fsl_elbc_nand.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. /* Freescale Enhanced Local Bus Controller NAND driver
  2. *
  3. * Copyright © 2006-2007, 2010 Freescale Semiconductor
  4. *
  5. * Authors: Nick Spence <nick.spence@freescale.com>,
  6. * Scott Wood <scottwood@freescale.com>
  7. * Jack Lan <jack.lan@freescale.com>
  8. * Roy Zang <tie-fei.zang@freescale.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/kernel.h>
  28. #include <linux/string.h>
  29. #include <linux/ioport.h>
  30. #include <linux/of_platform.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/slab.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/nand.h>
  36. #include <linux/mtd/nand_ecc.h>
  37. #include <linux/mtd/partitions.h>
  38. #include <asm/io.h>
  39. #include <asm/fsl_lbc.h>
  40. #define MAX_BANKS 8
  41. #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  42. #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  43. /* mtd information per set */
  44. struct fsl_elbc_mtd {
  45. struct mtd_info mtd;
  46. struct nand_chip chip;
  47. struct fsl_lbc_ctrl *ctrl;
  48. struct device *dev;
  49. int bank; /* Chip select bank number */
  50. u8 __iomem *vbase; /* Chip select base virtual address */
  51. int page_size; /* NAND page size (0=512, 1=2048) */
  52. unsigned int fmr; /* FCM Flash Mode Register value */
  53. };
  54. /* Freescale eLBC FCM controller information */
  55. struct fsl_elbc_fcm_ctrl {
  56. struct nand_hw_control controller;
  57. struct fsl_elbc_mtd *chips[MAX_BANKS];
  58. u8 __iomem *addr; /* Address of assigned FCM buffer */
  59. unsigned int page; /* Last page written to / read from */
  60. unsigned int read_bytes; /* Number of bytes read during command */
  61. unsigned int column; /* Saved column from SEQIN */
  62. unsigned int index; /* Pointer to next byte to 'read' */
  63. unsigned int status; /* status read from LTESR after last op */
  64. unsigned int mdr; /* UPM/FCM Data Register value */
  65. unsigned int use_mdr; /* Non zero if the MDR is to be set */
  66. unsigned int oob; /* Non zero if operating on OOB data */
  67. unsigned int counter; /* counter for the initializations */
  68. unsigned int max_bitflips; /* Saved during READ0 cmd */
  69. };
  70. /* These map to the positions used by the FCM hardware ECC generator */
  71. /* Small Page FLASH with FMR[ECCM] = 0 */
  72. static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  73. .eccbytes = 3,
  74. .eccpos = {6, 7, 8},
  75. .oobfree = { {0, 5}, {9, 7} },
  76. };
  77. /* Small Page FLASH with FMR[ECCM] = 1 */
  78. static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  79. .eccbytes = 3,
  80. .eccpos = {8, 9, 10},
  81. .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  82. };
  83. /* Large Page FLASH with FMR[ECCM] = 0 */
  84. static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  85. .eccbytes = 12,
  86. .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
  87. .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
  88. };
  89. /* Large Page FLASH with FMR[ECCM] = 1 */
  90. static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
  91. .eccbytes = 12,
  92. .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
  93. .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
  94. };
  95. /*
  96. * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
  97. * 1, so we have to adjust bad block pattern. This pattern should be used for
  98. * x8 chips only. So far hardware does not support x16 chips anyway.
  99. */
  100. static u8 scan_ff_pattern[] = { 0xff, };
  101. static struct nand_bbt_descr largepage_memorybased = {
  102. .options = 0,
  103. .offs = 0,
  104. .len = 1,
  105. .pattern = scan_ff_pattern,
  106. };
  107. /*
  108. * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
  109. * interfere with ECC positions, that's why we implement our own descriptors.
  110. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
  111. */
  112. static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  113. static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  114. static struct nand_bbt_descr bbt_main_descr = {
  115. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  116. NAND_BBT_2BIT | NAND_BBT_VERSION,
  117. .offs = 11,
  118. .len = 4,
  119. .veroffs = 15,
  120. .maxblocks = 4,
  121. .pattern = bbt_pattern,
  122. };
  123. static struct nand_bbt_descr bbt_mirror_descr = {
  124. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  125. NAND_BBT_2BIT | NAND_BBT_VERSION,
  126. .offs = 11,
  127. .len = 4,
  128. .veroffs = 15,
  129. .maxblocks = 4,
  130. .pattern = mirror_pattern,
  131. };
  132. /*=================================*/
  133. /*
  134. * Set up the FCM hardware block and page address fields, and the fcm
  135. * structure addr field to point to the correct FCM buffer in memory
  136. */
  137. static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
  138. {
  139. struct nand_chip *chip = mtd->priv;
  140. struct fsl_elbc_mtd *priv = chip->priv;
  141. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  142. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  143. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  144. int buf_num;
  145. elbc_fcm_ctrl->page = page_addr;
  146. if (priv->page_size) {
  147. /*
  148. * large page size chip : FPAR[PI] save the lowest 6 bits,
  149. * FBAR[BLK] save the other bits.
  150. */
  151. out_be32(&lbc->fbar, page_addr >> 6);
  152. out_be32(&lbc->fpar,
  153. ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
  154. (oob ? FPAR_LP_MS : 0) | column);
  155. buf_num = (page_addr & 1) << 2;
  156. } else {
  157. /*
  158. * small page size chip : FPAR[PI] save the lowest 5 bits,
  159. * FBAR[BLK] save the other bits.
  160. */
  161. out_be32(&lbc->fbar, page_addr >> 5);
  162. out_be32(&lbc->fpar,
  163. ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
  164. (oob ? FPAR_SP_MS : 0) | column);
  165. buf_num = page_addr & 7;
  166. }
  167. elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
  168. elbc_fcm_ctrl->index = column;
  169. /* for OOB data point to the second half of the buffer */
  170. if (oob)
  171. elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
  172. dev_vdbg(priv->dev, "set_addr: bank=%d, "
  173. "elbc_fcm_ctrl->addr=0x%p (0x%p), "
  174. "index %x, pes %d ps %d\n",
  175. buf_num, elbc_fcm_ctrl->addr, priv->vbase,
  176. elbc_fcm_ctrl->index,
  177. chip->phys_erase_shift, chip->page_shift);
  178. }
  179. /*
  180. * execute FCM command and wait for it to complete
  181. */
  182. static int fsl_elbc_run_command(struct mtd_info *mtd)
  183. {
  184. struct nand_chip *chip = mtd->priv;
  185. struct fsl_elbc_mtd *priv = chip->priv;
  186. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  187. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  188. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  189. /* Setup the FMR[OP] to execute without write protection */
  190. out_be32(&lbc->fmr, priv->fmr | 3);
  191. if (elbc_fcm_ctrl->use_mdr)
  192. out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
  193. dev_vdbg(priv->dev,
  194. "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
  195. in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
  196. dev_vdbg(priv->dev,
  197. "fsl_elbc_run_command: fbar=%08x fpar=%08x "
  198. "fbcr=%08x bank=%d\n",
  199. in_be32(&lbc->fbar), in_be32(&lbc->fpar),
  200. in_be32(&lbc->fbcr), priv->bank);
  201. ctrl->irq_status = 0;
  202. /* execute special operation */
  203. out_be32(&lbc->lsor, priv->bank);
  204. /* wait for FCM complete flag or timeout */
  205. wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
  206. FCM_TIMEOUT_MSECS * HZ/1000);
  207. elbc_fcm_ctrl->status = ctrl->irq_status;
  208. /* store mdr value in case it was needed */
  209. if (elbc_fcm_ctrl->use_mdr)
  210. elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
  211. elbc_fcm_ctrl->use_mdr = 0;
  212. if (elbc_fcm_ctrl->status != LTESR_CC) {
  213. dev_info(priv->dev,
  214. "command failed: fir %x fcr %x status %x mdr %x\n",
  215. in_be32(&lbc->fir), in_be32(&lbc->fcr),
  216. elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
  217. return -EIO;
  218. }
  219. if (chip->ecc.mode != NAND_ECC_HW)
  220. return 0;
  221. elbc_fcm_ctrl->max_bitflips = 0;
  222. if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
  223. uint32_t lteccr = in_be32(&lbc->lteccr);
  224. /*
  225. * if command was a full page read and the ELBC
  226. * has the LTECCR register, then bits 12-15 (ppc order) of
  227. * LTECCR indicates which 512 byte sub-pages had fixed errors.
  228. * bits 28-31 are uncorrectable errors, marked elsewhere.
  229. * for small page nand only 1 bit is used.
  230. * if the ELBC doesn't have the lteccr register it reads 0
  231. * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
  232. * count the number of sub-pages with bitflips and update
  233. * ecc_stats.corrected accordingly.
  234. */
  235. if (lteccr & 0x000F000F)
  236. out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
  237. if (lteccr & 0x000F0000) {
  238. mtd->ecc_stats.corrected++;
  239. elbc_fcm_ctrl->max_bitflips = 1;
  240. }
  241. }
  242. return 0;
  243. }
  244. static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
  245. {
  246. struct fsl_elbc_mtd *priv = chip->priv;
  247. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  248. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  249. if (priv->page_size) {
  250. out_be32(&lbc->fir,
  251. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  252. (FIR_OP_CA << FIR_OP1_SHIFT) |
  253. (FIR_OP_PA << FIR_OP2_SHIFT) |
  254. (FIR_OP_CM1 << FIR_OP3_SHIFT) |
  255. (FIR_OP_RBW << FIR_OP4_SHIFT));
  256. out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  257. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  258. } else {
  259. out_be32(&lbc->fir,
  260. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  261. (FIR_OP_CA << FIR_OP1_SHIFT) |
  262. (FIR_OP_PA << FIR_OP2_SHIFT) |
  263. (FIR_OP_RBW << FIR_OP3_SHIFT));
  264. if (oob)
  265. out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
  266. else
  267. out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  268. }
  269. }
  270. /* cmdfunc send commands to the FCM */
  271. static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
  272. int column, int page_addr)
  273. {
  274. struct nand_chip *chip = mtd->priv;
  275. struct fsl_elbc_mtd *priv = chip->priv;
  276. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  277. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  278. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  279. elbc_fcm_ctrl->use_mdr = 0;
  280. /* clear the read buffer */
  281. elbc_fcm_ctrl->read_bytes = 0;
  282. if (command != NAND_CMD_PAGEPROG)
  283. elbc_fcm_ctrl->index = 0;
  284. switch (command) {
  285. /* READ0 and READ1 read the entire buffer to use hardware ECC. */
  286. case NAND_CMD_READ1:
  287. column += 256;
  288. /* fall-through */
  289. case NAND_CMD_READ0:
  290. dev_dbg(priv->dev,
  291. "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
  292. " 0x%x, column: 0x%x.\n", page_addr, column);
  293. out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
  294. set_addr(mtd, 0, page_addr, 0);
  295. elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  296. elbc_fcm_ctrl->index += column;
  297. fsl_elbc_do_read(chip, 0);
  298. fsl_elbc_run_command(mtd);
  299. return;
  300. /* READOOB reads only the OOB because no ECC is performed. */
  301. case NAND_CMD_READOOB:
  302. dev_vdbg(priv->dev,
  303. "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
  304. " 0x%x, column: 0x%x.\n", page_addr, column);
  305. out_be32(&lbc->fbcr, mtd->oobsize - column);
  306. set_addr(mtd, column, page_addr, 1);
  307. elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  308. fsl_elbc_do_read(chip, 1);
  309. fsl_elbc_run_command(mtd);
  310. return;
  311. case NAND_CMD_READID:
  312. case NAND_CMD_PARAM:
  313. dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
  314. out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  315. (FIR_OP_UA << FIR_OP1_SHIFT) |
  316. (FIR_OP_RBW << FIR_OP2_SHIFT));
  317. out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
  318. /*
  319. * although currently it's 8 bytes for READID, we always read
  320. * the maximum 256 bytes(for PARAM)
  321. */
  322. out_be32(&lbc->fbcr, 256);
  323. elbc_fcm_ctrl->read_bytes = 256;
  324. elbc_fcm_ctrl->use_mdr = 1;
  325. elbc_fcm_ctrl->mdr = column;
  326. set_addr(mtd, 0, 0, 0);
  327. fsl_elbc_run_command(mtd);
  328. return;
  329. /* ERASE1 stores the block and page address */
  330. case NAND_CMD_ERASE1:
  331. dev_vdbg(priv->dev,
  332. "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
  333. "page_addr: 0x%x.\n", page_addr);
  334. set_addr(mtd, 0, page_addr, 0);
  335. return;
  336. /* ERASE2 uses the block and page address from ERASE1 */
  337. case NAND_CMD_ERASE2:
  338. dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
  339. out_be32(&lbc->fir,
  340. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  341. (FIR_OP_PA << FIR_OP1_SHIFT) |
  342. (FIR_OP_CM2 << FIR_OP2_SHIFT) |
  343. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  344. (FIR_OP_RS << FIR_OP4_SHIFT));
  345. out_be32(&lbc->fcr,
  346. (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
  347. (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  348. (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
  349. out_be32(&lbc->fbcr, 0);
  350. elbc_fcm_ctrl->read_bytes = 0;
  351. elbc_fcm_ctrl->use_mdr = 1;
  352. fsl_elbc_run_command(mtd);
  353. return;
  354. /* SEQIN sets up the addr buffer and all registers except the length */
  355. case NAND_CMD_SEQIN: {
  356. __be32 fcr;
  357. dev_vdbg(priv->dev,
  358. "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
  359. "page_addr: 0x%x, column: 0x%x.\n",
  360. page_addr, column);
  361. elbc_fcm_ctrl->column = column;
  362. elbc_fcm_ctrl->use_mdr = 1;
  363. if (column >= mtd->writesize) {
  364. /* OOB area */
  365. column -= mtd->writesize;
  366. elbc_fcm_ctrl->oob = 1;
  367. } else {
  368. WARN_ON(column != 0);
  369. elbc_fcm_ctrl->oob = 0;
  370. }
  371. fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  372. (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
  373. (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
  374. if (priv->page_size) {
  375. out_be32(&lbc->fir,
  376. (FIR_OP_CM2 << FIR_OP0_SHIFT) |
  377. (FIR_OP_CA << FIR_OP1_SHIFT) |
  378. (FIR_OP_PA << FIR_OP2_SHIFT) |
  379. (FIR_OP_WB << FIR_OP3_SHIFT) |
  380. (FIR_OP_CM3 << FIR_OP4_SHIFT) |
  381. (FIR_OP_CW1 << FIR_OP5_SHIFT) |
  382. (FIR_OP_RS << FIR_OP6_SHIFT));
  383. } else {
  384. out_be32(&lbc->fir,
  385. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  386. (FIR_OP_CM2 << FIR_OP1_SHIFT) |
  387. (FIR_OP_CA << FIR_OP2_SHIFT) |
  388. (FIR_OP_PA << FIR_OP3_SHIFT) |
  389. (FIR_OP_WB << FIR_OP4_SHIFT) |
  390. (FIR_OP_CM3 << FIR_OP5_SHIFT) |
  391. (FIR_OP_CW1 << FIR_OP6_SHIFT) |
  392. (FIR_OP_RS << FIR_OP7_SHIFT));
  393. if (elbc_fcm_ctrl->oob)
  394. /* OOB area --> READOOB */
  395. fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
  396. else
  397. /* First 256 bytes --> READ0 */
  398. fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
  399. }
  400. out_be32(&lbc->fcr, fcr);
  401. set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
  402. return;
  403. }
  404. /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
  405. case NAND_CMD_PAGEPROG: {
  406. dev_vdbg(priv->dev,
  407. "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
  408. "writing %d bytes.\n", elbc_fcm_ctrl->index);
  409. /* if the write did not start at 0 or is not a full page
  410. * then set the exact length, otherwise use a full page
  411. * write so the HW generates the ECC.
  412. */
  413. if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
  414. elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
  415. out_be32(&lbc->fbcr,
  416. elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
  417. else
  418. out_be32(&lbc->fbcr, 0);
  419. fsl_elbc_run_command(mtd);
  420. return;
  421. }
  422. /* CMD_STATUS must read the status byte while CEB is active */
  423. /* Note - it does not wait for the ready line */
  424. case NAND_CMD_STATUS:
  425. out_be32(&lbc->fir,
  426. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  427. (FIR_OP_RBW << FIR_OP1_SHIFT));
  428. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  429. out_be32(&lbc->fbcr, 1);
  430. set_addr(mtd, 0, 0, 0);
  431. elbc_fcm_ctrl->read_bytes = 1;
  432. fsl_elbc_run_command(mtd);
  433. /* The chip always seems to report that it is
  434. * write-protected, even when it is not.
  435. */
  436. setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
  437. return;
  438. /* RESET without waiting for the ready line */
  439. case NAND_CMD_RESET:
  440. dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
  441. out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
  442. out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
  443. fsl_elbc_run_command(mtd);
  444. return;
  445. default:
  446. dev_err(priv->dev,
  447. "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
  448. command);
  449. }
  450. }
  451. static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
  452. {
  453. /* The hardware does not seem to support multiple
  454. * chips per bank.
  455. */
  456. }
  457. /*
  458. * Write buf to the FCM Controller Data Buffer
  459. */
  460. static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  461. {
  462. struct nand_chip *chip = mtd->priv;
  463. struct fsl_elbc_mtd *priv = chip->priv;
  464. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  465. unsigned int bufsize = mtd->writesize + mtd->oobsize;
  466. if (len <= 0) {
  467. dev_err(priv->dev, "write_buf of %d bytes", len);
  468. elbc_fcm_ctrl->status = 0;
  469. return;
  470. }
  471. if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
  472. dev_err(priv->dev,
  473. "write_buf beyond end of buffer "
  474. "(%d requested, %u available)\n",
  475. len, bufsize - elbc_fcm_ctrl->index);
  476. len = bufsize - elbc_fcm_ctrl->index;
  477. }
  478. memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
  479. /*
  480. * This is workaround for the weird elbc hangs during nand write,
  481. * Scott Wood says: "...perhaps difference in how long it takes a
  482. * write to make it through the localbus compared to a write to IMMR
  483. * is causing problems, and sync isn't helping for some reason."
  484. * Reading back the last byte helps though.
  485. */
  486. in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
  487. elbc_fcm_ctrl->index += len;
  488. }
  489. /*
  490. * read a byte from either the FCM hardware buffer if it has any data left
  491. * otherwise issue a command to read a single byte.
  492. */
  493. static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
  494. {
  495. struct nand_chip *chip = mtd->priv;
  496. struct fsl_elbc_mtd *priv = chip->priv;
  497. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  498. /* If there are still bytes in the FCM, then use the next byte. */
  499. if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
  500. return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
  501. dev_err(priv->dev, "read_byte beyond end of buffer\n");
  502. return ERR_BYTE;
  503. }
  504. /*
  505. * Read from the FCM Controller Data Buffer
  506. */
  507. static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  508. {
  509. struct nand_chip *chip = mtd->priv;
  510. struct fsl_elbc_mtd *priv = chip->priv;
  511. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  512. int avail;
  513. if (len < 0)
  514. return;
  515. avail = min((unsigned int)len,
  516. elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
  517. memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
  518. elbc_fcm_ctrl->index += avail;
  519. if (len > avail)
  520. dev_err(priv->dev,
  521. "read_buf beyond end of buffer "
  522. "(%d requested, %d available)\n",
  523. len, avail);
  524. }
  525. /* This function is called after Program and Erase Operations to
  526. * check for success or failure.
  527. */
  528. static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
  529. {
  530. struct fsl_elbc_mtd *priv = chip->priv;
  531. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  532. if (elbc_fcm_ctrl->status != LTESR_CC)
  533. return NAND_STATUS_FAIL;
  534. /* The chip always seems to report that it is
  535. * write-protected, even when it is not.
  536. */
  537. return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
  538. }
  539. static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
  540. {
  541. struct nand_chip *chip = mtd->priv;
  542. struct fsl_elbc_mtd *priv = chip->priv;
  543. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  544. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  545. unsigned int al;
  546. /* calculate FMR Address Length field */
  547. al = 0;
  548. if (chip->pagemask & 0xffff0000)
  549. al++;
  550. if (chip->pagemask & 0xff000000)
  551. al++;
  552. priv->fmr |= al << FMR_AL_SHIFT;
  553. dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
  554. chip->numchips);
  555. dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
  556. chip->chipsize);
  557. dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
  558. chip->pagemask);
  559. dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
  560. chip->chip_delay);
  561. dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
  562. chip->badblockpos);
  563. dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
  564. chip->chip_shift);
  565. dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
  566. chip->page_shift);
  567. dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
  568. chip->phys_erase_shift);
  569. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
  570. chip->ecclayout);
  571. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
  572. chip->ecc.mode);
  573. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
  574. chip->ecc.steps);
  575. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
  576. chip->ecc.bytes);
  577. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
  578. chip->ecc.total);
  579. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
  580. chip->ecc.layout);
  581. dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
  582. dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
  583. dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
  584. mtd->erasesize);
  585. dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
  586. mtd->writesize);
  587. dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
  588. mtd->oobsize);
  589. /* adjust Option Register and ECC to match Flash page size */
  590. if (mtd->writesize == 512) {
  591. priv->page_size = 0;
  592. clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  593. } else if (mtd->writesize == 2048) {
  594. priv->page_size = 1;
  595. setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  596. /* adjust ecc setup if needed */
  597. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  598. BR_DECC_CHK_GEN) {
  599. chip->ecc.size = 512;
  600. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  601. &fsl_elbc_oob_lp_eccm1 :
  602. &fsl_elbc_oob_lp_eccm0;
  603. chip->badblock_pattern = &largepage_memorybased;
  604. }
  605. } else {
  606. dev_err(priv->dev,
  607. "fsl_elbc_init: page size %d is not supported\n",
  608. mtd->writesize);
  609. return -1;
  610. }
  611. return 0;
  612. }
  613. static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  614. uint8_t *buf, int oob_required, int page)
  615. {
  616. struct fsl_elbc_mtd *priv = chip->priv;
  617. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  618. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  619. fsl_elbc_read_buf(mtd, buf, mtd->writesize);
  620. if (oob_required)
  621. fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  622. if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
  623. mtd->ecc_stats.failed++;
  624. return elbc_fcm_ctrl->max_bitflips;
  625. }
  626. /* ECC will be calculated automatically, and errors will be detected in
  627. * waitfunc.
  628. */
  629. static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  630. const uint8_t *buf, int oob_required)
  631. {
  632. fsl_elbc_write_buf(mtd, buf, mtd->writesize);
  633. fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  634. return 0;
  635. }
  636. static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
  637. {
  638. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  639. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  640. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  641. struct nand_chip *chip = &priv->chip;
  642. dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
  643. /* Fill in fsl_elbc_mtd structure */
  644. priv->mtd.priv = chip;
  645. priv->mtd.owner = THIS_MODULE;
  646. /* set timeout to maximum */
  647. priv->fmr = 15 << FMR_CWTO_SHIFT;
  648. if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
  649. priv->fmr |= FMR_ECCM;
  650. /* fill in nand_chip structure */
  651. /* set up function call table */
  652. chip->read_byte = fsl_elbc_read_byte;
  653. chip->write_buf = fsl_elbc_write_buf;
  654. chip->read_buf = fsl_elbc_read_buf;
  655. chip->select_chip = fsl_elbc_select_chip;
  656. chip->cmdfunc = fsl_elbc_cmdfunc;
  657. chip->waitfunc = fsl_elbc_wait;
  658. chip->bbt_td = &bbt_main_descr;
  659. chip->bbt_md = &bbt_mirror_descr;
  660. /* set up nand options */
  661. chip->bbt_options = NAND_BBT_USE_FLASH;
  662. chip->controller = &elbc_fcm_ctrl->controller;
  663. chip->priv = priv;
  664. chip->ecc.read_page = fsl_elbc_read_page;
  665. chip->ecc.write_page = fsl_elbc_write_page;
  666. /* If CS Base Register selects full hardware ECC then use it */
  667. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  668. BR_DECC_CHK_GEN) {
  669. chip->ecc.mode = NAND_ECC_HW;
  670. /* put in small page settings and adjust later if needed */
  671. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  672. &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
  673. chip->ecc.size = 512;
  674. chip->ecc.bytes = 3;
  675. chip->ecc.strength = 1;
  676. } else {
  677. /* otherwise fall back to default software ECC */
  678. chip->ecc.mode = NAND_ECC_SOFT;
  679. }
  680. return 0;
  681. }
  682. static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
  683. {
  684. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  685. nand_release(&priv->mtd);
  686. kfree(priv->mtd.name);
  687. if (priv->vbase)
  688. iounmap(priv->vbase);
  689. elbc_fcm_ctrl->chips[priv->bank] = NULL;
  690. kfree(priv);
  691. return 0;
  692. }
  693. static DEFINE_MUTEX(fsl_elbc_nand_mutex);
  694. static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
  695. {
  696. struct fsl_lbc_regs __iomem *lbc;
  697. struct fsl_elbc_mtd *priv;
  698. struct resource res;
  699. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
  700. static const char *part_probe_types[]
  701. = { "cmdlinepart", "RedBoot", "ofpart", NULL };
  702. int ret;
  703. int bank;
  704. struct device *dev;
  705. struct device_node *node = pdev->dev.of_node;
  706. struct mtd_part_parser_data ppdata;
  707. ppdata.of_node = pdev->dev.of_node;
  708. if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
  709. return -ENODEV;
  710. lbc = fsl_lbc_ctrl_dev->regs;
  711. dev = fsl_lbc_ctrl_dev->dev;
  712. /* get, allocate and map the memory resource */
  713. ret = of_address_to_resource(node, 0, &res);
  714. if (ret) {
  715. dev_err(dev, "failed to get resource\n");
  716. return ret;
  717. }
  718. /* find which chip select it is connected to */
  719. for (bank = 0; bank < MAX_BANKS; bank++)
  720. if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
  721. (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
  722. (in_be32(&lbc->bank[bank].br) &
  723. in_be32(&lbc->bank[bank].or) & BR_BA)
  724. == fsl_lbc_addr(res.start))
  725. break;
  726. if (bank >= MAX_BANKS) {
  727. dev_err(dev, "address did not match any chip selects\n");
  728. return -ENODEV;
  729. }
  730. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  731. if (!priv)
  732. return -ENOMEM;
  733. mutex_lock(&fsl_elbc_nand_mutex);
  734. if (!fsl_lbc_ctrl_dev->nand) {
  735. elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
  736. if (!elbc_fcm_ctrl) {
  737. dev_err(dev, "failed to allocate memory\n");
  738. mutex_unlock(&fsl_elbc_nand_mutex);
  739. ret = -ENOMEM;
  740. goto err;
  741. }
  742. elbc_fcm_ctrl->counter++;
  743. spin_lock_init(&elbc_fcm_ctrl->controller.lock);
  744. init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
  745. fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
  746. } else {
  747. elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
  748. }
  749. mutex_unlock(&fsl_elbc_nand_mutex);
  750. elbc_fcm_ctrl->chips[bank] = priv;
  751. priv->bank = bank;
  752. priv->ctrl = fsl_lbc_ctrl_dev;
  753. priv->dev = &pdev->dev;
  754. dev_set_drvdata(priv->dev, priv);
  755. priv->vbase = ioremap(res.start, resource_size(&res));
  756. if (!priv->vbase) {
  757. dev_err(dev, "failed to map chip region\n");
  758. ret = -ENOMEM;
  759. goto err;
  760. }
  761. priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
  762. if (!priv->mtd.name) {
  763. ret = -ENOMEM;
  764. goto err;
  765. }
  766. ret = fsl_elbc_chip_init(priv);
  767. if (ret)
  768. goto err;
  769. ret = nand_scan_ident(&priv->mtd, 1, NULL);
  770. if (ret)
  771. goto err;
  772. ret = fsl_elbc_chip_init_tail(&priv->mtd);
  773. if (ret)
  774. goto err;
  775. ret = nand_scan_tail(&priv->mtd);
  776. if (ret)
  777. goto err;
  778. /* First look for RedBoot table or partitions on the command
  779. * line, these take precedence over device tree information */
  780. mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
  781. NULL, 0);
  782. printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
  783. (unsigned long long)res.start, priv->bank);
  784. return 0;
  785. err:
  786. fsl_elbc_chip_remove(priv);
  787. return ret;
  788. }
  789. static int fsl_elbc_nand_remove(struct platform_device *pdev)
  790. {
  791. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
  792. struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
  793. fsl_elbc_chip_remove(priv);
  794. mutex_lock(&fsl_elbc_nand_mutex);
  795. elbc_fcm_ctrl->counter--;
  796. if (!elbc_fcm_ctrl->counter) {
  797. fsl_lbc_ctrl_dev->nand = NULL;
  798. kfree(elbc_fcm_ctrl);
  799. }
  800. mutex_unlock(&fsl_elbc_nand_mutex);
  801. return 0;
  802. }
  803. static const struct of_device_id fsl_elbc_nand_match[] = {
  804. { .compatible = "fsl,elbc-fcm-nand", },
  805. {}
  806. };
  807. static struct platform_driver fsl_elbc_nand_driver = {
  808. .driver = {
  809. .name = "fsl,elbc-fcm-nand",
  810. .owner = THIS_MODULE,
  811. .of_match_table = fsl_elbc_nand_match,
  812. },
  813. .probe = fsl_elbc_nand_probe,
  814. .remove = fsl_elbc_nand_remove,
  815. };
  816. module_platform_driver(fsl_elbc_nand_driver);
  817. MODULE_LICENSE("GPL");
  818. MODULE_AUTHOR("Freescale");
  819. MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");