the tx ring.
  488. * This is used to throttle the amount of data outstanding in the
  489. * tx ring.
  490. */
  491. #define TX_LIMIT_DIFFERENCE 1
  492. /* rx/tx mac addr + type + vlan + align + slack*/
  493. #define NV_RX_HEADERS (64)
  494. /* even more slack. */
  495. #define NV_RX_ALLOC_PAD (64)
  496. /* maximum mtu size */
  497. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  498. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  499. #define OOM_REFILL (1+HZ/20)
  500. #define POLL_WAIT (1+HZ/100)
  501. #define LINK_TIMEOUT (3*HZ)
  502. #define STATS_INTERVAL (10*HZ)
  503. /*
  504. * desc_ver values:
  505. * The nic supports three different descriptor types:
  506. * - DESC_VER_1: Original
  507. * - DESC_VER_2: support for jumbo frames.
  508. * - DESC_VER_3: 64-bit format.
  509. */
  510. #define DESC_VER_1 1
  511. #define DESC_VER_2 2
  512. #define DESC_VER_3 3
  513. /* PHY defines */
  514. #define PHY_OUI_MARVELL 0x5043
  515. #define PHY_OUI_CICADA 0x03f1
  516. #define PHYID1_OUI_MASK 0x03ff
  517. #define PHYID1_OUI_SHFT 6
  518. #define PHYID2_OUI_MASK 0xfc00
  519. #define PHYID2_OUI_SHFT 10
  520. #define PHYID2_MODEL_MASK 0x03f0
  521. #define PHY_MODEL_MARVELL_E3016 0x220
  522. #define PHY_MARVELL_E3016_INITMASK 0x0300
  523. #define PHY_INIT1 0x0f000
  524. #define PHY_INIT2 0x0e00
  525. #define PHY_INIT3 0x01000
  526. #define PHY_INIT4 0x0200
  527. #define PHY_INIT5 0x0004
  528. #define PHY_INIT6 0x02000
  529. #define PHY_GIGABIT 0x0100
  530. #define PHY_TIMEOUT 0x1
  531. #define PHY_ERROR 0x2
  532. #define PHY_100 0x1
  533. #define PHY_1000 0x2
  534. #define PHY_HALF 0x100
  535. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  536. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  537. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  538. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  539. #define NV_PAUSEFRAME_RX_REQ 0x0010
  540. #define NV_PAUSEFRAME_TX_REQ 0x0020
  541. #define NV_PAUSEFRAME_AUTONEG 0x0040
  542. /* MSI/MSI-X defines */
  543. #define NV_MSI_X_MAX_VECTORS 8
  544. #define NV_MSI_X_VECTORS_MASK 0x000f
  545. #define NV_MSI_CAPABLE 0x0010
  546. #define NV_MSI_X_CAPABLE 0x0020
  547. #define NV_MSI_ENABLED 0x0040
  548. #define NV_MSI_X_ENABLED 0x0080
  549. #define NV_MSI_X_VECTOR_ALL 0x0
  550. #define NV_MSI_X_VECTOR_RX 0x0
  551. #define NV_MSI_X_VECTOR_TX 0x1
  552. #define NV_MSI_X_VECTOR_OTHER 0x2
  553. /* statistics */
  554. struct nv_ethtool_str {
  555. char name[ETH_GSTRING_LEN];
  556. };
  557. static const struct nv_ethtool_str nv_estats_str[] = {
  558. { "tx_bytes" },
  559. { "tx_zero_rexmt" },
  560. { "tx_one_rexmt" },
  561. { "tx_many_rexmt" },
  562. { "tx_late_collision" },
  563. { "tx_fifo_errors" },
  564. { "tx_carrier_errors" },
  565. { "tx_excess_deferral" },
  566. { "tx_retry_error" },
  567. { "tx_deferral" },
  568. { "tx_packets" },
  569. { "tx_pause" },
  570. { "rx_frame_error" },
  571. { "rx_extra_byte" },
  572. { "rx_late_collision" },
  573. { "rx_runt" },
  574. { "rx_frame_too_long" },
  575. { "rx_over_errors" },
  576. { "rx_crc_errors" },
  577. { "rx_frame_align_error" },
  578. { "rx_length_error" },
  579. { "rx_unicast" },
  580. { "rx_multicast" },
  581. { "rx_broadcast" },
  582. { "rx_bytes" },
  583. { "rx_pause" },
  584. { "rx_drop_frame" },
  585. { "rx_packets" },
  586. { "rx_errors_total" }
  587. };
  588. struct nv_ethtool_stats {
  589. u64 tx_bytes;
  590. u64 tx_zero_rexmt;
  591. u64 tx_one_rexmt;
  592. u64 tx_many_rexmt;
  593. u64 tx_late_collision;
  594. u64 tx_fifo_errors;
  595. u64 tx_carrier_errors;
  596. u64 tx_excess_deferral;
  597. u64 tx_retry_error;
  598. u64 tx_deferral;
  599. u64 tx_packets;
  600. u64 tx_pause;
  601. u64 rx_frame_error;
  602. u64 rx_extra_byte;
  603. u64 rx_late_collision;
  604. u64 rx_runt;
  605. u64 rx_frame_too_long;
  606. u64 rx_over_errors;
  607. u64 rx_crc_errors;
  608. u64 rx_frame_align_error;
  609. u64 rx_length_error;
  610. u64 rx_unicast;
  611. u64 rx_multicast;
  612. u64 rx_broadcast;
  613. u64 rx_bytes;
  614. u64 rx_pause;
  615. u64 rx_drop_frame;
  616. u64 rx_packets;
  617. u64 rx_errors_total;
  618. };
  619. /* diagnostics */
  620. #define NV_TEST_COUNT_BASE 3
  621. #define NV_TEST_COUNT_EXTENDED 4
  622. static const struct nv_ethtool_str nv_etests_str[] = {
  623. { "link (online/offline)" },
  624. { "register (offline) " },
  625. { "interrupt (offline) " },
  626. { "loopback (offline) " }
  627. };
  628. struct register_test {
  629. __le32 reg;
  630. __le32 mask;
  631. };
  632. static const struct register_test nv_registers_test[] = {
  633. { NvRegUnknownSetupReg6, 0x01 },
  634. { NvRegMisc1, 0x03c },
  635. { NvRegOffloadConfig, 0x03ff },
  636. { NvRegMulticastAddrA, 0xffffffff },
  637. { NvRegTxWatermark, 0x0ff },
  638. { NvRegWakeUpFlags, 0x07777 },
  639. { 0,0 }
  640. };
  641. struct nv_skb_map {
  642. struct sk_buff *skb;
  643. dma_addr_t dma;
  644. unsigned int dma_len;
  645. };
  646. /*
  647. * SMP locking:
  648. * All hardware access under dev->priv->lock, except the performance
  649. * critical parts:
  650. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  651. * by the arch code for interrupts.
  652. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  653. * needs dev->priv->lock :-(
  654. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  655. */
  656. /* in dev: base, irq */
  657. struct fe_priv {
  658. spinlock_t lock;
  659. /* General data:
  660. * Locking: spin_lock(&np->lock); */
  661. struct net_device_stats stats;
  662. struct nv_ethtool_stats estats;
  663. int in_shutdown;
  664. u32 linkspeed;
  665. int duplex;
  666. int autoneg;
  667. int fixed_mode;
  668. int phyaddr;
  669. int wolenabled;
  670. unsigned int phy_oui;
  671. unsigned int phy_model;
  672. u16 gigabit;
  673. int intr_test;
  674. int recover_error;
  675. /* General data: RO fields */
  676. dma_addr_t ring_addr;
  677. struct pci_dev *pci_dev;
  678. u32 orig_mac[2];
  679. u32 irqmask;
  680. u32 desc_ver;
  681. u32 txrxctl_bits;
  682. u32 vlanctl_bits;
  683. u32 driver_data;
  684. u32 register_size;
  685. int rx_csum;
  686. u32 mac_in_use;
  687. void __iomem *base;
  688. /* rx specific fields.
  689. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  690. */
  691. union ring_type get_rx, put_rx, first_rx, last_rx;
  692. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  693. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  694. struct nv_skb_map *rx_skb;
  695. union ring_type rx_ring;
  696. unsigned int rx_buf_sz;
  697. unsigned int pkt_limit;
  698. struct timer_list oom_kick;
  699. struct timer_list nic_poll;
  700. struct timer_list stats_poll;
  701. u32 nic_poll_irq;
  702. int rx_ring_size;
  703. /* media detection workaround.
  704. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  705. */
  706. int need_linktimer;
  707. unsigned long link_timeout;
  708. /*
  709. * tx specific fields.
  710. */
  711. union ring_type get_tx, put_tx, first_tx, last_tx;
  712. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  713. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  714. struct nv_skb_map *tx_skb;
  715. union ring_type tx_ring;
  716. u32 tx_flags;
  717. int tx_ring_size;
  718. int tx_limit_start;
  719. int tx_limit_stop;
  720. /* vlan fields */
  721. struct vlan_group *vlangrp;
  722. /* msi/msi-x fields */
  723. u32 msi_flags;
  724. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  725. /* flow control */
  726. u32 pause_flags;
  727. };
  728. /*
  729. * Maximum number of loops until we assume that a bit in the irq mask
  730. * is stuck. Overridable with module param.
  731. */
  732. static int max_interrupt_work = 5;
  733. /*
  734. * Optimization can be either throuput mode or cpu mode
  735. *
  736. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  737. * CPU Mode: Interrupts are controlled by a timer.
  738. */
  739. enum {
  740. NV_OPTIMIZATION_MODE_THROUGHPUT,
  741. NV_OPTIMIZATION_MODE_CPU
  742. };
  743. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  744. /*
  745. * Poll interval for timer irq
  746. *
  747. * This interval determines how frequent an interrupt is generated.
  748. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  749. * Min = 0, and Max = 65535
  750. */
  751. static int poll_interval = -1;
  752. /*
  753. * MSI interrupts
  754. */
  755. enum {
  756. NV_MSI_INT_DISABLED,
  757. NV_MSI_INT_ENABLED
  758. };
  759. static int msi = NV_MSI_INT_ENABLED;
  760. /*
  761. * MSIX interrupts
  762. */
  763. enum {
  764. NV_MSIX_INT_DISABLED,
  765. NV_MSIX_INT_ENABLED
  766. };
  767. static int msix = NV_MSIX_INT_ENABLED;
  768. /*
  769. * DMA 64bit
  770. */
  771. enum {
  772. NV_DMA_64BIT_DISABLED,
  773. NV_DMA_64BIT_ENABLED
  774. };
  775. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  776. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  777. {
  778. return netdev_priv(dev);
  779. }
  780. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  781. {
  782. return ((struct fe_priv *)netdev_priv(dev))->base;
  783. }
  784. static inline void pci_push(u8 __iomem *base)
  785. {
  786. /* force out pending posted writes */
  787. readl(base);
  788. }
  789. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  790. {
  791. return le32_to_cpu(prd->flaglen)
  792. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  793. }
  794. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  795. {
  796. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  797. }
  798. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  799. int delay, int delaymax, const char *msg)
  800. {
  801. u8 __iomem *base = get_hwbase(dev);
  802. pci_push(base);
  803. do {
  804. udelay(delay);
  805. delaymax -= delay;
  806. if (delaymax < 0) {
  807. if (msg)
  808. printk(msg);
  809. return 1;
  810. }
  811. } while ((readl(base + offset) & mask) != target);
  812. return 0;
  813. }
  814. #define NV_SETUP_RX_RING 0x01
  815. #define NV_SETUP_TX_RING 0x02
  816. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  817. {
  818. struct fe_priv *np = get_nvpriv(dev);
  819. u8 __iomem *base = get_hwbase(dev);
  820. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  821. if (rxtx_flags & NV_SETUP_RX_RING) {
  822. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  823. }
  824. if (rxtx_flags & NV_SETUP_TX_RING) {
  825. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  826. }
  827. } else {
  828. if (rxtx_flags & NV_SETUP_RX_RING) {
  829. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  830. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  831. }
  832. if (rxtx_flags & NV_SETUP_TX_RING) {
  833. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  834. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  835. }
  836. }
  837. }
  838. static void free_rings(struct net_device *dev)
  839. {
  840. struct fe_priv *np = get_nvpriv(dev);
  841. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  842. if (np->rx_ring.orig)
  843. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  844. np->rx_ring.orig, np->ring_addr);
  845. } else {
  846. if (np->rx_ring.ex)
  847. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  848. np->rx_ring.ex, np->ring_addr);
  849. }
  850. if (np->rx_skb)
  851. kfree(np->rx_skb);
  852. if (np->tx_skb)
  853. kfree(np->tx_skb);
  854. }
  855. static int using_multi_irqs(struct net_device *dev)
  856. {
  857. struct fe_priv *np = get_nvpriv(dev);
  858. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  859. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  860. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  861. return 0;
  862. else
  863. return 1;
  864. }
  865. static void nv_enable_irq(struct net_device *dev)
  866. {
  867. struct fe_priv *np = get_nvpriv(dev);
  868. if (!using_multi_irqs(dev)) {
  869. if (np->msi_flags & NV_MSI_X_ENABLED)
  870. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  871. else
  872. enable_irq(dev->irq);
  873. } else {
  874. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  875. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  876. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  877. }
  878. }
  879. static void nv_disable_irq(struct net_device *dev)
  880. {
  881. struct fe_priv *np = get_nvpriv(dev);
  882. if (!using_multi_irqs(dev)) {
  883. if (np->msi_flags & NV_MSI_X_ENABLED)
  884. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  885. else
  886. disable_irq(dev->irq);
  887. } else {
  888. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  889. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  890. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  891. }
  892. }
  893. /* In MSIX mode, a write to irqmask behaves as XOR */
  894. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  895. {
  896. u8 __iomem *base = get_hwbase(dev);
  897. writel(mask, base + NvRegIrqMask);
  898. }
  899. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  900. {
  901. struct fe_priv *np = get_nvpriv(dev);
  902. u8 __iomem *base = get_hwbase(dev);
  903. if (np->msi_flags & NV_MSI_X_ENABLED) {
  904. writel(mask, base + NvRegIrqMask);
  905. } else {
  906. if (np->msi_flags & NV_MSI_ENABLED)
  907. writel(0, base + NvRegMSIIrqMask);
  908. writel(0, base + NvRegIrqMask);
  909. }
  910. }
  911. #define MII_READ (-1)
  912. /* mii_rw: read/write a register on the PHY.
  913. *
  914. * Caller must guarantee serialization
  915. */
  916. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  917. {
  918. u8 __iomem *base = get_hwbase(dev);
  919. u32 reg;
  920. int retval;
  921. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  922. reg = readl(base + NvRegMIIControl);
  923. if (reg & NVREG_MIICTL_INUSE) {
  924. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  925. udelay(NV_MIIBUSY_DELAY);
  926. }
  927. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  928. if (value != MII_READ) {
  929. writel(value, base + NvRegMIIData);
  930. reg |= NVREG_MIICTL_WRITE;
  931. }
  932. writel(reg, base + NvRegMIIControl);
  933. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  934. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  935. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  936. dev->name, miireg, addr);
  937. retval = -1;
  938. } else if (value != MII_READ) {
  939. /* it was a write operation - fewer failures are detectable */
  940. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  941. dev->name, value, miireg, addr);
  942. retval = 0;
  943. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  944. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  945. dev->name, miireg, addr);
  946. retval = -1;
  947. } else {
  948. retval = readl(base + NvRegMIIData);
  949. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  950. dev->name, miireg, addr, retval);
  951. }
  952. return retval;
  953. }
  954. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  955. {
  956. struct fe_priv *np = netdev_priv(dev);
  957. u32 miicontrol;
  958. unsigned int tries = 0;
  959. miicontrol = BMCR_RESET | bmcr_setup;
  960. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  961. return -1;
  962. }
  963. /* wait for 500ms */
  964. msleep(500);
  965. /* must wait till reset is deasserted */
  966. while (miicontrol & BMCR_RESET) {
  967. msleep(10);
  968. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  969. /* FIXME: 100 tries seem excessive */
  970. if (tries++ > 100)
  971. return -1;
  972. }
  973. return 0;
  974. }
  975. static int phy_init(struct net_device *dev)
  976. {
  977. struct fe_priv *np = get_nvpriv(dev);
  978. u8 __iomem *base = get_hwbase(dev);
  979. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  980. /* phy errata for E3016 phy */
  981. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  982. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  983. reg &= ~PHY_MARVELL_E3016_INITMASK;
  984. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  985. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  986. return PHY_ERROR;
  987. }
  988. }
  989. /* set advertise register */
  990. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  991. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  992. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  993. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  994. return PHY_ERROR;
  995. }
  996. /* get phy interface type */
  997. phyinterface = readl(base + NvRegPhyInterface);
  998. /* see if gigabit phy */
  999. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1000. if (mii_status & PHY_GIGABIT) {
  1001. np->gigabit = PHY_GIGABIT;
  1002. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1003. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1004. if (phyinterface & PHY_RGMII)
  1005. mii_control_1000 |= ADVERTISE_1000FULL;
  1006. else
  1007. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1008. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1009. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1010. return PHY_ERROR;
  1011. }
  1012. }
  1013. else
  1014. np->gigabit = 0;
  1015. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1016. mii_control |= BMCR_ANENABLE;
  1017. /* reset the phy
  1018. * (certain phys need bmcr to be setup with reset)
  1019. */
  1020. if (phy_reset(dev, mii_control)) {
  1021. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1022. return PHY_ERROR;
  1023. }
  1024. /* phy vendor specific configuration */
  1025. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1026. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1027. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  1028. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  1029. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1030. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1031. return PHY_ERROR;
  1032. }
  1033. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1034. phy_reserved |= PHY_INIT5;
  1035. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1036. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1037. return PHY_ERROR;
  1038. }
  1039. }
  1040. if (np->phy_oui == PHY_OUI_CICADA) {
  1041. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1042. phy_reserved |= PHY_INIT6;
  1043. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1044. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. }
  1048. /* some phys clear out pause advertisment on reset, set it back */
  1049. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1050. /* restart auto negotiation */
  1051. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1052. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1053. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1054. return PHY_ERROR;
  1055. }
  1056. return 0;
  1057. }
  1058. static void nv_start_rx(struct net_device *dev)
  1059. {
  1060. struct fe_priv *np = netdev_priv(dev);
  1061. u8 __iomem *base = get_hwbase(dev);
  1062. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1063. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1064. /* Already running? Stop it. */
  1065. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1066. rx_ctrl &= ~NVREG_RCVCTL_START;
  1067. writel(rx_ctrl, base + NvRegReceiverControl);
  1068. pci_push(base);
  1069. }
  1070. writel(np->linkspeed, base + NvRegLinkSpeed);
  1071. pci_push(base);
  1072. rx_ctrl |= NVREG_RCVCTL_START;
  1073. if (np->mac_in_use)
  1074. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1075. writel(rx_ctrl, base + NvRegReceiverControl);
  1076. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1077. dev->name, np->duplex, np->linkspeed);
  1078. pci_push(base);
  1079. }
  1080. static void nv_stop_rx(struct net_device *dev)
  1081. {
  1082. struct fe_priv *np = netdev_priv(dev);
  1083. u8 __iomem *base = get_hwbase(dev);
  1084. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1085. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1086. if (!np->mac_in_use)
  1087. rx_ctrl &= ~NVREG_RCVCTL_START;
  1088. else
  1089. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1090. writel(rx_ctrl, base + NvRegReceiverControl);
  1091. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1092. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1093. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1094. udelay(NV_RXSTOP_DELAY2);
  1095. if (!np->mac_in_use)
  1096. writel(0, base + NvRegLinkSpeed);
  1097. }
  1098. static void nv_start_tx(struct net_device *dev)
  1099. {
  1100. struct fe_priv *np = netdev_priv(dev);
  1101. u8 __iomem *base = get_hwbase(dev);
  1102. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1103. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1104. tx_ctrl |= NVREG_XMITCTL_START;
  1105. if (np->mac_in_use)
  1106. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1107. writel(tx_ctrl, base + NvRegTransmitterControl);
  1108. pci_push(base);
  1109. }
  1110. static void nv_stop_tx(struct net_device *dev)
  1111. {
  1112. struct fe_priv *np = netdev_priv(dev);
  1113. u8 __iomem *base = get_hwbase(dev);
  1114. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1115. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1116. if (!np->mac_in_use)
  1117. tx_ctrl &= ~NVREG_XMITCTL_START;
  1118. else
  1119. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1120. writel(tx_ctrl, base + NvRegTransmitterControl);
  1121. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1122. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1123. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1124. udelay(NV_TXSTOP_DELAY2);
  1125. if (!np->mac_in_use)
  1126. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1127. base + NvRegTransmitPoll);
  1128. }
  1129. static void nv_txrx_reset(struct net_device *dev)
  1130. {
  1131. struct fe_priv *np = netdev_priv(dev);
  1132. u8 __iomem *base = get_hwbase(dev);
  1133. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1134. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1135. pci_push(base);
  1136. udelay(NV_TXRX_RESET_DELAY);
  1137. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1138. pci_push(base);
  1139. }
  1140. static void nv_mac_reset(struct net_device *dev)
  1141. {
  1142. struct fe_priv *np = netdev_priv(dev);
  1143. u8 __iomem *base = get_hwbase(dev);
  1144. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1145. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1146. pci_push(base);
  1147. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1148. pci_push(base);
  1149. udelay(NV_MAC_RESET_DELAY);
  1150. writel(0, base + NvRegMacReset);
  1151. pci_push(base);
  1152. udelay(NV_MAC_RESET_DELAY);
  1153. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1154. pci_push(base);
  1155. }
  1156. /*
  1157. * nv_get_stats: dev->get_stats function
  1158. * Get latest stats value from the nic.
  1159. * Called with read_lock(&dev_base_lock) held for read -
  1160. * only synchronized against unregister_netdevice.
  1161. */
  1162. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1163. {
  1164. struct fe_priv *np = netdev_priv(dev);
  1165. /* It seems that the nic always generates interrupts and doesn't
  1166. * accumulate errors internally. Thus the current values in np->stats
  1167. * are already up to date.
  1168. */
  1169. return &np->stats;
  1170. }
  1171. /*
  1172. * nv_alloc_rx: fill rx ring entries.
  1173. * Return 1 if the allocations for the skbs failed and the
  1174. * rx engine is without Available descriptors
  1175. */
  1176. static int nv_alloc_rx(struct net_device *dev)
  1177. {
  1178. struct fe_priv *np = netdev_priv(dev);
  1179. union ring_type less_rx;
  1180. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1181. less_rx.orig = np->get_rx.orig;
  1182. if (less_rx.orig-- == np->first_rx.orig)
  1183. less_rx.orig = np->last_rx.orig;
  1184. } else {
  1185. less_rx.ex = np->get_rx.ex;
  1186. if (less_rx.ex-- == np->first_rx.ex)
  1187. less_rx.ex = np->last_rx.ex;
  1188. }
  1189. while (1) {
  1190. struct sk_buff *skb;
  1191. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1192. if (np->put_rx.orig == less_rx.orig)
  1193. break;
  1194. } else {
  1195. if (np->put_rx.ex == less_rx.ex)
  1196. break;
  1197. }
  1198. if (np->put_rx_ctx->skb == NULL) {
  1199. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1200. if (!skb)
  1201. return 1;
  1202. skb->dev = dev;
  1203. np->put_rx_ctx->skb = skb;
  1204. } else {
  1205. skb = np->put_rx_ctx->skb;
  1206. }
  1207. np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data,
  1208. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1209. np->put_rx_ctx->dma_len = skb->end-skb->data;
  1210. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1211. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1212. wmb();
  1213. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1214. if (np->put_rx.orig++ == np->last_rx.orig)
  1215. np->put_rx.orig = np->first_rx.orig;
  1216. } else {
  1217. np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
  1218. np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
  1219. wmb();
  1220. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1221. if (np->put_rx.ex++ == np->last_rx.ex)
  1222. np->put_rx.ex = np->first_rx.ex;
  1223. }
  1224. if (np->put_rx_ctx++ == np->last_rx_ctx)
  1225. np->put_rx_ctx = np->first_rx_ctx;
  1226. }
  1227. return 0;
  1228. }
  1229. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1230. #ifdef CONFIG_FORCEDETH_NAPI
  1231. static void nv_do_rx_refill(unsigned long data)
  1232. {
  1233. struct net_device *dev = (struct net_device *) data;
  1234. /* Just reschedule NAPI rx processing */
  1235. netif_rx_schedule(dev);
  1236. }
  1237. #else
  1238. static void nv_do_rx_refill(unsigned long data)
  1239. {
  1240. struct net_device *dev = (struct net_device *) data;
  1241. struct fe_priv *np = netdev_priv(dev);
  1242. if (!using_multi_irqs(dev)) {
  1243. if (np->msi_flags & NV_MSI_X_ENABLED)
  1244. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1245. else
  1246. disable_irq(dev->irq);
  1247. } else {
  1248. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1249. }
  1250. if (nv_alloc_rx(dev)) {
  1251. spin_lock_irq(&np->lock);
  1252. if (!np->in_shutdown)
  1253. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1254. spin_unlock_irq(&np->lock);
  1255. }
  1256. if (!using_multi_irqs(dev)) {
  1257. if (np->msi_flags & NV_MSI_X_ENABLED)
  1258. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1259. else
  1260. enable_irq(dev->irq);
  1261. } else {
  1262. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1263. }
  1264. }
  1265. #endif
  1266. static void nv_init_rx(struct net_device *dev)
  1267. {
  1268. struct fe_priv *np = netdev_priv(dev);
  1269. int i;
  1270. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1271. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1272. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1273. else
  1274. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1275. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1276. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1277. for (i = 0; i < np->rx_ring_size; i++) {
  1278. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1279. np->rx_ring.orig[i].flaglen = 0;
  1280. np->rx_ring.orig[i].buf = 0;
  1281. } else {
  1282. np->rx_ring.ex[i].flaglen = 0;
  1283. np->rx_ring.ex[i].txvlan = 0;
  1284. np->rx_ring.ex[i].bufhigh = 0;
  1285. np->rx_ring.ex[i].buflow = 0;
  1286. }
  1287. np->rx_skb[i].skb = NULL;
  1288. np->rx_skb[i].dma = 0;
  1289. }
  1290. }
  1291. static void nv_init_tx(struct net_device *dev)
  1292. {
  1293. struct fe_priv *np = netdev_priv(dev);
  1294. int i;
  1295. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1296. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1297. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1298. else
  1299. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1300. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1301. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1302. for (i = 0; i < np->tx_ring_size; i++) {
  1303. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1304. np->tx_ring.orig[i].flaglen = 0;
  1305. np->tx_ring.orig[i].buf = 0;
  1306. } else {
  1307. np->tx_ring.ex[i].flaglen = 0;
  1308. np->tx_ring.ex[i].txvlan = 0;
  1309. np->tx_ring.ex[i].bufhigh = 0;
  1310. np->tx_ring.ex[i].buflow = 0;
  1311. }
  1312. np->tx_skb[i].skb = NULL;
  1313. np->tx_skb[i].dma = 0;
  1314. }
  1315. }
  1316. static int nv_init_ring(struct net_device *dev)
  1317. {
  1318. nv_init_tx(dev);
  1319. nv_init_rx(dev);
  1320. return nv_alloc_rx(dev);
  1321. }
  1322. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1323. {
  1324. struct fe_priv *np = netdev_priv(dev);
  1325. if (tx_skb->dma) {
  1326. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1327. tx_skb->dma_len,
  1328. PCI_DMA_TODEVICE);
  1329. tx_skb->dma = 0;
  1330. }
  1331. if (tx_skb->skb) {
  1332. dev_kfree_skb_any(tx_skb->skb);
  1333. tx_skb->skb = NULL;
  1334. return 1;
  1335. } else {
  1336. return 0;
  1337. }
  1338. }
  1339. static void nv_drain_tx(struct net_device *dev)
  1340. {
  1341. struct fe_priv *np = netdev_priv(dev);
  1342. unsigned int i;
  1343. for (i = 0; i < np->tx_ring_size; i++) {
  1344. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1345. np->tx_ring.orig[i].flaglen = 0;
  1346. np->tx_ring.orig[i].buf = 0;
  1347. } else {
  1348. np->tx_ring.ex[i].flaglen = 0;
  1349. np->tx_ring.ex[i].txvlan = 0;
  1350. np->tx_ring.ex[i].bufhigh = 0;
  1351. np->tx_ring.ex[i].buflow = 0;
  1352. }
  1353. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1354. np->stats.tx_dropped++;
  1355. }
  1356. }
  1357. static void nv_drain_rx(struct net_device *dev)
  1358. {
  1359. struct fe_priv *np = netdev_priv(dev);
  1360. int i;
  1361. for (i = 0; i < np->rx_ring_size; i++) {
  1362. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1363. np->rx_ring.orig[i].flaglen = 0;
  1364. np->rx_ring.orig[i].buf = 0;
  1365. } else {
  1366. np->rx_ring.ex[i].flaglen = 0;
  1367. np->rx_ring.ex[i].txvlan = 0;
  1368. np->rx_ring.ex[i].bufhigh = 0;
  1369. np->rx_ring.ex[i].buflow = 0;
  1370. }
  1371. wmb();
  1372. if (np->rx_skb[i].skb) {
  1373. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1374. np->rx_skb[i].skb->end-np->rx_skb[i].skb->data,
  1375. PCI_DMA_FROMDEVICE);
  1376. dev_kfree_skb(np->rx_skb[i].skb);
  1377. np->rx_skb[i].skb = NULL;
  1378. }
  1379. }
  1380. }
  1381. static void drain_ring(struct net_device *dev)
  1382. {
  1383. nv_drain_tx(dev);
  1384. nv_drain_rx(dev);
  1385. }
  1386. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1387. {
  1388. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1389. }
  1390. /*
  1391. * nv_start_xmit: dev->hard_start_xmit function
  1392. * Called with netif_tx_lock held.
  1393. */
  1394. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1395. {
  1396. struct fe_priv *np = netdev_priv(dev);
  1397. u32 tx_flags = 0;
  1398. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1399. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1400. unsigned int i;
  1401. u32 offset = 0;
  1402. u32 bcnt;
  1403. u32 size = skb->len-skb->data_len;
  1404. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1405. u32 empty_slots;
  1406. u32 tx_flags_vlan = 0;
  1407. union ring_type put_tx;
  1408. union ring_type start_tx;
  1409. union ring_type prev_tx;
  1410. struct nv_skb_map* prev_tx_ctx;
  1411. /* add fragments to entries count */
  1412. for (i = 0; i < fragments; i++) {
  1413. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1414. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1415. }
  1416. empty_slots = nv_get_empty_tx_slots(np);
  1417. if ((empty_slots - np->tx_limit_stop) <= entries) {
  1418. spin_lock_irq(&np->lock);
  1419. netif_stop_queue(dev);
  1420. spin_unlock_irq(&np->lock);
  1421. return NETDEV_TX_BUSY;
  1422. }
  1423. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1424. start_tx.orig = put_tx.orig = np->put_tx.orig;
  1425. else
  1426. start_tx.ex = put_tx.ex = np->put_tx.ex;
  1427. /* setup the header buffer */
  1428. do {
  1429. prev_tx = put_tx;
  1430. prev_tx_ctx = np->put_tx_ctx;
  1431. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1432. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1433. PCI_DMA_TODEVICE);
  1434. np->put_tx_ctx->dma_len = bcnt;
  1435. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1436. put_tx.orig->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1437. put_tx.orig->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1438. } else {
  1439. put_tx.ex->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1440. put_tx.ex->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1441. put_tx.ex->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1442. }
  1443. tx_flags = np->tx_flags;
  1444. offset += bcnt;
  1445. size -= bcnt;
  1446. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1447. if (put_tx.orig++ == np->last_tx.orig)
  1448. put_tx.orig = np->first_tx.orig;
  1449. } else {
  1450. if (put_tx.ex++ == np->last_tx.ex)
  1451. put_tx.ex = np->first_tx.ex;
  1452. }
  1453. if (np->put_tx_ctx++ == np->last_tx_ctx)
  1454. np->put_tx_ctx = np->first_tx_ctx;
  1455. } while (size);
  1456. /* setup the fragments */
  1457. for (i = 0; i < fragments; i++) {
  1458. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1459. u32 size = frag->size;
  1460. offset = 0;
  1461. do {
  1462. prev_tx = put_tx;
  1463. prev_tx_ctx = np->put_tx_ctx;
  1464. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1465. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1466. PCI_DMA_TODEVICE);
  1467. np->put_tx_ctx->dma_len = bcnt;
  1468. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1469. put_tx.orig->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1470. put_tx.orig->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1471. } else {
  1472. put_tx.ex->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1473. put_tx.ex->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1474. put_tx.ex->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1475. }
  1476. offset += bcnt;
  1477. size -= bcnt;
  1478. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1479. if (put_tx.orig++ == np->last_tx.orig)
  1480. put_tx.orig = np->first_tx.orig;
  1481. } else {
  1482. if (put_tx.ex++ == np->last_tx.ex)
  1483. put_tx.ex = np->first_tx.ex;
  1484. }
  1485. if (np->put_tx_ctx++ == np->last_tx_ctx)
  1486. np->put_tx_ctx = np->first_tx_ctx;
  1487. } while (size);
  1488. }
  1489. /* set last fragment flag */
  1490. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1491. prev_tx.orig->flaglen |= cpu_to_le32(tx_flags_extra);
  1492. else
  1493. prev_tx.ex->flaglen |= cpu_to_le32(tx_flags_extra);
  1494. /* save skb in this slot's context area */
  1495. prev_tx_ctx->skb = skb;
  1496. if (skb_is_gso(skb))
  1497. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1498. else
  1499. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1500. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1501. /* vlan tag */
  1502. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1503. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1504. }
  1505. spin_lock_irq(&np->lock);
  1506. /* set tx flags */
  1507. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1508. start_tx.orig->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1509. np->put_tx.orig = put_tx.orig;
  1510. } else {
  1511. start_tx.ex->txvlan = cpu_to_le32(tx_flags_vlan);
  1512. start_tx.ex->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1513. np->put_tx.ex = put_tx.ex;
  1514. }
  1515. spin_unlock_irq(&np->lock);
  1516. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1517. dev->name, entries, tx_flags_extra);
  1518. {
  1519. int j;
  1520. for (j=0; j<64; j++) {
  1521. if ((j%16) == 0)
  1522. dprintk("\n%03x:", j);
  1523. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1524. }
  1525. dprintk("\n");
  1526. }
  1527. dev->trans_start = jiffies;
  1528. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1529. pci_push(get_hwbase(dev));
  1530. return NETDEV_TX_OK;
  1531. }
  1532. /*
  1533. * nv_tx_done: check for completed packets, release the skbs.
  1534. *
  1535. * Caller must own np->lock.
  1536. */
  1537. static void nv_tx_done(struct net_device *dev)
  1538. {
  1539. struct fe_priv *np = netdev_priv(dev);
  1540. u32 flags;
  1541. struct sk_buff *skb;
  1542. while (1) {
  1543. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1544. if (np->get_tx.orig == np->put_tx.orig)
  1545. break;
  1546. flags = le32_to_cpu(np->get_tx.orig->flaglen);
  1547. } else {
  1548. if (np->get_tx.ex == np->put_tx.ex)
  1549. break;
  1550. flags = le32_to_cpu(np->get_tx.ex->flaglen);
  1551. }
  1552. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1553. dev->name, flags);
  1554. if (flags & NV_TX_VALID)
  1555. break;
  1556. if (np->desc_ver == DESC_VER_1) {
  1557. if (flags & NV_TX_LASTPACKET) {
  1558. skb = np->get_tx_ctx->skb;
  1559. if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1560. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1561. if (flags & NV_TX_UNDERFLOW)
  1562. np->stats.tx_fifo_errors++;
  1563. if (flags & NV_TX_CARRIERLOST)
  1564. np->stats.tx_carrier_errors++;
  1565. np->stats.tx_errors++;
  1566. } else {
  1567. np->stats.tx_packets++;
  1568. np->stats.tx_bytes += skb->len;
  1569. }
  1570. }
  1571. } else {
  1572. if (flags & NV_TX2_LASTPACKET) {
  1573. skb = np->get_tx_ctx->skb;
  1574. if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1575. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1576. if (flags & NV_TX2_UNDERFLOW)
  1577. np->stats.tx_fifo_errors++;
  1578. if (flags & NV_TX2_CARRIERLOST)
  1579. np->stats.tx_carrier_errors++;
  1580. np->stats.tx_errors++;
  1581. } else {
  1582. np->stats.tx_packets++;
  1583. np->stats.tx_bytes += skb->len;
  1584. }
  1585. }
  1586. }
  1587. nv_release_txskb(dev, np->get_tx_ctx);
  1588. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1589. if (np->get_tx.orig++ == np->last_tx.orig)
  1590. np->get_tx.orig = np->first_tx.orig;
  1591. } else {
  1592. if (np->get_tx.ex++ == np->last_tx.ex)
  1593. np->get_tx.ex = np->first_tx.ex;
  1594. }
  1595. if (np->get_tx_ctx++ == np->last_tx_ctx)
  1596. np->get_tx_ctx = np->first_tx_ctx;
  1597. }
  1598. if (nv_get_empty_tx_slots(np) > np->tx_limit_start)
  1599. netif_wake_queue(dev);
  1600. }
  1601. /*
  1602. * nv_tx_timeout: dev->tx_timeout function
  1603. * Called with netif_tx_lock held.
  1604. */
  1605. static void nv_tx_timeout(struct net_device *dev)
  1606. {
  1607. struct fe_priv *np = netdev_priv(dev);
  1608. u8 __iomem *base = get_hwbase(dev);
  1609. u32 status;
  1610. if (np->msi_flags & NV_MSI_X_ENABLED)
  1611. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1612. else
  1613. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1614. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1615. {
  1616. int i;
  1617. printk(KERN_INFO "%s: Ring at %lx\n",
  1618. dev->name, (unsigned long)np->ring_addr);
  1619. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1620. for (i=0;i<=np->register_size;i+= 32) {
  1621. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1622. i,
  1623. readl(base + i + 0), readl(base + i + 4),
  1624. readl(base + i + 8), readl(base + i + 12),
  1625. readl(base + i + 16), readl(base + i + 20),
  1626. readl(base + i + 24), readl(base + i + 28));
  1627. }
  1628. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1629. for (i=0;i<np->tx_ring_size;i+= 4) {
  1630. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1631. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1632. i,
  1633. le32_to_cpu(np->tx_ring.orig[i].buf),
  1634. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1635. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1636. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1637. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1638. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1639. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1640. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1641. } else {
  1642. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1643. i,
  1644. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1645. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1646. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1647. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1648. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1649. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1650. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1651. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1652. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1653. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1654. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1655. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1656. }
  1657. }
  1658. }
  1659. spin_lock_irq(&np->lock);
  1660. /* 1) stop tx engine */
  1661. nv_stop_tx(dev);
  1662. /* 2) check that the packets were not sent already: */
  1663. nv_tx_done(dev);
  1664. /* 3) if there are dead entries: clear everything */
  1665. if (np->get_tx_ctx != np->put_tx_ctx) {
  1666. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1667. nv_drain_tx(dev);
  1668. nv_init_tx(dev);
  1669. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1670. netif_wake_queue(dev);
  1671. }
  1672. /* 4) restart tx engine */
  1673. nv_start_tx(dev);
  1674. spin_unlock_irq(&np->lock);
  1675. }
  1676. /*
  1677. * Called when the nic notices a mismatch between the actual data len on the
  1678. * wire and the len indicated in the 802 header
  1679. */
  1680. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1681. {
  1682. int hdrlen; /* length of the 802 header */
  1683. int protolen; /* length as stored in the proto field */
  1684. /* 1) calculate len according to header */
  1685. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1686. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1687. hdrlen = VLAN_HLEN;
  1688. } else {
  1689. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1690. hdrlen = ETH_HLEN;
  1691. }
  1692. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1693. dev->name, datalen, protolen, hdrlen);
  1694. if (protolen > ETH_DATA_LEN)
  1695. return datalen; /* Value in proto field not a len, no checks possible */
  1696. protolen += hdrlen;
  1697. /* consistency checks: */
  1698. if (datalen > ETH_ZLEN) {
  1699. if (datalen >= protolen) {
  1700. /* more data on wire than in 802 header, trim of
  1701. * additional data.
  1702. */
  1703. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1704. dev->name, protolen);
  1705. return protolen;
  1706. } else {
  1707. /* less data on wire than mentioned in header.
  1708. * Discard the packet.
  1709. */
  1710. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1711. dev->name);
  1712. return -1;
  1713. }
  1714. } else {
  1715. /* short packet. Accept only if 802 values are also short */
  1716. if (protolen > ETH_ZLEN) {
  1717. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1718. dev->name);
  1719. return -1;
  1720. }
  1721. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1722. dev->name, datalen);
  1723. return datalen;
  1724. }
  1725. }
  1726. static int nv_rx_process(struct net_device *dev, int limit)
  1727. {
  1728. struct fe_priv *np = netdev_priv(dev);
  1729. u32 flags;
  1730. u32 vlanflags = 0;
  1731. int count;
  1732. for (count = 0; count < limit; ++count) {
  1733. struct sk_buff *skb;
  1734. int len;
  1735. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1736. if (np->get_rx.orig == np->put_rx.orig)
  1737. break; /* we scanned the whole ring - do not continue */
  1738. flags = le32_to_cpu(np->get_rx.orig->flaglen);
  1739. len = nv_descr_getlength(np->get_rx.orig, np->desc_ver);
  1740. } else {
  1741. if (np->get_rx.ex == np->put_rx.ex)
  1742. break; /* we scanned the whole ring - do not continue */
  1743. flags = le32_to_cpu(np->get_rx.ex->flaglen);
  1744. len = nv_descr_getlength_ex(np->get_rx.ex, np->desc_ver);
  1745. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  1746. }
  1747. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  1748. dev->name, flags);
  1749. if (flags & NV_RX_AVAIL)
  1750. break; /* still owned by hardware, */
  1751. /*
  1752. * the packet is for us - immediately tear down the pci mapping.
  1753. * TODO: check if a prefetch of the first cacheline improves
  1754. * the performance.
  1755. */
  1756. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  1757. np->get_rx_ctx->dma_len,
  1758. PCI_DMA_FROMDEVICE);
  1759. {
  1760. int j;
  1761. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  1762. for (j=0; j<64; j++) {
  1763. if ((j%16) == 0)
  1764. dprintk("\n%03x:", j);
  1765. dprintk(" %02x", ((unsigned char*)np->get_rx_ctx->skb->data)[j]);
  1766. }
  1767. dprintk("\n");
  1768. }
  1769. /* look at what we actually got: */
  1770. if (np->desc_ver == DESC_VER_1) {
  1771. if (!(flags & NV_RX_DESCRIPTORVALID))
  1772. goto next_pkt;
  1773. if (flags & NV_RX_ERROR) {
  1774. if (flags & NV_RX_MISSEDFRAME) {
  1775. np->stats.rx_missed_errors++;
  1776. np->stats.rx_errors++;
  1777. goto next_pkt;
  1778. }
  1779. if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1780. np->stats.rx_errors++;
  1781. goto next_pkt;
  1782. }
  1783. if (flags & NV_RX_CRCERR) {
  1784. np->stats.rx_crc_errors++;
  1785. np->stats.rx_errors++;
  1786. goto next_pkt;
  1787. }
  1788. if (flags & NV_RX_OVERFLOW) {
  1789. np->stats.rx_over_errors++;
  1790. np->stats.rx_errors++;
  1791. goto next_pkt;
  1792. }
  1793. if (flags & NV_RX_ERROR4) {
  1794. len = nv_getlen(dev, np->get_rx_ctx->skb->data, len);
  1795. if (len < 0) {
  1796. np->stats.rx_errors++;
  1797. goto next_pkt;
  1798. }
  1799. }
  1800. /* framing errors are soft errors. */
  1801. if (flags & NV_RX_FRAMINGERR) {
  1802. if (flags & NV_RX_SUBSTRACT1) {
  1803. len--;
  1804. }
  1805. }
  1806. }
  1807. } else {
  1808. if (!(flags & NV_RX2_DESCRIPTORVALID))
  1809. goto next_pkt;
  1810. if (flags & NV_RX2_ERROR) {
  1811. if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1812. np->stats.rx_errors++;
  1813. goto next_pkt;
  1814. }
  1815. if (flags & NV_RX2_CRCERR) {
  1816. np->stats.rx_crc_errors++;
  1817. np->stats.rx_errors++;
  1818. goto next_pkt;
  1819. }
  1820. if (flags & NV_RX2_OVERFLOW) {
  1821. np->stats.rx_over_errors++;
  1822. np->stats.rx_errors++;
  1823. goto next_pkt;
  1824. }
  1825. if (flags & NV_RX2_ERROR4) {
  1826. len = nv_getlen(dev, np->get_rx_ctx->skb->data, len);
  1827. if (len < 0) {
  1828. np->stats.rx_errors++;
  1829. goto next_pkt;
  1830. }
  1831. }
  1832. /* framing errors are soft errors */
  1833. if (flags & NV_RX2_FRAMINGERR) {
  1834. if (flags & NV_RX2_SUBSTRACT1) {
  1835. len--;
  1836. }
  1837. }
  1838. }
  1839. if (np->rx_csum) {
  1840. flags &= NV_RX2_CHECKSUMMASK;
  1841. if (flags == NV_RX2_CHECKSUMOK1 ||
  1842. flags == NV_RX2_CHECKSUMOK2 ||
  1843. flags == NV_RX2_CHECKSUMOK3) {
  1844. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1845. np->get_rx_ctx->skb->ip_summed = CHECKSUM_UNNECESSARY;
  1846. } else {
  1847. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1848. }
  1849. }
  1850. }
  1851. /* got a valid packet - forward it to the network core */
  1852. skb = np->get_rx_ctx->skb;
  1853. np->get_rx_ctx->skb = NULL;
  1854. skb_put(skb, len);
  1855. skb->protocol = eth_type_trans(skb, dev);
  1856. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  1857. dev->name, len, skb->protocol);
  1858. #ifdef CONFIG_FORCEDETH_NAPI
  1859. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1860. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  1861. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1862. else
  1863. netif_receive_skb(skb);
  1864. #else
  1865. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1866. vlan_hwaccel_rx(skb, np->vlangrp,
  1867. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1868. else
  1869. netif_rx(skb);
  1870. #endif
  1871. dev->last_rx = jiffies;
  1872. np->stats.rx_packets++;
  1873. np->stats.rx_bytes += len;
  1874. next_pkt:
  1875. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1876. if (np->get_rx.orig++ == np->last_rx.orig)
  1877. np->get_rx.orig = np->first_rx.orig;
  1878. } else {
  1879. if (np->get_rx.ex++ == np->last_rx.ex)
  1880. np->get_rx.ex = np->first_rx.ex;
  1881. }
  1882. if (np->get_rx_ctx++ == np->last_rx_ctx)
  1883. np->get_rx_ctx = np->first_rx_ctx;
  1884. }
  1885. return count;
  1886. }
  1887. static void set_bufsize(struct net_device *dev)
  1888. {
  1889. struct fe_priv *np = netdev_priv(dev);
  1890. if (dev->mtu <= ETH_DATA_LEN)
  1891. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1892. else
  1893. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1894. }
  1895. /*
  1896. * nv_change_mtu: dev->change_mtu function
  1897. * Called with dev_base_lock held for read.
  1898. */
  1899. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1900. {
  1901. struct fe_priv *np = netdev_priv(dev);
  1902. int old_mtu;
  1903. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1904. return -EINVAL;
  1905. old_mtu = dev->mtu;
  1906. dev->mtu = new_mtu;
  1907. /* return early if the buffer sizes will not change */
  1908. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1909. return 0;
  1910. if (old_mtu == new_mtu)
  1911. return 0;
  1912. /* synchronized against open : rtnl_lock() held by caller */
  1913. if (netif_running(dev)) {
  1914. u8 __iomem *base = get_hwbase(dev);
  1915. /*
  1916. * It seems that the nic preloads valid ring entries into an
  1917. * internal buffer. The procedure for flushing everything is
  1918. * guessed, there is probably a simpler approach.
  1919. * Changing the MTU is a rare event, it shouldn't matter.
  1920. */
  1921. nv_disable_irq(dev);
  1922. netif_tx_lock_bh(dev);
  1923. spin_lock(&np->lock);
  1924. /* stop engines */
  1925. nv_stop_rx(dev);
  1926. nv_stop_tx(dev);
  1927. nv_txrx_reset(dev);
  1928. /* drain rx queue */
  1929. nv_drain_rx(dev);
  1930. nv_drain_tx(dev);
  1931. /* reinit driver view of the rx queue */
  1932. set_bufsize(dev);
  1933. if (nv_init_ring(dev)) {
  1934. if (!np->in_shutdown)
  1935. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1936. }
  1937. /* reinit nic view of the rx queue */
  1938. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1939. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1940. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1941. base + NvRegRingSizes);
  1942. pci_push(base);
  1943. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1944. pci_push(base);
  1945. /* restart rx engine */
  1946. nv_start_rx(dev);
  1947. nv_start_tx(dev);
  1948. spin_unlock(&np->lock);
  1949. netif_tx_unlock_bh(dev);
  1950. nv_enable_irq(dev);
  1951. }
  1952. return 0;
  1953. }
  1954. static void nv_copy_mac_to_hw(struct net_device *dev)
  1955. {
  1956. u8 __iomem *base = get_hwbase(dev);
  1957. u32 mac[2];
  1958. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1959. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1960. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1961. writel(mac[0], base + NvRegMacAddrA);
  1962. writel(mac[1], base + NvRegMacAddrB);
  1963. }
  1964. /*
  1965. * nv_set_mac_address: dev->set_mac_address function
  1966. * Called with rtnl_lock() held.
  1967. */
  1968. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1969. {
  1970. struct fe_priv *np = netdev_priv(dev);
  1971. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1972. if (!is_valid_ether_addr(macaddr->sa_data))
  1973. return -EADDRNOTAVAIL;
  1974. /* synchronized against open : rtnl_lock() held by caller */
  1975. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1976. if (netif_running(dev)) {
  1977. netif_tx_lock_bh(dev);
  1978. spin_lock_irq(&np->lock);
  1979. /* stop rx engine */
  1980. nv_stop_rx(dev);
  1981. /* set mac address */
  1982. nv_copy_mac_to_hw(dev);
  1983. /* restart rx engine */
  1984. nv_start_rx(dev);
  1985. spin_unlock_irq(&np->lock);
  1986. netif_tx_unlock_bh(dev);
  1987. } else {
  1988. nv_copy_mac_to_hw(dev);
  1989. }
  1990. return 0;
  1991. }
  1992. /*
  1993. * nv_set_multicast: dev->set_multicast function
  1994. * Called with netif_tx_lock held.
  1995. */
  1996. static void nv_set_multicast(struct net_device *dev)
  1997. {
  1998. struct fe_priv *np = netdev_priv(dev);
  1999. u8 __iomem *base = get_hwbase(dev);
  2000. u32 addr[2];
  2001. u32 mask[2];
  2002. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2003. memset(addr, 0, sizeof(addr));
  2004. memset(mask, 0, sizeof(mask));
  2005. if (dev->flags & IFF_PROMISC) {
  2006. pff |= NVREG_PFF_PROMISC;
  2007. } else {
  2008. pff |= NVREG_PFF_MYADDR;
  2009. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2010. u32 alwaysOff[2];
  2011. u32 alwaysOn[2];
  2012. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2013. if (dev->flags & IFF_ALLMULTI) {
  2014. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2015. } else {
  2016. struct dev_mc_list *walk;
  2017. walk = dev->mc_list;
  2018. while (walk != NULL) {
  2019. u32 a, b;
  2020. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  2021. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  2022. alwaysOn[0] &= a;
  2023. alwaysOff[0] &= ~a;
  2024. alwaysOn[1] &= b;
  2025. alwaysOff[1] &= ~b;
  2026. walk = walk->next;
  2027. }
  2028. }
  2029. addr[0] = alwaysOn[0];
  2030. addr[1] = alwaysOn[1];
  2031. mask[0] = alwaysOn[0] | alwaysOff[0];
  2032. mask[1] = alwaysOn[1] | alwaysOff[1];
  2033. }
  2034. }
  2035. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2036. pff |= NVREG_PFF_ALWAYS;
  2037. spin_lock_irq(&np->lock);
  2038. nv_stop_rx(dev);
  2039. writel(addr[0], base + NvRegMulticastAddrA);
  2040. writel(addr[1], base + NvRegMulticastAddrB);
  2041. writel(mask[0], base + NvRegMulticastMaskA);
  2042. writel(mask[1], base + NvRegMulticastMaskB);
  2043. writel(pff, base + NvRegPacketFilterFlags);
  2044. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2045. dev->name);
  2046. nv_start_rx(dev);
  2047. spin_unlock_irq(&np->lock);
  2048. }
  2049. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2050. {
  2051. struct fe_priv *np = netdev_priv(dev);
  2052. u8 __iomem *base = get_hwbase(dev);
  2053. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2054. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2055. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2056. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2057. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2058. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2059. } else {
  2060. writel(pff, base + NvRegPacketFilterFlags);
  2061. }
  2062. }
  2063. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2064. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2065. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2066. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2067. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2068. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2069. } else {
  2070. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2071. writel(regmisc, base + NvRegMisc1);
  2072. }
  2073. }
  2074. }
  2075. /**
  2076. * nv_update_linkspeed: Setup the MAC according to the link partner
  2077. * @dev: Network device to be configured
  2078. *
  2079. * The function queries the PHY and checks if there is a link partner.
  2080. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2081. * set to 10 MBit HD.
  2082. *
  2083. * The function returns 0 if there is no link partner and 1 if there is
  2084. * a good link partner.
  2085. */
  2086. static int nv_update_linkspeed(struct net_device *dev)
  2087. {
  2088. struct fe_priv *np = netdev_priv(dev);
  2089. u8 __iomem *base = get_hwbase(dev);
  2090. int adv = 0;
  2091. int lpa = 0;
  2092. int adv_lpa, adv_pause, lpa_pause;
  2093. int newls = np->linkspeed;
  2094. int newdup = np->duplex;
  2095. int mii_status;
  2096. int retval = 0;
  2097. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2098. /* BMSR_LSTATUS is latched, read it twice:
  2099. * we want the current value.
  2100. */
  2101. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2102. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2103. if (!(mii_status & BMSR_LSTATUS)) {
  2104. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2105. dev->name);
  2106. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2107. newdup = 0;
  2108. retval = 0;
  2109. goto set_speed;
  2110. }
  2111. if (np->autoneg == 0) {
  2112. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2113. dev->name, np->fixed_mode);
  2114. if (np->fixed_mode & LPA_100FULL) {
  2115. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2116. newdup = 1;
  2117. } else if (np->fixed_mode & LPA_100HALF) {
  2118. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2119. newdup = 0;
  2120. } else if (np->fixed_mode & LPA_10FULL) {
  2121. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2122. newdup = 1;
  2123. } else {
  2124. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2125. newdup = 0;
  2126. }
  2127. retval = 1;
  2128. goto set_speed;
  2129. }
  2130. /* check auto negotiation is complete */
  2131. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2132. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2133. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2134. newdup = 0;
  2135. retval = 0;
  2136. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2137. goto set_speed;
  2138. }
  2139. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2140. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2141. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2142. dev->name, adv, lpa);
  2143. retval = 1;
  2144. if (np->gigabit == PHY_GIGABIT) {
  2145. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2146. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2147. if ((control_1000 & ADVERTISE_1000FULL) &&
  2148. (status_1000 & LPA_1000FULL)) {
  2149. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2150. dev->name);
  2151. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2152. newdup = 1;
  2153. goto set_speed;
  2154. }
  2155. }
  2156. /* FIXME: handle parallel detection properly */
  2157. adv_lpa = lpa & adv;
  2158. if (adv_lpa & LPA_100FULL) {
  2159. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2160. newdup = 1;
  2161. } else if (adv_lpa & LPA_100HALF) {
  2162. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2163. newdup = 0;
  2164. } else if (adv_lpa & LPA_10FULL) {
  2165. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2166. newdup = 1;
  2167. } else if (adv_lpa & LPA_10HALF) {
  2168. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2169. newdup = 0;
  2170. } else {
  2171. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2172. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2173. newdup = 0;
  2174. }
  2175. set_speed:
  2176. if (np->duplex == newdup && np->linkspeed == newls)
  2177. return retval;
  2178. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2179. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2180. np->duplex = newdup;
  2181. np->linkspeed = newls;
  2182. if (np->gigabit == PHY_GIGABIT) {
  2183. phyreg = readl(base + NvRegRandomSeed);
  2184. phyreg &= ~(0x3FF00);
  2185. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2186. phyreg |= NVREG_RNDSEED_FORCE3;
  2187. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2188. phyreg |= NVREG_RNDSEED_FORCE2;
  2189. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2190. phyreg |= NVREG_RNDSEED_FORCE;
  2191. writel(phyreg, base + NvRegRandomSeed);
  2192. }
  2193. phyreg = readl(base + NvRegPhyInterface);
  2194. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2195. if (np->duplex == 0)
  2196. phyreg |= PHY_HALF;
  2197. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2198. phyreg |= PHY_100;
  2199. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2200. phyreg |= PHY_1000;
  2201. writel(phyreg, base + NvRegPhyInterface);
  2202. if (phyreg & PHY_RGMII) {
  2203. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2204. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2205. else
  2206. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2207. } else {
  2208. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2209. }
  2210. writel(txreg, base + NvRegTxDeferral);
  2211. if (np->desc_ver == DESC_VER_1) {
  2212. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2213. } else {
  2214. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2215. txreg = NVREG_TX_WM_DESC2_3_1000;
  2216. else
  2217. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2218. }
  2219. writel(txreg, base + NvRegTxWatermark);
  2220. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2221. base + NvRegMisc1);
  2222. pci_push(base);
  2223. writel(np->linkspeed, base + NvRegLinkSpeed);
  2224. pci_push(base);
  2225. pause_flags = 0;
  2226. /* setup pause frame */
  2227. if (np->duplex != 0) {
  2228. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2229. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2230. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2231. switch (adv_pause) {
  2232. case ADVERTISE_PAUSE_CAP:
  2233. if (lpa_pause & LPA_PAUSE_CAP) {
  2234. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2235. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2236. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2237. }
  2238. break;
  2239. case ADVERTISE_PAUSE_ASYM:
  2240. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2241. {
  2242. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2243. }
  2244. break;
  2245. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2246. if (lpa_pause & LPA_PAUSE_CAP)
  2247. {
  2248. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2249. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2250. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2251. }
  2252. if (lpa_pause == LPA_PAUSE_ASYM)
  2253. {
  2254. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2255. }
  2256. break;
  2257. }
  2258. } else {
  2259. pause_flags = np->pause_flags;
  2260. }
  2261. }
  2262. nv_update_pause(dev, pause_flags);
  2263. return retval;
  2264. }
  2265. static void nv_linkchange(struct net_device *dev)
  2266. {
  2267. if (nv_update_linkspeed(dev)) {
  2268. if (!netif_carrier_ok(dev)) {
  2269. netif_carrier_on(dev);
  2270. printk(KERN_INFO "%s: link up.\n", dev->name);
  2271. nv_start_rx(dev);
  2272. }
  2273. } else {
  2274. if (netif_carrier_ok(dev)) {
  2275. netif_carrier_off(dev);
  2276. printk(KERN_INFO "%s: link down.\n", dev->name);
  2277. nv_stop_rx(dev);
  2278. }
  2279. }
  2280. }
  2281. static void nv_link_irq(struct net_device *dev)
  2282. {
  2283. u8 __iomem *base = get_hwbase(dev);
  2284. u32 miistat;
  2285. miistat = readl(base + NvRegMIIStatus);
  2286. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2287. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2288. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2289. nv_linkchange(dev);
  2290. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2291. }
  2292. static irqreturn_t nv_nic_irq(int foo, void *data)
  2293. {
  2294. struct net_device *dev = (struct net_device *) data;
  2295. struct fe_priv *np = netdev_priv(dev);
  2296. u8 __iomem *base = get_hwbase(dev);
  2297. u32 events;
  2298. int i;
  2299. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2300. for (i=0; ; i++) {
  2301. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2302. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2303. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2304. } else {
  2305. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2306. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2307. }
  2308. pci_push(base);
  2309. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2310. if (!(events & np->irqmask))
  2311. break;
  2312. spin_lock(&np->lock);
  2313. nv_tx_done(dev);
  2314. spin_unlock(&np->lock);
  2315. if (events & NVREG_IRQ_LINK) {
  2316. spin_lock(&np->lock);
  2317. nv_link_irq(dev);
  2318. spin_unlock(&np->lock);
  2319. }
  2320. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2321. spin_lock(&np->lock);
  2322. nv_linkchange(dev);
  2323. spin_unlock(&np->lock);
  2324. np->link_timeout = jiffies + LINK_TIMEOUT;
  2325. }
  2326. if (events & (NVREG_IRQ_TX_ERR)) {
  2327. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2328. dev->name, events);
  2329. }
  2330. if (events & (NVREG_IRQ_UNKNOWN)) {
  2331. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2332. dev->name, events);
  2333. }
  2334. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2335. spin_lock(&np->lock);
  2336. /* disable interrupts on the nic */
  2337. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2338. writel(0, base + NvRegIrqMask);
  2339. else
  2340. writel(np->irqmask, base + NvRegIrqMask);
  2341. pci_push(base);
  2342. if (!np->in_shutdown) {
  2343. np->nic_poll_irq = np->irqmask;
  2344. np->recover_error = 1;
  2345. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2346. }
  2347. spin_unlock(&np->lock);
  2348. break;
  2349. }
  2350. #ifdef CONFIG_FORCEDETH_NAPI
  2351. if (events & NVREG_IRQ_RX_ALL) {
  2352. netif_rx_schedule(dev);
  2353. /* Disable furthur receive irq's */
  2354. spin_lock(&np->lock);
  2355. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2356. if (np->msi_flags & NV_MSI_X_ENABLED)
  2357. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2358. else
  2359. writel(np->irqmask, base + NvRegIrqMask);
  2360. spin_unlock(&np->lock);
  2361. }
  2362. #else
  2363. nv_rx_process(dev, dev->weight);
  2364. if (nv_alloc_rx(dev)) {
  2365. spin_lock(&np->lock);
  2366. if (!np->in_shutdown)
  2367. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2368. spin_unlock(&np->lock);
  2369. }
  2370. #endif
  2371. if (i > max_interrupt_work) {
  2372. spin_lock(&np->lock);
  2373. /* disable interrupts on the nic */
  2374. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2375. writel(0, base + NvRegIrqMask);
  2376. else
  2377. writel(np->irqmask, base + NvRegIrqMask);
  2378. pci_push(base);
  2379. if (!np->in_shutdown) {
  2380. np->nic_poll_irq = np->irqmask;
  2381. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2382. }
  2383. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2384. spin_unlock(&np->lock);
  2385. break;
  2386. }
  2387. }
  2388. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2389. return IRQ_RETVAL(i);
  2390. }
  2391. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2392. {
  2393. struct net_device *dev = (struct net_device *) data;
  2394. struct fe_priv *np = netdev_priv(dev);
  2395. u8 __iomem *base = get_hwbase(dev);
  2396. u32 events;
  2397. int i;
  2398. unsigned long flags;
  2399. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2400. for (i=0; ; i++) {
  2401. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2402. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2403. pci_push(base);
  2404. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2405. if (!(events & np->irqmask))
  2406. break;
  2407. spin_lock_irqsave(&np->lock, flags);
  2408. nv_tx_done(dev);
  2409. spin_unlock_irqrestore(&np->lock, flags);
  2410. if (events & (NVREG_IRQ_TX_ERR)) {
  2411. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2412. dev->name, events);
  2413. }
  2414. if (i > max_interrupt_work) {
  2415. spin_lock_irqsave(&np->lock, flags);
  2416. /* disable interrupts on the nic */
  2417. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2418. pci_push(base);
  2419. if (!np->in_shutdown) {
  2420. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2421. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2422. }
  2423. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2424. spin_unlock_irqrestore(&np->lock, flags);
  2425. break;
  2426. }
  2427. }
  2428. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2429. return IRQ_RETVAL(i);
  2430. }
  2431. #ifdef CONFIG_FORCEDETH_NAPI
  2432. static int nv_napi_poll(struct net_device *dev, int *budget)
  2433. {
  2434. int pkts, limit = min(*budget, dev->quota);
  2435. struct fe_priv *np = netdev_priv(dev);
  2436. u8 __iomem *base = get_hwbase(dev);
  2437. unsigned long flags;
  2438. pkts = nv_rx_process(dev, limit);
  2439. if (nv_alloc_rx(dev)) {
  2440. spin_lock_irqsave(&np->lock, flags);
  2441. if (!np->in_shutdown)
  2442. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2443. spin_unlock_irqrestore(&np->lock, flags);
  2444. }
  2445. if (pkts < limit) {
  2446. /* all done, no more packets present */
  2447. netif_rx_complete(dev);
  2448. /* re-enable receive interrupts */
  2449. spin_lock_irqsave(&np->lock, flags);
  2450. np->irqmask |= NVREG_IRQ_RX_ALL;
  2451. if (np->msi_flags & NV_MSI_X_ENABLED)
  2452. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2453. else
  2454. writel(np->irqmask, base + NvRegIrqMask);
  2455. spin_unlock_irqrestore(&np->lock, flags);
  2456. return 0;
  2457. } else {
  2458. /* used up our quantum, so reschedule */
  2459. dev->quota -= pkts;
  2460. *budget -= pkts;
  2461. return 1;
  2462. }
  2463. }
  2464. #endif
  2465. #ifdef CONFIG_FORCEDETH_NAPI
  2466. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2467. {
  2468. struct net_device *dev = (struct net_device *) data;
  2469. u8 __iomem *base = get_hwbase(dev);
  2470. u32 events;
  2471. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2472. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2473. if (events) {
  2474. netif_rx_schedule(dev);
  2475. /* disable receive interrupts on the nic */
  2476. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2477. pci_push(base);
  2478. }
  2479. return IRQ_HANDLED;
  2480. }
  2481. #else
  2482. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2483. {
  2484. struct net_device *dev = (struct net_device *) data;
  2485. struct fe_priv *np = netdev_priv(dev);
  2486. u8 __iomem *base = get_hwbase(dev);
  2487. u32 events;
  2488. int i;
  2489. unsigned long flags;
  2490. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2491. for (i=0; ; i++) {
  2492. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2493. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2494. pci_push(base);
  2495. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2496. if (!(events & np->irqmask))
  2497. break;
  2498. nv_rx_process(dev, dev->weight);
  2499. if (nv_alloc_rx(dev)) {
  2500. spin_lock_irqsave(&np->lock, flags);
  2501. if (!np->in_shutdown)
  2502. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2503. spin_unlock_irqrestore(&np->lock, flags);
  2504. }
  2505. if (i > max_interrupt_work) {
  2506. spin_lock_irqsave(&np->lock, flags);
  2507. /* disable interrupts on the nic */
  2508. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2509. pci_push(base);
  2510. if (!np->in_shutdown) {
  2511. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2512. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2513. }
  2514. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2515. spin_unlock_irqrestore(&np->lock, flags);
  2516. break;
  2517. }
  2518. }
  2519. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2520. return IRQ_RETVAL(i);
  2521. }
  2522. #endif
  2523. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  2524. {
  2525. struct net_device *dev = (struct net_device *) data;
  2526. struct fe_priv *np = netdev_priv(dev);
  2527. u8 __iomem *base = get_hwbase(dev);
  2528. u32 events;
  2529. int i;
  2530. unsigned long flags;
  2531. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2532. for (i=0; ; i++) {
  2533. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2534. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2535. pci_push(base);
  2536. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2537. if (!(events & np->irqmask))
  2538. break;
  2539. if (events & NVREG_IRQ_LINK) {
  2540. spin_lock_irqsave(&np->lock, flags);
  2541. nv_link_irq(dev);
  2542. spin_unlock_irqrestore(&np->lock, flags);
  2543. }
  2544. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2545. spin_lock_irqsave(&np->lock, flags);
  2546. nv_linkchange(dev);
  2547. spin_unlock_irqrestore(&np->lock, flags);
  2548. np->link_timeout = jiffies + LINK_TIMEOUT;
  2549. }
  2550. if (events & NVREG_IRQ_RECOVER_ERROR) {
  2551. spin_lock_irq(&np->lock);
  2552. /* disable interrupts on the nic */
  2553. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2554. pci_push(base);
  2555. if (!np->in_shutdown) {
  2556. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2557. np->recover_error = 1;
  2558. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2559. }
  2560. spin_unlock_irq(&np->lock);
  2561. break;
  2562. }
  2563. if (events & (NVREG_IRQ_UNKNOWN)) {
  2564. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2565. dev->name, events);
  2566. }
  2567. if (i > max_interrupt_work) {
  2568. spin_lock_irqsave(&np->lock, flags);
  2569. /* disable interrupts on the nic */
  2570. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2571. pci_push(base);
  2572. if (!np->in_shutdown) {
  2573. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2574. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2575. }
  2576. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2577. spin_unlock_irqrestore(&np->lock, flags);
  2578. break;
  2579. }
  2580. }
  2581. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2582. return IRQ_RETVAL(i);
  2583. }
  2584. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  2585. {
  2586. struct net_device *dev = (struct net_device *) data;
  2587. struct fe_priv *np = netdev_priv(dev);
  2588. u8 __iomem *base = get_hwbase(dev);
  2589. u32 events;
  2590. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  2591. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2592. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2593. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  2594. } else {
  2595. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2596. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  2597. }
  2598. pci_push(base);
  2599. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2600. if (!(events & NVREG_IRQ_TIMER))
  2601. return IRQ_RETVAL(0);
  2602. spin_lock(&np->lock);
  2603. np->intr_test = 1;
  2604. spin_unlock(&np->lock);
  2605. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  2606. return IRQ_RETVAL(1);
  2607. }
  2608. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2609. {
  2610. u8 __iomem *base = get_hwbase(dev);
  2611. int i;
  2612. u32 msixmap = 0;
  2613. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2614. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2615. * the remaining 8 interrupts.
  2616. */
  2617. for (i = 0; i < 8; i++) {
  2618. if ((irqmask >> i) & 0x1) {
  2619. msixmap |= vector << (i << 2);
  2620. }
  2621. }
  2622. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2623. msixmap = 0;
  2624. for (i = 0; i < 8; i++) {
  2625. if ((irqmask >> (i + 8)) & 0x1) {
  2626. msixmap |= vector << (i << 2);
  2627. }
  2628. }
  2629. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2630. }
  2631. static int nv_request_irq(struct net_device *dev, int intr_test)
  2632. {
  2633. struct fe_priv *np = get_nvpriv(dev);
  2634. u8 __iomem *base = get_hwbase(dev);
  2635. int ret = 1;
  2636. int i;
  2637. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2638. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2639. np->msi_x_entry[i].entry = i;
  2640. }
  2641. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2642. np->msi_flags |= NV_MSI_X_ENABLED;
  2643. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  2644. /* Request irq for rx handling */
  2645. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  2646. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2647. pci_disable_msix(np->pci_dev);
  2648. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2649. goto out_err;
  2650. }
  2651. /* Request irq for tx handling */
  2652. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  2653. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2654. pci_disable_msix(np->pci_dev);
  2655. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2656. goto out_free_rx;
  2657. }
  2658. /* Request irq for link and timer handling */
  2659. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  2660. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2661. pci_disable_msix(np->pci_dev);
  2662. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2663. goto out_free_tx;
  2664. }
  2665. /* map interrupts to their respective vector */
  2666. writel(0, base + NvRegMSIXMap0);
  2667. writel(0, base + NvRegMSIXMap1);
  2668. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2669. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2670. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2671. } else {
  2672. /* Request irq for all interrupts */
  2673. if ((!intr_test &&
  2674. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2675. (intr_test &&
  2676. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2677. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2678. pci_disable_msix(np->pci_dev);
  2679. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2680. goto out_err;
  2681. }
  2682. /* map interrupts to vector 0 */
  2683. writel(0, base + NvRegMSIXMap0);
  2684. writel(0, base + NvRegMSIXMap1);
  2685. }
  2686. }
  2687. }
  2688. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2689. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2690. np->msi_flags |= NV_MSI_ENABLED;
  2691. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2692. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2693. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2694. pci_disable_msi(np->pci_dev);
  2695. np->msi_flags &= ~NV_MSI_ENABLED;
  2696. goto out_err;
  2697. }
  2698. /* map interrupts to vector 0 */
  2699. writel(0, base + NvRegMSIMap0);
  2700. writel(0, base + NvRegMSIMap1);
  2701. /* enable msi vector 0 */
  2702. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2703. }
  2704. }
  2705. if (ret != 0) {
  2706. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2707. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
  2708. goto out_err;
  2709. }
  2710. return 0;
  2711. out_free_tx:
  2712. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2713. out_free_rx:
  2714. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2715. out_err:
  2716. return 1;
  2717. }
  2718. static void nv_free_irq(struct net_device *dev)
  2719. {
  2720. struct fe_priv *np = get_nvpriv(dev);
  2721. int i;
  2722. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2723. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2724. free_irq(np->msi_x_entry[i].vector, dev);
  2725. }
  2726. pci_disable_msix(np->pci_dev);
  2727. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2728. } else {
  2729. free_irq(np->pci_dev->irq, dev);
  2730. if (np->msi_flags & NV_MSI_ENABLED) {
  2731. pci_disable_msi(np->pci_dev);
  2732. np->msi_flags &= ~NV_MSI_ENABLED;
  2733. }
  2734. }
  2735. }
  2736. static void nv_do_nic_poll(unsigned long data)
  2737. {
  2738. struct net_device *dev = (struct net_device *) data;
  2739. struct fe_priv *np = netdev_priv(dev);
  2740. u8 __iomem *base = get_hwbase(dev);
  2741. u32 mask = 0;
  2742. /*
  2743. * First disable irq(s) and then
  2744. * reenable interrupts on the nic, we have to do this before calling
  2745. * nv_nic_irq because that may decide to do otherwise
  2746. */
  2747. if (!using_multi_irqs(dev)) {
  2748. if (np->msi_flags & NV_MSI_X_ENABLED)
  2749. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2750. else
  2751. disable_irq_lockdep(dev->irq);
  2752. mask = np->irqmask;
  2753. } else {
  2754. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2755. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2756. mask |= NVREG_IRQ_RX_ALL;
  2757. }
  2758. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2759. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2760. mask |= NVREG_IRQ_TX_ALL;
  2761. }
  2762. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2763. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2764. mask |= NVREG_IRQ_OTHER;
  2765. }
  2766. }
  2767. np->nic_poll_irq = 0;
  2768. if (np->recover_error) {
  2769. np->recover_error = 0;
  2770. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  2771. if (netif_running(dev)) {
  2772. netif_tx_lock_bh(dev);
  2773. spin_lock(&np->lock);
  2774. /* stop engines */
  2775. nv_stop_rx(dev);
  2776. nv_stop_tx(dev);
  2777. nv_txrx_reset(dev);
  2778. /* drain rx queue */
  2779. nv_drain_rx(dev);
  2780. nv_drain_tx(dev);
  2781. /* reinit driver view of the rx queue */
  2782. set_bufsize(dev);
  2783. if (nv_init_ring(dev)) {
  2784. if (!np->in_shutdown)
  2785. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2786. }
  2787. /* reinit nic view of the rx queue */
  2788. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2789. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2790. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2791. base + NvRegRingSizes);
  2792. pci_push(base);
  2793. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2794. pci_push(base);
  2795. /* restart rx engine */
  2796. nv_start_rx(dev);
  2797. nv_start_tx(dev);
  2798. spin_unlock(&np->lock);
  2799. netif_tx_unlock_bh(dev);
  2800. }
  2801. }
  2802. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2803. writel(mask, base + NvRegIrqMask);
  2804. pci_push(base);
  2805. if (!using_multi_irqs(dev)) {
  2806. nv_nic_irq(0, dev);
  2807. if (np->msi_flags & NV_MSI_X_ENABLED)
  2808. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2809. else
  2810. enable_irq_lockdep(dev->irq);
  2811. } else {
  2812. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2813. nv_nic_irq_rx(0, dev);
  2814. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2815. }
  2816. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2817. nv_nic_irq_tx(0, dev);
  2818. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2819. }
  2820. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2821. nv_nic_irq_other(0, dev);
  2822. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2823. }
  2824. }
  2825. }
  2826. #ifdef CONFIG_NET_POLL_CONTROLLER
  2827. static void nv_poll_controller(struct net_device *dev)
  2828. {
  2829. nv_do_nic_poll((unsigned long) dev);
  2830. }
  2831. #endif
  2832. static void nv_do_stats_poll(unsigned long data)
  2833. {
  2834. struct net_device *dev = (struct net_device *) data;
  2835. struct fe_priv *np = netdev_priv(dev);
  2836. u8 __iomem *base = get_hwbase(dev);
  2837. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2838. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2839. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2840. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2841. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2842. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2843. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2844. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2845. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2846. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2847. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2848. np->estats.tx_pause += readl(base + NvRegTxPause);
  2849. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2850. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2851. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2852. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2853. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2854. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2855. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2856. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2857. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2858. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2859. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2860. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2861. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2862. np->estats.rx_pause += readl(base + NvRegRxPause);
  2863. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2864. np->estats.rx_packets =
  2865. np->estats.rx_unicast +
  2866. np->estats.rx_multicast +
  2867. np->estats.rx_broadcast;
  2868. np->estats.rx_errors_total =
  2869. np->estats.rx_crc_errors +
  2870. np->estats.rx_over_errors +
  2871. np->estats.rx_frame_error +
  2872. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2873. np->estats.rx_late_collision +
  2874. np->estats.rx_runt +
  2875. np->estats.rx_frame_too_long;
  2876. if (!np->in_shutdown)
  2877. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2878. }
  2879. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2880. {
  2881. struct fe_priv *np = netdev_priv(dev);
  2882. strcpy(info->driver, "forcedeth");
  2883. strcpy(info->version, FORCEDETH_VERSION);
  2884. strcpy(info->bus_info, pci_name(np->pci_dev));
  2885. }
  2886. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2887. {
  2888. struct fe_priv *np = netdev_priv(dev);
  2889. wolinfo->supported = WAKE_MAGIC;
  2890. spin_lock_irq(&np->lock);
  2891. if (np->wolenabled)
  2892. wolinfo->wolopts = WAKE_MAGIC;
  2893. spin_unlock_irq(&np->lock);
  2894. }
  2895. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2896. {
  2897. struct fe_priv *np = netdev_priv(dev);
  2898. u8 __iomem *base = get_hwbase(dev);
  2899. u32 flags = 0;
  2900. if (wolinfo->wolopts == 0) {
  2901. np->wolenabled = 0;
  2902. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2903. np->wolenabled = 1;
  2904. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2905. }
  2906. if (netif_running(dev)) {
  2907. spin_lock_irq(&np->lock);
  2908. writel(flags, base + NvRegWakeUpFlags);
  2909. spin_unlock_irq(&np->lock);
  2910. }
  2911. return 0;
  2912. }
  2913. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2914. {
  2915. struct fe_priv *np = netdev_priv(dev);
  2916. int adv;
  2917. spin_lock_irq(&np->lock);
  2918. ecmd->port = PORT_MII;
  2919. if (!netif_running(dev)) {
  2920. /* We do not track link speed / duplex setting if the
  2921. * interface is disabled. Force a link check */
  2922. if (nv_update_linkspeed(dev)) {
  2923. if (!netif_carrier_ok(dev))
  2924. netif_carrier_on(dev);
  2925. } else {
  2926. if (netif_carrier_ok(dev))
  2927. netif_carrier_off(dev);
  2928. }
  2929. }
  2930. if (netif_carrier_ok(dev)) {
  2931. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2932. case NVREG_LINKSPEED_10:
  2933. ecmd->speed = SPEED_10;
  2934. break;
  2935. case NVREG_LINKSPEED_100:
  2936. ecmd->speed = SPEED_100;
  2937. break;
  2938. case NVREG_LINKSPEED_1000:
  2939. ecmd->speed = SPEED_1000;
  2940. break;
  2941. }
  2942. ecmd->duplex = DUPLEX_HALF;
  2943. if (np->duplex)
  2944. ecmd->duplex = DUPLEX_FULL;
  2945. } else {
  2946. ecmd->speed = -1;
  2947. ecmd->duplex = -1;
  2948. }
  2949. ecmd->autoneg = np->autoneg;
  2950. ecmd->advertising = ADVERTISED_MII;
  2951. if (np->autoneg) {
  2952. ecmd->advertising |= ADVERTISED_Autoneg;
  2953. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2954. if (adv & ADVERTISE_10HALF)
  2955. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2956. if (adv & ADVERTISE_10FULL)
  2957. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2958. if (adv & ADVERTISE_100HALF)
  2959. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2960. if (adv & ADVERTISE_100FULL)
  2961. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2962. if (np->gigabit == PHY_GIGABIT) {
  2963. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2964. if (adv & ADVERTISE_1000FULL)
  2965. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2966. }
  2967. }
  2968. ecmd->supported = (SUPPORTED_Autoneg |
  2969. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2970. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2971. SUPPORTED_MII);
  2972. if (np->gigabit == PHY_GIGABIT)
  2973. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2974. ecmd->phy_address = np->phyaddr;
  2975. ecmd->transceiver = XCVR_EXTERNAL;
  2976. /* ignore maxtxpkt, maxrxpkt for now */
  2977. spin_unlock_irq(&np->lock);
  2978. return 0;
  2979. }
  2980. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2981. {
  2982. struct fe_priv *np = netdev_priv(dev);
  2983. if (ecmd->port != PORT_MII)
  2984. return -EINVAL;
  2985. if (ecmd->transceiver != XCVR_EXTERNAL)
  2986. return -EINVAL;
  2987. if (ecmd->phy_address != np->phyaddr) {
  2988. /* TODO: support switching between multiple phys. Should be
  2989. * trivial, but not enabled due to lack of test hardware. */
  2990. return -EINVAL;
  2991. }
  2992. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2993. u32 mask;
  2994. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2995. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2996. if (np->gigabit == PHY_GIGABIT)
  2997. mask |= ADVERTISED_1000baseT_Full;
  2998. if ((ecmd->advertising & mask) == 0)
  2999. return -EINVAL;
  3000. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3001. /* Note: autonegotiation disable, speed 1000 intentionally
  3002. * forbidden - noone should need that. */
  3003. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3004. return -EINVAL;
  3005. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3006. return -EINVAL;
  3007. } else {
  3008. return -EINVAL;
  3009. }
  3010. netif_carrier_off(dev);
  3011. if (netif_running(dev)) {
  3012. nv_disable_irq(dev);
  3013. netif_tx_lock_bh(dev);
  3014. spin_lock(&np->lock);
  3015. /* stop engines */
  3016. nv_stop_rx(dev);
  3017. nv_stop_tx(dev);
  3018. spin_unlock(&np->lock);
  3019. netif_tx_unlock_bh(dev);
  3020. }
  3021. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3022. int adv, bmcr;
  3023. np->autoneg = 1;
  3024. /* advertise only what has been requested */
  3025. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3026. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3027. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3028. adv |= ADVERTISE_10HALF;
  3029. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3030. adv |= ADVERTISE_10FULL;
  3031. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3032. adv |= ADVERTISE_100HALF;
  3033. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3034. adv |= ADVERTISE_100FULL;
  3035. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3036. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3037. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3038. adv |= ADVERTISE_PAUSE_ASYM;
  3039. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3040. if (np->gigabit == PHY_GIGABIT) {
  3041. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3042. adv &= ~ADVERTISE_1000FULL;
  3043. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3044. adv |= ADVERTISE_1000FULL;
  3045. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3046. }
  3047. if (netif_running(dev))
  3048. printk(KERN_INFO "%s: link down.\n", dev->name);
  3049. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3050. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3051. bmcr |= BMCR_ANENABLE;
  3052. /* reset the phy in order for settings to stick,
  3053. * and cause autoneg to start */
  3054. if (phy_reset(dev, bmcr)) {
  3055. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3056. return -EINVAL;
  3057. }
  3058. } else {
  3059. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3060. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3061. }
  3062. } else {
  3063. int adv, bmcr;
  3064. np->autoneg = 0;
  3065. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3066. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3067. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3068. adv |= ADVERTISE_10HALF;
  3069. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3070. adv |= ADVERTISE_10FULL;
  3071. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3072. adv |= ADVERTISE_100HALF;
  3073. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3074. adv |= ADVERTISE_100FULL;
  3075. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3076. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3077. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3078. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3079. }
  3080. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3081. adv |= ADVERTISE_PAUSE_ASYM;
  3082. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3083. }
  3084. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3085. np->fixed_mode = adv;
  3086. if (np->gigabit == PHY_GIGABIT) {
  3087. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3088. adv &= ~ADVERTISE_1000FULL;
  3089. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3090. }
  3091. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3092. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3093. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3094. bmcr |= BMCR_FULLDPLX;
  3095. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3096. bmcr |= BMCR_SPEED100;
  3097. if (np->phy_oui == PHY_OUI_MARVELL) {
  3098. /* reset the phy in order for forced mode settings to stick */
  3099. if (phy_reset(dev, bmcr)) {
  3100. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3101. return -EINVAL;
  3102. }
  3103. } else {
  3104. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3105. if (netif_running(dev)) {
  3106. /* Wait a bit and then reconfigure the nic. */
  3107. udelay(10);
  3108. nv_linkchange(dev);
  3109. }
  3110. }
  3111. }
  3112. if (netif_running(dev)) {
  3113. nv_start_rx(dev);
  3114. nv_start_tx(dev);
  3115. nv_enable_irq(dev);
  3116. }
  3117. return 0;
  3118. }
  3119. #define FORCEDETH_REGS_VER 1
  3120. static int nv_get_regs_len(struct net_device *dev)
  3121. {
  3122. struct fe_priv *np = netdev_priv(dev);
  3123. return np->register_size;
  3124. }
  3125. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3126. {
  3127. struct fe_priv *np = netdev_priv(dev);
  3128. u8 __iomem *base = get_hwbase(dev);
  3129. u32 *rbuf = buf;
  3130. int i;
  3131. regs->version = FORCEDETH_REGS_VER;
  3132. spin_lock_irq(&np->lock);
  3133. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3134. rbuf[i] = readl(base + i*sizeof(u32));
  3135. spin_unlock_irq(&np->lock);
  3136. }
  3137. static int nv_nway_reset(struct net_device *dev)
  3138. {
  3139. struct fe_priv *np = netdev_priv(dev);
  3140. int ret;
  3141. if (np->autoneg) {
  3142. int bmcr;
  3143. netif_carrier_off(dev);
  3144. if (netif_running(dev)) {
  3145. nv_disable_irq(dev);
  3146. netif_tx_lock_bh(dev);
  3147. spin_lock(&np->lock);
  3148. /* stop engines */
  3149. nv_stop_rx(dev);
  3150. nv_stop_tx(dev);
  3151. spin_unlock(&np->lock);
  3152. netif_tx_unlock_bh(dev);
  3153. printk(KERN_INFO "%s: link down.\n", dev->name);
  3154. }
  3155. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3156. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3157. bmcr |= BMCR_ANENABLE;
  3158. /* reset the phy in order for settings to stick*/
  3159. if (phy_reset(dev, bmcr)) {
  3160. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3161. return -EINVAL;
  3162. }
  3163. } else {
  3164. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3165. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3166. }
  3167. if (netif_running(dev)) {
  3168. nv_start_rx(dev);
  3169. nv_start_tx(dev);
  3170. nv_enable_irq(dev);
  3171. }
  3172. ret = 0;
  3173. } else {
  3174. ret = -EINVAL;
  3175. }
  3176. return ret;
  3177. }
  3178. static int nv_set_tso(struct net_device *dev, u32 value)
  3179. {
  3180. struct fe_priv *np = netdev_priv(dev);
  3181. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3182. return ethtool_op_set_tso(dev, value);
  3183. else
  3184. return -EOPNOTSUPP;
  3185. }
  3186. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3187. {
  3188. struct fe_priv *np = netdev_priv(dev);
  3189. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3190. ring->rx_mini_max_pending = 0;
  3191. ring->rx_jumbo_max_pending = 0;
  3192. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3193. ring->rx_pending = np->rx_ring_size;
  3194. ring->rx_mini_pending = 0;
  3195. ring->rx_jumbo_pending = 0;
  3196. ring->tx_pending = np->tx_ring_size;
  3197. }
  3198. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3199. {
  3200. struct fe_priv *np = netdev_priv(dev);
  3201. u8 __iomem *base = get_hwbase(dev);
  3202. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3203. dma_addr_t ring_addr;
  3204. if (ring->rx_pending < RX_RING_MIN ||
  3205. ring->tx_pending < TX_RING_MIN ||
  3206. ring->rx_mini_pending != 0 ||
  3207. ring->rx_jumbo_pending != 0 ||
  3208. (np->desc_ver == DESC_VER_1 &&
  3209. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3210. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3211. (np->desc_ver != DESC_VER_1 &&
  3212. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3213. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3214. return -EINVAL;
  3215. }
  3216. /* allocate new rings */
  3217. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3218. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3219. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3220. &ring_addr);
  3221. } else {
  3222. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3223. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3224. &ring_addr);
  3225. }
  3226. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3227. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3228. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3229. /* fall back to old rings */
  3230. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3231. if (rxtx_ring)
  3232. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3233. rxtx_ring, ring_addr);
  3234. } else {
  3235. if (rxtx_ring)
  3236. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3237. rxtx_ring, ring_addr);
  3238. }
  3239. if (rx_skbuff)
  3240. kfree(rx_skbuff);
  3241. if (tx_skbuff)
  3242. kfree(tx_skbuff);
  3243. goto exit;
  3244. }
  3245. if (netif_running(dev)) {
  3246. nv_disable_irq(dev);
  3247. netif_tx_lock_bh(dev);
  3248. spin_lock(&np->lock);
  3249. /* stop engines */
  3250. nv_stop_rx(dev);
  3251. nv_stop_tx(dev);
  3252. nv_txrx_reset(dev);
  3253. /* drain queues */
  3254. nv_drain_rx(dev);
  3255. nv_drain_tx(dev);
  3256. /* delete queues */
  3257. free_rings(dev);
  3258. }
  3259. /* set new values */
  3260. np->rx_ring_size = ring->rx_pending;
  3261. np->tx_ring_size = ring->tx_pending;
  3262. np->tx_limit_stop = TX_LIMIT_DIFFERENCE;
  3263. np->tx_limit_start = TX_LIMIT_DIFFERENCE;
  3264. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3265. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3266. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3267. } else {
  3268. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3269. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3270. }
  3271. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3272. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3273. np->ring_addr = ring_addr;
  3274. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3275. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3276. if (netif_running(dev)) {
  3277. /* reinit driver view of the queues */
  3278. set_bufsize(dev);
  3279. if (nv_init_ring(dev)) {
  3280. if (!np->in_shutdown)
  3281. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3282. }
  3283. /* reinit nic view of the queues */
  3284. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3285. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3286. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3287. base + NvRegRingSizes);
  3288. pci_push(base);
  3289. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3290. pci_push(base);
  3291. /* restart engines */
  3292. nv_start_rx(dev);
  3293. nv_start_tx(dev);
  3294. spin_unlock(&np->lock);
  3295. netif_tx_unlock_bh(dev);
  3296. nv_enable_irq(dev);
  3297. }
  3298. return 0;
  3299. exit:
  3300. return -ENOMEM;
  3301. }
  3302. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3303. {
  3304. struct fe_priv *np = netdev_priv(dev);
  3305. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3306. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3307. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3308. }
  3309. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3310. {
  3311. struct fe_priv *np = netdev_priv(dev);
  3312. int adv, bmcr;
  3313. if ((!np->autoneg && np->duplex == 0) ||
  3314. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3315. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3316. dev->name);
  3317. return -EINVAL;
  3318. }
  3319. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3320. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3321. return -EINVAL;
  3322. }
  3323. netif_carrier_off(dev);
  3324. if (netif_running(dev)) {
  3325. nv_disable_irq(dev);
  3326. netif_tx_lock_bh(dev);
  3327. spin_lock(&np->lock);
  3328. /* stop engines */
  3329. nv_stop_rx(dev);
  3330. nv_stop_tx(dev);
  3331. spin_unlock(&np->lock);
  3332. netif_tx_unlock_bh(dev);
  3333. }
  3334. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3335. if (pause->rx_pause)
  3336. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3337. if (pause->tx_pause)
  3338. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3339. if (np->autoneg && pause->autoneg) {
  3340. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3341. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3342. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3343. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3344. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3345. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3346. adv |= ADVERTISE_PAUSE_ASYM;
  3347. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3348. if (netif_running(dev))
  3349. printk(KERN_INFO "%s: link down.\n", dev->name);
  3350. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3351. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3352. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3353. } else {
  3354. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3355. if (pause->rx_pause)
  3356. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3357. if (pause->tx_pause)
  3358. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3359. if (!netif_running(dev))
  3360. nv_update_linkspeed(dev);
  3361. else
  3362. nv_update_pause(dev, np->pause_flags);
  3363. }
  3364. if (netif_running(dev)) {
  3365. nv_start_rx(dev);
  3366. nv_start_tx(dev);
  3367. nv_enable_irq(dev);
  3368. }
  3369. return 0;
  3370. }
  3371. static u32 nv_get_rx_csum(struct net_device *dev)
  3372. {
  3373. struct fe_priv *np = netdev_priv(dev);
  3374. return (np->rx_csum) != 0;
  3375. }
  3376. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3377. {
  3378. struct fe_priv *np = netdev_priv(dev);
  3379. u8 __iomem *base = get_hwbase(dev);
  3380. int retcode = 0;
  3381. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3382. if (data) {
  3383. np->rx_csum = 1;
  3384. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3385. } else {
  3386. np->rx_csum = 0;
  3387. /* vlan is dependent on rx checksum offload */
  3388. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3389. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3390. }
  3391. if (netif_running(dev)) {
  3392. spin_lock_irq(&np->lock);
  3393. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3394. spin_unlock_irq(&np->lock);
  3395. }
  3396. } else {
  3397. return -EINVAL;
  3398. }
  3399. return retcode;
  3400. }
  3401. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3402. {
  3403. struct fe_priv *np = netdev_priv(dev);
  3404. if (np->driver_data & DEV_HAS_CHECKSUM)
  3405. return ethtool_op_set_tx_hw_csum(dev, data);
  3406. else
  3407. return -EOPNOTSUPP;
  3408. }
  3409. static int nv_set_sg(struct net_device *dev, u32 data)
  3410. {
  3411. struct fe_priv *np = netdev_priv(dev);
  3412. if (np->driver_data & DEV_HAS_CHECKSUM)
  3413. return ethtool_op_set_sg(dev, data);
  3414. else
  3415. return -EOPNOTSUPP;
  3416. }
  3417. static int nv_get_stats_count(struct net_device *dev)
  3418. {
  3419. struct fe_priv *np = netdev_priv(dev);
  3420. if (np->driver_data & DEV_HAS_STATISTICS)
  3421. return sizeof(struct nv_ethtool_stats)/sizeof(u64);
  3422. else
  3423. return 0;
  3424. }
  3425. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3426. {
  3427. struct fe_priv *np = netdev_priv(dev);
  3428. /* update stats */
  3429. nv_do_stats_poll((unsigned long)dev);
  3430. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3431. }
  3432. static int nv_self_test_count(struct net_device *dev)
  3433. {
  3434. struct fe_priv *np = netdev_priv(dev);
  3435. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3436. return NV_TEST_COUNT_EXTENDED;
  3437. else
  3438. return NV_TEST_COUNT_BASE;
  3439. }
  3440. static int nv_link_test(struct net_device *dev)
  3441. {
  3442. struct fe_priv *np = netdev_priv(dev);
  3443. int mii_status;
  3444. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3445. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3446. /* check phy link status */
  3447. if (!(mii_status & BMSR_LSTATUS))
  3448. return 0;
  3449. else
  3450. return 1;
  3451. }
  3452. static int nv_register_test(struct net_device *dev)
  3453. {
  3454. u8 __iomem *base = get_hwbase(dev);
  3455. int i = 0;
  3456. u32 orig_read, new_read;
  3457. do {
  3458. orig_read = readl(base + nv_registers_test[i].reg);
  3459. /* xor with mask to toggle bits */
  3460. orig_read ^= nv_registers_test[i].mask;
  3461. writel(orig_read, base + nv_registers_test[i].reg);
  3462. new_read = readl(base + nv_registers_test[i].reg);
  3463. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3464. return 0;
  3465. /* restore original value */
  3466. orig_read ^= nv_registers_test[i].mask;
  3467. writel(orig_read, base + nv_registers_test[i].reg);
  3468. } while (nv_registers_test[++i].reg != 0);
  3469. return 1;
  3470. }
  3471. static int nv_interrupt_test(struct net_device *dev)
  3472. {
  3473. struct fe_priv *np = netdev_priv(dev);
  3474. u8 __iomem *base = get_hwbase(dev);
  3475. int ret = 1;
  3476. int testcnt;
  3477. u32 save_msi_flags, save_poll_interval = 0;
  3478. if (netif_running(dev)) {
  3479. /* free current irq */
  3480. nv_free_irq(dev);
  3481. save_poll_interval = readl(base+NvRegPollingInterval);
  3482. }
  3483. /* flag to test interrupt handler */
  3484. np->intr_test = 0;
  3485. /* setup test irq */
  3486. save_msi_flags = np->msi_flags;
  3487. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3488. np->msi_flags |= 0x001; /* setup 1 vector */
  3489. if (nv_request_irq(dev, 1))
  3490. return 0;
  3491. /* setup timer interrupt */
  3492. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3493. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3494. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3495. /* wait for at least one interrupt */
  3496. msleep(100);
  3497. spin_lock_irq(&np->lock);
  3498. /* flag should be set within ISR */
  3499. testcnt = np->intr_test;
  3500. if (!testcnt)
  3501. ret = 2;
  3502. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3503. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3504. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3505. else
  3506. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3507. spin_unlock_irq(&np->lock);
  3508. nv_free_irq(dev);
  3509. np->msi_flags = save_msi_flags;
  3510. if (netif_running(dev)) {
  3511. writel(save_poll_interval, base + NvRegPollingInterval);
  3512. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3513. /* restore original irq */
  3514. if (nv_request_irq(dev, 0))
  3515. return 0;
  3516. }
  3517. return ret;
  3518. }
  3519. static int nv_loopback_test(struct net_device *dev)
  3520. {
  3521. struct fe_priv *np = netdev_priv(dev);
  3522. u8 __iomem *base = get_hwbase(dev);
  3523. struct sk_buff *tx_skb, *rx_skb;
  3524. dma_addr_t test_dma_addr;
  3525. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3526. u32 flags;
  3527. int len, i, pkt_len;
  3528. u8 *pkt_data;
  3529. u32 filter_flags = 0;
  3530. u32 misc1_flags = 0;
  3531. int ret = 1;
  3532. if (netif_running(dev)) {
  3533. nv_disable_irq(dev);
  3534. filter_flags = readl(base + NvRegPacketFilterFlags);
  3535. misc1_flags = readl(base + NvRegMisc1);
  3536. } else {
  3537. nv_txrx_reset(dev);
  3538. }
  3539. /* reinit driver view of the rx queue */
  3540. set_bufsize(dev);
  3541. nv_init_ring(dev);
  3542. /* setup hardware for loopback */
  3543. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3544. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3545. /* reinit nic view of the rx queue */
  3546. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3547. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3548. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3549. base + NvRegRingSizes);
  3550. pci_push(base);
  3551. /* restart rx engine */
  3552. nv_start_rx(dev);
  3553. nv_start_tx(dev);
  3554. /* setup packet for tx */
  3555. pkt_len = ETH_DATA_LEN;
  3556. tx_skb = dev_alloc_skb(pkt_len);
  3557. if (!tx_skb) {
  3558. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  3559. " of %s\n", dev->name);
  3560. ret = 0;
  3561. goto out;
  3562. }
  3563. pkt_data = skb_put(tx_skb, pkt_len);
  3564. for (i = 0; i < pkt_len; i++)
  3565. pkt_data[i] = (u8)(i & 0xff);
  3566. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3567. tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
  3568. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3569. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  3570. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3571. } else {
  3572. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  3573. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3574. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3575. }
  3576. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3577. pci_push(get_hwbase(dev));
  3578. msleep(500);
  3579. /* check for rx of the packet */
  3580. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3581. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  3582. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  3583. } else {
  3584. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  3585. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  3586. }
  3587. if (flags & NV_RX_AVAIL) {
  3588. ret = 0;
  3589. } else if (np->desc_ver == DESC_VER_1) {
  3590. if (flags & NV_RX_ERROR)
  3591. ret = 0;
  3592. } else {
  3593. if (flags & NV_RX2_ERROR) {
  3594. ret = 0;
  3595. }
  3596. }
  3597. if (ret) {
  3598. if (len != pkt_len) {
  3599. ret = 0;
  3600. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  3601. dev->name, len, pkt_len);
  3602. } else {
  3603. rx_skb = np->rx_skb[0].skb;
  3604. for (i = 0; i < pkt_len; i++) {
  3605. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  3606. ret = 0;
  3607. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  3608. dev->name, i);
  3609. break;
  3610. }
  3611. }
  3612. }
  3613. } else {
  3614. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  3615. }
  3616. pci_unmap_page(np->pci_dev, test_dma_addr,
  3617. tx_skb->end-tx_skb->data,
  3618. PCI_DMA_TODEVICE);
  3619. dev_kfree_skb_any(tx_skb);
  3620. out:
  3621. /* stop engines */
  3622. nv_stop_rx(dev);
  3623. nv_stop_tx(dev);
  3624. nv_txrx_reset(dev);
  3625. /* drain rx queue */
  3626. nv_drain_rx(dev);
  3627. nv_drain_tx(dev);
  3628. if (netif_running(dev)) {
  3629. writel(misc1_flags, base + NvRegMisc1);
  3630. writel(filter_flags, base + NvRegPacketFilterFlags);
  3631. nv_enable_irq(dev);
  3632. }
  3633. return ret;
  3634. }
  3635. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  3636. {
  3637. struct fe_priv *np = netdev_priv(dev);
  3638. u8 __iomem *base = get_hwbase(dev);
  3639. int result;
  3640. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  3641. if (!nv_link_test(dev)) {
  3642. test->flags |= ETH_TEST_FL_FAILED;
  3643. buffer[0] = 1;
  3644. }
  3645. if (test->flags & ETH_TEST_FL_OFFLINE) {
  3646. if (netif_running(dev)) {
  3647. netif_stop_queue(dev);
  3648. netif_poll_disable(dev);
  3649. netif_tx_lock_bh(dev);
  3650. spin_lock_irq(&np->lock);
  3651. nv_disable_hw_interrupts(dev, np->irqmask);
  3652. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3653. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3654. } else {
  3655. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3656. }
  3657. /* stop engines */
  3658. nv_stop_rx(dev);
  3659. nv_stop_tx(dev);
  3660. nv_txrx_reset(dev);
  3661. /* drain rx queue */
  3662. nv_drain_rx(dev);
  3663. nv_drain_tx(dev);
  3664. spin_unlock_irq(&np->lock);
  3665. netif_tx_unlock_bh(dev);
  3666. }
  3667. if (!nv_register_test(dev)) {
  3668. test->flags |= ETH_TEST_FL_FAILED;
  3669. buffer[1] = 1;
  3670. }
  3671. result = nv_interrupt_test(dev);
  3672. if (result != 1) {
  3673. test->flags |= ETH_TEST_FL_FAILED;
  3674. buffer[2] = 1;
  3675. }
  3676. if (result == 0) {
  3677. /* bail out */
  3678. return;
  3679. }
  3680. if (!nv_loopback_test(dev)) {
  3681. test->flags |= ETH_TEST_FL_FAILED;
  3682. buffer[3] = 1;
  3683. }
  3684. if (netif_running(dev)) {
  3685. /* reinit driver view of the rx queue */
  3686. set_bufsize(dev);
  3687. if (nv_init_ring(dev)) {
  3688. if (!np->in_shutdown)
  3689. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3690. }
  3691. /* reinit nic view of the rx queue */
  3692. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3693. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3694. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3695. base + NvRegRingSizes);
  3696. pci_push(base);
  3697. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3698. pci_push(base);
  3699. /* restart rx engine */
  3700. nv_start_rx(dev);
  3701. nv_start_tx(dev);
  3702. netif_start_queue(dev);
  3703. netif_poll_enable(dev);
  3704. nv_enable_hw_interrupts(dev, np->irqmask);
  3705. }
  3706. }
  3707. }
  3708. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  3709. {
  3710. switch (stringset) {
  3711. case ETH_SS_STATS:
  3712. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  3713. break;
  3714. case ETH_SS_TEST:
  3715. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  3716. break;
  3717. }
  3718. }
  3719. static const struct ethtool_ops ops = {
  3720. .get_drvinfo = nv_get_drvinfo,
  3721. .get_link = ethtool_op_get_link,
  3722. .get_wol = nv_get_wol,
  3723. .set_wol = nv_set_wol,
  3724. .get_settings = nv_get_settings,
  3725. .set_settings = nv_set_settings,
  3726. .get_regs_len = nv_get_regs_len,
  3727. .get_regs = nv_get_regs,
  3728. .nway_reset = nv_nway_reset,
  3729. .get_perm_addr = ethtool_op_get_perm_addr,
  3730. .get_tso = ethtool_op_get_tso,
  3731. .set_tso = nv_set_tso,
  3732. .get_ringparam = nv_get_ringparam,
  3733. .set_ringparam = nv_set_ringparam,
  3734. .get_pauseparam = nv_get_pauseparam,
  3735. .set_pauseparam = nv_set_pauseparam,
  3736. .get_rx_csum = nv_get_rx_csum,
  3737. .set_rx_csum = nv_set_rx_csum,
  3738. .get_tx_csum = ethtool_op_get_tx_csum,
  3739. .set_tx_csum = nv_set_tx_csum,
  3740. .get_sg = ethtool_op_get_sg,
  3741. .set_sg = nv_set_sg,
  3742. .get_strings = nv_get_strings,
  3743. .get_stats_count = nv_get_stats_count,
  3744. .get_ethtool_stats = nv_get_ethtool_stats,
  3745. .self_test_count = nv_self_test_count,
  3746. .self_test = nv_self_test,
  3747. };
  3748. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  3749. {
  3750. struct fe_priv *np = get_nvpriv(dev);
  3751. spin_lock_irq(&np->lock);
  3752. /* save vlan group */
  3753. np->vlangrp = grp;
  3754. if (grp) {
  3755. /* enable vlan on MAC */
  3756. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  3757. } else {
  3758. /* disable vlan on MAC */
  3759. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  3760. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  3761. }
  3762. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3763. spin_unlock_irq(&np->lock);
  3764. };
  3765. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  3766. {
  3767. /* nothing to do */
  3768. };
  3769. /* The mgmt unit and driver use a semaphore to access the phy during init */
  3770. static int nv_mgmt_acquire_sema(struct net_device *dev)
  3771. {
  3772. u8 __iomem *base = get_hwbase(dev);
  3773. int i;
  3774. u32 tx_ctrl, mgmt_sema;
  3775. for (i = 0; i < 10; i++) {
  3776. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  3777. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  3778. break;
  3779. msleep(500);
  3780. }
  3781. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  3782. return 0;
  3783. for (i = 0; i < 2; i++) {
  3784. tx_ctrl = readl(base + NvRegTransmitterControl);
  3785. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  3786. writel(tx_ctrl, base + NvRegTransmitterControl);
  3787. /* verify that semaphore was acquired */
  3788. tx_ctrl = readl(base + NvRegTransmitterControl);
  3789. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  3790. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  3791. return 1;
  3792. else
  3793. udelay(50);
  3794. }
  3795. return 0;
  3796. }
  3797. static int nv_open(struct net_device *dev)
  3798. {
  3799. struct fe_priv *np = netdev_priv(dev);
  3800. u8 __iomem *base = get_hwbase(dev);
  3801. int ret = 1;
  3802. int oom, i;
  3803. dprintk(KERN_DEBUG "nv_open: begin\n");
  3804. /* erase previous misconfiguration */
  3805. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3806. nv_mac_reset(dev);
  3807. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3808. writel(0, base + NvRegMulticastAddrB);
  3809. writel(0, base + NvRegMulticastMaskA);
  3810. writel(0, base + NvRegMulticastMaskB);
  3811. writel(0, base + NvRegPacketFilterFlags);
  3812. writel(0, base + NvRegTransmitterControl);
  3813. writel(0, base + NvRegReceiverControl);
  3814. writel(0, base + NvRegAdapterControl);
  3815. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3816. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3817. /* initialize descriptor rings */
  3818. set_bufsize(dev);
  3819. oom = nv_init_ring(dev);
  3820. writel(0, base + NvRegLinkSpeed);
  3821. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3822. nv_txrx_reset(dev);
  3823. writel(0, base + NvRegUnknownSetupReg6);
  3824. np->in_shutdown = 0;
  3825. /* give hw rings */
  3826. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3827. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3828. base + NvRegRingSizes);
  3829. writel(np->linkspeed, base + NvRegLinkSpeed);
  3830. if (np->desc_ver == DESC_VER_1)
  3831. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  3832. else
  3833. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  3834. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3835. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3836. pci_push(base);
  3837. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3838. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3839. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3840. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3841. writel(0, base + NvRegMIIMask);
  3842. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3843. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3844. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3845. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3846. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3847. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3848. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3849. get_random_bytes(&i, sizeof(i));
  3850. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3851. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  3852. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  3853. if (poll_interval == -1) {
  3854. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3855. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3856. else
  3857. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3858. }
  3859. else
  3860. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3861. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3862. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3863. base + NvRegAdapterControl);
  3864. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3865. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  3866. if (np->wolenabled)
  3867. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3868. i = readl(base + NvRegPowerState);
  3869. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3870. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3871. pci_push(base);
  3872. udelay(10);
  3873. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3874. nv_disable_hw_interrupts(dev, np->irqmask);
  3875. pci_push(base);
  3876. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3877. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3878. pci_push(base);
  3879. if (nv_request_irq(dev, 0)) {
  3880. goto out_drain;
  3881. }
  3882. /* ask for interrupts */
  3883. nv_enable_hw_interrupts(dev, np->irqmask);
  3884. spin_lock_irq(&np->lock);
  3885. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3886. writel(0, base + NvRegMulticastAddrB);
  3887. writel(0, base + NvRegMulticastMaskA);
  3888. writel(0, base + NvRegMulticastMaskB);
  3889. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3890. /* One manual link speed update: Interrupts are enabled, future link
  3891. * speed changes cause interrupts and are handled by nv_link_irq().
  3892. */
  3893. {
  3894. u32 miistat;
  3895. miistat = readl(base + NvRegMIIStatus);
  3896. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3897. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3898. }
  3899. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3900. * to init hw */
  3901. np->linkspeed = 0;
  3902. ret = nv_update_linkspeed(dev);
  3903. nv_start_rx(dev);
  3904. nv_start_tx(dev);
  3905. netif_start_queue(dev);
  3906. netif_poll_enable(dev);
  3907. if (ret) {
  3908. netif_carrier_on(dev);
  3909. } else {
  3910. printk("%s: no link during initialization.\n", dev->name);
  3911. netif_carrier_off(dev);
  3912. }
  3913. if (oom)
  3914. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3915. /* start statistics timer */
  3916. if (np->driver_data & DEV_HAS_STATISTICS)
  3917. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3918. spin_unlock_irq(&np->lock);
  3919. return 0;
  3920. out_drain:
  3921. drain_ring(dev);
  3922. return ret;
  3923. }
  3924. static int nv_close(struct net_device *dev)
  3925. {
  3926. struct fe_priv *np = netdev_priv(dev);
  3927. u8 __iomem *base;
  3928. spin_lock_irq(&np->lock);
  3929. np->in_shutdown = 1;
  3930. spin_unlock_irq(&np->lock);
  3931. netif_poll_disable(dev);
  3932. synchronize_irq(dev->irq);
  3933. del_timer_sync(&np->oom_kick);
  3934. del_timer_sync(&np->nic_poll);
  3935. del_timer_sync(&np->stats_poll);
  3936. netif_stop_queue(dev);
  3937. spin_lock_irq(&np->lock);
  3938. nv_stop_tx(dev);
  3939. nv_stop_rx(dev);
  3940. nv_txrx_reset(dev);
  3941. /* disable interrupts on the nic or we will lock up */
  3942. base = get_hwbase(dev);
  3943. nv_disable_hw_interrupts(dev, np->irqmask);
  3944. pci_push(base);
  3945. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3946. spin_unlock_irq(&np->lock);
  3947. nv_free_irq(dev);
  3948. drain_ring(dev);
  3949. if (np->wolenabled)
  3950. nv_start_rx(dev);
  3951. /* FIXME: power down nic */
  3952. return 0;
  3953. }
  3954. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3955. {
  3956. struct net_device *dev;
  3957. struct fe_priv *np;
  3958. unsigned long addr;
  3959. u8 __iomem *base;
  3960. int err, i;
  3961. u32 powerstate, txreg;
  3962. u32 phystate_orig = 0, phystate;
  3963. int phyinitialized = 0;
  3964. dev = alloc_etherdev(sizeof(struct fe_priv));
  3965. err = -ENOMEM;
  3966. if (!dev)
  3967. goto out;
  3968. np = netdev_priv(dev);
  3969. np->pci_dev = pci_dev;
  3970. spin_lock_init(&np->lock);
  3971. SET_MODULE_OWNER(dev);
  3972. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3973. init_timer(&np->oom_kick);
  3974. np->oom_kick.data = (unsigned long) dev;
  3975. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3976. init_timer(&np->nic_poll);
  3977. np->nic_poll.data = (unsigned long) dev;
  3978. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3979. init_timer(&np->stats_poll);
  3980. np->stats_poll.data = (unsigned long) dev;
  3981. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3982. err = pci_enable_device(pci_dev);
  3983. if (err) {
  3984. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3985. err, pci_name(pci_dev));
  3986. goto out_free;
  3987. }
  3988. pci_set_master(pci_dev);
  3989. err = pci_request_regions(pci_dev, DRV_NAME);
  3990. if (err < 0)
  3991. goto out_disable;
  3992. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3993. np->register_size = NV_PCI_REGSZ_VER2;
  3994. else
  3995. np->register_size = NV_PCI_REGSZ_VER1;
  3996. err = -EINVAL;
  3997. addr = 0;
  3998. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3999. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4000. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4001. pci_resource_len(pci_dev, i),
  4002. pci_resource_flags(pci_dev, i));
  4003. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4004. pci_resource_len(pci_dev, i) >= np->register_size) {
  4005. addr = pci_resource_start(pci_dev, i);
  4006. break;
  4007. }
  4008. }
  4009. if (i == DEVICE_COUNT_RESOURCE) {
  4010. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  4011. pci_name(pci_dev));
  4012. goto out_relreg;
  4013. }
  4014. /* copy of driver data */
  4015. np->driver_data = id->driver_data;
  4016. /* handle different descriptor versions */
  4017. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4018. /* packet format 3: supports 40-bit addressing */
  4019. np->desc_ver = DESC_VER_3;
  4020. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4021. if (dma_64bit) {
  4022. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4023. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  4024. pci_name(pci_dev));
  4025. } else {
  4026. dev->features |= NETIF_F_HIGHDMA;
  4027. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  4028. }
  4029. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4030. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  4031. pci_name(pci_dev));
  4032. }
  4033. }
  4034. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4035. /* packet format 2: supports jumbo frames */
  4036. np->desc_ver = DESC_VER_2;
  4037. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4038. } else {
  4039. /* original packet format */
  4040. np->desc_ver = DESC_VER_1;
  4041. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4042. }
  4043. np->pkt_limit = NV_PKTLIMIT_1;
  4044. if (id->driver_data & DEV_HAS_LARGEDESC)
  4045. np->pkt_limit = NV_PKTLIMIT_2;
  4046. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4047. np->rx_csum = 1;
  4048. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4049. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4050. dev->features |= NETIF_F_TSO;
  4051. }
  4052. np->vlanctl_bits = 0;
  4053. if (id->driver_data & DEV_HAS_VLAN) {
  4054. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4055. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4056. dev->vlan_rx_register = nv_vlan_rx_register;
  4057. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  4058. }
  4059. np->msi_flags = 0;
  4060. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4061. np->msi_flags |= NV_MSI_CAPABLE;
  4062. }
  4063. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4064. np->msi_flags |= NV_MSI_X_CAPABLE;
  4065. }
  4066. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4067. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4068. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4069. }
  4070. err = -ENOMEM;
  4071. np->base = ioremap(addr, np->register_size);
  4072. if (!np->base)
  4073. goto out_relreg;
  4074. dev->base_addr = (unsigned long)np->base;
  4075. dev->irq = pci_dev->irq;
  4076. np->rx_ring_size = RX_RING_DEFAULT;
  4077. np->tx_ring_size = TX_RING_DEFAULT;
  4078. np->tx_limit_stop = TX_LIMIT_DIFFERENCE;
  4079. np->tx_limit_start = TX_LIMIT_DIFFERENCE;
  4080. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4081. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4082. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4083. &np->ring_addr);
  4084. if (!np->rx_ring.orig)
  4085. goto out_unmap;
  4086. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4087. } else {
  4088. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4089. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4090. &np->ring_addr);
  4091. if (!np->rx_ring.ex)
  4092. goto out_unmap;
  4093. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4094. }
  4095. np->rx_skb = kmalloc(sizeof(struct nv_skb_map) * np->rx_ring_size, GFP_KERNEL);
  4096. np->tx_skb = kmalloc(sizeof(struct nv_skb_map) * np->tx_ring_size, GFP_KERNEL);
  4097. if (!np->rx_skb || !np->tx_skb)
  4098. goto out_freering;
  4099. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4100. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4101. dev->open = nv_open;
  4102. dev->stop = nv_close;
  4103. dev->hard_start_xmit = nv_start_xmit;
  4104. dev->get_stats = nv_get_stats;
  4105. dev->change_mtu = nv_change_mtu;
  4106. dev->set_mac_address = nv_set_mac_address;
  4107. dev->set_multicast_list = nv_set_multicast;
  4108. #ifdef CONFIG_NET_POLL_CONTROLLER
  4109. dev->poll_controller = nv_poll_controller;
  4110. #endif
  4111. dev->weight = 64;
  4112. #ifdef CONFIG_FORCEDETH_NAPI
  4113. dev->poll = nv_napi_poll;
  4114. #endif
  4115. SET_ETHTOOL_OPS(dev, &ops);
  4116. dev->tx_timeout = nv_tx_timeout;
  4117. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4118. pci_set_drvdata(pci_dev, dev);
  4119. /* read the mac address */
  4120. base = get_hwbase(dev);
  4121. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4122. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4123. /* check the workaround bit for correct mac address order */
  4124. txreg = readl(base + NvRegTransmitPoll);
  4125. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4126. /* mac address is already in correct order */
  4127. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4128. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4129. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4130. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4131. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4132. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4133. } else {
  4134. /* need to reverse mac address to correct order */
  4135. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4136. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4137. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4138. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4139. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4140. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4141. /* set permanent address to be correct aswell */
  4142. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4143. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4144. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4145. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4146. }
  4147. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4148. if (!is_valid_ether_addr(dev->perm_addr)) {
  4149. /*
  4150. * Bad mac address. At least one bios sets the mac address
  4151. * to 01:23:45:67:89:ab
  4152. */
  4153. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  4154. pci_name(pci_dev),
  4155. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4156. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4157. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4158. dev->dev_addr[0] = 0x00;
  4159. dev->dev_addr[1] = 0x00;
  4160. dev->dev_addr[2] = 0x6c;
  4161. get_random_bytes(&dev->dev_addr[3], 3);
  4162. }
  4163. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  4164. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4165. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4166. /* set mac address */
  4167. nv_copy_mac_to_hw(dev);
  4168. /* disable WOL */
  4169. writel(0, base + NvRegWakeUpFlags);
  4170. np->wolenabled = 0;
  4171. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4172. u8 revision_id;
  4173. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  4174. /* take phy and nic out of low power mode */
  4175. powerstate = readl(base + NvRegPowerState2);
  4176. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4177. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4178. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4179. revision_id >= 0xA3)
  4180. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4181. writel(powerstate, base + NvRegPowerState2);
  4182. }
  4183. if (np->desc_ver == DESC_VER_1) {
  4184. np->tx_flags = NV_TX_VALID;
  4185. } else {
  4186. np->tx_flags = NV_TX2_VALID;
  4187. }
  4188. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4189. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4190. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4191. np->msi_flags |= 0x0003;
  4192. } else {
  4193. np->irqmask = NVREG_IRQMASK_CPU;
  4194. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4195. np->msi_flags |= 0x0001;
  4196. }
  4197. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4198. np->irqmask |= NVREG_IRQ_TIMER;
  4199. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4200. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4201. np->need_linktimer = 1;
  4202. np->link_timeout = jiffies + LINK_TIMEOUT;
  4203. } else {
  4204. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4205. np->need_linktimer = 0;
  4206. }
  4207. /* clear phy state and temporarily halt phy interrupts */
  4208. writel(0, base + NvRegMIIMask);
  4209. phystate = readl(base + NvRegAdapterControl);
  4210. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4211. phystate_orig = 1;
  4212. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4213. writel(phystate, base + NvRegAdapterControl);
  4214. }
  4215. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4216. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4217. /* management unit running on the mac? */
  4218. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4219. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4220. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4221. for (i = 0; i < 5000; i++) {
  4222. msleep(1);
  4223. if (nv_mgmt_acquire_sema(dev)) {
  4224. /* management unit setup the phy already? */
  4225. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4226. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4227. /* phy is inited by mgmt unit */
  4228. phyinitialized = 1;
  4229. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4230. } else {
  4231. /* we need to init the phy */
  4232. }
  4233. break;
  4234. }
  4235. }
  4236. }
  4237. }
  4238. /* find a suitable phy */
  4239. for (i = 1; i <= 32; i++) {
  4240. int id1, id2;
  4241. int phyaddr = i & 0x1F;
  4242. spin_lock_irq(&np->lock);
  4243. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4244. spin_unlock_irq(&np->lock);
  4245. if (id1 < 0 || id1 == 0xffff)
  4246. continue;
  4247. spin_lock_irq(&np->lock);
  4248. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4249. spin_unlock_irq(&np->lock);
  4250. if (id2 < 0 || id2 == 0xffff)
  4251. continue;
  4252. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4253. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4254. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4255. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4256. pci_name(pci_dev), id1, id2, phyaddr);
  4257. np->phyaddr = phyaddr;
  4258. np->phy_oui = id1 | id2;
  4259. break;
  4260. }
  4261. if (i == 33) {
  4262. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4263. pci_name(pci_dev));
  4264. goto out_error;
  4265. }
  4266. if (!phyinitialized) {
  4267. /* reset it */
  4268. phy_init(dev);
  4269. } else {
  4270. /* see if it is a gigabit phy */
  4271. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4272. if (mii_status & PHY_GIGABIT) {
  4273. np->gigabit = PHY_GIGABIT;
  4274. }
  4275. }
  4276. /* set default link speed settings */
  4277. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4278. np->duplex = 0;
  4279. np->autoneg = 1;
  4280. err = register_netdev(dev);
  4281. if (err) {
  4282. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4283. goto out_error;
  4284. }
  4285. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4286. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4287. pci_name(pci_dev));
  4288. return 0;
  4289. out_error:
  4290. if (phystate_orig)
  4291. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4292. pci_set_drvdata(pci_dev, NULL);
  4293. out_freering:
  4294. free_rings(dev);
  4295. out_unmap:
  4296. iounmap(get_hwbase(dev));
  4297. out_relreg:
  4298. pci_release_regions(pci_dev);
  4299. out_disable:
  4300. pci_disable_device(pci_dev);
  4301. out_free:
  4302. free_netdev(dev);
  4303. out:
  4304. return err;
  4305. }
  4306. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4307. {
  4308. struct net_device *dev = pci_get_drvdata(pci_dev);
  4309. struct fe_priv *np = netdev_priv(dev);
  4310. u8 __iomem *base = get_hwbase(dev);
  4311. unregister_netdev(dev);
  4312. /* special op: write back the misordered MAC address - otherwise
  4313. * the next nv_probe would see a wrong address.
  4314. */
  4315. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4316. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4317. /* free all structures */
  4318. free_rings(dev);
  4319. iounmap(get_hwbase(dev));
  4320. pci_release_regions(pci_dev);
  4321. pci_disable_device(pci_dev);
  4322. free_netdev(dev);
  4323. pci_set_drvdata(pci_dev, NULL);
  4324. }
  4325. #ifdef CONFIG_PM
  4326. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4327. {
  4328. struct net_device *dev = pci_get_drvdata(pdev);
  4329. struct fe_priv *np = netdev_priv(dev);
  4330. if (!netif_running(dev))
  4331. goto out;
  4332. netif_device_detach(dev);
  4333. // Gross.
  4334. nv_close(dev);
  4335. pci_save_state(pdev);
  4336. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4337. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4338. out:
  4339. return 0;
  4340. }
  4341. static int nv_resume(struct pci_dev *pdev)
  4342. {
  4343. struct net_device *dev = pci_get_drvdata(pdev);
  4344. int rc = 0;
  4345. if (!netif_running(dev))
  4346. goto out;
  4347. netif_device_attach(dev);
  4348. pci_set_power_state(pdev, PCI_D0);
  4349. pci_restore_state(pdev);
  4350. pci_enable_wake(pdev, PCI_D0, 0);
  4351. rc = nv_open(dev);
  4352. out:
  4353. return rc;
  4354. }
  4355. #else
  4356. #define nv_suspend NULL
  4357. #define nv_resume NULL
  4358. #endif /* CONFIG_PM */
  4359. static struct pci_device_id pci_tbl[] = {
  4360. { /* nForce Ethernet Controller */
  4361. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4362. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4363. },
  4364. { /* nForce2 Ethernet Controller */
  4365. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4366. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4367. },
  4368. { /* nForce3 Ethernet Controller */
  4369. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4370. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4371. },
  4372. { /* nForce3 Ethernet Controller */
  4373. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4374. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4375. },
  4376. { /* nForce3 Ethernet Controller */
  4377. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4378. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4379. },
  4380. { /* nForce3 Ethernet Controller */
  4381. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4382. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4383. },
  4384. { /* nForce3 Ethernet Controller */
  4385. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4386. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4387. },
  4388. { /* CK804 Ethernet Controller */
  4389. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4390. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4391. },
  4392. { /* CK804 Ethernet Controller */
  4393. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4394. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4395. },
  4396. { /* MCP04 Ethernet Controller */
  4397. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4398. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4399. },
  4400. { /* MCP04 Ethernet Controller */
  4401. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4402. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4403. },
  4404. { /* MCP51 Ethernet Controller */
  4405. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4406. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4407. },
  4408. { /* MCP51 Ethernet Controller */
  4409. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4410. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4411. },
  4412. { /* MCP55 Ethernet Controller */
  4413. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4414. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4415. },
  4416. { /* MCP55 Ethernet Controller */
  4417. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4418. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4419. },
  4420. { /* MCP61 Ethernet Controller */
  4421. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4422. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4423. },
  4424. { /* MCP61 Ethernet Controller */
  4425. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4426. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4427. },
  4428. { /* MCP61 Ethernet Controller */
  4429. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4430. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4431. },
  4432. { /* MCP61 Ethernet Controller */
  4433. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4434. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4435. },
  4436. { /* MCP65 Ethernet Controller */
  4437. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4438. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4439. },
  4440. { /* MCP65 Ethernet Controller */
  4441. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4442. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4443. },
  4444. { /* MCP65 Ethernet Controller */
  4445. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4446. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4447. },
  4448. { /* MCP65 Ethernet Controller */
  4449. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4450. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4451. },
  4452. { /* MCP67 Ethernet Controller */
  4453. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4454. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4455. },
  4456. { /* MCP67 Ethernet Controller */
  4457. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4458. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4459. },
  4460. { /* MCP67 Ethernet Controller */
  4461. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4462. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4463. },
  4464. { /* MCP67 Ethernet Controller */
  4465. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4466. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4467. },
  4468. {0,},
  4469. };
  4470. static struct pci_driver driver = {
  4471. .name = "forcedeth",
  4472. .id_table = pci_tbl,
  4473. .probe = nv_probe,
  4474. .remove = __devexit_p(nv_remove),
  4475. .suspend = nv_suspend,
  4476. .resume = nv_resume,
  4477. };
  4478. static int __init init_nic(void)
  4479. {
  4480. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4481. return pci_register_driver(&driver);
  4482. }
  4483. static void __exit exit_nic(void)
  4484. {
  4485. pci_unregister_driver(&driver);
  4486. }
  4487. module_param(max_interrupt_work, int, 0);
  4488. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4489. module_param(optimization_mode, int, 0);
  4490. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4491. module_param(poll_interval, int, 0);
  4492. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4493. module_param(msi, int, 0);
  4494. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4495. module_param(msix, int, 0);
  4496. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4497. module_param(dma_64bit, int, 0);
  4498. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4499. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4500. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4501. MODULE_LICENSE("GPL");
  4502. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4503. module_init(init_nic);
  4504. module_exit(exit_nic);