task_mmu.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmPin:\t%8lu kB\n"
  44. "VmHWM:\t%8lu kB\n"
  45. "VmRSS:\t%8lu kB\n"
  46. "VmData:\t%8lu kB\n"
  47. "VmStk:\t%8lu kB\n"
  48. "VmExe:\t%8lu kB\n"
  49. "VmLib:\t%8lu kB\n"
  50. "VmPTE:\t%8lu kB\n"
  51. "VmSwap:\t%8lu kB\n",
  52. hiwater_vm << (PAGE_SHIFT-10),
  53. total_vm << (PAGE_SHIFT-10),
  54. mm->locked_vm << (PAGE_SHIFT-10),
  55. mm->pinned_vm << (PAGE_SHIFT-10),
  56. hiwater_rss << (PAGE_SHIFT-10),
  57. total_rss << (PAGE_SHIFT-10),
  58. data << (PAGE_SHIFT-10),
  59. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  60. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  61. swap << (PAGE_SHIFT-10));
  62. }
  63. unsigned long task_vsize(struct mm_struct *mm)
  64. {
  65. return PAGE_SIZE * mm->total_vm;
  66. }
  67. unsigned long task_statm(struct mm_struct *mm,
  68. unsigned long *shared, unsigned long *text,
  69. unsigned long *data, unsigned long *resident)
  70. {
  71. *shared = get_mm_counter(mm, MM_FILEPAGES);
  72. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  73. >> PAGE_SHIFT;
  74. *data = mm->total_vm - mm->shared_vm;
  75. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  76. return mm->total_vm;
  77. }
  78. static void pad_len_spaces(struct seq_file *m, int len)
  79. {
  80. len = 25 + sizeof(void*) * 6 - len;
  81. if (len < 1)
  82. len = 1;
  83. seq_printf(m, "%*c", len, ' ');
  84. }
  85. #ifdef CONFIG_NUMA
  86. /*
  87. * These functions are for numa_maps but called in generic **maps seq_file
  88. * ->start(), ->stop() ops.
  89. *
  90. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  91. * Each mempolicy object is controlled by reference counting. The problem here
  92. * is how to avoid accessing dead mempolicy object.
  93. *
  94. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  95. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  96. *
  97. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  98. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  99. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  100. * gurantee the task never exits under us. But taking task_lock() around
  101. * get_vma_plicy() causes lock order problem.
  102. *
  103. * To access task->mempolicy without lock, we hold a reference count of an
  104. * object pointed by task->mempolicy and remember it. This will guarantee
  105. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  106. */
  107. static void hold_task_mempolicy(struct proc_maps_private *priv)
  108. {
  109. struct task_struct *task = priv->task;
  110. task_lock(task);
  111. priv->task_mempolicy = task->mempolicy;
  112. mpol_get(priv->task_mempolicy);
  113. task_unlock(task);
  114. }
  115. static void release_task_mempolicy(struct proc_maps_private *priv)
  116. {
  117. mpol_put(priv->task_mempolicy);
  118. }
  119. #else
  120. static void hold_task_mempolicy(struct proc_maps_private *priv)
  121. {
  122. }
  123. static void release_task_mempolicy(struct proc_maps_private *priv)
  124. {
  125. }
  126. #endif
  127. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  128. {
  129. if (vma && vma != priv->tail_vma) {
  130. struct mm_struct *mm = vma->vm_mm;
  131. release_task_mempolicy(priv);
  132. up_read(&mm->mmap_sem);
  133. mmput(mm);
  134. }
  135. }
  136. static void *m_start(struct seq_file *m, loff_t *pos)
  137. {
  138. struct proc_maps_private *priv = m->private;
  139. unsigned long last_addr = m->version;
  140. struct mm_struct *mm;
  141. struct vm_area_struct *vma, *tail_vma = NULL;
  142. loff_t l = *pos;
  143. /* Clear the per syscall fields in priv */
  144. priv->task = NULL;
  145. priv->tail_vma = NULL;
  146. /*
  147. * We remember last_addr rather than next_addr to hit with
  148. * mmap_cache most of the time. We have zero last_addr at
  149. * the beginning and also after lseek. We will have -1 last_addr
  150. * after the end of the vmas.
  151. */
  152. if (last_addr == -1UL)
  153. return NULL;
  154. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  155. if (!priv->task)
  156. return ERR_PTR(-ESRCH);
  157. mm = mm_access(priv->task, PTRACE_MODE_READ);
  158. if (!mm || IS_ERR(mm))
  159. return mm;
  160. down_read(&mm->mmap_sem);
  161. tail_vma = get_gate_vma(priv->task->mm);
  162. priv->tail_vma = tail_vma;
  163. hold_task_mempolicy(priv);
  164. /* Start with last addr hint */
  165. vma = find_vma(mm, last_addr);
  166. if (last_addr && vma) {
  167. vma = vma->vm_next;
  168. goto out;
  169. }
  170. /*
  171. * Check the vma index is within the range and do
  172. * sequential scan until m_index.
  173. */
  174. vma = NULL;
  175. if ((unsigned long)l < mm->map_count) {
  176. vma = mm->mmap;
  177. while (l-- && vma)
  178. vma = vma->vm_next;
  179. goto out;
  180. }
  181. if (l != mm->map_count)
  182. tail_vma = NULL; /* After gate vma */
  183. out:
  184. if (vma)
  185. return vma;
  186. release_task_mempolicy(priv);
  187. /* End of vmas has been reached */
  188. m->version = (tail_vma != NULL)? 0: -1UL;
  189. up_read(&mm->mmap_sem);
  190. mmput(mm);
  191. return tail_vma;
  192. }
  193. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  194. {
  195. struct proc_maps_private *priv = m->private;
  196. struct vm_area_struct *vma = v;
  197. struct vm_area_struct *tail_vma = priv->tail_vma;
  198. (*pos)++;
  199. if (vma && (vma != tail_vma) && vma->vm_next)
  200. return vma->vm_next;
  201. vma_stop(priv, vma);
  202. return (vma != tail_vma)? tail_vma: NULL;
  203. }
  204. static void m_stop(struct seq_file *m, void *v)
  205. {
  206. struct proc_maps_private *priv = m->private;
  207. struct vm_area_struct *vma = v;
  208. if (!IS_ERR(vma))
  209. vma_stop(priv, vma);
  210. if (priv->task)
  211. put_task_struct(priv->task);
  212. }
  213. static int do_maps_open(struct inode *inode, struct file *file,
  214. const struct seq_operations *ops)
  215. {
  216. struct proc_maps_private *priv;
  217. int ret = -ENOMEM;
  218. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  219. if (priv) {
  220. priv->pid = proc_pid(inode);
  221. ret = seq_open(file, ops);
  222. if (!ret) {
  223. struct seq_file *m = file->private_data;
  224. m->private = priv;
  225. } else {
  226. kfree(priv);
  227. }
  228. }
  229. return ret;
  230. }
  231. static void
  232. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  233. {
  234. struct mm_struct *mm = vma->vm_mm;
  235. struct file *file = vma->vm_file;
  236. struct proc_maps_private *priv = m->private;
  237. struct task_struct *task = priv->task;
  238. vm_flags_t flags = vma->vm_flags;
  239. unsigned long ino = 0;
  240. unsigned long long pgoff = 0;
  241. unsigned long start, end;
  242. dev_t dev = 0;
  243. int len;
  244. const char *name = NULL;
  245. if (file) {
  246. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  247. dev = inode->i_sb->s_dev;
  248. ino = inode->i_ino;
  249. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  250. }
  251. /* We don't show the stack guard page in /proc/maps */
  252. start = vma->vm_start;
  253. if (stack_guard_page_start(vma, start))
  254. start += PAGE_SIZE;
  255. end = vma->vm_end;
  256. if (stack_guard_page_end(vma, end))
  257. end -= PAGE_SIZE;
  258. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  259. start,
  260. end,
  261. flags & VM_READ ? 'r' : '-',
  262. flags & VM_WRITE ? 'w' : '-',
  263. flags & VM_EXEC ? 'x' : '-',
  264. flags & VM_MAYSHARE ? 's' : 'p',
  265. pgoff,
  266. MAJOR(dev), MINOR(dev), ino, &len);
  267. /*
  268. * Print the dentry name for named mappings, and a
  269. * special [heap] marker for the heap:
  270. */
  271. if (file) {
  272. pad_len_spaces(m, len);
  273. seq_path(m, &file->f_path, "\n");
  274. goto done;
  275. }
  276. name = arch_vma_name(vma);
  277. if (!name) {
  278. pid_t tid;
  279. if (!mm) {
  280. name = "[vdso]";
  281. goto done;
  282. }
  283. if (vma->vm_start <= mm->brk &&
  284. vma->vm_end >= mm->start_brk) {
  285. name = "[heap]";
  286. goto done;
  287. }
  288. tid = vm_is_stack(task, vma, is_pid);
  289. if (tid != 0) {
  290. /*
  291. * Thread stack in /proc/PID/task/TID/maps or
  292. * the main process stack.
  293. */
  294. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  295. vma->vm_end >= mm->start_stack)) {
  296. name = "[stack]";
  297. } else {
  298. /* Thread stack in /proc/PID/maps */
  299. pad_len_spaces(m, len);
  300. seq_printf(m, "[stack:%d]", tid);
  301. }
  302. }
  303. }
  304. done:
  305. if (name) {
  306. pad_len_spaces(m, len);
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. struct vm_area_struct *vma = v;
  314. struct proc_maps_private *priv = m->private;
  315. struct task_struct *task = priv->task;
  316. show_map_vma(m, vma, is_pid);
  317. if (m->count < m->size) /* vma is copied successfully */
  318. m->version = (vma != get_gate_vma(task->mm))
  319. ? vma->vm_start : 0;
  320. return 0;
  321. }
  322. static int show_pid_map(struct seq_file *m, void *v)
  323. {
  324. return show_map(m, v, 1);
  325. }
  326. static int show_tid_map(struct seq_file *m, void *v)
  327. {
  328. return show_map(m, v, 0);
  329. }
  330. static const struct seq_operations proc_pid_maps_op = {
  331. .start = m_start,
  332. .next = m_next,
  333. .stop = m_stop,
  334. .show = show_pid_map
  335. };
  336. static const struct seq_operations proc_tid_maps_op = {
  337. .start = m_start,
  338. .next = m_next,
  339. .stop = m_stop,
  340. .show = show_tid_map
  341. };
  342. static int pid_maps_open(struct inode *inode, struct file *file)
  343. {
  344. return do_maps_open(inode, file, &proc_pid_maps_op);
  345. }
  346. static int tid_maps_open(struct inode *inode, struct file *file)
  347. {
  348. return do_maps_open(inode, file, &proc_tid_maps_op);
  349. }
  350. const struct file_operations proc_pid_maps_operations = {
  351. .open = pid_maps_open,
  352. .read = seq_read,
  353. .llseek = seq_lseek,
  354. .release = seq_release_private,
  355. };
  356. const struct file_operations proc_tid_maps_operations = {
  357. .open = tid_maps_open,
  358. .read = seq_read,
  359. .llseek = seq_lseek,
  360. .release = seq_release_private,
  361. };
  362. /*
  363. * Proportional Set Size(PSS): my share of RSS.
  364. *
  365. * PSS of a process is the count of pages it has in memory, where each
  366. * page is divided by the number of processes sharing it. So if a
  367. * process has 1000 pages all to itself, and 1000 shared with one other
  368. * process, its PSS will be 1500.
  369. *
  370. * To keep (accumulated) division errors low, we adopt a 64bit
  371. * fixed-point pss counter to minimize division errors. So (pss >>
  372. * PSS_SHIFT) would be the real byte count.
  373. *
  374. * A shift of 12 before division means (assuming 4K page size):
  375. * - 1M 3-user-pages add up to 8KB errors;
  376. * - supports mapcount up to 2^24, or 16M;
  377. * - supports PSS up to 2^52 bytes, or 4PB.
  378. */
  379. #define PSS_SHIFT 12
  380. #ifdef CONFIG_PROC_PAGE_MONITOR
  381. struct mem_size_stats {
  382. struct vm_area_struct *vma;
  383. unsigned long resident;
  384. unsigned long shared_clean;
  385. unsigned long shared_dirty;
  386. unsigned long private_clean;
  387. unsigned long private_dirty;
  388. unsigned long referenced;
  389. unsigned long anonymous;
  390. unsigned long anonymous_thp;
  391. unsigned long swap;
  392. unsigned long nonlinear;
  393. u64 pss;
  394. };
  395. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  396. unsigned long ptent_size, struct mm_walk *walk)
  397. {
  398. struct mem_size_stats *mss = walk->private;
  399. struct vm_area_struct *vma = mss->vma;
  400. pgoff_t pgoff = linear_page_index(vma, addr);
  401. struct page *page = NULL;
  402. int mapcount;
  403. if (pte_present(ptent)) {
  404. page = vm_normal_page(vma, addr, ptent);
  405. } else if (is_swap_pte(ptent)) {
  406. swp_entry_t swpent = pte_to_swp_entry(ptent);
  407. if (!non_swap_entry(swpent))
  408. mss->swap += ptent_size;
  409. else if (is_migration_entry(swpent))
  410. page = migration_entry_to_page(swpent);
  411. } else if (pte_file(ptent)) {
  412. if (pte_to_pgoff(ptent) != pgoff)
  413. mss->nonlinear += ptent_size;
  414. }
  415. if (!page)
  416. return;
  417. if (PageAnon(page))
  418. mss->anonymous += ptent_size;
  419. if (page->index != pgoff)
  420. mss->nonlinear += ptent_size;
  421. mss->resident += ptent_size;
  422. /* Accumulate the size in pages that have been accessed. */
  423. if (pte_young(ptent) || PageReferenced(page))
  424. mss->referenced += ptent_size;
  425. mapcount = page_mapcount(page);
  426. if (mapcount >= 2) {
  427. if (pte_dirty(ptent) || PageDirty(page))
  428. mss->shared_dirty += ptent_size;
  429. else
  430. mss->shared_clean += ptent_size;
  431. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  432. } else {
  433. if (pte_dirty(ptent) || PageDirty(page))
  434. mss->private_dirty += ptent_size;
  435. else
  436. mss->private_clean += ptent_size;
  437. mss->pss += (ptent_size << PSS_SHIFT);
  438. }
  439. }
  440. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  441. struct mm_walk *walk)
  442. {
  443. struct mem_size_stats *mss = walk->private;
  444. struct vm_area_struct *vma = mss->vma;
  445. pte_t *pte;
  446. spinlock_t *ptl;
  447. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  448. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  449. spin_unlock(&walk->mm->page_table_lock);
  450. mss->anonymous_thp += HPAGE_PMD_SIZE;
  451. return 0;
  452. }
  453. if (pmd_trans_unstable(pmd))
  454. return 0;
  455. /*
  456. * The mmap_sem held all the way back in m_start() is what
  457. * keeps khugepaged out of here and from collapsing things
  458. * in here.
  459. */
  460. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  461. for (; addr != end; pte++, addr += PAGE_SIZE)
  462. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  463. pte_unmap_unlock(pte - 1, ptl);
  464. cond_resched();
  465. return 0;
  466. }
  467. static int show_smap(struct seq_file *m, void *v, int is_pid)
  468. {
  469. struct proc_maps_private *priv = m->private;
  470. struct task_struct *task = priv->task;
  471. struct vm_area_struct *vma = v;
  472. struct mem_size_stats mss;
  473. struct mm_walk smaps_walk = {
  474. .pmd_entry = smaps_pte_range,
  475. .mm = vma->vm_mm,
  476. .private = &mss,
  477. };
  478. memset(&mss, 0, sizeof mss);
  479. mss.vma = vma;
  480. /* mmap_sem is held in m_start */
  481. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  482. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  483. show_map_vma(m, vma, is_pid);
  484. seq_printf(m,
  485. "Size: %8lu kB\n"
  486. "Rss: %8lu kB\n"
  487. "Pss: %8lu kB\n"
  488. "Shared_Clean: %8lu kB\n"
  489. "Shared_Dirty: %8lu kB\n"
  490. "Private_Clean: %8lu kB\n"
  491. "Private_Dirty: %8lu kB\n"
  492. "Referenced: %8lu kB\n"
  493. "Anonymous: %8lu kB\n"
  494. "AnonHugePages: %8lu kB\n"
  495. "Swap: %8lu kB\n"
  496. "KernelPageSize: %8lu kB\n"
  497. "MMUPageSize: %8lu kB\n"
  498. "Locked: %8lu kB\n",
  499. (vma->vm_end - vma->vm_start) >> 10,
  500. mss.resident >> 10,
  501. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  502. mss.shared_clean >> 10,
  503. mss.shared_dirty >> 10,
  504. mss.private_clean >> 10,
  505. mss.private_dirty >> 10,
  506. mss.referenced >> 10,
  507. mss.anonymous >> 10,
  508. mss.anonymous_thp >> 10,
  509. mss.swap >> 10,
  510. vma_kernel_pagesize(vma) >> 10,
  511. vma_mmu_pagesize(vma) >> 10,
  512. (vma->vm_flags & VM_LOCKED) ?
  513. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  514. if (vma->vm_flags & VM_NONLINEAR)
  515. seq_printf(m, "Nonlinear: %8lu kB\n",
  516. mss.nonlinear >> 10);
  517. if (m->count < m->size) /* vma is copied successfully */
  518. m->version = (vma != get_gate_vma(task->mm))
  519. ? vma->vm_start : 0;
  520. return 0;
  521. }
  522. static int show_pid_smap(struct seq_file *m, void *v)
  523. {
  524. return show_smap(m, v, 1);
  525. }
  526. static int show_tid_smap(struct seq_file *m, void *v)
  527. {
  528. return show_smap(m, v, 0);
  529. }
  530. static const struct seq_operations proc_pid_smaps_op = {
  531. .start = m_start,
  532. .next = m_next,
  533. .stop = m_stop,
  534. .show = show_pid_smap
  535. };
  536. static const struct seq_operations proc_tid_smaps_op = {
  537. .start = m_start,
  538. .next = m_next,
  539. .stop = m_stop,
  540. .show = show_tid_smap
  541. };
  542. static int pid_smaps_open(struct inode *inode, struct file *file)
  543. {
  544. return do_maps_open(inode, file, &proc_pid_smaps_op);
  545. }
  546. static int tid_smaps_open(struct inode *inode, struct file *file)
  547. {
  548. return do_maps_open(inode, file, &proc_tid_smaps_op);
  549. }
  550. const struct file_operations proc_pid_smaps_operations = {
  551. .open = pid_smaps_open,
  552. .read = seq_read,
  553. .llseek = seq_lseek,
  554. .release = seq_release_private,
  555. };
  556. const struct file_operations proc_tid_smaps_operations = {
  557. .open = tid_smaps_open,
  558. .read = seq_read,
  559. .llseek = seq_lseek,
  560. .release = seq_release_private,
  561. };
  562. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  563. unsigned long end, struct mm_walk *walk)
  564. {
  565. struct vm_area_struct *vma = walk->private;
  566. pte_t *pte, ptent;
  567. spinlock_t *ptl;
  568. struct page *page;
  569. split_huge_page_pmd(walk->mm, pmd);
  570. if (pmd_trans_unstable(pmd))
  571. return 0;
  572. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  573. for (; addr != end; pte++, addr += PAGE_SIZE) {
  574. ptent = *pte;
  575. if (!pte_present(ptent))
  576. continue;
  577. page = vm_normal_page(vma, addr, ptent);
  578. if (!page)
  579. continue;
  580. /* Clear accessed and referenced bits. */
  581. ptep_test_and_clear_young(vma, addr, pte);
  582. ClearPageReferenced(page);
  583. }
  584. pte_unmap_unlock(pte - 1, ptl);
  585. cond_resched();
  586. return 0;
  587. }
  588. #define CLEAR_REFS_ALL 1
  589. #define CLEAR_REFS_ANON 2
  590. #define CLEAR_REFS_MAPPED 3
  591. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  592. size_t count, loff_t *ppos)
  593. {
  594. struct task_struct *task;
  595. char buffer[PROC_NUMBUF];
  596. struct mm_struct *mm;
  597. struct vm_area_struct *vma;
  598. int type;
  599. int rv;
  600. memset(buffer, 0, sizeof(buffer));
  601. if (count > sizeof(buffer) - 1)
  602. count = sizeof(buffer) - 1;
  603. if (copy_from_user(buffer, buf, count))
  604. return -EFAULT;
  605. rv = kstrtoint(strstrip(buffer), 10, &type);
  606. if (rv < 0)
  607. return rv;
  608. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  609. return -EINVAL;
  610. task = get_proc_task(file->f_path.dentry->d_inode);
  611. if (!task)
  612. return -ESRCH;
  613. mm = get_task_mm(task);
  614. if (mm) {
  615. struct mm_walk clear_refs_walk = {
  616. .pmd_entry = clear_refs_pte_range,
  617. .mm = mm,
  618. };
  619. down_read(&mm->mmap_sem);
  620. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  621. clear_refs_walk.private = vma;
  622. if (is_vm_hugetlb_page(vma))
  623. continue;
  624. /*
  625. * Writing 1 to /proc/pid/clear_refs affects all pages.
  626. *
  627. * Writing 2 to /proc/pid/clear_refs only affects
  628. * Anonymous pages.
  629. *
  630. * Writing 3 to /proc/pid/clear_refs only affects file
  631. * mapped pages.
  632. */
  633. if (type == CLEAR_REFS_ANON && vma->vm_file)
  634. continue;
  635. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  636. continue;
  637. walk_page_range(vma->vm_start, vma->vm_end,
  638. &clear_refs_walk);
  639. }
  640. flush_tlb_mm(mm);
  641. up_read(&mm->mmap_sem);
  642. mmput(mm);
  643. }
  644. put_task_struct(task);
  645. return count;
  646. }
  647. const struct file_operations proc_clear_refs_operations = {
  648. .write = clear_refs_write,
  649. .llseek = noop_llseek,
  650. };
  651. typedef struct {
  652. u64 pme;
  653. } pagemap_entry_t;
  654. struct pagemapread {
  655. int pos, len;
  656. pagemap_entry_t *buffer;
  657. };
  658. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  659. #define PAGEMAP_WALK_MASK (PMD_MASK)
  660. #define PM_ENTRY_BYTES sizeof(u64)
  661. #define PM_STATUS_BITS 3
  662. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  663. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  664. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  665. #define PM_PSHIFT_BITS 6
  666. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  667. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  668. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  669. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  670. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  671. #define PM_PRESENT PM_STATUS(4LL)
  672. #define PM_SWAP PM_STATUS(2LL)
  673. #define PM_FILE PM_STATUS(1LL)
  674. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  675. #define PM_END_OF_BUFFER 1
  676. static inline pagemap_entry_t make_pme(u64 val)
  677. {
  678. return (pagemap_entry_t) { .pme = val };
  679. }
  680. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  681. struct pagemapread *pm)
  682. {
  683. pm->buffer[pm->pos++] = *pme;
  684. if (pm->pos >= pm->len)
  685. return PM_END_OF_BUFFER;
  686. return 0;
  687. }
  688. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  689. struct mm_walk *walk)
  690. {
  691. struct pagemapread *pm = walk->private;
  692. unsigned long addr;
  693. int err = 0;
  694. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  695. for (addr = start; addr < end; addr += PAGE_SIZE) {
  696. err = add_to_pagemap(addr, &pme, pm);
  697. if (err)
  698. break;
  699. }
  700. return err;
  701. }
  702. static void pte_to_pagemap_entry(pagemap_entry_t *pme,
  703. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  704. {
  705. u64 frame, flags;
  706. struct page *page = NULL;
  707. if (pte_present(pte)) {
  708. frame = pte_pfn(pte);
  709. flags = PM_PRESENT;
  710. page = vm_normal_page(vma, addr, pte);
  711. } else if (is_swap_pte(pte)) {
  712. swp_entry_t entry = pte_to_swp_entry(pte);
  713. frame = swp_type(entry) |
  714. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  715. flags = PM_SWAP;
  716. if (is_migration_entry(entry))
  717. page = migration_entry_to_page(entry);
  718. } else {
  719. *pme = make_pme(PM_NOT_PRESENT);
  720. return;
  721. }
  722. if (page && !PageAnon(page))
  723. flags |= PM_FILE;
  724. *pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
  725. }
  726. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  727. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  728. pmd_t pmd, int offset)
  729. {
  730. /*
  731. * Currently pmd for thp is always present because thp can not be
  732. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  733. * This if-check is just to prepare for future implementation.
  734. */
  735. if (pmd_present(pmd))
  736. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  737. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  738. else
  739. *pme = make_pme(PM_NOT_PRESENT);
  740. }
  741. #else
  742. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  743. pmd_t pmd, int offset)
  744. {
  745. }
  746. #endif
  747. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  748. struct mm_walk *walk)
  749. {
  750. struct vm_area_struct *vma;
  751. struct pagemapread *pm = walk->private;
  752. pte_t *pte;
  753. int err = 0;
  754. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  755. /* find the first VMA at or above 'addr' */
  756. vma = find_vma(walk->mm, addr);
  757. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  758. for (; addr != end; addr += PAGE_SIZE) {
  759. unsigned long offset;
  760. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  761. PAGE_SHIFT;
  762. thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
  763. err = add_to_pagemap(addr, &pme, pm);
  764. if (err)
  765. break;
  766. }
  767. spin_unlock(&walk->mm->page_table_lock);
  768. return err;
  769. }
  770. if (pmd_trans_unstable(pmd))
  771. return 0;
  772. for (; addr != end; addr += PAGE_SIZE) {
  773. /* check to see if we've left 'vma' behind
  774. * and need a new, higher one */
  775. if (vma && (addr >= vma->vm_end)) {
  776. vma = find_vma(walk->mm, addr);
  777. pme = make_pme(PM_NOT_PRESENT);
  778. }
  779. /* check that 'vma' actually covers this address,
  780. * and that it isn't a huge page vma */
  781. if (vma && (vma->vm_start <= addr) &&
  782. !is_vm_hugetlb_page(vma)) {
  783. pte = pte_offset_map(pmd, addr);
  784. pte_to_pagemap_entry(&pme, vma, addr, *pte);
  785. /* unmap before userspace copy */
  786. pte_unmap(pte);
  787. }
  788. err = add_to_pagemap(addr, &pme, pm);
  789. if (err)
  790. return err;
  791. }
  792. cond_resched();
  793. return err;
  794. }
  795. #ifdef CONFIG_HUGETLB_PAGE
  796. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
  797. pte_t pte, int offset)
  798. {
  799. if (pte_present(pte))
  800. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  801. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  802. else
  803. *pme = make_pme(PM_NOT_PRESENT);
  804. }
  805. /* This function walks within one hugetlb entry in the single call */
  806. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  807. unsigned long addr, unsigned long end,
  808. struct mm_walk *walk)
  809. {
  810. struct pagemapread *pm = walk->private;
  811. int err = 0;
  812. pagemap_entry_t pme;
  813. for (; addr != end; addr += PAGE_SIZE) {
  814. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  815. huge_pte_to_pagemap_entry(&pme, *pte, offset);
  816. err = add_to_pagemap(addr, &pme, pm);
  817. if (err)
  818. return err;
  819. }
  820. cond_resched();
  821. return err;
  822. }
  823. #endif /* HUGETLB_PAGE */
  824. /*
  825. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  826. *
  827. * For each page in the address space, this file contains one 64-bit entry
  828. * consisting of the following:
  829. *
  830. * Bits 0-54 page frame number (PFN) if present
  831. * Bits 0-4 swap type if swapped
  832. * Bits 5-54 swap offset if swapped
  833. * Bits 55-60 page shift (page size = 1<<page shift)
  834. * Bit 61 page is file-page or shared-anon
  835. * Bit 62 page swapped
  836. * Bit 63 page present
  837. *
  838. * If the page is not present but in swap, then the PFN contains an
  839. * encoding of the swap file number and the page's offset into the
  840. * swap. Unmapped pages return a null PFN. This allows determining
  841. * precisely which pages are mapped (or in swap) and comparing mapped
  842. * pages between processes.
  843. *
  844. * Efficient users of this interface will use /proc/pid/maps to
  845. * determine which areas of memory are actually mapped and llseek to
  846. * skip over unmapped regions.
  847. */
  848. static ssize_t pagemap_read(struct file *file, char __user *buf,
  849. size_t count, loff_t *ppos)
  850. {
  851. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  852. struct mm_struct *mm;
  853. struct pagemapread pm;
  854. int ret = -ESRCH;
  855. struct mm_walk pagemap_walk = {};
  856. unsigned long src;
  857. unsigned long svpfn;
  858. unsigned long start_vaddr;
  859. unsigned long end_vaddr;
  860. int copied = 0;
  861. if (!task)
  862. goto out;
  863. ret = -EINVAL;
  864. /* file position must be aligned */
  865. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  866. goto out_task;
  867. ret = 0;
  868. if (!count)
  869. goto out_task;
  870. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  871. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  872. ret = -ENOMEM;
  873. if (!pm.buffer)
  874. goto out_task;
  875. mm = mm_access(task, PTRACE_MODE_READ);
  876. ret = PTR_ERR(mm);
  877. if (!mm || IS_ERR(mm))
  878. goto out_free;
  879. pagemap_walk.pmd_entry = pagemap_pte_range;
  880. pagemap_walk.pte_hole = pagemap_pte_hole;
  881. #ifdef CONFIG_HUGETLB_PAGE
  882. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  883. #endif
  884. pagemap_walk.mm = mm;
  885. pagemap_walk.private = &pm;
  886. src = *ppos;
  887. svpfn = src / PM_ENTRY_BYTES;
  888. start_vaddr = svpfn << PAGE_SHIFT;
  889. end_vaddr = TASK_SIZE_OF(task);
  890. /* watch out for wraparound */
  891. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  892. start_vaddr = end_vaddr;
  893. /*
  894. * The odds are that this will stop walking way
  895. * before end_vaddr, because the length of the
  896. * user buffer is tracked in "pm", and the walk
  897. * will stop when we hit the end of the buffer.
  898. */
  899. ret = 0;
  900. while (count && (start_vaddr < end_vaddr)) {
  901. int len;
  902. unsigned long end;
  903. pm.pos = 0;
  904. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  905. /* overflow ? */
  906. if (end < start_vaddr || end > end_vaddr)
  907. end = end_vaddr;
  908. down_read(&mm->mmap_sem);
  909. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  910. up_read(&mm->mmap_sem);
  911. start_vaddr = end;
  912. len = min(count, PM_ENTRY_BYTES * pm.pos);
  913. if (copy_to_user(buf, pm.buffer, len)) {
  914. ret = -EFAULT;
  915. goto out_mm;
  916. }
  917. copied += len;
  918. buf += len;
  919. count -= len;
  920. }
  921. *ppos += copied;
  922. if (!ret || ret == PM_END_OF_BUFFER)
  923. ret = copied;
  924. out_mm:
  925. mmput(mm);
  926. out_free:
  927. kfree(pm.buffer);
  928. out_task:
  929. put_task_struct(task);
  930. out:
  931. return ret;
  932. }
  933. const struct file_operations proc_pagemap_operations = {
  934. .llseek = mem_lseek, /* borrow this */
  935. .read = pagemap_read,
  936. };
  937. #endif /* CONFIG_PROC_PAGE_MONITOR */
  938. #ifdef CONFIG_NUMA
  939. struct numa_maps {
  940. struct vm_area_struct *vma;
  941. unsigned long pages;
  942. unsigned long anon;
  943. unsigned long active;
  944. unsigned long writeback;
  945. unsigned long mapcount_max;
  946. unsigned long dirty;
  947. unsigned long swapcache;
  948. unsigned long node[MAX_NUMNODES];
  949. };
  950. struct numa_maps_private {
  951. struct proc_maps_private proc_maps;
  952. struct numa_maps md;
  953. };
  954. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  955. unsigned long nr_pages)
  956. {
  957. int count = page_mapcount(page);
  958. md->pages += nr_pages;
  959. if (pte_dirty || PageDirty(page))
  960. md->dirty += nr_pages;
  961. if (PageSwapCache(page))
  962. md->swapcache += nr_pages;
  963. if (PageActive(page) || PageUnevictable(page))
  964. md->active += nr_pages;
  965. if (PageWriteback(page))
  966. md->writeback += nr_pages;
  967. if (PageAnon(page))
  968. md->anon += nr_pages;
  969. if (count > md->mapcount_max)
  970. md->mapcount_max = count;
  971. md->node[page_to_nid(page)] += nr_pages;
  972. }
  973. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  974. unsigned long addr)
  975. {
  976. struct page *page;
  977. int nid;
  978. if (!pte_present(pte))
  979. return NULL;
  980. page = vm_normal_page(vma, addr, pte);
  981. if (!page)
  982. return NULL;
  983. if (PageReserved(page))
  984. return NULL;
  985. nid = page_to_nid(page);
  986. if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
  987. return NULL;
  988. return page;
  989. }
  990. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  991. unsigned long end, struct mm_walk *walk)
  992. {
  993. struct numa_maps *md;
  994. spinlock_t *ptl;
  995. pte_t *orig_pte;
  996. pte_t *pte;
  997. md = walk->private;
  998. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  999. pte_t huge_pte = *(pte_t *)pmd;
  1000. struct page *page;
  1001. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1002. if (page)
  1003. gather_stats(page, md, pte_dirty(huge_pte),
  1004. HPAGE_PMD_SIZE/PAGE_SIZE);
  1005. spin_unlock(&walk->mm->page_table_lock);
  1006. return 0;
  1007. }
  1008. if (pmd_trans_unstable(pmd))
  1009. return 0;
  1010. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1011. do {
  1012. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1013. if (!page)
  1014. continue;
  1015. gather_stats(page, md, pte_dirty(*pte), 1);
  1016. } while (pte++, addr += PAGE_SIZE, addr != end);
  1017. pte_unmap_unlock(orig_pte, ptl);
  1018. return 0;
  1019. }
  1020. #ifdef CONFIG_HUGETLB_PAGE
  1021. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1022. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1023. {
  1024. struct numa_maps *md;
  1025. struct page *page;
  1026. if (pte_none(*pte))
  1027. return 0;
  1028. page = pte_page(*pte);
  1029. if (!page)
  1030. return 0;
  1031. md = walk->private;
  1032. gather_stats(page, md, pte_dirty(*pte), 1);
  1033. return 0;
  1034. }
  1035. #else
  1036. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1037. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1038. {
  1039. return 0;
  1040. }
  1041. #endif
  1042. /*
  1043. * Display pages allocated per node and memory policy via /proc.
  1044. */
  1045. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1046. {
  1047. struct numa_maps_private *numa_priv = m->private;
  1048. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1049. struct vm_area_struct *vma = v;
  1050. struct numa_maps *md = &numa_priv->md;
  1051. struct file *file = vma->vm_file;
  1052. struct task_struct *task = proc_priv->task;
  1053. struct mm_struct *mm = vma->vm_mm;
  1054. struct mm_walk walk = {};
  1055. struct mempolicy *pol;
  1056. int n;
  1057. char buffer[50];
  1058. if (!mm)
  1059. return 0;
  1060. /* Ensure we start with an empty set of numa_maps statistics. */
  1061. memset(md, 0, sizeof(*md));
  1062. md->vma = vma;
  1063. walk.hugetlb_entry = gather_hugetbl_stats;
  1064. walk.pmd_entry = gather_pte_stats;
  1065. walk.private = md;
  1066. walk.mm = mm;
  1067. pol = get_vma_policy(task, vma, vma->vm_start);
  1068. mpol_to_str(buffer, sizeof(buffer), pol, 0);
  1069. mpol_cond_put(pol);
  1070. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1071. if (file) {
  1072. seq_printf(m, " file=");
  1073. seq_path(m, &file->f_path, "\n\t= ");
  1074. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1075. seq_printf(m, " heap");
  1076. } else {
  1077. pid_t tid = vm_is_stack(task, vma, is_pid);
  1078. if (tid != 0) {
  1079. /*
  1080. * Thread stack in /proc/PID/task/TID/maps or
  1081. * the main process stack.
  1082. */
  1083. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1084. vma->vm_end >= mm->start_stack))
  1085. seq_printf(m, " stack");
  1086. else
  1087. seq_printf(m, " stack:%d", tid);
  1088. }
  1089. }
  1090. if (is_vm_hugetlb_page(vma))
  1091. seq_printf(m, " huge");
  1092. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1093. if (!md->pages)
  1094. goto out;
  1095. if (md->anon)
  1096. seq_printf(m, " anon=%lu", md->anon);
  1097. if (md->dirty)
  1098. seq_printf(m, " dirty=%lu", md->dirty);
  1099. if (md->pages != md->anon && md->pages != md->dirty)
  1100. seq_printf(m, " mapped=%lu", md->pages);
  1101. if (md->mapcount_max > 1)
  1102. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1103. if (md->swapcache)
  1104. seq_printf(m, " swapcache=%lu", md->swapcache);
  1105. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1106. seq_printf(m, " active=%lu", md->active);
  1107. if (md->writeback)
  1108. seq_printf(m, " writeback=%lu", md->writeback);
  1109. for_each_node_state(n, N_HIGH_MEMORY)
  1110. if (md->node[n])
  1111. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1112. out:
  1113. seq_putc(m, '\n');
  1114. if (m->count < m->size)
  1115. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1116. return 0;
  1117. }
  1118. static int show_pid_numa_map(struct seq_file *m, void *v)
  1119. {
  1120. return show_numa_map(m, v, 1);
  1121. }
  1122. static int show_tid_numa_map(struct seq_file *m, void *v)
  1123. {
  1124. return show_numa_map(m, v, 0);
  1125. }
  1126. static const struct seq_operations proc_pid_numa_maps_op = {
  1127. .start = m_start,
  1128. .next = m_next,
  1129. .stop = m_stop,
  1130. .show = show_pid_numa_map,
  1131. };
  1132. static const struct seq_operations proc_tid_numa_maps_op = {
  1133. .start = m_start,
  1134. .next = m_next,
  1135. .stop = m_stop,
  1136. .show = show_tid_numa_map,
  1137. };
  1138. static int numa_maps_open(struct inode *inode, struct file *file,
  1139. const struct seq_operations *ops)
  1140. {
  1141. struct numa_maps_private *priv;
  1142. int ret = -ENOMEM;
  1143. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1144. if (priv) {
  1145. priv->proc_maps.pid = proc_pid(inode);
  1146. ret = seq_open(file, ops);
  1147. if (!ret) {
  1148. struct seq_file *m = file->private_data;
  1149. m->private = priv;
  1150. } else {
  1151. kfree(priv);
  1152. }
  1153. }
  1154. return ret;
  1155. }
  1156. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1157. {
  1158. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1159. }
  1160. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1161. {
  1162. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1163. }
  1164. const struct file_operations proc_pid_numa_maps_operations = {
  1165. .open = pid_numa_maps_open,
  1166. .read = seq_read,
  1167. .llseek = seq_lseek,
  1168. .release = seq_release_private,
  1169. };
  1170. const struct file_operations proc_tid_numa_maps_operations = {
  1171. .open = tid_numa_maps_open,
  1172. .read = seq_read,
  1173. .llseek = seq_lseek,
  1174. .release = seq_release_private,
  1175. };
  1176. #endif /* CONFIG_NUMA */