mtd_nandecctest.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. #include <linux/kernel.h>
  2. #include <linux/module.h>
  3. #include <linux/list.h>
  4. #include <linux/random.h>
  5. #include <linux/string.h>
  6. #include <linux/bitops.h>
  7. #include <linux/slab.h>
  8. #include <linux/mtd/nand_ecc.h>
  9. /*
  10. * Test the implementation for software ECC
  11. *
  12. * No actual MTD device is needed, So we don't need to warry about losing
  13. * important data by human error.
  14. *
  15. * This covers possible patterns of corruption which can be reliably corrected
  16. * or detected.
  17. */
  18. #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE)
  19. struct nand_ecc_test {
  20. const char *name;
  21. void (*prepare)(void *, void *, void *, void *, const size_t);
  22. int (*verify)(void *, void *, void *, const size_t);
  23. };
  24. /*
  25. * The reason for this __change_bit_le() instead of __change_bit() is to inject
  26. * bit error properly within the region which is not a multiple of
  27. * sizeof(unsigned long) on big-endian systems
  28. */
  29. #ifdef __LITTLE_ENDIAN
  30. #define __change_bit_le(nr, addr) __change_bit(nr, addr)
  31. #elif defined(__BIG_ENDIAN)
  32. #define __change_bit_le(nr, addr) \
  33. __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
  34. #else
  35. #error "Unknown byte order"
  36. #endif
  37. static void single_bit_error_data(void *error_data, void *correct_data,
  38. size_t size)
  39. {
  40. unsigned int offset = random32() % (size * BITS_PER_BYTE);
  41. memcpy(error_data, correct_data, size);
  42. __change_bit_le(offset, error_data);
  43. }
  44. static void double_bit_error_data(void *error_data, void *correct_data,
  45. size_t size)
  46. {
  47. unsigned int offset[2];
  48. offset[0] = random32() % (size * BITS_PER_BYTE);
  49. do {
  50. offset[1] = random32() % (size * BITS_PER_BYTE);
  51. } while (offset[0] == offset[1]);
  52. memcpy(error_data, correct_data, size);
  53. __change_bit_le(offset[0], error_data);
  54. __change_bit_le(offset[1], error_data);
  55. }
  56. static unsigned int random_ecc_bit(size_t size)
  57. {
  58. unsigned int offset = random32() % (3 * BITS_PER_BYTE);
  59. if (size == 256) {
  60. /*
  61. * Don't inject a bit error into the insignificant bits (16th
  62. * and 17th bit) in ECC code for 256 byte data block
  63. */
  64. while (offset == 16 || offset == 17)
  65. offset = random32() % (3 * BITS_PER_BYTE);
  66. }
  67. return offset;
  68. }
  69. static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
  70. size_t size)
  71. {
  72. unsigned int offset = random_ecc_bit(size);
  73. memcpy(error_ecc, correct_ecc, 3);
  74. __change_bit_le(offset, error_ecc);
  75. }
  76. static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
  77. size_t size)
  78. {
  79. unsigned int offset[2];
  80. offset[0] = random_ecc_bit(size);
  81. do {
  82. offset[1] = random_ecc_bit(size);
  83. } while (offset[0] == offset[1]);
  84. memcpy(error_ecc, correct_ecc, 3);
  85. __change_bit_le(offset[0], error_ecc);
  86. __change_bit_le(offset[1], error_ecc);
  87. }
  88. static void no_bit_error(void *error_data, void *error_ecc,
  89. void *correct_data, void *correct_ecc, const size_t size)
  90. {
  91. memcpy(error_data, correct_data, size);
  92. memcpy(error_ecc, correct_ecc, 3);
  93. }
  94. static int no_bit_error_verify(void *error_data, void *error_ecc,
  95. void *correct_data, const size_t size)
  96. {
  97. unsigned char calc_ecc[3];
  98. int ret;
  99. __nand_calculate_ecc(error_data, size, calc_ecc);
  100. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
  101. if (ret == 0 && !memcmp(correct_data, error_data, size))
  102. return 0;
  103. return -EINVAL;
  104. }
  105. static void single_bit_error_in_data(void *error_data, void *error_ecc,
  106. void *correct_data, void *correct_ecc, const size_t size)
  107. {
  108. single_bit_error_data(error_data, correct_data, size);
  109. memcpy(error_ecc, correct_ecc, 3);
  110. }
  111. static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
  112. void *correct_data, void *correct_ecc, const size_t size)
  113. {
  114. memcpy(error_data, correct_data, size);
  115. single_bit_error_ecc(error_ecc, correct_ecc, size);
  116. }
  117. static int single_bit_error_correct(void *error_data, void *error_ecc,
  118. void *correct_data, const size_t size)
  119. {
  120. unsigned char calc_ecc[3];
  121. int ret;
  122. __nand_calculate_ecc(error_data, size, calc_ecc);
  123. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
  124. if (ret == 1 && !memcmp(correct_data, error_data, size))
  125. return 0;
  126. return -EINVAL;
  127. }
  128. static void double_bit_error_in_data(void *error_data, void *error_ecc,
  129. void *correct_data, void *correct_ecc, const size_t size)
  130. {
  131. double_bit_error_data(error_data, correct_data, size);
  132. memcpy(error_ecc, correct_ecc, 3);
  133. }
  134. static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
  135. void *correct_data, void *correct_ecc, const size_t size)
  136. {
  137. single_bit_error_data(error_data, correct_data, size);
  138. single_bit_error_ecc(error_ecc, correct_ecc, size);
  139. }
  140. static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
  141. void *correct_data, void *correct_ecc, const size_t size)
  142. {
  143. memcpy(error_data, correct_data, size);
  144. double_bit_error_ecc(error_ecc, correct_ecc, size);
  145. }
  146. static int double_bit_error_detect(void *error_data, void *error_ecc,
  147. void *correct_data, const size_t size)
  148. {
  149. unsigned char calc_ecc[3];
  150. int ret;
  151. __nand_calculate_ecc(error_data, size, calc_ecc);
  152. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
  153. return (ret == -1) ? 0 : -EINVAL;
  154. }
  155. static const struct nand_ecc_test nand_ecc_test[] = {
  156. {
  157. .name = "no-bit-error",
  158. .prepare = no_bit_error,
  159. .verify = no_bit_error_verify,
  160. },
  161. {
  162. .name = "single-bit-error-in-data-correct",
  163. .prepare = single_bit_error_in_data,
  164. .verify = single_bit_error_correct,
  165. },
  166. {
  167. .name = "single-bit-error-in-ecc-correct",
  168. .prepare = single_bit_error_in_ecc,
  169. .verify = single_bit_error_correct,
  170. },
  171. {
  172. .name = "double-bit-error-in-data-detect",
  173. .prepare = double_bit_error_in_data,
  174. .verify = double_bit_error_detect,
  175. },
  176. {
  177. .name = "single-bit-error-in-data-and-ecc-detect",
  178. .prepare = single_bit_error_in_data_and_ecc,
  179. .verify = double_bit_error_detect,
  180. },
  181. {
  182. .name = "double-bit-error-in-ecc-detect",
  183. .prepare = double_bit_error_in_ecc,
  184. .verify = double_bit_error_detect,
  185. },
  186. };
  187. static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
  188. void *correct_ecc, const size_t size)
  189. {
  190. pr_info("hexdump of error data:\n");
  191. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  192. error_data, size, false);
  193. print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
  194. DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
  195. pr_info("hexdump of correct data:\n");
  196. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  197. correct_data, size, false);
  198. print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
  199. DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
  200. }
  201. static int nand_ecc_test_run(const size_t size)
  202. {
  203. int i;
  204. int err = 0;
  205. void *error_data;
  206. void *error_ecc;
  207. void *correct_data;
  208. void *correct_ecc;
  209. error_data = kmalloc(size, GFP_KERNEL);
  210. error_ecc = kmalloc(3, GFP_KERNEL);
  211. correct_data = kmalloc(size, GFP_KERNEL);
  212. correct_ecc = kmalloc(3, GFP_KERNEL);
  213. if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
  214. err = -ENOMEM;
  215. goto error;
  216. }
  217. get_random_bytes(correct_data, size);
  218. __nand_calculate_ecc(correct_data, size, correct_ecc);
  219. for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
  220. nand_ecc_test[i].prepare(error_data, error_ecc,
  221. correct_data, correct_ecc, size);
  222. err = nand_ecc_test[i].verify(error_data, error_ecc,
  223. correct_data, size);
  224. if (err) {
  225. pr_err("mtd_nandecctest: not ok - %s-%zd\n",
  226. nand_ecc_test[i].name, size);
  227. dump_data_ecc(error_data, error_ecc,
  228. correct_data, correct_ecc, size);
  229. break;
  230. }
  231. pr_info("mtd_nandecctest: ok - %s-%zd\n",
  232. nand_ecc_test[i].name, size);
  233. }
  234. error:
  235. kfree(error_data);
  236. kfree(error_ecc);
  237. kfree(correct_data);
  238. kfree(correct_ecc);
  239. return err;
  240. }
  241. #else
  242. static int nand_ecc_test_run(const size_t size)
  243. {
  244. return 0;
  245. }
  246. #endif
  247. static int __init ecc_test_init(void)
  248. {
  249. int err;
  250. err = nand_ecc_test_run(256);
  251. if (err)
  252. return err;
  253. return nand_ecc_test_run(512);
  254. }
  255. static void __exit ecc_test_exit(void)
  256. {
  257. }
  258. module_init(ecc_test_init);
  259. module_exit(ecc_test_exit);
  260. MODULE_DESCRIPTION("NAND ECC function test module");
  261. MODULE_AUTHOR("Akinobu Mita");
  262. MODULE_LICENSE("GPL");