xfs_buf.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/gfp.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. #include "xfs_sb.h"
  37. #include "xfs_log.h"
  38. #include "xfs_ag.h"
  39. #include "xfs_mount.h"
  40. #include "xfs_trace.h"
  41. static kmem_zone_t *xfs_buf_zone;
  42. static struct workqueue_struct *xfslogd_workqueue;
  43. #ifdef XFS_BUF_LOCK_TRACKING
  44. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  45. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  46. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  47. #else
  48. # define XB_SET_OWNER(bp) do { } while (0)
  49. # define XB_CLEAR_OWNER(bp) do { } while (0)
  50. # define XB_GET_OWNER(bp) do { } while (0)
  51. #endif
  52. #define xb_to_gfp(flags) \
  53. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  54. static inline int
  55. xfs_buf_is_vmapped(
  56. struct xfs_buf *bp)
  57. {
  58. /*
  59. * Return true if the buffer is vmapped.
  60. *
  61. * b_addr is null if the buffer is not mapped, but the code is clever
  62. * enough to know it doesn't have to map a single page, so the check has
  63. * to be both for b_addr and bp->b_page_count > 1.
  64. */
  65. return bp->b_addr && bp->b_page_count > 1;
  66. }
  67. static inline int
  68. xfs_buf_vmap_len(
  69. struct xfs_buf *bp)
  70. {
  71. return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  72. }
  73. /*
  74. * xfs_buf_lru_add - add a buffer to the LRU.
  75. *
  76. * The LRU takes a new reference to the buffer so that it will only be freed
  77. * once the shrinker takes the buffer off the LRU.
  78. */
  79. STATIC void
  80. xfs_buf_lru_add(
  81. struct xfs_buf *bp)
  82. {
  83. struct xfs_buftarg *btp = bp->b_target;
  84. spin_lock(&btp->bt_lru_lock);
  85. if (list_empty(&bp->b_lru)) {
  86. atomic_inc(&bp->b_hold);
  87. list_add_tail(&bp->b_lru, &btp->bt_lru);
  88. btp->bt_lru_nr++;
  89. bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
  90. }
  91. spin_unlock(&btp->bt_lru_lock);
  92. }
  93. /*
  94. * xfs_buf_lru_del - remove a buffer from the LRU
  95. *
  96. * The unlocked check is safe here because it only occurs when there are not
  97. * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
  98. * to optimise the shrinker removing the buffer from the LRU and calling
  99. * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
  100. * bt_lru_lock.
  101. */
  102. STATIC void
  103. xfs_buf_lru_del(
  104. struct xfs_buf *bp)
  105. {
  106. struct xfs_buftarg *btp = bp->b_target;
  107. if (list_empty(&bp->b_lru))
  108. return;
  109. spin_lock(&btp->bt_lru_lock);
  110. if (!list_empty(&bp->b_lru)) {
  111. list_del_init(&bp->b_lru);
  112. btp->bt_lru_nr--;
  113. }
  114. spin_unlock(&btp->bt_lru_lock);
  115. }
  116. /*
  117. * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  118. * b_lru_ref count so that the buffer is freed immediately when the buffer
  119. * reference count falls to zero. If the buffer is already on the LRU, we need
  120. * to remove the reference that LRU holds on the buffer.
  121. *
  122. * This prevents build-up of stale buffers on the LRU.
  123. */
  124. void
  125. xfs_buf_stale(
  126. struct xfs_buf *bp)
  127. {
  128. ASSERT(xfs_buf_islocked(bp));
  129. bp->b_flags |= XBF_STALE;
  130. /*
  131. * Clear the delwri status so that a delwri queue walker will not
  132. * flush this buffer to disk now that it is stale. The delwri queue has
  133. * a reference to the buffer, so this is safe to do.
  134. */
  135. bp->b_flags &= ~_XBF_DELWRI_Q;
  136. atomic_set(&(bp)->b_lru_ref, 0);
  137. if (!list_empty(&bp->b_lru)) {
  138. struct xfs_buftarg *btp = bp->b_target;
  139. spin_lock(&btp->bt_lru_lock);
  140. if (!list_empty(&bp->b_lru) &&
  141. !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
  142. list_del_init(&bp->b_lru);
  143. btp->bt_lru_nr--;
  144. atomic_dec(&bp->b_hold);
  145. }
  146. spin_unlock(&btp->bt_lru_lock);
  147. }
  148. ASSERT(atomic_read(&bp->b_hold) >= 1);
  149. }
  150. static int
  151. xfs_buf_get_maps(
  152. struct xfs_buf *bp,
  153. int map_count)
  154. {
  155. ASSERT(bp->b_maps == NULL);
  156. bp->b_map_count = map_count;
  157. if (map_count == 1) {
  158. bp->b_maps = &bp->b_map;
  159. return 0;
  160. }
  161. bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
  162. KM_NOFS);
  163. if (!bp->b_maps)
  164. return ENOMEM;
  165. return 0;
  166. }
  167. /*
  168. * Frees b_pages if it was allocated.
  169. */
  170. static void
  171. xfs_buf_free_maps(
  172. struct xfs_buf *bp)
  173. {
  174. if (bp->b_maps != &bp->b_map) {
  175. kmem_free(bp->b_maps);
  176. bp->b_maps = NULL;
  177. }
  178. }
  179. struct xfs_buf *
  180. _xfs_buf_alloc(
  181. struct xfs_buftarg *target,
  182. struct xfs_buf_map *map,
  183. int nmaps,
  184. xfs_buf_flags_t flags)
  185. {
  186. struct xfs_buf *bp;
  187. int error;
  188. int i;
  189. bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
  190. if (unlikely(!bp))
  191. return NULL;
  192. /*
  193. * We don't want certain flags to appear in b_flags unless they are
  194. * specifically set by later operations on the buffer.
  195. */
  196. flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
  197. atomic_set(&bp->b_hold, 1);
  198. atomic_set(&bp->b_lru_ref, 1);
  199. init_completion(&bp->b_iowait);
  200. INIT_LIST_HEAD(&bp->b_lru);
  201. INIT_LIST_HEAD(&bp->b_list);
  202. RB_CLEAR_NODE(&bp->b_rbnode);
  203. sema_init(&bp->b_sema, 0); /* held, no waiters */
  204. XB_SET_OWNER(bp);
  205. bp->b_target = target;
  206. bp->b_flags = flags;
  207. /*
  208. * Set length and io_length to the same value initially.
  209. * I/O routines should use io_length, which will be the same in
  210. * most cases but may be reset (e.g. XFS recovery).
  211. */
  212. error = xfs_buf_get_maps(bp, nmaps);
  213. if (error) {
  214. kmem_zone_free(xfs_buf_zone, bp);
  215. return NULL;
  216. }
  217. bp->b_bn = map[0].bm_bn;
  218. bp->b_length = 0;
  219. for (i = 0; i < nmaps; i++) {
  220. bp->b_maps[i].bm_bn = map[i].bm_bn;
  221. bp->b_maps[i].bm_len = map[i].bm_len;
  222. bp->b_length += map[i].bm_len;
  223. }
  224. bp->b_io_length = bp->b_length;
  225. atomic_set(&bp->b_pin_count, 0);
  226. init_waitqueue_head(&bp->b_waiters);
  227. XFS_STATS_INC(xb_create);
  228. trace_xfs_buf_init(bp, _RET_IP_);
  229. return bp;
  230. }
  231. /*
  232. * Allocate a page array capable of holding a specified number
  233. * of pages, and point the page buf at it.
  234. */
  235. STATIC int
  236. _xfs_buf_get_pages(
  237. xfs_buf_t *bp,
  238. int page_count,
  239. xfs_buf_flags_t flags)
  240. {
  241. /* Make sure that we have a page list */
  242. if (bp->b_pages == NULL) {
  243. bp->b_page_count = page_count;
  244. if (page_count <= XB_PAGES) {
  245. bp->b_pages = bp->b_page_array;
  246. } else {
  247. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  248. page_count, KM_NOFS);
  249. if (bp->b_pages == NULL)
  250. return -ENOMEM;
  251. }
  252. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  253. }
  254. return 0;
  255. }
  256. /*
  257. * Frees b_pages if it was allocated.
  258. */
  259. STATIC void
  260. _xfs_buf_free_pages(
  261. xfs_buf_t *bp)
  262. {
  263. if (bp->b_pages != bp->b_page_array) {
  264. kmem_free(bp->b_pages);
  265. bp->b_pages = NULL;
  266. }
  267. }
  268. /*
  269. * Releases the specified buffer.
  270. *
  271. * The modification state of any associated pages is left unchanged.
  272. * The buffer most not be on any hash - use xfs_buf_rele instead for
  273. * hashed and refcounted buffers
  274. */
  275. void
  276. xfs_buf_free(
  277. xfs_buf_t *bp)
  278. {
  279. trace_xfs_buf_free(bp, _RET_IP_);
  280. ASSERT(list_empty(&bp->b_lru));
  281. if (bp->b_flags & _XBF_PAGES) {
  282. uint i;
  283. if (xfs_buf_is_vmapped(bp))
  284. vm_unmap_ram(bp->b_addr - bp->b_offset,
  285. bp->b_page_count);
  286. for (i = 0; i < bp->b_page_count; i++) {
  287. struct page *page = bp->b_pages[i];
  288. __free_page(page);
  289. }
  290. } else if (bp->b_flags & _XBF_KMEM)
  291. kmem_free(bp->b_addr);
  292. _xfs_buf_free_pages(bp);
  293. xfs_buf_free_maps(bp);
  294. kmem_zone_free(xfs_buf_zone, bp);
  295. }
  296. /*
  297. * Allocates all the pages for buffer in question and builds it's page list.
  298. */
  299. STATIC int
  300. xfs_buf_allocate_memory(
  301. xfs_buf_t *bp,
  302. uint flags)
  303. {
  304. size_t size;
  305. size_t nbytes, offset;
  306. gfp_t gfp_mask = xb_to_gfp(flags);
  307. unsigned short page_count, i;
  308. xfs_off_t start, end;
  309. int error;
  310. /*
  311. * for buffers that are contained within a single page, just allocate
  312. * the memory from the heap - there's no need for the complexity of
  313. * page arrays to keep allocation down to order 0.
  314. */
  315. size = BBTOB(bp->b_length);
  316. if (size < PAGE_SIZE) {
  317. bp->b_addr = kmem_alloc(size, KM_NOFS);
  318. if (!bp->b_addr) {
  319. /* low memory - use alloc_page loop instead */
  320. goto use_alloc_page;
  321. }
  322. if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
  323. ((unsigned long)bp->b_addr & PAGE_MASK)) {
  324. /* b_addr spans two pages - use alloc_page instead */
  325. kmem_free(bp->b_addr);
  326. bp->b_addr = NULL;
  327. goto use_alloc_page;
  328. }
  329. bp->b_offset = offset_in_page(bp->b_addr);
  330. bp->b_pages = bp->b_page_array;
  331. bp->b_pages[0] = virt_to_page(bp->b_addr);
  332. bp->b_page_count = 1;
  333. bp->b_flags |= _XBF_KMEM;
  334. return 0;
  335. }
  336. use_alloc_page:
  337. start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
  338. end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
  339. >> PAGE_SHIFT;
  340. page_count = end - start;
  341. error = _xfs_buf_get_pages(bp, page_count, flags);
  342. if (unlikely(error))
  343. return error;
  344. offset = bp->b_offset;
  345. bp->b_flags |= _XBF_PAGES;
  346. for (i = 0; i < bp->b_page_count; i++) {
  347. struct page *page;
  348. uint retries = 0;
  349. retry:
  350. page = alloc_page(gfp_mask);
  351. if (unlikely(page == NULL)) {
  352. if (flags & XBF_READ_AHEAD) {
  353. bp->b_page_count = i;
  354. error = ENOMEM;
  355. goto out_free_pages;
  356. }
  357. /*
  358. * This could deadlock.
  359. *
  360. * But until all the XFS lowlevel code is revamped to
  361. * handle buffer allocation failures we can't do much.
  362. */
  363. if (!(++retries % 100))
  364. xfs_err(NULL,
  365. "possible memory allocation deadlock in %s (mode:0x%x)",
  366. __func__, gfp_mask);
  367. XFS_STATS_INC(xb_page_retries);
  368. congestion_wait(BLK_RW_ASYNC, HZ/50);
  369. goto retry;
  370. }
  371. XFS_STATS_INC(xb_page_found);
  372. nbytes = min_t(size_t, size, PAGE_SIZE - offset);
  373. size -= nbytes;
  374. bp->b_pages[i] = page;
  375. offset = 0;
  376. }
  377. return 0;
  378. out_free_pages:
  379. for (i = 0; i < bp->b_page_count; i++)
  380. __free_page(bp->b_pages[i]);
  381. return error;
  382. }
  383. /*
  384. * Map buffer into kernel address-space if necessary.
  385. */
  386. STATIC int
  387. _xfs_buf_map_pages(
  388. xfs_buf_t *bp,
  389. uint flags)
  390. {
  391. ASSERT(bp->b_flags & _XBF_PAGES);
  392. if (bp->b_page_count == 1) {
  393. /* A single page buffer is always mappable */
  394. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  395. } else if (flags & XBF_UNMAPPED) {
  396. bp->b_addr = NULL;
  397. } else {
  398. int retried = 0;
  399. do {
  400. bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
  401. -1, PAGE_KERNEL);
  402. if (bp->b_addr)
  403. break;
  404. vm_unmap_aliases();
  405. } while (retried++ <= 1);
  406. if (!bp->b_addr)
  407. return -ENOMEM;
  408. bp->b_addr += bp->b_offset;
  409. }
  410. return 0;
  411. }
  412. /*
  413. * Finding and Reading Buffers
  414. */
  415. /*
  416. * Look up, and creates if absent, a lockable buffer for
  417. * a given range of an inode. The buffer is returned
  418. * locked. No I/O is implied by this call.
  419. */
  420. xfs_buf_t *
  421. _xfs_buf_find(
  422. struct xfs_buftarg *btp,
  423. struct xfs_buf_map *map,
  424. int nmaps,
  425. xfs_buf_flags_t flags,
  426. xfs_buf_t *new_bp)
  427. {
  428. size_t numbytes;
  429. struct xfs_perag *pag;
  430. struct rb_node **rbp;
  431. struct rb_node *parent;
  432. xfs_buf_t *bp;
  433. xfs_daddr_t blkno = map[0].bm_bn;
  434. int numblks = 0;
  435. int i;
  436. for (i = 0; i < nmaps; i++)
  437. numblks += map[i].bm_len;
  438. numbytes = BBTOB(numblks);
  439. /* Check for IOs smaller than the sector size / not sector aligned */
  440. ASSERT(!(numbytes < (1 << btp->bt_sshift)));
  441. ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
  442. /* get tree root */
  443. pag = xfs_perag_get(btp->bt_mount,
  444. xfs_daddr_to_agno(btp->bt_mount, blkno));
  445. /* walk tree */
  446. spin_lock(&pag->pag_buf_lock);
  447. rbp = &pag->pag_buf_tree.rb_node;
  448. parent = NULL;
  449. bp = NULL;
  450. while (*rbp) {
  451. parent = *rbp;
  452. bp = rb_entry(parent, struct xfs_buf, b_rbnode);
  453. if (blkno < bp->b_bn)
  454. rbp = &(*rbp)->rb_left;
  455. else if (blkno > bp->b_bn)
  456. rbp = &(*rbp)->rb_right;
  457. else {
  458. /*
  459. * found a block number match. If the range doesn't
  460. * match, the only way this is allowed is if the buffer
  461. * in the cache is stale and the transaction that made
  462. * it stale has not yet committed. i.e. we are
  463. * reallocating a busy extent. Skip this buffer and
  464. * continue searching to the right for an exact match.
  465. */
  466. if (bp->b_length != numblks) {
  467. ASSERT(bp->b_flags & XBF_STALE);
  468. rbp = &(*rbp)->rb_right;
  469. continue;
  470. }
  471. atomic_inc(&bp->b_hold);
  472. goto found;
  473. }
  474. }
  475. /* No match found */
  476. if (new_bp) {
  477. rb_link_node(&new_bp->b_rbnode, parent, rbp);
  478. rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
  479. /* the buffer keeps the perag reference until it is freed */
  480. new_bp->b_pag = pag;
  481. spin_unlock(&pag->pag_buf_lock);
  482. } else {
  483. XFS_STATS_INC(xb_miss_locked);
  484. spin_unlock(&pag->pag_buf_lock);
  485. xfs_perag_put(pag);
  486. }
  487. return new_bp;
  488. found:
  489. spin_unlock(&pag->pag_buf_lock);
  490. xfs_perag_put(pag);
  491. if (!xfs_buf_trylock(bp)) {
  492. if (flags & XBF_TRYLOCK) {
  493. xfs_buf_rele(bp);
  494. XFS_STATS_INC(xb_busy_locked);
  495. return NULL;
  496. }
  497. xfs_buf_lock(bp);
  498. XFS_STATS_INC(xb_get_locked_waited);
  499. }
  500. /*
  501. * if the buffer is stale, clear all the external state associated with
  502. * it. We need to keep flags such as how we allocated the buffer memory
  503. * intact here.
  504. */
  505. if (bp->b_flags & XBF_STALE) {
  506. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  507. bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
  508. }
  509. trace_xfs_buf_find(bp, flags, _RET_IP_);
  510. XFS_STATS_INC(xb_get_locked);
  511. return bp;
  512. }
  513. /*
  514. * Assembles a buffer covering the specified range. The code is optimised for
  515. * cache hits, as metadata intensive workloads will see 3 orders of magnitude
  516. * more hits than misses.
  517. */
  518. struct xfs_buf *
  519. xfs_buf_get_map(
  520. struct xfs_buftarg *target,
  521. struct xfs_buf_map *map,
  522. int nmaps,
  523. xfs_buf_flags_t flags)
  524. {
  525. struct xfs_buf *bp;
  526. struct xfs_buf *new_bp;
  527. int error = 0;
  528. bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
  529. if (likely(bp))
  530. goto found;
  531. new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
  532. if (unlikely(!new_bp))
  533. return NULL;
  534. error = xfs_buf_allocate_memory(new_bp, flags);
  535. if (error) {
  536. xfs_buf_free(new_bp);
  537. return NULL;
  538. }
  539. bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
  540. if (!bp) {
  541. xfs_buf_free(new_bp);
  542. return NULL;
  543. }
  544. if (bp != new_bp)
  545. xfs_buf_free(new_bp);
  546. found:
  547. if (!bp->b_addr) {
  548. error = _xfs_buf_map_pages(bp, flags);
  549. if (unlikely(error)) {
  550. xfs_warn(target->bt_mount,
  551. "%s: failed to map pages\n", __func__);
  552. xfs_buf_relse(bp);
  553. return NULL;
  554. }
  555. }
  556. XFS_STATS_INC(xb_get);
  557. trace_xfs_buf_get(bp, flags, _RET_IP_);
  558. return bp;
  559. }
  560. STATIC int
  561. _xfs_buf_read(
  562. xfs_buf_t *bp,
  563. xfs_buf_flags_t flags)
  564. {
  565. ASSERT(!(flags & XBF_WRITE));
  566. ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
  567. bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
  568. bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
  569. xfs_buf_iorequest(bp);
  570. if (flags & XBF_ASYNC)
  571. return 0;
  572. return xfs_buf_iowait(bp);
  573. }
  574. xfs_buf_t *
  575. xfs_buf_read_map(
  576. struct xfs_buftarg *target,
  577. struct xfs_buf_map *map,
  578. int nmaps,
  579. xfs_buf_flags_t flags)
  580. {
  581. struct xfs_buf *bp;
  582. flags |= XBF_READ;
  583. bp = xfs_buf_get_map(target, map, nmaps, flags);
  584. if (bp) {
  585. trace_xfs_buf_read(bp, flags, _RET_IP_);
  586. if (!XFS_BUF_ISDONE(bp)) {
  587. XFS_STATS_INC(xb_get_read);
  588. _xfs_buf_read(bp, flags);
  589. } else if (flags & XBF_ASYNC) {
  590. /*
  591. * Read ahead call which is already satisfied,
  592. * drop the buffer
  593. */
  594. xfs_buf_relse(bp);
  595. return NULL;
  596. } else {
  597. /* We do not want read in the flags */
  598. bp->b_flags &= ~XBF_READ;
  599. }
  600. }
  601. return bp;
  602. }
  603. /*
  604. * If we are not low on memory then do the readahead in a deadlock
  605. * safe manner.
  606. */
  607. void
  608. xfs_buf_readahead_map(
  609. struct xfs_buftarg *target,
  610. struct xfs_buf_map *map,
  611. int nmaps)
  612. {
  613. if (bdi_read_congested(target->bt_bdi))
  614. return;
  615. xfs_buf_read_map(target, map, nmaps,
  616. XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
  617. }
  618. /*
  619. * Read an uncached buffer from disk. Allocates and returns a locked
  620. * buffer containing the disk contents or nothing.
  621. */
  622. struct xfs_buf *
  623. xfs_buf_read_uncached(
  624. struct xfs_buftarg *target,
  625. xfs_daddr_t daddr,
  626. size_t numblks,
  627. int flags)
  628. {
  629. xfs_buf_t *bp;
  630. int error;
  631. bp = xfs_buf_get_uncached(target, numblks, flags);
  632. if (!bp)
  633. return NULL;
  634. /* set up the buffer for a read IO */
  635. ASSERT(bp->b_map_count == 1);
  636. bp->b_bn = daddr;
  637. bp->b_maps[0].bm_bn = daddr;
  638. bp->b_flags |= XBF_READ;
  639. xfsbdstrat(target->bt_mount, bp);
  640. error = xfs_buf_iowait(bp);
  641. if (error) {
  642. xfs_buf_relse(bp);
  643. return NULL;
  644. }
  645. return bp;
  646. }
  647. /*
  648. * Return a buffer allocated as an empty buffer and associated to external
  649. * memory via xfs_buf_associate_memory() back to it's empty state.
  650. */
  651. void
  652. xfs_buf_set_empty(
  653. struct xfs_buf *bp,
  654. size_t numblks)
  655. {
  656. if (bp->b_pages)
  657. _xfs_buf_free_pages(bp);
  658. bp->b_pages = NULL;
  659. bp->b_page_count = 0;
  660. bp->b_addr = NULL;
  661. bp->b_length = numblks;
  662. bp->b_io_length = numblks;
  663. ASSERT(bp->b_map_count == 1);
  664. bp->b_bn = XFS_BUF_DADDR_NULL;
  665. bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
  666. bp->b_maps[0].bm_len = bp->b_length;
  667. }
  668. static inline struct page *
  669. mem_to_page(
  670. void *addr)
  671. {
  672. if ((!is_vmalloc_addr(addr))) {
  673. return virt_to_page(addr);
  674. } else {
  675. return vmalloc_to_page(addr);
  676. }
  677. }
  678. int
  679. xfs_buf_associate_memory(
  680. xfs_buf_t *bp,
  681. void *mem,
  682. size_t len)
  683. {
  684. int rval;
  685. int i = 0;
  686. unsigned long pageaddr;
  687. unsigned long offset;
  688. size_t buflen;
  689. int page_count;
  690. pageaddr = (unsigned long)mem & PAGE_MASK;
  691. offset = (unsigned long)mem - pageaddr;
  692. buflen = PAGE_ALIGN(len + offset);
  693. page_count = buflen >> PAGE_SHIFT;
  694. /* Free any previous set of page pointers */
  695. if (bp->b_pages)
  696. _xfs_buf_free_pages(bp);
  697. bp->b_pages = NULL;
  698. bp->b_addr = mem;
  699. rval = _xfs_buf_get_pages(bp, page_count, 0);
  700. if (rval)
  701. return rval;
  702. bp->b_offset = offset;
  703. for (i = 0; i < bp->b_page_count; i++) {
  704. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  705. pageaddr += PAGE_SIZE;
  706. }
  707. bp->b_io_length = BTOBB(len);
  708. bp->b_length = BTOBB(buflen);
  709. return 0;
  710. }
  711. xfs_buf_t *
  712. xfs_buf_get_uncached(
  713. struct xfs_buftarg *target,
  714. size_t numblks,
  715. int flags)
  716. {
  717. unsigned long page_count;
  718. int error, i;
  719. struct xfs_buf *bp;
  720. DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
  721. bp = _xfs_buf_alloc(target, &map, 1, 0);
  722. if (unlikely(bp == NULL))
  723. goto fail;
  724. page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
  725. error = _xfs_buf_get_pages(bp, page_count, 0);
  726. if (error)
  727. goto fail_free_buf;
  728. for (i = 0; i < page_count; i++) {
  729. bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
  730. if (!bp->b_pages[i])
  731. goto fail_free_mem;
  732. }
  733. bp->b_flags |= _XBF_PAGES;
  734. error = _xfs_buf_map_pages(bp, 0);
  735. if (unlikely(error)) {
  736. xfs_warn(target->bt_mount,
  737. "%s: failed to map pages\n", __func__);
  738. goto fail_free_mem;
  739. }
  740. trace_xfs_buf_get_uncached(bp, _RET_IP_);
  741. return bp;
  742. fail_free_mem:
  743. while (--i >= 0)
  744. __free_page(bp->b_pages[i]);
  745. _xfs_buf_free_pages(bp);
  746. fail_free_buf:
  747. xfs_buf_free_maps(bp);
  748. kmem_zone_free(xfs_buf_zone, bp);
  749. fail:
  750. return NULL;
  751. }
  752. /*
  753. * Increment reference count on buffer, to hold the buffer concurrently
  754. * with another thread which may release (free) the buffer asynchronously.
  755. * Must hold the buffer already to call this function.
  756. */
  757. void
  758. xfs_buf_hold(
  759. xfs_buf_t *bp)
  760. {
  761. trace_xfs_buf_hold(bp, _RET_IP_);
  762. atomic_inc(&bp->b_hold);
  763. }
  764. /*
  765. * Releases a hold on the specified buffer. If the
  766. * the hold count is 1, calls xfs_buf_free.
  767. */
  768. void
  769. xfs_buf_rele(
  770. xfs_buf_t *bp)
  771. {
  772. struct xfs_perag *pag = bp->b_pag;
  773. trace_xfs_buf_rele(bp, _RET_IP_);
  774. if (!pag) {
  775. ASSERT(list_empty(&bp->b_lru));
  776. ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
  777. if (atomic_dec_and_test(&bp->b_hold))
  778. xfs_buf_free(bp);
  779. return;
  780. }
  781. ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
  782. ASSERT(atomic_read(&bp->b_hold) > 0);
  783. if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
  784. if (!(bp->b_flags & XBF_STALE) &&
  785. atomic_read(&bp->b_lru_ref)) {
  786. xfs_buf_lru_add(bp);
  787. spin_unlock(&pag->pag_buf_lock);
  788. } else {
  789. xfs_buf_lru_del(bp);
  790. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  791. rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
  792. spin_unlock(&pag->pag_buf_lock);
  793. xfs_perag_put(pag);
  794. xfs_buf_free(bp);
  795. }
  796. }
  797. }
  798. /*
  799. * Lock a buffer object, if it is not already locked.
  800. *
  801. * If we come across a stale, pinned, locked buffer, we know that we are
  802. * being asked to lock a buffer that has been reallocated. Because it is
  803. * pinned, we know that the log has not been pushed to disk and hence it
  804. * will still be locked. Rather than continuing to have trylock attempts
  805. * fail until someone else pushes the log, push it ourselves before
  806. * returning. This means that the xfsaild will not get stuck trying
  807. * to push on stale inode buffers.
  808. */
  809. int
  810. xfs_buf_trylock(
  811. struct xfs_buf *bp)
  812. {
  813. int locked;
  814. locked = down_trylock(&bp->b_sema) == 0;
  815. if (locked)
  816. XB_SET_OWNER(bp);
  817. else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  818. xfs_log_force(bp->b_target->bt_mount, 0);
  819. trace_xfs_buf_trylock(bp, _RET_IP_);
  820. return locked;
  821. }
  822. /*
  823. * Lock a buffer object.
  824. *
  825. * If we come across a stale, pinned, locked buffer, we know that we
  826. * are being asked to lock a buffer that has been reallocated. Because
  827. * it is pinned, we know that the log has not been pushed to disk and
  828. * hence it will still be locked. Rather than sleeping until someone
  829. * else pushes the log, push it ourselves before trying to get the lock.
  830. */
  831. void
  832. xfs_buf_lock(
  833. struct xfs_buf *bp)
  834. {
  835. trace_xfs_buf_lock(bp, _RET_IP_);
  836. if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  837. xfs_log_force(bp->b_target->bt_mount, 0);
  838. down(&bp->b_sema);
  839. XB_SET_OWNER(bp);
  840. trace_xfs_buf_lock_done(bp, _RET_IP_);
  841. }
  842. void
  843. xfs_buf_unlock(
  844. struct xfs_buf *bp)
  845. {
  846. XB_CLEAR_OWNER(bp);
  847. up(&bp->b_sema);
  848. trace_xfs_buf_unlock(bp, _RET_IP_);
  849. }
  850. STATIC void
  851. xfs_buf_wait_unpin(
  852. xfs_buf_t *bp)
  853. {
  854. DECLARE_WAITQUEUE (wait, current);
  855. if (atomic_read(&bp->b_pin_count) == 0)
  856. return;
  857. add_wait_queue(&bp->b_waiters, &wait);
  858. for (;;) {
  859. set_current_state(TASK_UNINTERRUPTIBLE);
  860. if (atomic_read(&bp->b_pin_count) == 0)
  861. break;
  862. io_schedule();
  863. }
  864. remove_wait_queue(&bp->b_waiters, &wait);
  865. set_current_state(TASK_RUNNING);
  866. }
  867. /*
  868. * Buffer Utility Routines
  869. */
  870. STATIC void
  871. xfs_buf_iodone_work(
  872. struct work_struct *work)
  873. {
  874. xfs_buf_t *bp =
  875. container_of(work, xfs_buf_t, b_iodone_work);
  876. if (bp->b_iodone)
  877. (*(bp->b_iodone))(bp);
  878. else if (bp->b_flags & XBF_ASYNC)
  879. xfs_buf_relse(bp);
  880. }
  881. void
  882. xfs_buf_ioend(
  883. xfs_buf_t *bp,
  884. int schedule)
  885. {
  886. trace_xfs_buf_iodone(bp, _RET_IP_);
  887. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  888. if (bp->b_error == 0)
  889. bp->b_flags |= XBF_DONE;
  890. if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
  891. if (schedule) {
  892. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  893. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  894. } else {
  895. xfs_buf_iodone_work(&bp->b_iodone_work);
  896. }
  897. } else {
  898. complete(&bp->b_iowait);
  899. }
  900. }
  901. void
  902. xfs_buf_ioerror(
  903. xfs_buf_t *bp,
  904. int error)
  905. {
  906. ASSERT(error >= 0 && error <= 0xffff);
  907. bp->b_error = (unsigned short)error;
  908. trace_xfs_buf_ioerror(bp, error, _RET_IP_);
  909. }
  910. void
  911. xfs_buf_ioerror_alert(
  912. struct xfs_buf *bp,
  913. const char *func)
  914. {
  915. xfs_alert(bp->b_target->bt_mount,
  916. "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
  917. (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
  918. }
  919. /*
  920. * Called when we want to stop a buffer from getting written or read.
  921. * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
  922. * so that the proper iodone callbacks get called.
  923. */
  924. STATIC int
  925. xfs_bioerror(
  926. xfs_buf_t *bp)
  927. {
  928. #ifdef XFSERRORDEBUG
  929. ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
  930. #endif
  931. /*
  932. * No need to wait until the buffer is unpinned, we aren't flushing it.
  933. */
  934. xfs_buf_ioerror(bp, EIO);
  935. /*
  936. * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
  937. */
  938. XFS_BUF_UNREAD(bp);
  939. XFS_BUF_UNDONE(bp);
  940. xfs_buf_stale(bp);
  941. xfs_buf_ioend(bp, 0);
  942. return EIO;
  943. }
  944. /*
  945. * Same as xfs_bioerror, except that we are releasing the buffer
  946. * here ourselves, and avoiding the xfs_buf_ioend call.
  947. * This is meant for userdata errors; metadata bufs come with
  948. * iodone functions attached, so that we can track down errors.
  949. */
  950. STATIC int
  951. xfs_bioerror_relse(
  952. struct xfs_buf *bp)
  953. {
  954. int64_t fl = bp->b_flags;
  955. /*
  956. * No need to wait until the buffer is unpinned.
  957. * We aren't flushing it.
  958. *
  959. * chunkhold expects B_DONE to be set, whether
  960. * we actually finish the I/O or not. We don't want to
  961. * change that interface.
  962. */
  963. XFS_BUF_UNREAD(bp);
  964. XFS_BUF_DONE(bp);
  965. xfs_buf_stale(bp);
  966. bp->b_iodone = NULL;
  967. if (!(fl & XBF_ASYNC)) {
  968. /*
  969. * Mark b_error and B_ERROR _both_.
  970. * Lot's of chunkcache code assumes that.
  971. * There's no reason to mark error for
  972. * ASYNC buffers.
  973. */
  974. xfs_buf_ioerror(bp, EIO);
  975. complete(&bp->b_iowait);
  976. } else {
  977. xfs_buf_relse(bp);
  978. }
  979. return EIO;
  980. }
  981. STATIC int
  982. xfs_bdstrat_cb(
  983. struct xfs_buf *bp)
  984. {
  985. if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
  986. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  987. /*
  988. * Metadata write that didn't get logged but
  989. * written delayed anyway. These aren't associated
  990. * with a transaction, and can be ignored.
  991. */
  992. if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
  993. return xfs_bioerror_relse(bp);
  994. else
  995. return xfs_bioerror(bp);
  996. }
  997. xfs_buf_iorequest(bp);
  998. return 0;
  999. }
  1000. int
  1001. xfs_bwrite(
  1002. struct xfs_buf *bp)
  1003. {
  1004. int error;
  1005. ASSERT(xfs_buf_islocked(bp));
  1006. bp->b_flags |= XBF_WRITE;
  1007. bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
  1008. xfs_bdstrat_cb(bp);
  1009. error = xfs_buf_iowait(bp);
  1010. if (error) {
  1011. xfs_force_shutdown(bp->b_target->bt_mount,
  1012. SHUTDOWN_META_IO_ERROR);
  1013. }
  1014. return error;
  1015. }
  1016. /*
  1017. * Wrapper around bdstrat so that we can stop data from going to disk in case
  1018. * we are shutting down the filesystem. Typically user data goes thru this
  1019. * path; one of the exceptions is the superblock.
  1020. */
  1021. void
  1022. xfsbdstrat(
  1023. struct xfs_mount *mp,
  1024. struct xfs_buf *bp)
  1025. {
  1026. if (XFS_FORCED_SHUTDOWN(mp)) {
  1027. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  1028. xfs_bioerror_relse(bp);
  1029. return;
  1030. }
  1031. xfs_buf_iorequest(bp);
  1032. }
  1033. STATIC void
  1034. _xfs_buf_ioend(
  1035. xfs_buf_t *bp,
  1036. int schedule)
  1037. {
  1038. if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
  1039. xfs_buf_ioend(bp, schedule);
  1040. }
  1041. STATIC void
  1042. xfs_buf_bio_end_io(
  1043. struct bio *bio,
  1044. int error)
  1045. {
  1046. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  1047. /*
  1048. * don't overwrite existing errors - otherwise we can lose errors on
  1049. * buffers that require multiple bios to complete.
  1050. */
  1051. if (!bp->b_error)
  1052. xfs_buf_ioerror(bp, -error);
  1053. if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
  1054. invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
  1055. _xfs_buf_ioend(bp, 1);
  1056. bio_put(bio);
  1057. }
  1058. static void
  1059. xfs_buf_ioapply_map(
  1060. struct xfs_buf *bp,
  1061. int map,
  1062. int *buf_offset,
  1063. int *count,
  1064. int rw)
  1065. {
  1066. int page_index;
  1067. int total_nr_pages = bp->b_page_count;
  1068. int nr_pages;
  1069. struct bio *bio;
  1070. sector_t sector = bp->b_maps[map].bm_bn;
  1071. int size;
  1072. int offset;
  1073. total_nr_pages = bp->b_page_count;
  1074. /* skip the pages in the buffer before the start offset */
  1075. page_index = 0;
  1076. offset = *buf_offset;
  1077. while (offset >= PAGE_SIZE) {
  1078. page_index++;
  1079. offset -= PAGE_SIZE;
  1080. }
  1081. /*
  1082. * Limit the IO size to the length of the current vector, and update the
  1083. * remaining IO count for the next time around.
  1084. */
  1085. size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
  1086. *count -= size;
  1087. *buf_offset += size;
  1088. next_chunk:
  1089. atomic_inc(&bp->b_io_remaining);
  1090. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1091. if (nr_pages > total_nr_pages)
  1092. nr_pages = total_nr_pages;
  1093. bio = bio_alloc(GFP_NOIO, nr_pages);
  1094. bio->bi_bdev = bp->b_target->bt_bdev;
  1095. bio->bi_sector = sector;
  1096. bio->bi_end_io = xfs_buf_bio_end_io;
  1097. bio->bi_private = bp;
  1098. for (; size && nr_pages; nr_pages--, page_index++) {
  1099. int rbytes, nbytes = PAGE_SIZE - offset;
  1100. if (nbytes > size)
  1101. nbytes = size;
  1102. rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
  1103. offset);
  1104. if (rbytes < nbytes)
  1105. break;
  1106. offset = 0;
  1107. sector += BTOBB(nbytes);
  1108. size -= nbytes;
  1109. total_nr_pages--;
  1110. }
  1111. if (likely(bio->bi_size)) {
  1112. if (xfs_buf_is_vmapped(bp)) {
  1113. flush_kernel_vmap_range(bp->b_addr,
  1114. xfs_buf_vmap_len(bp));
  1115. }
  1116. submit_bio(rw, bio);
  1117. if (size)
  1118. goto next_chunk;
  1119. } else {
  1120. /*
  1121. * This is guaranteed not to be the last io reference count
  1122. * because the caller (xfs_buf_iorequest) holds a count itself.
  1123. */
  1124. atomic_dec(&bp->b_io_remaining);
  1125. xfs_buf_ioerror(bp, EIO);
  1126. bio_put(bio);
  1127. }
  1128. }
  1129. STATIC void
  1130. _xfs_buf_ioapply(
  1131. struct xfs_buf *bp)
  1132. {
  1133. struct blk_plug plug;
  1134. int rw;
  1135. int offset;
  1136. int size;
  1137. int i;
  1138. if (bp->b_flags & XBF_WRITE) {
  1139. if (bp->b_flags & XBF_SYNCIO)
  1140. rw = WRITE_SYNC;
  1141. else
  1142. rw = WRITE;
  1143. if (bp->b_flags & XBF_FUA)
  1144. rw |= REQ_FUA;
  1145. if (bp->b_flags & XBF_FLUSH)
  1146. rw |= REQ_FLUSH;
  1147. } else if (bp->b_flags & XBF_READ_AHEAD) {
  1148. rw = READA;
  1149. } else {
  1150. rw = READ;
  1151. }
  1152. /* we only use the buffer cache for meta-data */
  1153. rw |= REQ_META;
  1154. /*
  1155. * Walk all the vectors issuing IO on them. Set up the initial offset
  1156. * into the buffer and the desired IO size before we start -
  1157. * _xfs_buf_ioapply_vec() will modify them appropriately for each
  1158. * subsequent call.
  1159. */
  1160. offset = bp->b_offset;
  1161. size = BBTOB(bp->b_io_length);
  1162. blk_start_plug(&plug);
  1163. for (i = 0; i < bp->b_map_count; i++) {
  1164. xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
  1165. if (bp->b_error)
  1166. break;
  1167. if (size <= 0)
  1168. break; /* all done */
  1169. }
  1170. blk_finish_plug(&plug);
  1171. }
  1172. void
  1173. xfs_buf_iorequest(
  1174. xfs_buf_t *bp)
  1175. {
  1176. trace_xfs_buf_iorequest(bp, _RET_IP_);
  1177. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  1178. if (bp->b_flags & XBF_WRITE)
  1179. xfs_buf_wait_unpin(bp);
  1180. xfs_buf_hold(bp);
  1181. /* Set the count to 1 initially, this will stop an I/O
  1182. * completion callout which happens before we have started
  1183. * all the I/O from calling xfs_buf_ioend too early.
  1184. */
  1185. atomic_set(&bp->b_io_remaining, 1);
  1186. _xfs_buf_ioapply(bp);
  1187. _xfs_buf_ioend(bp, 1);
  1188. xfs_buf_rele(bp);
  1189. }
  1190. /*
  1191. * Waits for I/O to complete on the buffer supplied. It returns immediately if
  1192. * no I/O is pending or there is already a pending error on the buffer. It
  1193. * returns the I/O error code, if any, or 0 if there was no error.
  1194. */
  1195. int
  1196. xfs_buf_iowait(
  1197. xfs_buf_t *bp)
  1198. {
  1199. trace_xfs_buf_iowait(bp, _RET_IP_);
  1200. if (!bp->b_error)
  1201. wait_for_completion(&bp->b_iowait);
  1202. trace_xfs_buf_iowait_done(bp, _RET_IP_);
  1203. return bp->b_error;
  1204. }
  1205. xfs_caddr_t
  1206. xfs_buf_offset(
  1207. xfs_buf_t *bp,
  1208. size_t offset)
  1209. {
  1210. struct page *page;
  1211. if (bp->b_addr)
  1212. return bp->b_addr + offset;
  1213. offset += bp->b_offset;
  1214. page = bp->b_pages[offset >> PAGE_SHIFT];
  1215. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
  1216. }
  1217. /*
  1218. * Move data into or out of a buffer.
  1219. */
  1220. void
  1221. xfs_buf_iomove(
  1222. xfs_buf_t *bp, /* buffer to process */
  1223. size_t boff, /* starting buffer offset */
  1224. size_t bsize, /* length to copy */
  1225. void *data, /* data address */
  1226. xfs_buf_rw_t mode) /* read/write/zero flag */
  1227. {
  1228. size_t bend;
  1229. bend = boff + bsize;
  1230. while (boff < bend) {
  1231. struct page *page;
  1232. int page_index, page_offset, csize;
  1233. page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
  1234. page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
  1235. page = bp->b_pages[page_index];
  1236. csize = min_t(size_t, PAGE_SIZE - page_offset,
  1237. BBTOB(bp->b_io_length) - boff);
  1238. ASSERT((csize + page_offset) <= PAGE_SIZE);
  1239. switch (mode) {
  1240. case XBRW_ZERO:
  1241. memset(page_address(page) + page_offset, 0, csize);
  1242. break;
  1243. case XBRW_READ:
  1244. memcpy(data, page_address(page) + page_offset, csize);
  1245. break;
  1246. case XBRW_WRITE:
  1247. memcpy(page_address(page) + page_offset, data, csize);
  1248. }
  1249. boff += csize;
  1250. data += csize;
  1251. }
  1252. }
  1253. /*
  1254. * Handling of buffer targets (buftargs).
  1255. */
  1256. /*
  1257. * Wait for any bufs with callbacks that have been submitted but have not yet
  1258. * returned. These buffers will have an elevated hold count, so wait on those
  1259. * while freeing all the buffers only held by the LRU.
  1260. */
  1261. void
  1262. xfs_wait_buftarg(
  1263. struct xfs_buftarg *btp)
  1264. {
  1265. struct xfs_buf *bp;
  1266. restart:
  1267. spin_lock(&btp->bt_lru_lock);
  1268. while (!list_empty(&btp->bt_lru)) {
  1269. bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
  1270. if (atomic_read(&bp->b_hold) > 1) {
  1271. spin_unlock(&btp->bt_lru_lock);
  1272. delay(100);
  1273. goto restart;
  1274. }
  1275. /*
  1276. * clear the LRU reference count so the buffer doesn't get
  1277. * ignored in xfs_buf_rele().
  1278. */
  1279. atomic_set(&bp->b_lru_ref, 0);
  1280. spin_unlock(&btp->bt_lru_lock);
  1281. xfs_buf_rele(bp);
  1282. spin_lock(&btp->bt_lru_lock);
  1283. }
  1284. spin_unlock(&btp->bt_lru_lock);
  1285. }
  1286. int
  1287. xfs_buftarg_shrink(
  1288. struct shrinker *shrink,
  1289. struct shrink_control *sc)
  1290. {
  1291. struct xfs_buftarg *btp = container_of(shrink,
  1292. struct xfs_buftarg, bt_shrinker);
  1293. struct xfs_buf *bp;
  1294. int nr_to_scan = sc->nr_to_scan;
  1295. LIST_HEAD(dispose);
  1296. if (!nr_to_scan)
  1297. return btp->bt_lru_nr;
  1298. spin_lock(&btp->bt_lru_lock);
  1299. while (!list_empty(&btp->bt_lru)) {
  1300. if (nr_to_scan-- <= 0)
  1301. break;
  1302. bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
  1303. /*
  1304. * Decrement the b_lru_ref count unless the value is already
  1305. * zero. If the value is already zero, we need to reclaim the
  1306. * buffer, otherwise it gets another trip through the LRU.
  1307. */
  1308. if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
  1309. list_move_tail(&bp->b_lru, &btp->bt_lru);
  1310. continue;
  1311. }
  1312. /*
  1313. * remove the buffer from the LRU now to avoid needing another
  1314. * lock round trip inside xfs_buf_rele().
  1315. */
  1316. list_move(&bp->b_lru, &dispose);
  1317. btp->bt_lru_nr--;
  1318. bp->b_lru_flags |= _XBF_LRU_DISPOSE;
  1319. }
  1320. spin_unlock(&btp->bt_lru_lock);
  1321. while (!list_empty(&dispose)) {
  1322. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1323. list_del_init(&bp->b_lru);
  1324. xfs_buf_rele(bp);
  1325. }
  1326. return btp->bt_lru_nr;
  1327. }
  1328. void
  1329. xfs_free_buftarg(
  1330. struct xfs_mount *mp,
  1331. struct xfs_buftarg *btp)
  1332. {
  1333. unregister_shrinker(&btp->bt_shrinker);
  1334. if (mp->m_flags & XFS_MOUNT_BARRIER)
  1335. xfs_blkdev_issue_flush(btp);
  1336. kmem_free(btp);
  1337. }
  1338. STATIC int
  1339. xfs_setsize_buftarg_flags(
  1340. xfs_buftarg_t *btp,
  1341. unsigned int blocksize,
  1342. unsigned int sectorsize,
  1343. int verbose)
  1344. {
  1345. btp->bt_bsize = blocksize;
  1346. btp->bt_sshift = ffs(sectorsize) - 1;
  1347. btp->bt_smask = sectorsize - 1;
  1348. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1349. char name[BDEVNAME_SIZE];
  1350. bdevname(btp->bt_bdev, name);
  1351. xfs_warn(btp->bt_mount,
  1352. "Cannot set_blocksize to %u on device %s\n",
  1353. sectorsize, name);
  1354. return EINVAL;
  1355. }
  1356. return 0;
  1357. }
  1358. /*
  1359. * When allocating the initial buffer target we have not yet
  1360. * read in the superblock, so don't know what sized sectors
  1361. * are being used is at this early stage. Play safe.
  1362. */
  1363. STATIC int
  1364. xfs_setsize_buftarg_early(
  1365. xfs_buftarg_t *btp,
  1366. struct block_device *bdev)
  1367. {
  1368. return xfs_setsize_buftarg_flags(btp,
  1369. PAGE_SIZE, bdev_logical_block_size(bdev), 0);
  1370. }
  1371. int
  1372. xfs_setsize_buftarg(
  1373. xfs_buftarg_t *btp,
  1374. unsigned int blocksize,
  1375. unsigned int sectorsize)
  1376. {
  1377. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1378. }
  1379. xfs_buftarg_t *
  1380. xfs_alloc_buftarg(
  1381. struct xfs_mount *mp,
  1382. struct block_device *bdev,
  1383. int external,
  1384. const char *fsname)
  1385. {
  1386. xfs_buftarg_t *btp;
  1387. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1388. btp->bt_mount = mp;
  1389. btp->bt_dev = bdev->bd_dev;
  1390. btp->bt_bdev = bdev;
  1391. btp->bt_bdi = blk_get_backing_dev_info(bdev);
  1392. if (!btp->bt_bdi)
  1393. goto error;
  1394. INIT_LIST_HEAD(&btp->bt_lru);
  1395. spin_lock_init(&btp->bt_lru_lock);
  1396. if (xfs_setsize_buftarg_early(btp, bdev))
  1397. goto error;
  1398. btp->bt_shrinker.shrink = xfs_buftarg_shrink;
  1399. btp->bt_shrinker.seeks = DEFAULT_SEEKS;
  1400. register_shrinker(&btp->bt_shrinker);
  1401. return btp;
  1402. error:
  1403. kmem_free(btp);
  1404. return NULL;
  1405. }
  1406. /*
  1407. * Add a buffer to the delayed write list.
  1408. *
  1409. * This queues a buffer for writeout if it hasn't already been. Note that
  1410. * neither this routine nor the buffer list submission functions perform
  1411. * any internal synchronization. It is expected that the lists are thread-local
  1412. * to the callers.
  1413. *
  1414. * Returns true if we queued up the buffer, or false if it already had
  1415. * been on the buffer list.
  1416. */
  1417. bool
  1418. xfs_buf_delwri_queue(
  1419. struct xfs_buf *bp,
  1420. struct list_head *list)
  1421. {
  1422. ASSERT(xfs_buf_islocked(bp));
  1423. ASSERT(!(bp->b_flags & XBF_READ));
  1424. /*
  1425. * If the buffer is already marked delwri it already is queued up
  1426. * by someone else for imediate writeout. Just ignore it in that
  1427. * case.
  1428. */
  1429. if (bp->b_flags & _XBF_DELWRI_Q) {
  1430. trace_xfs_buf_delwri_queued(bp, _RET_IP_);
  1431. return false;
  1432. }
  1433. trace_xfs_buf_delwri_queue(bp, _RET_IP_);
  1434. /*
  1435. * If a buffer gets written out synchronously or marked stale while it
  1436. * is on a delwri list we lazily remove it. To do this, the other party
  1437. * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
  1438. * It remains referenced and on the list. In a rare corner case it
  1439. * might get readded to a delwri list after the synchronous writeout, in
  1440. * which case we need just need to re-add the flag here.
  1441. */
  1442. bp->b_flags |= _XBF_DELWRI_Q;
  1443. if (list_empty(&bp->b_list)) {
  1444. atomic_inc(&bp->b_hold);
  1445. list_add_tail(&bp->b_list, list);
  1446. }
  1447. return true;
  1448. }
  1449. /*
  1450. * Compare function is more complex than it needs to be because
  1451. * the return value is only 32 bits and we are doing comparisons
  1452. * on 64 bit values
  1453. */
  1454. static int
  1455. xfs_buf_cmp(
  1456. void *priv,
  1457. struct list_head *a,
  1458. struct list_head *b)
  1459. {
  1460. struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
  1461. struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
  1462. xfs_daddr_t diff;
  1463. diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
  1464. if (diff < 0)
  1465. return -1;
  1466. if (diff > 0)
  1467. return 1;
  1468. return 0;
  1469. }
  1470. static int
  1471. __xfs_buf_delwri_submit(
  1472. struct list_head *buffer_list,
  1473. struct list_head *io_list,
  1474. bool wait)
  1475. {
  1476. struct blk_plug plug;
  1477. struct xfs_buf *bp, *n;
  1478. int pinned = 0;
  1479. list_for_each_entry_safe(bp, n, buffer_list, b_list) {
  1480. if (!wait) {
  1481. if (xfs_buf_ispinned(bp)) {
  1482. pinned++;
  1483. continue;
  1484. }
  1485. if (!xfs_buf_trylock(bp))
  1486. continue;
  1487. } else {
  1488. xfs_buf_lock(bp);
  1489. }
  1490. /*
  1491. * Someone else might have written the buffer synchronously or
  1492. * marked it stale in the meantime. In that case only the
  1493. * _XBF_DELWRI_Q flag got cleared, and we have to drop the
  1494. * reference and remove it from the list here.
  1495. */
  1496. if (!(bp->b_flags & _XBF_DELWRI_Q)) {
  1497. list_del_init(&bp->b_list);
  1498. xfs_buf_relse(bp);
  1499. continue;
  1500. }
  1501. list_move_tail(&bp->b_list, io_list);
  1502. trace_xfs_buf_delwri_split(bp, _RET_IP_);
  1503. }
  1504. list_sort(NULL, io_list, xfs_buf_cmp);
  1505. blk_start_plug(&plug);
  1506. list_for_each_entry_safe(bp, n, io_list, b_list) {
  1507. bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
  1508. bp->b_flags |= XBF_WRITE;
  1509. if (!wait) {
  1510. bp->b_flags |= XBF_ASYNC;
  1511. list_del_init(&bp->b_list);
  1512. }
  1513. xfs_bdstrat_cb(bp);
  1514. }
  1515. blk_finish_plug(&plug);
  1516. return pinned;
  1517. }
  1518. /*
  1519. * Write out a buffer list asynchronously.
  1520. *
  1521. * This will take the @buffer_list, write all non-locked and non-pinned buffers
  1522. * out and not wait for I/O completion on any of the buffers. This interface
  1523. * is only safely useable for callers that can track I/O completion by higher
  1524. * level means, e.g. AIL pushing as the @buffer_list is consumed in this
  1525. * function.
  1526. */
  1527. int
  1528. xfs_buf_delwri_submit_nowait(
  1529. struct list_head *buffer_list)
  1530. {
  1531. LIST_HEAD (io_list);
  1532. return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
  1533. }
  1534. /*
  1535. * Write out a buffer list synchronously.
  1536. *
  1537. * This will take the @buffer_list, write all buffers out and wait for I/O
  1538. * completion on all of the buffers. @buffer_list is consumed by the function,
  1539. * so callers must have some other way of tracking buffers if they require such
  1540. * functionality.
  1541. */
  1542. int
  1543. xfs_buf_delwri_submit(
  1544. struct list_head *buffer_list)
  1545. {
  1546. LIST_HEAD (io_list);
  1547. int error = 0, error2;
  1548. struct xfs_buf *bp;
  1549. __xfs_buf_delwri_submit(buffer_list, &io_list, true);
  1550. /* Wait for IO to complete. */
  1551. while (!list_empty(&io_list)) {
  1552. bp = list_first_entry(&io_list, struct xfs_buf, b_list);
  1553. list_del_init(&bp->b_list);
  1554. error2 = xfs_buf_iowait(bp);
  1555. xfs_buf_relse(bp);
  1556. if (!error)
  1557. error = error2;
  1558. }
  1559. return error;
  1560. }
  1561. int __init
  1562. xfs_buf_init(void)
  1563. {
  1564. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1565. KM_ZONE_HWALIGN, NULL);
  1566. if (!xfs_buf_zone)
  1567. goto out;
  1568. xfslogd_workqueue = alloc_workqueue("xfslogd",
  1569. WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
  1570. if (!xfslogd_workqueue)
  1571. goto out_free_buf_zone;
  1572. return 0;
  1573. out_free_buf_zone:
  1574. kmem_zone_destroy(xfs_buf_zone);
  1575. out:
  1576. return -ENOMEM;
  1577. }
  1578. void
  1579. xfs_buf_terminate(void)
  1580. {
  1581. destroy_workqueue(xfslogd_workqueue);
  1582. kmem_zone_destroy(xfs_buf_zone);
  1583. }