ar9003_paprd.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. void ar9003_paprd_enable(struct ath_hw *ah, bool val)
  20. {
  21. struct ath9k_channel *chan = ah->curchan;
  22. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  23. /*
  24. * 3 bits for modalHeader5G.papdRateMaskHt20
  25. * is used for sub-band disabling of PAPRD.
  26. * 5G band is divided into 3 sub-bands -- upper,
  27. * middle, lower.
  28. * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
  29. * -- disable PAPRD for upper band 5GHz
  30. * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
  31. * -- disable PAPRD for middle band 5GHz
  32. * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
  33. * -- disable PAPRD for lower band 5GHz
  34. */
  35. if (IS_CHAN_5GHZ(chan)) {
  36. if (chan->channel >= UPPER_5G_SUB_BAND_START) {
  37. if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
  38. & BIT(30))
  39. val = false;
  40. } else if (chan->channel >= MID_5G_SUB_BAND_START) {
  41. if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
  42. & BIT(29))
  43. val = false;
  44. } else {
  45. if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
  46. & BIT(28))
  47. val = false;
  48. }
  49. }
  50. if (val) {
  51. ah->paprd_table_write_done = true;
  52. ath9k_hw_apply_txpower(ah, chan, false);
  53. }
  54. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
  55. AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
  56. if (ah->caps.tx_chainmask & BIT(1))
  57. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
  58. AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
  59. if (ah->caps.tx_chainmask & BIT(2))
  60. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
  61. AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
  62. }
  63. EXPORT_SYMBOL(ar9003_paprd_enable);
  64. static int ar9003_get_training_power_2g(struct ath_hw *ah)
  65. {
  66. struct ath9k_channel *chan = ah->curchan;
  67. unsigned int power, scale, delta;
  68. scale = ar9003_get_paprd_scale_factor(ah, chan);
  69. power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
  70. AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
  71. delta = abs((int) ah->paprd_target_power - (int) power);
  72. if (delta > scale)
  73. return -1;
  74. if (delta < 4)
  75. power -= 4 - delta;
  76. return power;
  77. }
  78. static int ar9003_get_training_power_5g(struct ath_hw *ah)
  79. {
  80. struct ath_common *common = ath9k_hw_common(ah);
  81. struct ath9k_channel *chan = ah->curchan;
  82. unsigned int power, scale, delta;
  83. scale = ar9003_get_paprd_scale_factor(ah, chan);
  84. if (IS_CHAN_HT40(chan))
  85. power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
  86. AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
  87. else
  88. power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
  89. AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
  90. power += scale;
  91. delta = abs((int) ah->paprd_target_power - (int) power);
  92. if (delta > scale)
  93. return -1;
  94. switch (get_streams(ah->txchainmask)) {
  95. case 1:
  96. delta = 6;
  97. break;
  98. case 2:
  99. delta = 4;
  100. break;
  101. case 3:
  102. delta = 2;
  103. break;
  104. default:
  105. delta = 0;
  106. ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
  107. ah->txchainmask);
  108. }
  109. power += delta;
  110. return power;
  111. }
  112. static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
  113. {
  114. struct ath_common *common = ath9k_hw_common(ah);
  115. static const u32 ctrl0[3] = {
  116. AR_PHY_PAPRD_CTRL0_B0,
  117. AR_PHY_PAPRD_CTRL0_B1,
  118. AR_PHY_PAPRD_CTRL0_B2
  119. };
  120. static const u32 ctrl1[3] = {
  121. AR_PHY_PAPRD_CTRL1_B0,
  122. AR_PHY_PAPRD_CTRL1_B1,
  123. AR_PHY_PAPRD_CTRL1_B2
  124. };
  125. int training_power;
  126. int i, val;
  127. u32 am2pm_mask = ah->paprd_ratemask;
  128. if (IS_CHAN_2GHZ(ah->curchan))
  129. training_power = ar9003_get_training_power_2g(ah);
  130. else
  131. training_power = ar9003_get_training_power_5g(ah);
  132. ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
  133. training_power, ah->paprd_target_power);
  134. if (training_power < 0) {
  135. ath_dbg(common, CALIBRATE,
  136. "PAPRD target power delta out of range\n");
  137. return -ERANGE;
  138. }
  139. ah->paprd_training_power = training_power;
  140. if (AR_SREV_9330(ah))
  141. am2pm_mask = 0;
  142. REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
  143. ah->paprd_ratemask);
  144. REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
  145. am2pm_mask);
  146. REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
  147. ah->paprd_ratemask_ht40);
  148. for (i = 0; i < ah->caps.max_txchains; i++) {
  149. REG_RMW_FIELD(ah, ctrl0[i],
  150. AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
  151. REG_RMW_FIELD(ah, ctrl1[i],
  152. AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
  153. REG_RMW_FIELD(ah, ctrl1[i],
  154. AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
  155. REG_RMW_FIELD(ah, ctrl1[i],
  156. AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
  157. REG_RMW_FIELD(ah, ctrl1[i],
  158. AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
  159. REG_RMW_FIELD(ah, ctrl1[i],
  160. AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
  161. REG_RMW_FIELD(ah, ctrl1[i],
  162. AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
  163. REG_RMW_FIELD(ah, ctrl0[i],
  164. AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
  165. }
  166. ar9003_paprd_enable(ah, false);
  167. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  168. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
  169. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  170. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
  171. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  172. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
  173. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  174. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
  175. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  176. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
  177. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  178. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
  179. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  180. AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
  181. val = AR_SREV_9462(ah) ? 0x91 : 147;
  182. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
  183. AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
  184. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  185. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
  186. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  187. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
  188. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  189. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
  190. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  191. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
  192. if (AR_SREV_9485(ah) || AR_SREV_9462(ah) || AR_SREV_9550(ah))
  193. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  194. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
  195. -3);
  196. else
  197. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  198. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
  199. -6);
  200. val = AR_SREV_9462(ah) ? -10 : -15;
  201. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  202. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
  203. val);
  204. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  205. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
  206. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
  207. AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
  208. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
  209. AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
  210. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
  211. AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
  212. 100);
  213. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
  214. AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
  215. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
  216. AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
  217. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
  218. AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
  219. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
  220. AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
  221. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
  222. AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
  223. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
  224. AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
  225. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
  226. AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
  227. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
  228. AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
  229. return 0;
  230. }
  231. static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
  232. {
  233. u32 *entry = ah->paprd_gain_table_entries;
  234. u8 *index = ah->paprd_gain_table_index;
  235. u32 reg = AR_PHY_TXGAIN_TABLE;
  236. int i;
  237. memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
  238. memset(index, 0, sizeof(ah->paprd_gain_table_index));
  239. for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
  240. entry[i] = REG_READ(ah, reg);
  241. index[i] = (entry[i] >> 24) & 0xff;
  242. reg += 4;
  243. }
  244. }
  245. static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
  246. int target_power)
  247. {
  248. int olpc_gain_delta = 0, cl_gain_mod;
  249. int alpha_therm, alpha_volt;
  250. int therm_cal_value, volt_cal_value;
  251. int therm_value, volt_value;
  252. int thermal_gain_corr, voltage_gain_corr;
  253. int desired_scale, desired_gain = 0;
  254. u32 reg_olpc = 0, reg_cl_gain = 0;
  255. REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  256. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  257. desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
  258. AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
  259. alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
  260. AR_PHY_TPC_19_ALPHA_THERM);
  261. alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
  262. AR_PHY_TPC_19_ALPHA_VOLT);
  263. therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
  264. AR_PHY_TPC_18_THERM_CAL_VALUE);
  265. volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
  266. AR_PHY_TPC_18_VOLT_CAL_VALUE);
  267. therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
  268. AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
  269. volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
  270. AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
  271. switch (chain) {
  272. case 0:
  273. reg_olpc = AR_PHY_TPC_11_B0;
  274. reg_cl_gain = AR_PHY_CL_TAB_0;
  275. break;
  276. case 1:
  277. reg_olpc = AR_PHY_TPC_11_B1;
  278. reg_cl_gain = AR_PHY_CL_TAB_1;
  279. break;
  280. case 2:
  281. reg_olpc = AR_PHY_TPC_11_B2;
  282. reg_cl_gain = AR_PHY_CL_TAB_2;
  283. break;
  284. default:
  285. ath_dbg(ath9k_hw_common(ah), CALIBRATE,
  286. "Invalid chainmask: %d\n", chain);
  287. break;
  288. }
  289. olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
  290. AR_PHY_TPC_11_OLPC_GAIN_DELTA);
  291. cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
  292. AR_PHY_CL_TAB_CL_GAIN_MOD);
  293. if (olpc_gain_delta >= 128)
  294. olpc_gain_delta = olpc_gain_delta - 256;
  295. thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
  296. (256 / 2)) / 256;
  297. voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
  298. (128 / 2)) / 128;
  299. desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
  300. voltage_gain_corr + desired_scale + cl_gain_mod;
  301. return desired_gain;
  302. }
  303. static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
  304. {
  305. int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
  306. int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
  307. u32 *gain_table_entries = ah->paprd_gain_table_entries;
  308. selected_gain_entry = gain_table_entries[gain_index];
  309. txbb1dbgain = selected_gain_entry & 0x7;
  310. txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
  311. txmxrgain = (selected_gain_entry >> 5) & 0xf;
  312. padrvgnA = (selected_gain_entry >> 9) & 0xf;
  313. padrvgnB = (selected_gain_entry >> 13) & 0xf;
  314. padrvgnC = (selected_gain_entry >> 17) & 0xf;
  315. padrvgnD = (selected_gain_entry >> 21) & 0x3;
  316. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  317. AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
  318. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  319. AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
  320. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  321. AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
  322. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  323. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
  324. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  325. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
  326. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  327. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
  328. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  329. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
  330. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  331. AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
  332. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  333. AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
  334. REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
  335. REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
  336. }
  337. static inline int find_expn(int num)
  338. {
  339. return fls(num) - 1;
  340. }
  341. static inline int find_proper_scale(int expn, int N)
  342. {
  343. return (expn > N) ? expn - 10 : 0;
  344. }
  345. #define NUM_BIN 23
  346. static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
  347. {
  348. unsigned int thresh_accum_cnt;
  349. int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
  350. int PA_in[NUM_BIN + 1];
  351. int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
  352. unsigned int B1_abs_max, B2_abs_max;
  353. int max_index, scale_factor;
  354. int y_est[NUM_BIN + 1];
  355. int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
  356. unsigned int x_tilde_abs;
  357. int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
  358. int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
  359. int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
  360. int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
  361. int y5, y3, tmp;
  362. int theta_low_bin = 0;
  363. int i;
  364. /* disregard any bin that contains <= 16 samples */
  365. thresh_accum_cnt = 16;
  366. scale_factor = 5;
  367. max_index = 0;
  368. memset(theta, 0, sizeof(theta));
  369. memset(x_est, 0, sizeof(x_est));
  370. memset(Y, 0, sizeof(Y));
  371. memset(y_est, 0, sizeof(y_est));
  372. memset(x_tilde, 0, sizeof(x_tilde));
  373. for (i = 0; i < NUM_BIN; i++) {
  374. s32 accum_cnt, accum_tx, accum_rx, accum_ang;
  375. /* number of samples */
  376. accum_cnt = data_L[i] & 0xffff;
  377. if (accum_cnt <= thresh_accum_cnt)
  378. continue;
  379. /* sum(tx amplitude) */
  380. accum_tx = ((data_L[i] >> 16) & 0xffff) |
  381. ((data_U[i] & 0x7ff) << 16);
  382. /* sum(rx amplitude distance to lower bin edge) */
  383. accum_rx = ((data_U[i] >> 11) & 0x1f) |
  384. ((data_L[i + 23] & 0xffff) << 5);
  385. /* sum(angles) */
  386. accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
  387. ((data_U[i + 23] & 0x7ff) << 16);
  388. accum_tx <<= scale_factor;
  389. accum_rx <<= scale_factor;
  390. x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
  391. scale_factor;
  392. Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
  393. scale_factor) +
  394. (1 << scale_factor) * max_index + 16;
  395. if (accum_ang >= (1 << 26))
  396. accum_ang -= 1 << 27;
  397. theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
  398. accum_cnt;
  399. max_index++;
  400. }
  401. /*
  402. * Find average theta of first 5 bin and all of those to same value.
  403. * Curve is linear at that range.
  404. */
  405. for (i = 1; i < 6; i++)
  406. theta_low_bin += theta[i];
  407. theta_low_bin = theta_low_bin / 5;
  408. for (i = 1; i < 6; i++)
  409. theta[i] = theta_low_bin;
  410. /* Set values at origin */
  411. theta[0] = theta_low_bin;
  412. for (i = 0; i <= max_index; i++)
  413. theta[i] -= theta_low_bin;
  414. x_est[0] = 0;
  415. Y[0] = 0;
  416. scale_factor = 8;
  417. /* low signal gain */
  418. if (x_est[6] == x_est[3])
  419. return false;
  420. G_fxp =
  421. (((Y[6] - Y[3]) * 1 << scale_factor) +
  422. (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
  423. /* prevent division by zero */
  424. if (G_fxp == 0)
  425. return false;
  426. Y_intercept =
  427. (G_fxp * (x_est[0] - x_est[3]) +
  428. (1 << scale_factor)) / (1 << scale_factor) + Y[3];
  429. for (i = 0; i <= max_index; i++)
  430. y_est[i] = Y[i] - Y_intercept;
  431. for (i = 0; i <= 3; i++) {
  432. y_est[i] = i * 32;
  433. x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
  434. }
  435. if (y_est[max_index] == 0)
  436. return false;
  437. x_est_fxp1_nonlin =
  438. x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
  439. G_fxp) / G_fxp;
  440. order_x_by_y =
  441. (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
  442. if (order_x_by_y == 0)
  443. M = 10;
  444. else if (order_x_by_y == 1)
  445. M = 9;
  446. else
  447. M = 8;
  448. I = (max_index > 15) ? 7 : max_index >> 1;
  449. L = max_index - I;
  450. scale_factor = 8;
  451. sum_y_sqr = 0;
  452. sum_y_quad = 0;
  453. x_tilde_abs = 0;
  454. for (i = 0; i <= L; i++) {
  455. unsigned int y_sqr;
  456. unsigned int y_quad;
  457. unsigned int tmp_abs;
  458. /* prevent division by zero */
  459. if (y_est[i + I] == 0)
  460. return false;
  461. x_est_fxp1_nonlin =
  462. x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
  463. G_fxp) / G_fxp;
  464. x_tilde[i] =
  465. (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
  466. I];
  467. x_tilde[i] =
  468. (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
  469. x_tilde[i] =
  470. (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
  471. y_sqr =
  472. (y_est[i + I] * y_est[i + I] +
  473. (scale_factor * scale_factor)) / (scale_factor *
  474. scale_factor);
  475. tmp_abs = abs(x_tilde[i]);
  476. if (tmp_abs > x_tilde_abs)
  477. x_tilde_abs = tmp_abs;
  478. y_quad = y_sqr * y_sqr;
  479. sum_y_sqr = sum_y_sqr + y_sqr;
  480. sum_y_quad = sum_y_quad + y_quad;
  481. B1_tmp[i] = y_sqr * (L + 1);
  482. B2_tmp[i] = y_sqr;
  483. }
  484. B1_abs_max = 0;
  485. B2_abs_max = 0;
  486. for (i = 0; i <= L; i++) {
  487. int abs_val;
  488. B1_tmp[i] -= sum_y_sqr;
  489. B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
  490. abs_val = abs(B1_tmp[i]);
  491. if (abs_val > B1_abs_max)
  492. B1_abs_max = abs_val;
  493. abs_val = abs(B2_tmp[i]);
  494. if (abs_val > B2_abs_max)
  495. B2_abs_max = abs_val;
  496. }
  497. Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
  498. Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
  499. Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
  500. beta_raw = 0;
  501. alpha_raw = 0;
  502. for (i = 0; i <= L; i++) {
  503. x_tilde[i] = x_tilde[i] / (1 << Q_x);
  504. B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
  505. B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
  506. beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
  507. alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
  508. }
  509. scale_B =
  510. ((sum_y_quad / scale_factor) * (L + 1) -
  511. (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
  512. Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
  513. scale_B = scale_B / (1 << Q_scale_B);
  514. if (scale_B == 0)
  515. return false;
  516. Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
  517. Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
  518. beta_raw = beta_raw / (1 << Q_beta);
  519. alpha_raw = alpha_raw / (1 << Q_alpha);
  520. alpha = (alpha_raw << 10) / scale_B;
  521. beta = (beta_raw << 10) / scale_B;
  522. order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
  523. order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
  524. order1_5x = order_1 / 5;
  525. order2_3x = order_2 / 3;
  526. order1_5x_rem = order_1 - 5 * order1_5x;
  527. order2_3x_rem = order_2 - 3 * order2_3x;
  528. for (i = 0; i < PAPRD_TABLE_SZ; i++) {
  529. tmp = i * 32;
  530. y5 = ((beta * tmp) >> 6) >> order1_5x;
  531. y5 = (y5 * tmp) >> order1_5x;
  532. y5 = (y5 * tmp) >> order1_5x;
  533. y5 = (y5 * tmp) >> order1_5x;
  534. y5 = (y5 * tmp) >> order1_5x;
  535. y5 = y5 >> order1_5x_rem;
  536. y3 = (alpha * tmp) >> order2_3x;
  537. y3 = (y3 * tmp) >> order2_3x;
  538. y3 = (y3 * tmp) >> order2_3x;
  539. y3 = y3 >> order2_3x_rem;
  540. PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
  541. if (i >= 2) {
  542. tmp = PA_in[i] - PA_in[i - 1];
  543. if (tmp < 0)
  544. PA_in[i] =
  545. PA_in[i - 1] + (PA_in[i - 1] -
  546. PA_in[i - 2]);
  547. }
  548. PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
  549. }
  550. beta_raw = 0;
  551. alpha_raw = 0;
  552. for (i = 0; i <= L; i++) {
  553. int theta_tilde =
  554. ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
  555. theta_tilde =
  556. ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
  557. theta_tilde =
  558. ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
  559. beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
  560. alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
  561. }
  562. Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
  563. Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
  564. beta_raw = beta_raw / (1 << Q_beta);
  565. alpha_raw = alpha_raw / (1 << Q_alpha);
  566. alpha = (alpha_raw << 10) / scale_B;
  567. beta = (beta_raw << 10) / scale_B;
  568. order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
  569. order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
  570. order1_5x = order_1 / 5;
  571. order2_3x = order_2 / 3;
  572. order1_5x_rem = order_1 - 5 * order1_5x;
  573. order2_3x_rem = order_2 - 3 * order2_3x;
  574. for (i = 0; i < PAPRD_TABLE_SZ; i++) {
  575. int PA_angle;
  576. /* pa_table[4] is calculated from PA_angle for i=5 */
  577. if (i == 4)
  578. continue;
  579. tmp = i * 32;
  580. if (beta > 0)
  581. y5 = (((beta * tmp - 64) >> 6) -
  582. (1 << order1_5x)) / (1 << order1_5x);
  583. else
  584. y5 = ((((beta * tmp - 64) >> 6) +
  585. (1 << order1_5x)) / (1 << order1_5x));
  586. y5 = (y5 * tmp) / (1 << order1_5x);
  587. y5 = (y5 * tmp) / (1 << order1_5x);
  588. y5 = (y5 * tmp) / (1 << order1_5x);
  589. y5 = (y5 * tmp) / (1 << order1_5x);
  590. y5 = y5 / (1 << order1_5x_rem);
  591. if (beta > 0)
  592. y3 = (alpha * tmp -
  593. (1 << order2_3x)) / (1 << order2_3x);
  594. else
  595. y3 = (alpha * tmp +
  596. (1 << order2_3x)) / (1 << order2_3x);
  597. y3 = (y3 * tmp) / (1 << order2_3x);
  598. y3 = (y3 * tmp) / (1 << order2_3x);
  599. y3 = y3 / (1 << order2_3x_rem);
  600. if (i < 4) {
  601. PA_angle = 0;
  602. } else {
  603. PA_angle = y5 + y3;
  604. if (PA_angle < -150)
  605. PA_angle = -150;
  606. else if (PA_angle > 150)
  607. PA_angle = 150;
  608. }
  609. pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
  610. if (i == 5) {
  611. PA_angle = (PA_angle + 2) >> 1;
  612. pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
  613. (PA_angle & 0x7ff);
  614. }
  615. }
  616. *gain = G_fxp;
  617. return true;
  618. }
  619. void ar9003_paprd_populate_single_table(struct ath_hw *ah,
  620. struct ath9k_hw_cal_data *caldata,
  621. int chain)
  622. {
  623. u32 *paprd_table_val = caldata->pa_table[chain];
  624. u32 small_signal_gain = caldata->small_signal_gain[chain];
  625. u32 training_power = ah->paprd_training_power;
  626. u32 reg = 0;
  627. int i;
  628. if (chain == 0)
  629. reg = AR_PHY_PAPRD_MEM_TAB_B0;
  630. else if (chain == 1)
  631. reg = AR_PHY_PAPRD_MEM_TAB_B1;
  632. else if (chain == 2)
  633. reg = AR_PHY_PAPRD_MEM_TAB_B2;
  634. for (i = 0; i < PAPRD_TABLE_SZ; i++) {
  635. REG_WRITE(ah, reg, paprd_table_val[i]);
  636. reg = reg + 4;
  637. }
  638. if (chain == 0)
  639. reg = AR_PHY_PA_GAIN123_B0;
  640. else if (chain == 1)
  641. reg = AR_PHY_PA_GAIN123_B1;
  642. else
  643. reg = AR_PHY_PA_GAIN123_B2;
  644. REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
  645. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
  646. AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
  647. training_power);
  648. if (ah->caps.tx_chainmask & BIT(1))
  649. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
  650. AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
  651. training_power);
  652. if (ah->caps.tx_chainmask & BIT(2))
  653. /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
  654. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
  655. AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
  656. training_power);
  657. }
  658. EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
  659. int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
  660. {
  661. unsigned int i, desired_gain, gain_index;
  662. unsigned int train_power = ah->paprd_training_power;
  663. desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
  664. gain_index = 0;
  665. for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
  666. if (ah->paprd_gain_table_index[i] >= desired_gain)
  667. break;
  668. gain_index++;
  669. }
  670. ar9003_tx_force_gain(ah, gain_index);
  671. REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  672. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  673. return 0;
  674. }
  675. EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
  676. static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
  677. struct ath9k_hw_cal_data *caldata,
  678. int chain)
  679. {
  680. u32 *pa_in = caldata->pa_table[chain];
  681. int capdiv_offset, quick_drop_offset;
  682. int capdiv2g, quick_drop;
  683. int count = 0;
  684. int i;
  685. if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
  686. return false;
  687. capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
  688. AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
  689. quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  690. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
  691. if (quick_drop)
  692. quick_drop -= 0x40;
  693. for (i = 0; i < NUM_BIN + 1; i++) {
  694. if (pa_in[i] == 1400)
  695. count++;
  696. }
  697. if (AR_SREV_9485(ah)) {
  698. if (pa_in[23] < 800) {
  699. capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
  700. capdiv2g += capdiv_offset;
  701. if (capdiv2g > 7) {
  702. capdiv2g = 7;
  703. if (pa_in[23] < 600) {
  704. quick_drop++;
  705. if (quick_drop > 0)
  706. quick_drop = 0;
  707. }
  708. }
  709. } else if (pa_in[23] == 1400) {
  710. quick_drop_offset = min_t(int, count / 3, 2);
  711. quick_drop += quick_drop_offset;
  712. capdiv2g += quick_drop_offset / 2;
  713. if (capdiv2g > 7)
  714. capdiv2g = 7;
  715. if (quick_drop > 0) {
  716. quick_drop = 0;
  717. capdiv2g -= quick_drop_offset;
  718. if (capdiv2g < 0)
  719. capdiv2g = 0;
  720. }
  721. } else {
  722. return false;
  723. }
  724. } else if (AR_SREV_9330(ah)) {
  725. if (pa_in[23] < 1000) {
  726. capdiv_offset = (1000 - pa_in[23]) / 100;
  727. capdiv2g += capdiv_offset;
  728. if (capdiv_offset > 3) {
  729. capdiv_offset = 1;
  730. quick_drop--;
  731. }
  732. capdiv2g += capdiv_offset;
  733. if (capdiv2g > 6)
  734. capdiv2g = 6;
  735. if (quick_drop < -4)
  736. quick_drop = -4;
  737. } else if (pa_in[23] == 1400) {
  738. if (count > 3) {
  739. quick_drop++;
  740. capdiv2g -= count / 4;
  741. if (quick_drop > -2)
  742. quick_drop = -2;
  743. } else {
  744. capdiv2g--;
  745. }
  746. if (capdiv2g < 0)
  747. capdiv2g = 0;
  748. } else {
  749. return false;
  750. }
  751. }
  752. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
  753. AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
  754. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  755. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
  756. quick_drop);
  757. return true;
  758. }
  759. int ar9003_paprd_create_curve(struct ath_hw *ah,
  760. struct ath9k_hw_cal_data *caldata, int chain)
  761. {
  762. u16 *small_signal_gain = &caldata->small_signal_gain[chain];
  763. u32 *pa_table = caldata->pa_table[chain];
  764. u32 *data_L, *data_U;
  765. int i, status = 0;
  766. u32 *buf;
  767. u32 reg;
  768. memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
  769. buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
  770. if (!buf)
  771. return -ENOMEM;
  772. data_L = &buf[0];
  773. data_U = &buf[48];
  774. REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
  775. AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
  776. reg = AR_PHY_CHAN_INFO_TAB_0;
  777. for (i = 0; i < 48; i++)
  778. data_L[i] = REG_READ(ah, reg + (i << 2));
  779. REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
  780. AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
  781. for (i = 0; i < 48; i++)
  782. data_U[i] = REG_READ(ah, reg + (i << 2));
  783. if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
  784. status = -2;
  785. if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
  786. status = -EINPROGRESS;
  787. REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  788. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  789. kfree(buf);
  790. return status;
  791. }
  792. EXPORT_SYMBOL(ar9003_paprd_create_curve);
  793. int ar9003_paprd_init_table(struct ath_hw *ah)
  794. {
  795. int ret;
  796. ret = ar9003_paprd_setup_single_table(ah);
  797. if (ret < 0)
  798. return ret;
  799. ar9003_paprd_get_gain_table(ah);
  800. return 0;
  801. }
  802. EXPORT_SYMBOL(ar9003_paprd_init_table);
  803. bool ar9003_paprd_is_done(struct ath_hw *ah)
  804. {
  805. int paprd_done, agc2_pwr;
  806. paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  807. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  808. if (paprd_done == 0x1) {
  809. agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  810. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
  811. ath_dbg(ath9k_hw_common(ah), CALIBRATE,
  812. "AGC2_PWR = 0x%x training done = 0x%x\n",
  813. agc2_pwr, paprd_done);
  814. /*
  815. * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
  816. * when the training is completely done, otherwise retraining is
  817. * done to make sure the value is in ideal range
  818. */
  819. if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
  820. paprd_done = 0;
  821. }
  822. return !!paprd_done;
  823. }
  824. EXPORT_SYMBOL(ar9003_paprd_is_done);