md.c 222 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. if (!mddev || !mddev->bio_set)
  149. return bio_clone(bio, gfp_mask);
  150. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  151. }
  152. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  153. void md_trim_bio(struct bio *bio, int offset, int size)
  154. {
  155. /* 'bio' is a cloned bio which we need to trim to match
  156. * the given offset and size.
  157. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  158. */
  159. int i;
  160. struct bio_vec *bvec;
  161. int sofar = 0;
  162. size <<= 9;
  163. if (offset == 0 && size == bio->bi_size)
  164. return;
  165. bio->bi_sector += offset;
  166. bio->bi_size = size;
  167. offset <<= 9;
  168. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  169. while (bio->bi_idx < bio->bi_vcnt &&
  170. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  171. /* remove this whole bio_vec */
  172. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  173. bio->bi_idx++;
  174. }
  175. if (bio->bi_idx < bio->bi_vcnt) {
  176. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  177. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  178. }
  179. /* avoid any complications with bi_idx being non-zero*/
  180. if (bio->bi_idx) {
  181. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  182. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  183. bio->bi_vcnt -= bio->bi_idx;
  184. bio->bi_idx = 0;
  185. }
  186. /* Make sure vcnt and last bv are not too big */
  187. bio_for_each_segment(bvec, bio, i) {
  188. if (sofar + bvec->bv_len > size)
  189. bvec->bv_len = size - sofar;
  190. if (bvec->bv_len == 0) {
  191. bio->bi_vcnt = i;
  192. break;
  193. }
  194. sofar += bvec->bv_len;
  195. }
  196. }
  197. EXPORT_SYMBOL_GPL(md_trim_bio);
  198. /*
  199. * We have a system wide 'event count' that is incremented
  200. * on any 'interesting' event, and readers of /proc/mdstat
  201. * can use 'poll' or 'select' to find out when the event
  202. * count increases.
  203. *
  204. * Events are:
  205. * start array, stop array, error, add device, remove device,
  206. * start build, activate spare
  207. */
  208. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  209. static atomic_t md_event_count;
  210. void md_new_event(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. EXPORT_SYMBOL_GPL(md_new_event);
  216. /* Alternate version that can be called from interrupts
  217. * when calling sysfs_notify isn't needed.
  218. */
  219. static void md_new_event_inintr(struct mddev *mddev)
  220. {
  221. atomic_inc(&md_event_count);
  222. wake_up(&md_event_waiters);
  223. }
  224. /*
  225. * Enables to iterate over all existing md arrays
  226. * all_mddevs_lock protects this list.
  227. */
  228. static LIST_HEAD(all_mddevs);
  229. static DEFINE_SPINLOCK(all_mddevs_lock);
  230. /*
  231. * iterates through all used mddevs in the system.
  232. * We take care to grab the all_mddevs_lock whenever navigating
  233. * the list, and to always hold a refcount when unlocked.
  234. * Any code which breaks out of this loop while own
  235. * a reference to the current mddev and must mddev_put it.
  236. */
  237. #define for_each_mddev(_mddev,_tmp) \
  238. \
  239. for (({ spin_lock(&all_mddevs_lock); \
  240. _tmp = all_mddevs.next; \
  241. _mddev = NULL;}); \
  242. ({ if (_tmp != &all_mddevs) \
  243. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  244. spin_unlock(&all_mddevs_lock); \
  245. if (_mddev) mddev_put(_mddev); \
  246. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  247. _tmp != &all_mddevs;}); \
  248. ({ spin_lock(&all_mddevs_lock); \
  249. _tmp = _tmp->next;}) \
  250. )
  251. /* Rather than calling directly into the personality make_request function,
  252. * IO requests come here first so that we can check if the device is
  253. * being suspended pending a reconfiguration.
  254. * We hold a refcount over the call to ->make_request. By the time that
  255. * call has finished, the bio has been linked into some internal structure
  256. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  257. */
  258. static void md_make_request(struct request_queue *q, struct bio *bio)
  259. {
  260. const int rw = bio_data_dir(bio);
  261. struct mddev *mddev = q->queuedata;
  262. int cpu;
  263. unsigned int sectors;
  264. if (mddev == NULL || mddev->pers == NULL
  265. || !mddev->ready) {
  266. bio_io_error(bio);
  267. return;
  268. }
  269. smp_rmb(); /* Ensure implications of 'active' are visible */
  270. rcu_read_lock();
  271. if (mddev->suspended) {
  272. DEFINE_WAIT(__wait);
  273. for (;;) {
  274. prepare_to_wait(&mddev->sb_wait, &__wait,
  275. TASK_UNINTERRUPTIBLE);
  276. if (!mddev->suspended)
  277. break;
  278. rcu_read_unlock();
  279. schedule();
  280. rcu_read_lock();
  281. }
  282. finish_wait(&mddev->sb_wait, &__wait);
  283. }
  284. atomic_inc(&mddev->active_io);
  285. rcu_read_unlock();
  286. /*
  287. * save the sectors now since our bio can
  288. * go away inside make_request
  289. */
  290. sectors = bio_sectors(bio);
  291. mddev->pers->make_request(mddev, bio);
  292. cpu = part_stat_lock();
  293. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  294. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  295. part_stat_unlock();
  296. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  297. wake_up(&mddev->sb_wait);
  298. }
  299. /* mddev_suspend makes sure no new requests are submitted
  300. * to the device, and that any requests that have been submitted
  301. * are completely handled.
  302. * Once ->stop is called and completes, the module will be completely
  303. * unused.
  304. */
  305. void mddev_suspend(struct mddev *mddev)
  306. {
  307. BUG_ON(mddev->suspended);
  308. mddev->suspended = 1;
  309. synchronize_rcu();
  310. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  311. mddev->pers->quiesce(mddev, 1);
  312. del_timer_sync(&mddev->safemode_timer);
  313. }
  314. EXPORT_SYMBOL_GPL(mddev_suspend);
  315. void mddev_resume(struct mddev *mddev)
  316. {
  317. mddev->suspended = 0;
  318. wake_up(&mddev->sb_wait);
  319. mddev->pers->quiesce(mddev, 0);
  320. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  321. md_wakeup_thread(mddev->thread);
  322. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  323. }
  324. EXPORT_SYMBOL_GPL(mddev_resume);
  325. int mddev_congested(struct mddev *mddev, int bits)
  326. {
  327. return mddev->suspended;
  328. }
  329. EXPORT_SYMBOL(mddev_congested);
  330. /*
  331. * Generic flush handling for md
  332. */
  333. static void md_end_flush(struct bio *bio, int err)
  334. {
  335. struct md_rdev *rdev = bio->bi_private;
  336. struct mddev *mddev = rdev->mddev;
  337. rdev_dec_pending(rdev, mddev);
  338. if (atomic_dec_and_test(&mddev->flush_pending)) {
  339. /* The pre-request flush has finished */
  340. queue_work(md_wq, &mddev->flush_work);
  341. }
  342. bio_put(bio);
  343. }
  344. static void md_submit_flush_data(struct work_struct *ws);
  345. static void submit_flushes(struct work_struct *ws)
  346. {
  347. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  348. struct md_rdev *rdev;
  349. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  350. atomic_set(&mddev->flush_pending, 1);
  351. rcu_read_lock();
  352. rdev_for_each_rcu(rdev, mddev)
  353. if (rdev->raid_disk >= 0 &&
  354. !test_bit(Faulty, &rdev->flags)) {
  355. /* Take two references, one is dropped
  356. * when request finishes, one after
  357. * we reclaim rcu_read_lock
  358. */
  359. struct bio *bi;
  360. atomic_inc(&rdev->nr_pending);
  361. atomic_inc(&rdev->nr_pending);
  362. rcu_read_unlock();
  363. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  364. bi->bi_end_io = md_end_flush;
  365. bi->bi_private = rdev;
  366. bi->bi_bdev = rdev->bdev;
  367. atomic_inc(&mddev->flush_pending);
  368. submit_bio(WRITE_FLUSH, bi);
  369. rcu_read_lock();
  370. rdev_dec_pending(rdev, mddev);
  371. }
  372. rcu_read_unlock();
  373. if (atomic_dec_and_test(&mddev->flush_pending))
  374. queue_work(md_wq, &mddev->flush_work);
  375. }
  376. static void md_submit_flush_data(struct work_struct *ws)
  377. {
  378. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  379. struct bio *bio = mddev->flush_bio;
  380. if (bio->bi_size == 0)
  381. /* an empty barrier - all done */
  382. bio_endio(bio, 0);
  383. else {
  384. bio->bi_rw &= ~REQ_FLUSH;
  385. mddev->pers->make_request(mddev, bio);
  386. }
  387. mddev->flush_bio = NULL;
  388. wake_up(&mddev->sb_wait);
  389. }
  390. void md_flush_request(struct mddev *mddev, struct bio *bio)
  391. {
  392. spin_lock_irq(&mddev->write_lock);
  393. wait_event_lock_irq(mddev->sb_wait,
  394. !mddev->flush_bio,
  395. mddev->write_lock, /*nothing*/);
  396. mddev->flush_bio = bio;
  397. spin_unlock_irq(&mddev->write_lock);
  398. INIT_WORK(&mddev->flush_work, submit_flushes);
  399. queue_work(md_wq, &mddev->flush_work);
  400. }
  401. EXPORT_SYMBOL(md_flush_request);
  402. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  403. {
  404. struct mddev *mddev = cb->data;
  405. md_wakeup_thread(mddev->thread);
  406. kfree(cb);
  407. }
  408. EXPORT_SYMBOL(md_unplug);
  409. static inline struct mddev *mddev_get(struct mddev *mddev)
  410. {
  411. atomic_inc(&mddev->active);
  412. return mddev;
  413. }
  414. static void mddev_delayed_delete(struct work_struct *ws);
  415. static void mddev_put(struct mddev *mddev)
  416. {
  417. struct bio_set *bs = NULL;
  418. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  419. return;
  420. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  421. mddev->ctime == 0 && !mddev->hold_active) {
  422. /* Array is not configured at all, and not held active,
  423. * so destroy it */
  424. list_del_init(&mddev->all_mddevs);
  425. bs = mddev->bio_set;
  426. mddev->bio_set = NULL;
  427. if (mddev->gendisk) {
  428. /* We did a probe so need to clean up. Call
  429. * queue_work inside the spinlock so that
  430. * flush_workqueue() after mddev_find will
  431. * succeed in waiting for the work to be done.
  432. */
  433. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  434. queue_work(md_misc_wq, &mddev->del_work);
  435. } else
  436. kfree(mddev);
  437. }
  438. spin_unlock(&all_mddevs_lock);
  439. if (bs)
  440. bioset_free(bs);
  441. }
  442. void mddev_init(struct mddev *mddev)
  443. {
  444. mutex_init(&mddev->open_mutex);
  445. mutex_init(&mddev->reconfig_mutex);
  446. mutex_init(&mddev->bitmap_info.mutex);
  447. INIT_LIST_HEAD(&mddev->disks);
  448. INIT_LIST_HEAD(&mddev->all_mddevs);
  449. init_timer(&mddev->safemode_timer);
  450. atomic_set(&mddev->active, 1);
  451. atomic_set(&mddev->openers, 0);
  452. atomic_set(&mddev->active_io, 0);
  453. spin_lock_init(&mddev->write_lock);
  454. atomic_set(&mddev->flush_pending, 0);
  455. init_waitqueue_head(&mddev->sb_wait);
  456. init_waitqueue_head(&mddev->recovery_wait);
  457. mddev->reshape_position = MaxSector;
  458. mddev->reshape_backwards = 0;
  459. mddev->resync_min = 0;
  460. mddev->resync_max = MaxSector;
  461. mddev->level = LEVEL_NONE;
  462. }
  463. EXPORT_SYMBOL_GPL(mddev_init);
  464. static struct mddev * mddev_find(dev_t unit)
  465. {
  466. struct mddev *mddev, *new = NULL;
  467. if (unit && MAJOR(unit) != MD_MAJOR)
  468. unit &= ~((1<<MdpMinorShift)-1);
  469. retry:
  470. spin_lock(&all_mddevs_lock);
  471. if (unit) {
  472. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  473. if (mddev->unit == unit) {
  474. mddev_get(mddev);
  475. spin_unlock(&all_mddevs_lock);
  476. kfree(new);
  477. return mddev;
  478. }
  479. if (new) {
  480. list_add(&new->all_mddevs, &all_mddevs);
  481. spin_unlock(&all_mddevs_lock);
  482. new->hold_active = UNTIL_IOCTL;
  483. return new;
  484. }
  485. } else if (new) {
  486. /* find an unused unit number */
  487. static int next_minor = 512;
  488. int start = next_minor;
  489. int is_free = 0;
  490. int dev = 0;
  491. while (!is_free) {
  492. dev = MKDEV(MD_MAJOR, next_minor);
  493. next_minor++;
  494. if (next_minor > MINORMASK)
  495. next_minor = 0;
  496. if (next_minor == start) {
  497. /* Oh dear, all in use. */
  498. spin_unlock(&all_mddevs_lock);
  499. kfree(new);
  500. return NULL;
  501. }
  502. is_free = 1;
  503. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  504. if (mddev->unit == dev) {
  505. is_free = 0;
  506. break;
  507. }
  508. }
  509. new->unit = dev;
  510. new->md_minor = MINOR(dev);
  511. new->hold_active = UNTIL_STOP;
  512. list_add(&new->all_mddevs, &all_mddevs);
  513. spin_unlock(&all_mddevs_lock);
  514. return new;
  515. }
  516. spin_unlock(&all_mddevs_lock);
  517. new = kzalloc(sizeof(*new), GFP_KERNEL);
  518. if (!new)
  519. return NULL;
  520. new->unit = unit;
  521. if (MAJOR(unit) == MD_MAJOR)
  522. new->md_minor = MINOR(unit);
  523. else
  524. new->md_minor = MINOR(unit) >> MdpMinorShift;
  525. mddev_init(new);
  526. goto retry;
  527. }
  528. static inline int mddev_lock(struct mddev * mddev)
  529. {
  530. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  531. }
  532. static inline int mddev_is_locked(struct mddev *mddev)
  533. {
  534. return mutex_is_locked(&mddev->reconfig_mutex);
  535. }
  536. static inline int mddev_trylock(struct mddev * mddev)
  537. {
  538. return mutex_trylock(&mddev->reconfig_mutex);
  539. }
  540. static struct attribute_group md_redundancy_group;
  541. static void mddev_unlock(struct mddev * mddev)
  542. {
  543. if (mddev->to_remove) {
  544. /* These cannot be removed under reconfig_mutex as
  545. * an access to the files will try to take reconfig_mutex
  546. * while holding the file unremovable, which leads to
  547. * a deadlock.
  548. * So hold set sysfs_active while the remove in happeing,
  549. * and anything else which might set ->to_remove or my
  550. * otherwise change the sysfs namespace will fail with
  551. * -EBUSY if sysfs_active is still set.
  552. * We set sysfs_active under reconfig_mutex and elsewhere
  553. * test it under the same mutex to ensure its correct value
  554. * is seen.
  555. */
  556. struct attribute_group *to_remove = mddev->to_remove;
  557. mddev->to_remove = NULL;
  558. mddev->sysfs_active = 1;
  559. mutex_unlock(&mddev->reconfig_mutex);
  560. if (mddev->kobj.sd) {
  561. if (to_remove != &md_redundancy_group)
  562. sysfs_remove_group(&mddev->kobj, to_remove);
  563. if (mddev->pers == NULL ||
  564. mddev->pers->sync_request == NULL) {
  565. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  566. if (mddev->sysfs_action)
  567. sysfs_put(mddev->sysfs_action);
  568. mddev->sysfs_action = NULL;
  569. }
  570. }
  571. mddev->sysfs_active = 0;
  572. } else
  573. mutex_unlock(&mddev->reconfig_mutex);
  574. /* As we've dropped the mutex we need a spinlock to
  575. * make sure the thread doesn't disappear
  576. */
  577. spin_lock(&pers_lock);
  578. md_wakeup_thread(mddev->thread);
  579. spin_unlock(&pers_lock);
  580. }
  581. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  582. {
  583. struct md_rdev *rdev;
  584. rdev_for_each(rdev, mddev)
  585. if (rdev->desc_nr == nr)
  586. return rdev;
  587. return NULL;
  588. }
  589. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  590. {
  591. struct md_rdev *rdev;
  592. rdev_for_each_rcu(rdev, mddev)
  593. if (rdev->desc_nr == nr)
  594. return rdev;
  595. return NULL;
  596. }
  597. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  598. {
  599. struct md_rdev *rdev;
  600. rdev_for_each(rdev, mddev)
  601. if (rdev->bdev->bd_dev == dev)
  602. return rdev;
  603. return NULL;
  604. }
  605. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  606. {
  607. struct md_rdev *rdev;
  608. rdev_for_each_rcu(rdev, mddev)
  609. if (rdev->bdev->bd_dev == dev)
  610. return rdev;
  611. return NULL;
  612. }
  613. static struct md_personality *find_pers(int level, char *clevel)
  614. {
  615. struct md_personality *pers;
  616. list_for_each_entry(pers, &pers_list, list) {
  617. if (level != LEVEL_NONE && pers->level == level)
  618. return pers;
  619. if (strcmp(pers->name, clevel)==0)
  620. return pers;
  621. }
  622. return NULL;
  623. }
  624. /* return the offset of the super block in 512byte sectors */
  625. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  626. {
  627. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  628. return MD_NEW_SIZE_SECTORS(num_sectors);
  629. }
  630. static int alloc_disk_sb(struct md_rdev * rdev)
  631. {
  632. if (rdev->sb_page)
  633. MD_BUG();
  634. rdev->sb_page = alloc_page(GFP_KERNEL);
  635. if (!rdev->sb_page) {
  636. printk(KERN_ALERT "md: out of memory.\n");
  637. return -ENOMEM;
  638. }
  639. return 0;
  640. }
  641. void md_rdev_clear(struct md_rdev *rdev)
  642. {
  643. if (rdev->sb_page) {
  644. put_page(rdev->sb_page);
  645. rdev->sb_loaded = 0;
  646. rdev->sb_page = NULL;
  647. rdev->sb_start = 0;
  648. rdev->sectors = 0;
  649. }
  650. if (rdev->bb_page) {
  651. put_page(rdev->bb_page);
  652. rdev->bb_page = NULL;
  653. }
  654. kfree(rdev->badblocks.page);
  655. rdev->badblocks.page = NULL;
  656. }
  657. EXPORT_SYMBOL_GPL(md_rdev_clear);
  658. static void super_written(struct bio *bio, int error)
  659. {
  660. struct md_rdev *rdev = bio->bi_private;
  661. struct mddev *mddev = rdev->mddev;
  662. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  663. printk("md: super_written gets error=%d, uptodate=%d\n",
  664. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  665. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  666. md_error(mddev, rdev);
  667. }
  668. if (atomic_dec_and_test(&mddev->pending_writes))
  669. wake_up(&mddev->sb_wait);
  670. bio_put(bio);
  671. }
  672. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  673. sector_t sector, int size, struct page *page)
  674. {
  675. /* write first size bytes of page to sector of rdev
  676. * Increment mddev->pending_writes before returning
  677. * and decrement it on completion, waking up sb_wait
  678. * if zero is reached.
  679. * If an error occurred, call md_error
  680. */
  681. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  682. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  683. bio->bi_sector = sector;
  684. bio_add_page(bio, page, size, 0);
  685. bio->bi_private = rdev;
  686. bio->bi_end_io = super_written;
  687. atomic_inc(&mddev->pending_writes);
  688. submit_bio(WRITE_FLUSH_FUA, bio);
  689. }
  690. void md_super_wait(struct mddev *mddev)
  691. {
  692. /* wait for all superblock writes that were scheduled to complete */
  693. DEFINE_WAIT(wq);
  694. for(;;) {
  695. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  696. if (atomic_read(&mddev->pending_writes)==0)
  697. break;
  698. schedule();
  699. }
  700. finish_wait(&mddev->sb_wait, &wq);
  701. }
  702. static void bi_complete(struct bio *bio, int error)
  703. {
  704. complete((struct completion*)bio->bi_private);
  705. }
  706. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  707. struct page *page, int rw, bool metadata_op)
  708. {
  709. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  710. struct completion event;
  711. int ret;
  712. rw |= REQ_SYNC;
  713. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  714. rdev->meta_bdev : rdev->bdev;
  715. if (metadata_op)
  716. bio->bi_sector = sector + rdev->sb_start;
  717. else if (rdev->mddev->reshape_position != MaxSector &&
  718. (rdev->mddev->reshape_backwards ==
  719. (sector >= rdev->mddev->reshape_position)))
  720. bio->bi_sector = sector + rdev->new_data_offset;
  721. else
  722. bio->bi_sector = sector + rdev->data_offset;
  723. bio_add_page(bio, page, size, 0);
  724. init_completion(&event);
  725. bio->bi_private = &event;
  726. bio->bi_end_io = bi_complete;
  727. submit_bio(rw, bio);
  728. wait_for_completion(&event);
  729. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  730. bio_put(bio);
  731. return ret;
  732. }
  733. EXPORT_SYMBOL_GPL(sync_page_io);
  734. static int read_disk_sb(struct md_rdev * rdev, int size)
  735. {
  736. char b[BDEVNAME_SIZE];
  737. if (!rdev->sb_page) {
  738. MD_BUG();
  739. return -EINVAL;
  740. }
  741. if (rdev->sb_loaded)
  742. return 0;
  743. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  744. goto fail;
  745. rdev->sb_loaded = 1;
  746. return 0;
  747. fail:
  748. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  749. bdevname(rdev->bdev,b));
  750. return -EINVAL;
  751. }
  752. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  753. {
  754. return sb1->set_uuid0 == sb2->set_uuid0 &&
  755. sb1->set_uuid1 == sb2->set_uuid1 &&
  756. sb1->set_uuid2 == sb2->set_uuid2 &&
  757. sb1->set_uuid3 == sb2->set_uuid3;
  758. }
  759. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  760. {
  761. int ret;
  762. mdp_super_t *tmp1, *tmp2;
  763. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  764. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  765. if (!tmp1 || !tmp2) {
  766. ret = 0;
  767. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  768. goto abort;
  769. }
  770. *tmp1 = *sb1;
  771. *tmp2 = *sb2;
  772. /*
  773. * nr_disks is not constant
  774. */
  775. tmp1->nr_disks = 0;
  776. tmp2->nr_disks = 0;
  777. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  778. abort:
  779. kfree(tmp1);
  780. kfree(tmp2);
  781. return ret;
  782. }
  783. static u32 md_csum_fold(u32 csum)
  784. {
  785. csum = (csum & 0xffff) + (csum >> 16);
  786. return (csum & 0xffff) + (csum >> 16);
  787. }
  788. static unsigned int calc_sb_csum(mdp_super_t * sb)
  789. {
  790. u64 newcsum = 0;
  791. u32 *sb32 = (u32*)sb;
  792. int i;
  793. unsigned int disk_csum, csum;
  794. disk_csum = sb->sb_csum;
  795. sb->sb_csum = 0;
  796. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  797. newcsum += sb32[i];
  798. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  799. #ifdef CONFIG_ALPHA
  800. /* This used to use csum_partial, which was wrong for several
  801. * reasons including that different results are returned on
  802. * different architectures. It isn't critical that we get exactly
  803. * the same return value as before (we always csum_fold before
  804. * testing, and that removes any differences). However as we
  805. * know that csum_partial always returned a 16bit value on
  806. * alphas, do a fold to maximise conformity to previous behaviour.
  807. */
  808. sb->sb_csum = md_csum_fold(disk_csum);
  809. #else
  810. sb->sb_csum = disk_csum;
  811. #endif
  812. return csum;
  813. }
  814. /*
  815. * Handle superblock details.
  816. * We want to be able to handle multiple superblock formats
  817. * so we have a common interface to them all, and an array of
  818. * different handlers.
  819. * We rely on user-space to write the initial superblock, and support
  820. * reading and updating of superblocks.
  821. * Interface methods are:
  822. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  823. * loads and validates a superblock on dev.
  824. * if refdev != NULL, compare superblocks on both devices
  825. * Return:
  826. * 0 - dev has a superblock that is compatible with refdev
  827. * 1 - dev has a superblock that is compatible and newer than refdev
  828. * so dev should be used as the refdev in future
  829. * -EINVAL superblock incompatible or invalid
  830. * -othererror e.g. -EIO
  831. *
  832. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  833. * Verify that dev is acceptable into mddev.
  834. * The first time, mddev->raid_disks will be 0, and data from
  835. * dev should be merged in. Subsequent calls check that dev
  836. * is new enough. Return 0 or -EINVAL
  837. *
  838. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  839. * Update the superblock for rdev with data in mddev
  840. * This does not write to disc.
  841. *
  842. */
  843. struct super_type {
  844. char *name;
  845. struct module *owner;
  846. int (*load_super)(struct md_rdev *rdev,
  847. struct md_rdev *refdev,
  848. int minor_version);
  849. int (*validate_super)(struct mddev *mddev,
  850. struct md_rdev *rdev);
  851. void (*sync_super)(struct mddev *mddev,
  852. struct md_rdev *rdev);
  853. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  854. sector_t num_sectors);
  855. int (*allow_new_offset)(struct md_rdev *rdev,
  856. unsigned long long new_offset);
  857. };
  858. /*
  859. * Check that the given mddev has no bitmap.
  860. *
  861. * This function is called from the run method of all personalities that do not
  862. * support bitmaps. It prints an error message and returns non-zero if mddev
  863. * has a bitmap. Otherwise, it returns 0.
  864. *
  865. */
  866. int md_check_no_bitmap(struct mddev *mddev)
  867. {
  868. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  869. return 0;
  870. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  871. mdname(mddev), mddev->pers->name);
  872. return 1;
  873. }
  874. EXPORT_SYMBOL(md_check_no_bitmap);
  875. /*
  876. * load_super for 0.90.0
  877. */
  878. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  879. {
  880. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  881. mdp_super_t *sb;
  882. int ret;
  883. /*
  884. * Calculate the position of the superblock (512byte sectors),
  885. * it's at the end of the disk.
  886. *
  887. * It also happens to be a multiple of 4Kb.
  888. */
  889. rdev->sb_start = calc_dev_sboffset(rdev);
  890. ret = read_disk_sb(rdev, MD_SB_BYTES);
  891. if (ret) return ret;
  892. ret = -EINVAL;
  893. bdevname(rdev->bdev, b);
  894. sb = page_address(rdev->sb_page);
  895. if (sb->md_magic != MD_SB_MAGIC) {
  896. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  897. b);
  898. goto abort;
  899. }
  900. if (sb->major_version != 0 ||
  901. sb->minor_version < 90 ||
  902. sb->minor_version > 91) {
  903. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  904. sb->major_version, sb->minor_version,
  905. b);
  906. goto abort;
  907. }
  908. if (sb->raid_disks <= 0)
  909. goto abort;
  910. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  911. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  912. b);
  913. goto abort;
  914. }
  915. rdev->preferred_minor = sb->md_minor;
  916. rdev->data_offset = 0;
  917. rdev->new_data_offset = 0;
  918. rdev->sb_size = MD_SB_BYTES;
  919. rdev->badblocks.shift = -1;
  920. if (sb->level == LEVEL_MULTIPATH)
  921. rdev->desc_nr = -1;
  922. else
  923. rdev->desc_nr = sb->this_disk.number;
  924. if (!refdev) {
  925. ret = 1;
  926. } else {
  927. __u64 ev1, ev2;
  928. mdp_super_t *refsb = page_address(refdev->sb_page);
  929. if (!uuid_equal(refsb, sb)) {
  930. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  931. b, bdevname(refdev->bdev,b2));
  932. goto abort;
  933. }
  934. if (!sb_equal(refsb, sb)) {
  935. printk(KERN_WARNING "md: %s has same UUID"
  936. " but different superblock to %s\n",
  937. b, bdevname(refdev->bdev, b2));
  938. goto abort;
  939. }
  940. ev1 = md_event(sb);
  941. ev2 = md_event(refsb);
  942. if (ev1 > ev2)
  943. ret = 1;
  944. else
  945. ret = 0;
  946. }
  947. rdev->sectors = rdev->sb_start;
  948. /* Limit to 4TB as metadata cannot record more than that.
  949. * (not needed for Linear and RAID0 as metadata doesn't
  950. * record this size)
  951. */
  952. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  953. rdev->sectors = (2ULL << 32) - 2;
  954. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  955. /* "this cannot possibly happen" ... */
  956. ret = -EINVAL;
  957. abort:
  958. return ret;
  959. }
  960. /*
  961. * validate_super for 0.90.0
  962. */
  963. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  964. {
  965. mdp_disk_t *desc;
  966. mdp_super_t *sb = page_address(rdev->sb_page);
  967. __u64 ev1 = md_event(sb);
  968. rdev->raid_disk = -1;
  969. clear_bit(Faulty, &rdev->flags);
  970. clear_bit(In_sync, &rdev->flags);
  971. clear_bit(WriteMostly, &rdev->flags);
  972. if (mddev->raid_disks == 0) {
  973. mddev->major_version = 0;
  974. mddev->minor_version = sb->minor_version;
  975. mddev->patch_version = sb->patch_version;
  976. mddev->external = 0;
  977. mddev->chunk_sectors = sb->chunk_size >> 9;
  978. mddev->ctime = sb->ctime;
  979. mddev->utime = sb->utime;
  980. mddev->level = sb->level;
  981. mddev->clevel[0] = 0;
  982. mddev->layout = sb->layout;
  983. mddev->raid_disks = sb->raid_disks;
  984. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  985. mddev->events = ev1;
  986. mddev->bitmap_info.offset = 0;
  987. mddev->bitmap_info.space = 0;
  988. /* bitmap can use 60 K after the 4K superblocks */
  989. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  990. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  991. mddev->reshape_backwards = 0;
  992. if (mddev->minor_version >= 91) {
  993. mddev->reshape_position = sb->reshape_position;
  994. mddev->delta_disks = sb->delta_disks;
  995. mddev->new_level = sb->new_level;
  996. mddev->new_layout = sb->new_layout;
  997. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  998. if (mddev->delta_disks < 0)
  999. mddev->reshape_backwards = 1;
  1000. } else {
  1001. mddev->reshape_position = MaxSector;
  1002. mddev->delta_disks = 0;
  1003. mddev->new_level = mddev->level;
  1004. mddev->new_layout = mddev->layout;
  1005. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1006. }
  1007. if (sb->state & (1<<MD_SB_CLEAN))
  1008. mddev->recovery_cp = MaxSector;
  1009. else {
  1010. if (sb->events_hi == sb->cp_events_hi &&
  1011. sb->events_lo == sb->cp_events_lo) {
  1012. mddev->recovery_cp = sb->recovery_cp;
  1013. } else
  1014. mddev->recovery_cp = 0;
  1015. }
  1016. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1017. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1018. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1019. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1020. mddev->max_disks = MD_SB_DISKS;
  1021. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1022. mddev->bitmap_info.file == NULL) {
  1023. mddev->bitmap_info.offset =
  1024. mddev->bitmap_info.default_offset;
  1025. mddev->bitmap_info.space =
  1026. mddev->bitmap_info.space;
  1027. }
  1028. } else if (mddev->pers == NULL) {
  1029. /* Insist on good event counter while assembling, except
  1030. * for spares (which don't need an event count) */
  1031. ++ev1;
  1032. if (sb->disks[rdev->desc_nr].state & (
  1033. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1034. if (ev1 < mddev->events)
  1035. return -EINVAL;
  1036. } else if (mddev->bitmap) {
  1037. /* if adding to array with a bitmap, then we can accept an
  1038. * older device ... but not too old.
  1039. */
  1040. if (ev1 < mddev->bitmap->events_cleared)
  1041. return 0;
  1042. } else {
  1043. if (ev1 < mddev->events)
  1044. /* just a hot-add of a new device, leave raid_disk at -1 */
  1045. return 0;
  1046. }
  1047. if (mddev->level != LEVEL_MULTIPATH) {
  1048. desc = sb->disks + rdev->desc_nr;
  1049. if (desc->state & (1<<MD_DISK_FAULTY))
  1050. set_bit(Faulty, &rdev->flags);
  1051. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1052. desc->raid_disk < mddev->raid_disks */) {
  1053. set_bit(In_sync, &rdev->flags);
  1054. rdev->raid_disk = desc->raid_disk;
  1055. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1056. /* active but not in sync implies recovery up to
  1057. * reshape position. We don't know exactly where
  1058. * that is, so set to zero for now */
  1059. if (mddev->minor_version >= 91) {
  1060. rdev->recovery_offset = 0;
  1061. rdev->raid_disk = desc->raid_disk;
  1062. }
  1063. }
  1064. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1065. set_bit(WriteMostly, &rdev->flags);
  1066. } else /* MULTIPATH are always insync */
  1067. set_bit(In_sync, &rdev->flags);
  1068. return 0;
  1069. }
  1070. /*
  1071. * sync_super for 0.90.0
  1072. */
  1073. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1074. {
  1075. mdp_super_t *sb;
  1076. struct md_rdev *rdev2;
  1077. int next_spare = mddev->raid_disks;
  1078. /* make rdev->sb match mddev data..
  1079. *
  1080. * 1/ zero out disks
  1081. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1082. * 3/ any empty disks < next_spare become removed
  1083. *
  1084. * disks[0] gets initialised to REMOVED because
  1085. * we cannot be sure from other fields if it has
  1086. * been initialised or not.
  1087. */
  1088. int i;
  1089. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1090. rdev->sb_size = MD_SB_BYTES;
  1091. sb = page_address(rdev->sb_page);
  1092. memset(sb, 0, sizeof(*sb));
  1093. sb->md_magic = MD_SB_MAGIC;
  1094. sb->major_version = mddev->major_version;
  1095. sb->patch_version = mddev->patch_version;
  1096. sb->gvalid_words = 0; /* ignored */
  1097. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1098. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1099. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1100. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1101. sb->ctime = mddev->ctime;
  1102. sb->level = mddev->level;
  1103. sb->size = mddev->dev_sectors / 2;
  1104. sb->raid_disks = mddev->raid_disks;
  1105. sb->md_minor = mddev->md_minor;
  1106. sb->not_persistent = 0;
  1107. sb->utime = mddev->utime;
  1108. sb->state = 0;
  1109. sb->events_hi = (mddev->events>>32);
  1110. sb->events_lo = (u32)mddev->events;
  1111. if (mddev->reshape_position == MaxSector)
  1112. sb->minor_version = 90;
  1113. else {
  1114. sb->minor_version = 91;
  1115. sb->reshape_position = mddev->reshape_position;
  1116. sb->new_level = mddev->new_level;
  1117. sb->delta_disks = mddev->delta_disks;
  1118. sb->new_layout = mddev->new_layout;
  1119. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1120. }
  1121. mddev->minor_version = sb->minor_version;
  1122. if (mddev->in_sync)
  1123. {
  1124. sb->recovery_cp = mddev->recovery_cp;
  1125. sb->cp_events_hi = (mddev->events>>32);
  1126. sb->cp_events_lo = (u32)mddev->events;
  1127. if (mddev->recovery_cp == MaxSector)
  1128. sb->state = (1<< MD_SB_CLEAN);
  1129. } else
  1130. sb->recovery_cp = 0;
  1131. sb->layout = mddev->layout;
  1132. sb->chunk_size = mddev->chunk_sectors << 9;
  1133. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1134. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1135. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1136. rdev_for_each(rdev2, mddev) {
  1137. mdp_disk_t *d;
  1138. int desc_nr;
  1139. int is_active = test_bit(In_sync, &rdev2->flags);
  1140. if (rdev2->raid_disk >= 0 &&
  1141. sb->minor_version >= 91)
  1142. /* we have nowhere to store the recovery_offset,
  1143. * but if it is not below the reshape_position,
  1144. * we can piggy-back on that.
  1145. */
  1146. is_active = 1;
  1147. if (rdev2->raid_disk < 0 ||
  1148. test_bit(Faulty, &rdev2->flags))
  1149. is_active = 0;
  1150. if (is_active)
  1151. desc_nr = rdev2->raid_disk;
  1152. else
  1153. desc_nr = next_spare++;
  1154. rdev2->desc_nr = desc_nr;
  1155. d = &sb->disks[rdev2->desc_nr];
  1156. nr_disks++;
  1157. d->number = rdev2->desc_nr;
  1158. d->major = MAJOR(rdev2->bdev->bd_dev);
  1159. d->minor = MINOR(rdev2->bdev->bd_dev);
  1160. if (is_active)
  1161. d->raid_disk = rdev2->raid_disk;
  1162. else
  1163. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1164. if (test_bit(Faulty, &rdev2->flags))
  1165. d->state = (1<<MD_DISK_FAULTY);
  1166. else if (is_active) {
  1167. d->state = (1<<MD_DISK_ACTIVE);
  1168. if (test_bit(In_sync, &rdev2->flags))
  1169. d->state |= (1<<MD_DISK_SYNC);
  1170. active++;
  1171. working++;
  1172. } else {
  1173. d->state = 0;
  1174. spare++;
  1175. working++;
  1176. }
  1177. if (test_bit(WriteMostly, &rdev2->flags))
  1178. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1179. }
  1180. /* now set the "removed" and "faulty" bits on any missing devices */
  1181. for (i=0 ; i < mddev->raid_disks ; i++) {
  1182. mdp_disk_t *d = &sb->disks[i];
  1183. if (d->state == 0 && d->number == 0) {
  1184. d->number = i;
  1185. d->raid_disk = i;
  1186. d->state = (1<<MD_DISK_REMOVED);
  1187. d->state |= (1<<MD_DISK_FAULTY);
  1188. failed++;
  1189. }
  1190. }
  1191. sb->nr_disks = nr_disks;
  1192. sb->active_disks = active;
  1193. sb->working_disks = working;
  1194. sb->failed_disks = failed;
  1195. sb->spare_disks = spare;
  1196. sb->this_disk = sb->disks[rdev->desc_nr];
  1197. sb->sb_csum = calc_sb_csum(sb);
  1198. }
  1199. /*
  1200. * rdev_size_change for 0.90.0
  1201. */
  1202. static unsigned long long
  1203. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1204. {
  1205. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1206. return 0; /* component must fit device */
  1207. if (rdev->mddev->bitmap_info.offset)
  1208. return 0; /* can't move bitmap */
  1209. rdev->sb_start = calc_dev_sboffset(rdev);
  1210. if (!num_sectors || num_sectors > rdev->sb_start)
  1211. num_sectors = rdev->sb_start;
  1212. /* Limit to 4TB as metadata cannot record more than that.
  1213. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1214. */
  1215. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1216. num_sectors = (2ULL << 32) - 2;
  1217. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1218. rdev->sb_page);
  1219. md_super_wait(rdev->mddev);
  1220. return num_sectors;
  1221. }
  1222. static int
  1223. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1224. {
  1225. /* non-zero offset changes not possible with v0.90 */
  1226. return new_offset == 0;
  1227. }
  1228. /*
  1229. * version 1 superblock
  1230. */
  1231. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1232. {
  1233. __le32 disk_csum;
  1234. u32 csum;
  1235. unsigned long long newcsum;
  1236. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1237. __le32 *isuper = (__le32*)sb;
  1238. int i;
  1239. disk_csum = sb->sb_csum;
  1240. sb->sb_csum = 0;
  1241. newcsum = 0;
  1242. for (i=0; size>=4; size -= 4 )
  1243. newcsum += le32_to_cpu(*isuper++);
  1244. if (size == 2)
  1245. newcsum += le16_to_cpu(*(__le16*) isuper);
  1246. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1247. sb->sb_csum = disk_csum;
  1248. return cpu_to_le32(csum);
  1249. }
  1250. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1251. int acknowledged);
  1252. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1253. {
  1254. struct mdp_superblock_1 *sb;
  1255. int ret;
  1256. sector_t sb_start;
  1257. sector_t sectors;
  1258. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1259. int bmask;
  1260. /*
  1261. * Calculate the position of the superblock in 512byte sectors.
  1262. * It is always aligned to a 4K boundary and
  1263. * depeding on minor_version, it can be:
  1264. * 0: At least 8K, but less than 12K, from end of device
  1265. * 1: At start of device
  1266. * 2: 4K from start of device.
  1267. */
  1268. switch(minor_version) {
  1269. case 0:
  1270. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1271. sb_start -= 8*2;
  1272. sb_start &= ~(sector_t)(4*2-1);
  1273. break;
  1274. case 1:
  1275. sb_start = 0;
  1276. break;
  1277. case 2:
  1278. sb_start = 8;
  1279. break;
  1280. default:
  1281. return -EINVAL;
  1282. }
  1283. rdev->sb_start = sb_start;
  1284. /* superblock is rarely larger than 1K, but it can be larger,
  1285. * and it is safe to read 4k, so we do that
  1286. */
  1287. ret = read_disk_sb(rdev, 4096);
  1288. if (ret) return ret;
  1289. sb = page_address(rdev->sb_page);
  1290. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1291. sb->major_version != cpu_to_le32(1) ||
  1292. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1293. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1294. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1295. return -EINVAL;
  1296. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1297. printk("md: invalid superblock checksum on %s\n",
  1298. bdevname(rdev->bdev,b));
  1299. return -EINVAL;
  1300. }
  1301. if (le64_to_cpu(sb->data_size) < 10) {
  1302. printk("md: data_size too small on %s\n",
  1303. bdevname(rdev->bdev,b));
  1304. return -EINVAL;
  1305. }
  1306. if (sb->pad0 ||
  1307. sb->pad3[0] ||
  1308. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1309. /* Some padding is non-zero, might be a new feature */
  1310. return -EINVAL;
  1311. rdev->preferred_minor = 0xffff;
  1312. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1313. rdev->new_data_offset = rdev->data_offset;
  1314. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1315. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1316. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1317. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1318. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1319. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1320. if (rdev->sb_size & bmask)
  1321. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1322. if (minor_version
  1323. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1324. return -EINVAL;
  1325. if (minor_version
  1326. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1327. return -EINVAL;
  1328. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1329. rdev->desc_nr = -1;
  1330. else
  1331. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1332. if (!rdev->bb_page) {
  1333. rdev->bb_page = alloc_page(GFP_KERNEL);
  1334. if (!rdev->bb_page)
  1335. return -ENOMEM;
  1336. }
  1337. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1338. rdev->badblocks.count == 0) {
  1339. /* need to load the bad block list.
  1340. * Currently we limit it to one page.
  1341. */
  1342. s32 offset;
  1343. sector_t bb_sector;
  1344. u64 *bbp;
  1345. int i;
  1346. int sectors = le16_to_cpu(sb->bblog_size);
  1347. if (sectors > (PAGE_SIZE / 512))
  1348. return -EINVAL;
  1349. offset = le32_to_cpu(sb->bblog_offset);
  1350. if (offset == 0)
  1351. return -EINVAL;
  1352. bb_sector = (long long)offset;
  1353. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1354. rdev->bb_page, READ, true))
  1355. return -EIO;
  1356. bbp = (u64 *)page_address(rdev->bb_page);
  1357. rdev->badblocks.shift = sb->bblog_shift;
  1358. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1359. u64 bb = le64_to_cpu(*bbp);
  1360. int count = bb & (0x3ff);
  1361. u64 sector = bb >> 10;
  1362. sector <<= sb->bblog_shift;
  1363. count <<= sb->bblog_shift;
  1364. if (bb + 1 == 0)
  1365. break;
  1366. if (md_set_badblocks(&rdev->badblocks,
  1367. sector, count, 1) == 0)
  1368. return -EINVAL;
  1369. }
  1370. } else if (sb->bblog_offset == 0)
  1371. rdev->badblocks.shift = -1;
  1372. if (!refdev) {
  1373. ret = 1;
  1374. } else {
  1375. __u64 ev1, ev2;
  1376. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1377. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1378. sb->level != refsb->level ||
  1379. sb->layout != refsb->layout ||
  1380. sb->chunksize != refsb->chunksize) {
  1381. printk(KERN_WARNING "md: %s has strangely different"
  1382. " superblock to %s\n",
  1383. bdevname(rdev->bdev,b),
  1384. bdevname(refdev->bdev,b2));
  1385. return -EINVAL;
  1386. }
  1387. ev1 = le64_to_cpu(sb->events);
  1388. ev2 = le64_to_cpu(refsb->events);
  1389. if (ev1 > ev2)
  1390. ret = 1;
  1391. else
  1392. ret = 0;
  1393. }
  1394. if (minor_version) {
  1395. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1396. sectors -= rdev->data_offset;
  1397. } else
  1398. sectors = rdev->sb_start;
  1399. if (sectors < le64_to_cpu(sb->data_size))
  1400. return -EINVAL;
  1401. rdev->sectors = le64_to_cpu(sb->data_size);
  1402. return ret;
  1403. }
  1404. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1405. {
  1406. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1407. __u64 ev1 = le64_to_cpu(sb->events);
  1408. rdev->raid_disk = -1;
  1409. clear_bit(Faulty, &rdev->flags);
  1410. clear_bit(In_sync, &rdev->flags);
  1411. clear_bit(WriteMostly, &rdev->flags);
  1412. if (mddev->raid_disks == 0) {
  1413. mddev->major_version = 1;
  1414. mddev->patch_version = 0;
  1415. mddev->external = 0;
  1416. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1417. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1418. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1419. mddev->level = le32_to_cpu(sb->level);
  1420. mddev->clevel[0] = 0;
  1421. mddev->layout = le32_to_cpu(sb->layout);
  1422. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1423. mddev->dev_sectors = le64_to_cpu(sb->size);
  1424. mddev->events = ev1;
  1425. mddev->bitmap_info.offset = 0;
  1426. mddev->bitmap_info.space = 0;
  1427. /* Default location for bitmap is 1K after superblock
  1428. * using 3K - total of 4K
  1429. */
  1430. mddev->bitmap_info.default_offset = 1024 >> 9;
  1431. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1432. mddev->reshape_backwards = 0;
  1433. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1434. memcpy(mddev->uuid, sb->set_uuid, 16);
  1435. mddev->max_disks = (4096-256)/2;
  1436. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1437. mddev->bitmap_info.file == NULL) {
  1438. mddev->bitmap_info.offset =
  1439. (__s32)le32_to_cpu(sb->bitmap_offset);
  1440. /* Metadata doesn't record how much space is available.
  1441. * For 1.0, we assume we can use up to the superblock
  1442. * if before, else to 4K beyond superblock.
  1443. * For others, assume no change is possible.
  1444. */
  1445. if (mddev->minor_version > 0)
  1446. mddev->bitmap_info.space = 0;
  1447. else if (mddev->bitmap_info.offset > 0)
  1448. mddev->bitmap_info.space =
  1449. 8 - mddev->bitmap_info.offset;
  1450. else
  1451. mddev->bitmap_info.space =
  1452. -mddev->bitmap_info.offset;
  1453. }
  1454. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1455. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1456. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1457. mddev->new_level = le32_to_cpu(sb->new_level);
  1458. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1459. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1460. if (mddev->delta_disks < 0 ||
  1461. (mddev->delta_disks == 0 &&
  1462. (le32_to_cpu(sb->feature_map)
  1463. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1464. mddev->reshape_backwards = 1;
  1465. } else {
  1466. mddev->reshape_position = MaxSector;
  1467. mddev->delta_disks = 0;
  1468. mddev->new_level = mddev->level;
  1469. mddev->new_layout = mddev->layout;
  1470. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1471. }
  1472. } else if (mddev->pers == NULL) {
  1473. /* Insist of good event counter while assembling, except for
  1474. * spares (which don't need an event count) */
  1475. ++ev1;
  1476. if (rdev->desc_nr >= 0 &&
  1477. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1478. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1479. if (ev1 < mddev->events)
  1480. return -EINVAL;
  1481. } else if (mddev->bitmap) {
  1482. /* If adding to array with a bitmap, then we can accept an
  1483. * older device, but not too old.
  1484. */
  1485. if (ev1 < mddev->bitmap->events_cleared)
  1486. return 0;
  1487. } else {
  1488. if (ev1 < mddev->events)
  1489. /* just a hot-add of a new device, leave raid_disk at -1 */
  1490. return 0;
  1491. }
  1492. if (mddev->level != LEVEL_MULTIPATH) {
  1493. int role;
  1494. if (rdev->desc_nr < 0 ||
  1495. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1496. role = 0xffff;
  1497. rdev->desc_nr = -1;
  1498. } else
  1499. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1500. switch(role) {
  1501. case 0xffff: /* spare */
  1502. break;
  1503. case 0xfffe: /* faulty */
  1504. set_bit(Faulty, &rdev->flags);
  1505. break;
  1506. default:
  1507. if ((le32_to_cpu(sb->feature_map) &
  1508. MD_FEATURE_RECOVERY_OFFSET))
  1509. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1510. else
  1511. set_bit(In_sync, &rdev->flags);
  1512. rdev->raid_disk = role;
  1513. break;
  1514. }
  1515. if (sb->devflags & WriteMostly1)
  1516. set_bit(WriteMostly, &rdev->flags);
  1517. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1518. set_bit(Replacement, &rdev->flags);
  1519. } else /* MULTIPATH are always insync */
  1520. set_bit(In_sync, &rdev->flags);
  1521. return 0;
  1522. }
  1523. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1524. {
  1525. struct mdp_superblock_1 *sb;
  1526. struct md_rdev *rdev2;
  1527. int max_dev, i;
  1528. /* make rdev->sb match mddev and rdev data. */
  1529. sb = page_address(rdev->sb_page);
  1530. sb->feature_map = 0;
  1531. sb->pad0 = 0;
  1532. sb->recovery_offset = cpu_to_le64(0);
  1533. memset(sb->pad3, 0, sizeof(sb->pad3));
  1534. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1535. sb->events = cpu_to_le64(mddev->events);
  1536. if (mddev->in_sync)
  1537. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1538. else
  1539. sb->resync_offset = cpu_to_le64(0);
  1540. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1541. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1542. sb->size = cpu_to_le64(mddev->dev_sectors);
  1543. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1544. sb->level = cpu_to_le32(mddev->level);
  1545. sb->layout = cpu_to_le32(mddev->layout);
  1546. if (test_bit(WriteMostly, &rdev->flags))
  1547. sb->devflags |= WriteMostly1;
  1548. else
  1549. sb->devflags &= ~WriteMostly1;
  1550. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1551. sb->data_size = cpu_to_le64(rdev->sectors);
  1552. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1553. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1554. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1555. }
  1556. if (rdev->raid_disk >= 0 &&
  1557. !test_bit(In_sync, &rdev->flags)) {
  1558. sb->feature_map |=
  1559. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1560. sb->recovery_offset =
  1561. cpu_to_le64(rdev->recovery_offset);
  1562. }
  1563. if (test_bit(Replacement, &rdev->flags))
  1564. sb->feature_map |=
  1565. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1566. if (mddev->reshape_position != MaxSector) {
  1567. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1568. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1569. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1570. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1571. sb->new_level = cpu_to_le32(mddev->new_level);
  1572. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1573. if (mddev->delta_disks == 0 &&
  1574. mddev->reshape_backwards)
  1575. sb->feature_map
  1576. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1577. if (rdev->new_data_offset != rdev->data_offset) {
  1578. sb->feature_map
  1579. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1580. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1581. - rdev->data_offset));
  1582. }
  1583. }
  1584. if (rdev->badblocks.count == 0)
  1585. /* Nothing to do for bad blocks*/ ;
  1586. else if (sb->bblog_offset == 0)
  1587. /* Cannot record bad blocks on this device */
  1588. md_error(mddev, rdev);
  1589. else {
  1590. struct badblocks *bb = &rdev->badblocks;
  1591. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1592. u64 *p = bb->page;
  1593. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1594. if (bb->changed) {
  1595. unsigned seq;
  1596. retry:
  1597. seq = read_seqbegin(&bb->lock);
  1598. memset(bbp, 0xff, PAGE_SIZE);
  1599. for (i = 0 ; i < bb->count ; i++) {
  1600. u64 internal_bb = p[i];
  1601. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1602. | BB_LEN(internal_bb));
  1603. bbp[i] = cpu_to_le64(store_bb);
  1604. }
  1605. bb->changed = 0;
  1606. if (read_seqretry(&bb->lock, seq))
  1607. goto retry;
  1608. bb->sector = (rdev->sb_start +
  1609. (int)le32_to_cpu(sb->bblog_offset));
  1610. bb->size = le16_to_cpu(sb->bblog_size);
  1611. }
  1612. }
  1613. max_dev = 0;
  1614. rdev_for_each(rdev2, mddev)
  1615. if (rdev2->desc_nr+1 > max_dev)
  1616. max_dev = rdev2->desc_nr+1;
  1617. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1618. int bmask;
  1619. sb->max_dev = cpu_to_le32(max_dev);
  1620. rdev->sb_size = max_dev * 2 + 256;
  1621. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1622. if (rdev->sb_size & bmask)
  1623. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1624. } else
  1625. max_dev = le32_to_cpu(sb->max_dev);
  1626. for (i=0; i<max_dev;i++)
  1627. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1628. rdev_for_each(rdev2, mddev) {
  1629. i = rdev2->desc_nr;
  1630. if (test_bit(Faulty, &rdev2->flags))
  1631. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1632. else if (test_bit(In_sync, &rdev2->flags))
  1633. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1634. else if (rdev2->raid_disk >= 0)
  1635. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1636. else
  1637. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1638. }
  1639. sb->sb_csum = calc_sb_1_csum(sb);
  1640. }
  1641. static unsigned long long
  1642. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1643. {
  1644. struct mdp_superblock_1 *sb;
  1645. sector_t max_sectors;
  1646. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1647. return 0; /* component must fit device */
  1648. if (rdev->data_offset != rdev->new_data_offset)
  1649. return 0; /* too confusing */
  1650. if (rdev->sb_start < rdev->data_offset) {
  1651. /* minor versions 1 and 2; superblock before data */
  1652. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1653. max_sectors -= rdev->data_offset;
  1654. if (!num_sectors || num_sectors > max_sectors)
  1655. num_sectors = max_sectors;
  1656. } else if (rdev->mddev->bitmap_info.offset) {
  1657. /* minor version 0 with bitmap we can't move */
  1658. return 0;
  1659. } else {
  1660. /* minor version 0; superblock after data */
  1661. sector_t sb_start;
  1662. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1663. sb_start &= ~(sector_t)(4*2 - 1);
  1664. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1665. if (!num_sectors || num_sectors > max_sectors)
  1666. num_sectors = max_sectors;
  1667. rdev->sb_start = sb_start;
  1668. }
  1669. sb = page_address(rdev->sb_page);
  1670. sb->data_size = cpu_to_le64(num_sectors);
  1671. sb->super_offset = rdev->sb_start;
  1672. sb->sb_csum = calc_sb_1_csum(sb);
  1673. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1674. rdev->sb_page);
  1675. md_super_wait(rdev->mddev);
  1676. return num_sectors;
  1677. }
  1678. static int
  1679. super_1_allow_new_offset(struct md_rdev *rdev,
  1680. unsigned long long new_offset)
  1681. {
  1682. /* All necessary checks on new >= old have been done */
  1683. struct bitmap *bitmap;
  1684. if (new_offset >= rdev->data_offset)
  1685. return 1;
  1686. /* with 1.0 metadata, there is no metadata to tread on
  1687. * so we can always move back */
  1688. if (rdev->mddev->minor_version == 0)
  1689. return 1;
  1690. /* otherwise we must be sure not to step on
  1691. * any metadata, so stay:
  1692. * 36K beyond start of superblock
  1693. * beyond end of badblocks
  1694. * beyond write-intent bitmap
  1695. */
  1696. if (rdev->sb_start + (32+4)*2 > new_offset)
  1697. return 0;
  1698. bitmap = rdev->mddev->bitmap;
  1699. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1700. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1701. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1702. return 0;
  1703. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1704. return 0;
  1705. return 1;
  1706. }
  1707. static struct super_type super_types[] = {
  1708. [0] = {
  1709. .name = "0.90.0",
  1710. .owner = THIS_MODULE,
  1711. .load_super = super_90_load,
  1712. .validate_super = super_90_validate,
  1713. .sync_super = super_90_sync,
  1714. .rdev_size_change = super_90_rdev_size_change,
  1715. .allow_new_offset = super_90_allow_new_offset,
  1716. },
  1717. [1] = {
  1718. .name = "md-1",
  1719. .owner = THIS_MODULE,
  1720. .load_super = super_1_load,
  1721. .validate_super = super_1_validate,
  1722. .sync_super = super_1_sync,
  1723. .rdev_size_change = super_1_rdev_size_change,
  1724. .allow_new_offset = super_1_allow_new_offset,
  1725. },
  1726. };
  1727. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1728. {
  1729. if (mddev->sync_super) {
  1730. mddev->sync_super(mddev, rdev);
  1731. return;
  1732. }
  1733. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1734. super_types[mddev->major_version].sync_super(mddev, rdev);
  1735. }
  1736. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1737. {
  1738. struct md_rdev *rdev, *rdev2;
  1739. rcu_read_lock();
  1740. rdev_for_each_rcu(rdev, mddev1)
  1741. rdev_for_each_rcu(rdev2, mddev2)
  1742. if (rdev->bdev->bd_contains ==
  1743. rdev2->bdev->bd_contains) {
  1744. rcu_read_unlock();
  1745. return 1;
  1746. }
  1747. rcu_read_unlock();
  1748. return 0;
  1749. }
  1750. static LIST_HEAD(pending_raid_disks);
  1751. /*
  1752. * Try to register data integrity profile for an mddev
  1753. *
  1754. * This is called when an array is started and after a disk has been kicked
  1755. * from the array. It only succeeds if all working and active component devices
  1756. * are integrity capable with matching profiles.
  1757. */
  1758. int md_integrity_register(struct mddev *mddev)
  1759. {
  1760. struct md_rdev *rdev, *reference = NULL;
  1761. if (list_empty(&mddev->disks))
  1762. return 0; /* nothing to do */
  1763. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1764. return 0; /* shouldn't register, or already is */
  1765. rdev_for_each(rdev, mddev) {
  1766. /* skip spares and non-functional disks */
  1767. if (test_bit(Faulty, &rdev->flags))
  1768. continue;
  1769. if (rdev->raid_disk < 0)
  1770. continue;
  1771. if (!reference) {
  1772. /* Use the first rdev as the reference */
  1773. reference = rdev;
  1774. continue;
  1775. }
  1776. /* does this rdev's profile match the reference profile? */
  1777. if (blk_integrity_compare(reference->bdev->bd_disk,
  1778. rdev->bdev->bd_disk) < 0)
  1779. return -EINVAL;
  1780. }
  1781. if (!reference || !bdev_get_integrity(reference->bdev))
  1782. return 0;
  1783. /*
  1784. * All component devices are integrity capable and have matching
  1785. * profiles, register the common profile for the md device.
  1786. */
  1787. if (blk_integrity_register(mddev->gendisk,
  1788. bdev_get_integrity(reference->bdev)) != 0) {
  1789. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1790. mdname(mddev));
  1791. return -EINVAL;
  1792. }
  1793. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1794. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1795. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1796. mdname(mddev));
  1797. return -EINVAL;
  1798. }
  1799. return 0;
  1800. }
  1801. EXPORT_SYMBOL(md_integrity_register);
  1802. /* Disable data integrity if non-capable/non-matching disk is being added */
  1803. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1804. {
  1805. struct blk_integrity *bi_rdev;
  1806. struct blk_integrity *bi_mddev;
  1807. if (!mddev->gendisk)
  1808. return;
  1809. bi_rdev = bdev_get_integrity(rdev->bdev);
  1810. bi_mddev = blk_get_integrity(mddev->gendisk);
  1811. if (!bi_mddev) /* nothing to do */
  1812. return;
  1813. if (rdev->raid_disk < 0) /* skip spares */
  1814. return;
  1815. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1816. rdev->bdev->bd_disk) >= 0)
  1817. return;
  1818. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1819. blk_integrity_unregister(mddev->gendisk);
  1820. }
  1821. EXPORT_SYMBOL(md_integrity_add_rdev);
  1822. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1823. {
  1824. char b[BDEVNAME_SIZE];
  1825. struct kobject *ko;
  1826. char *s;
  1827. int err;
  1828. if (rdev->mddev) {
  1829. MD_BUG();
  1830. return -EINVAL;
  1831. }
  1832. /* prevent duplicates */
  1833. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1834. return -EEXIST;
  1835. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1836. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1837. rdev->sectors < mddev->dev_sectors)) {
  1838. if (mddev->pers) {
  1839. /* Cannot change size, so fail
  1840. * If mddev->level <= 0, then we don't care
  1841. * about aligning sizes (e.g. linear)
  1842. */
  1843. if (mddev->level > 0)
  1844. return -ENOSPC;
  1845. } else
  1846. mddev->dev_sectors = rdev->sectors;
  1847. }
  1848. /* Verify rdev->desc_nr is unique.
  1849. * If it is -1, assign a free number, else
  1850. * check number is not in use
  1851. */
  1852. if (rdev->desc_nr < 0) {
  1853. int choice = 0;
  1854. if (mddev->pers) choice = mddev->raid_disks;
  1855. while (find_rdev_nr(mddev, choice))
  1856. choice++;
  1857. rdev->desc_nr = choice;
  1858. } else {
  1859. if (find_rdev_nr(mddev, rdev->desc_nr))
  1860. return -EBUSY;
  1861. }
  1862. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1863. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1864. mdname(mddev), mddev->max_disks);
  1865. return -EBUSY;
  1866. }
  1867. bdevname(rdev->bdev,b);
  1868. while ( (s=strchr(b, '/')) != NULL)
  1869. *s = '!';
  1870. rdev->mddev = mddev;
  1871. printk(KERN_INFO "md: bind<%s>\n", b);
  1872. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1873. goto fail;
  1874. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1875. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1876. /* failure here is OK */;
  1877. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1878. list_add_rcu(&rdev->same_set, &mddev->disks);
  1879. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1880. /* May as well allow recovery to be retried once */
  1881. mddev->recovery_disabled++;
  1882. return 0;
  1883. fail:
  1884. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1885. b, mdname(mddev));
  1886. return err;
  1887. }
  1888. static void md_delayed_delete(struct work_struct *ws)
  1889. {
  1890. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1891. kobject_del(&rdev->kobj);
  1892. kobject_put(&rdev->kobj);
  1893. }
  1894. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1895. {
  1896. char b[BDEVNAME_SIZE];
  1897. if (!rdev->mddev) {
  1898. MD_BUG();
  1899. return;
  1900. }
  1901. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1902. list_del_rcu(&rdev->same_set);
  1903. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1904. rdev->mddev = NULL;
  1905. sysfs_remove_link(&rdev->kobj, "block");
  1906. sysfs_put(rdev->sysfs_state);
  1907. rdev->sysfs_state = NULL;
  1908. rdev->badblocks.count = 0;
  1909. /* We need to delay this, otherwise we can deadlock when
  1910. * writing to 'remove' to "dev/state". We also need
  1911. * to delay it due to rcu usage.
  1912. */
  1913. synchronize_rcu();
  1914. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1915. kobject_get(&rdev->kobj);
  1916. queue_work(md_misc_wq, &rdev->del_work);
  1917. }
  1918. /*
  1919. * prevent the device from being mounted, repartitioned or
  1920. * otherwise reused by a RAID array (or any other kernel
  1921. * subsystem), by bd_claiming the device.
  1922. */
  1923. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1924. {
  1925. int err = 0;
  1926. struct block_device *bdev;
  1927. char b[BDEVNAME_SIZE];
  1928. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1929. shared ? (struct md_rdev *)lock_rdev : rdev);
  1930. if (IS_ERR(bdev)) {
  1931. printk(KERN_ERR "md: could not open %s.\n",
  1932. __bdevname(dev, b));
  1933. return PTR_ERR(bdev);
  1934. }
  1935. rdev->bdev = bdev;
  1936. return err;
  1937. }
  1938. static void unlock_rdev(struct md_rdev *rdev)
  1939. {
  1940. struct block_device *bdev = rdev->bdev;
  1941. rdev->bdev = NULL;
  1942. if (!bdev)
  1943. MD_BUG();
  1944. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1945. }
  1946. void md_autodetect_dev(dev_t dev);
  1947. static void export_rdev(struct md_rdev * rdev)
  1948. {
  1949. char b[BDEVNAME_SIZE];
  1950. printk(KERN_INFO "md: export_rdev(%s)\n",
  1951. bdevname(rdev->bdev,b));
  1952. if (rdev->mddev)
  1953. MD_BUG();
  1954. md_rdev_clear(rdev);
  1955. #ifndef MODULE
  1956. if (test_bit(AutoDetected, &rdev->flags))
  1957. md_autodetect_dev(rdev->bdev->bd_dev);
  1958. #endif
  1959. unlock_rdev(rdev);
  1960. kobject_put(&rdev->kobj);
  1961. }
  1962. static void kick_rdev_from_array(struct md_rdev * rdev)
  1963. {
  1964. unbind_rdev_from_array(rdev);
  1965. export_rdev(rdev);
  1966. }
  1967. static void export_array(struct mddev *mddev)
  1968. {
  1969. struct md_rdev *rdev, *tmp;
  1970. rdev_for_each_safe(rdev, tmp, mddev) {
  1971. if (!rdev->mddev) {
  1972. MD_BUG();
  1973. continue;
  1974. }
  1975. kick_rdev_from_array(rdev);
  1976. }
  1977. if (!list_empty(&mddev->disks))
  1978. MD_BUG();
  1979. mddev->raid_disks = 0;
  1980. mddev->major_version = 0;
  1981. }
  1982. static void print_desc(mdp_disk_t *desc)
  1983. {
  1984. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1985. desc->major,desc->minor,desc->raid_disk,desc->state);
  1986. }
  1987. static void print_sb_90(mdp_super_t *sb)
  1988. {
  1989. int i;
  1990. printk(KERN_INFO
  1991. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1992. sb->major_version, sb->minor_version, sb->patch_version,
  1993. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1994. sb->ctime);
  1995. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1996. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1997. sb->md_minor, sb->layout, sb->chunk_size);
  1998. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1999. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2000. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2001. sb->failed_disks, sb->spare_disks,
  2002. sb->sb_csum, (unsigned long)sb->events_lo);
  2003. printk(KERN_INFO);
  2004. for (i = 0; i < MD_SB_DISKS; i++) {
  2005. mdp_disk_t *desc;
  2006. desc = sb->disks + i;
  2007. if (desc->number || desc->major || desc->minor ||
  2008. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2009. printk(" D %2d: ", i);
  2010. print_desc(desc);
  2011. }
  2012. }
  2013. printk(KERN_INFO "md: THIS: ");
  2014. print_desc(&sb->this_disk);
  2015. }
  2016. static void print_sb_1(struct mdp_superblock_1 *sb)
  2017. {
  2018. __u8 *uuid;
  2019. uuid = sb->set_uuid;
  2020. printk(KERN_INFO
  2021. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2022. "md: Name: \"%s\" CT:%llu\n",
  2023. le32_to_cpu(sb->major_version),
  2024. le32_to_cpu(sb->feature_map),
  2025. uuid,
  2026. sb->set_name,
  2027. (unsigned long long)le64_to_cpu(sb->ctime)
  2028. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2029. uuid = sb->device_uuid;
  2030. printk(KERN_INFO
  2031. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2032. " RO:%llu\n"
  2033. "md: Dev:%08x UUID: %pU\n"
  2034. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2035. "md: (MaxDev:%u) \n",
  2036. le32_to_cpu(sb->level),
  2037. (unsigned long long)le64_to_cpu(sb->size),
  2038. le32_to_cpu(sb->raid_disks),
  2039. le32_to_cpu(sb->layout),
  2040. le32_to_cpu(sb->chunksize),
  2041. (unsigned long long)le64_to_cpu(sb->data_offset),
  2042. (unsigned long long)le64_to_cpu(sb->data_size),
  2043. (unsigned long long)le64_to_cpu(sb->super_offset),
  2044. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2045. le32_to_cpu(sb->dev_number),
  2046. uuid,
  2047. sb->devflags,
  2048. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2049. (unsigned long long)le64_to_cpu(sb->events),
  2050. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2051. le32_to_cpu(sb->sb_csum),
  2052. le32_to_cpu(sb->max_dev)
  2053. );
  2054. }
  2055. static void print_rdev(struct md_rdev *rdev, int major_version)
  2056. {
  2057. char b[BDEVNAME_SIZE];
  2058. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2059. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2060. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2061. rdev->desc_nr);
  2062. if (rdev->sb_loaded) {
  2063. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2064. switch (major_version) {
  2065. case 0:
  2066. print_sb_90(page_address(rdev->sb_page));
  2067. break;
  2068. case 1:
  2069. print_sb_1(page_address(rdev->sb_page));
  2070. break;
  2071. }
  2072. } else
  2073. printk(KERN_INFO "md: no rdev superblock!\n");
  2074. }
  2075. static void md_print_devices(void)
  2076. {
  2077. struct list_head *tmp;
  2078. struct md_rdev *rdev;
  2079. struct mddev *mddev;
  2080. char b[BDEVNAME_SIZE];
  2081. printk("\n");
  2082. printk("md: **********************************\n");
  2083. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2084. printk("md: **********************************\n");
  2085. for_each_mddev(mddev, tmp) {
  2086. if (mddev->bitmap)
  2087. bitmap_print_sb(mddev->bitmap);
  2088. else
  2089. printk("%s: ", mdname(mddev));
  2090. rdev_for_each(rdev, mddev)
  2091. printk("<%s>", bdevname(rdev->bdev,b));
  2092. printk("\n");
  2093. rdev_for_each(rdev, mddev)
  2094. print_rdev(rdev, mddev->major_version);
  2095. }
  2096. printk("md: **********************************\n");
  2097. printk("\n");
  2098. }
  2099. static void sync_sbs(struct mddev * mddev, int nospares)
  2100. {
  2101. /* Update each superblock (in-memory image), but
  2102. * if we are allowed to, skip spares which already
  2103. * have the right event counter, or have one earlier
  2104. * (which would mean they aren't being marked as dirty
  2105. * with the rest of the array)
  2106. */
  2107. struct md_rdev *rdev;
  2108. rdev_for_each(rdev, mddev) {
  2109. if (rdev->sb_events == mddev->events ||
  2110. (nospares &&
  2111. rdev->raid_disk < 0 &&
  2112. rdev->sb_events+1 == mddev->events)) {
  2113. /* Don't update this superblock */
  2114. rdev->sb_loaded = 2;
  2115. } else {
  2116. sync_super(mddev, rdev);
  2117. rdev->sb_loaded = 1;
  2118. }
  2119. }
  2120. }
  2121. static void md_update_sb(struct mddev * mddev, int force_change)
  2122. {
  2123. struct md_rdev *rdev;
  2124. int sync_req;
  2125. int nospares = 0;
  2126. int any_badblocks_changed = 0;
  2127. repeat:
  2128. /* First make sure individual recovery_offsets are correct */
  2129. rdev_for_each(rdev, mddev) {
  2130. if (rdev->raid_disk >= 0 &&
  2131. mddev->delta_disks >= 0 &&
  2132. !test_bit(In_sync, &rdev->flags) &&
  2133. mddev->curr_resync_completed > rdev->recovery_offset)
  2134. rdev->recovery_offset = mddev->curr_resync_completed;
  2135. }
  2136. if (!mddev->persistent) {
  2137. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2138. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2139. if (!mddev->external) {
  2140. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2141. rdev_for_each(rdev, mddev) {
  2142. if (rdev->badblocks.changed) {
  2143. rdev->badblocks.changed = 0;
  2144. md_ack_all_badblocks(&rdev->badblocks);
  2145. md_error(mddev, rdev);
  2146. }
  2147. clear_bit(Blocked, &rdev->flags);
  2148. clear_bit(BlockedBadBlocks, &rdev->flags);
  2149. wake_up(&rdev->blocked_wait);
  2150. }
  2151. }
  2152. wake_up(&mddev->sb_wait);
  2153. return;
  2154. }
  2155. spin_lock_irq(&mddev->write_lock);
  2156. mddev->utime = get_seconds();
  2157. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2158. force_change = 1;
  2159. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2160. /* just a clean<-> dirty transition, possibly leave spares alone,
  2161. * though if events isn't the right even/odd, we will have to do
  2162. * spares after all
  2163. */
  2164. nospares = 1;
  2165. if (force_change)
  2166. nospares = 0;
  2167. if (mddev->degraded)
  2168. /* If the array is degraded, then skipping spares is both
  2169. * dangerous and fairly pointless.
  2170. * Dangerous because a device that was removed from the array
  2171. * might have a event_count that still looks up-to-date,
  2172. * so it can be re-added without a resync.
  2173. * Pointless because if there are any spares to skip,
  2174. * then a recovery will happen and soon that array won't
  2175. * be degraded any more and the spare can go back to sleep then.
  2176. */
  2177. nospares = 0;
  2178. sync_req = mddev->in_sync;
  2179. /* If this is just a dirty<->clean transition, and the array is clean
  2180. * and 'events' is odd, we can roll back to the previous clean state */
  2181. if (nospares
  2182. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2183. && mddev->can_decrease_events
  2184. && mddev->events != 1) {
  2185. mddev->events--;
  2186. mddev->can_decrease_events = 0;
  2187. } else {
  2188. /* otherwise we have to go forward and ... */
  2189. mddev->events ++;
  2190. mddev->can_decrease_events = nospares;
  2191. }
  2192. if (!mddev->events) {
  2193. /*
  2194. * oops, this 64-bit counter should never wrap.
  2195. * Either we are in around ~1 trillion A.C., assuming
  2196. * 1 reboot per second, or we have a bug:
  2197. */
  2198. MD_BUG();
  2199. mddev->events --;
  2200. }
  2201. rdev_for_each(rdev, mddev) {
  2202. if (rdev->badblocks.changed)
  2203. any_badblocks_changed++;
  2204. if (test_bit(Faulty, &rdev->flags))
  2205. set_bit(FaultRecorded, &rdev->flags);
  2206. }
  2207. sync_sbs(mddev, nospares);
  2208. spin_unlock_irq(&mddev->write_lock);
  2209. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2210. mdname(mddev), mddev->in_sync);
  2211. bitmap_update_sb(mddev->bitmap);
  2212. rdev_for_each(rdev, mddev) {
  2213. char b[BDEVNAME_SIZE];
  2214. if (rdev->sb_loaded != 1)
  2215. continue; /* no noise on spare devices */
  2216. if (!test_bit(Faulty, &rdev->flags) &&
  2217. rdev->saved_raid_disk == -1) {
  2218. md_super_write(mddev,rdev,
  2219. rdev->sb_start, rdev->sb_size,
  2220. rdev->sb_page);
  2221. pr_debug("md: (write) %s's sb offset: %llu\n",
  2222. bdevname(rdev->bdev, b),
  2223. (unsigned long long)rdev->sb_start);
  2224. rdev->sb_events = mddev->events;
  2225. if (rdev->badblocks.size) {
  2226. md_super_write(mddev, rdev,
  2227. rdev->badblocks.sector,
  2228. rdev->badblocks.size << 9,
  2229. rdev->bb_page);
  2230. rdev->badblocks.size = 0;
  2231. }
  2232. } else if (test_bit(Faulty, &rdev->flags))
  2233. pr_debug("md: %s (skipping faulty)\n",
  2234. bdevname(rdev->bdev, b));
  2235. else
  2236. pr_debug("(skipping incremental s/r ");
  2237. if (mddev->level == LEVEL_MULTIPATH)
  2238. /* only need to write one superblock... */
  2239. break;
  2240. }
  2241. md_super_wait(mddev);
  2242. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2243. spin_lock_irq(&mddev->write_lock);
  2244. if (mddev->in_sync != sync_req ||
  2245. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2246. /* have to write it out again */
  2247. spin_unlock_irq(&mddev->write_lock);
  2248. goto repeat;
  2249. }
  2250. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2251. spin_unlock_irq(&mddev->write_lock);
  2252. wake_up(&mddev->sb_wait);
  2253. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2254. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2255. rdev_for_each(rdev, mddev) {
  2256. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2257. clear_bit(Blocked, &rdev->flags);
  2258. if (any_badblocks_changed)
  2259. md_ack_all_badblocks(&rdev->badblocks);
  2260. clear_bit(BlockedBadBlocks, &rdev->flags);
  2261. wake_up(&rdev->blocked_wait);
  2262. }
  2263. }
  2264. /* words written to sysfs files may, or may not, be \n terminated.
  2265. * We want to accept with case. For this we use cmd_match.
  2266. */
  2267. static int cmd_match(const char *cmd, const char *str)
  2268. {
  2269. /* See if cmd, written into a sysfs file, matches
  2270. * str. They must either be the same, or cmd can
  2271. * have a trailing newline
  2272. */
  2273. while (*cmd && *str && *cmd == *str) {
  2274. cmd++;
  2275. str++;
  2276. }
  2277. if (*cmd == '\n')
  2278. cmd++;
  2279. if (*str || *cmd)
  2280. return 0;
  2281. return 1;
  2282. }
  2283. struct rdev_sysfs_entry {
  2284. struct attribute attr;
  2285. ssize_t (*show)(struct md_rdev *, char *);
  2286. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2287. };
  2288. static ssize_t
  2289. state_show(struct md_rdev *rdev, char *page)
  2290. {
  2291. char *sep = "";
  2292. size_t len = 0;
  2293. if (test_bit(Faulty, &rdev->flags) ||
  2294. rdev->badblocks.unacked_exist) {
  2295. len+= sprintf(page+len, "%sfaulty",sep);
  2296. sep = ",";
  2297. }
  2298. if (test_bit(In_sync, &rdev->flags)) {
  2299. len += sprintf(page+len, "%sin_sync",sep);
  2300. sep = ",";
  2301. }
  2302. if (test_bit(WriteMostly, &rdev->flags)) {
  2303. len += sprintf(page+len, "%swrite_mostly",sep);
  2304. sep = ",";
  2305. }
  2306. if (test_bit(Blocked, &rdev->flags) ||
  2307. (rdev->badblocks.unacked_exist
  2308. && !test_bit(Faulty, &rdev->flags))) {
  2309. len += sprintf(page+len, "%sblocked", sep);
  2310. sep = ",";
  2311. }
  2312. if (!test_bit(Faulty, &rdev->flags) &&
  2313. !test_bit(In_sync, &rdev->flags)) {
  2314. len += sprintf(page+len, "%sspare", sep);
  2315. sep = ",";
  2316. }
  2317. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2318. len += sprintf(page+len, "%swrite_error", sep);
  2319. sep = ",";
  2320. }
  2321. if (test_bit(WantReplacement, &rdev->flags)) {
  2322. len += sprintf(page+len, "%swant_replacement", sep);
  2323. sep = ",";
  2324. }
  2325. if (test_bit(Replacement, &rdev->flags)) {
  2326. len += sprintf(page+len, "%sreplacement", sep);
  2327. sep = ",";
  2328. }
  2329. return len+sprintf(page+len, "\n");
  2330. }
  2331. static ssize_t
  2332. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2333. {
  2334. /* can write
  2335. * faulty - simulates an error
  2336. * remove - disconnects the device
  2337. * writemostly - sets write_mostly
  2338. * -writemostly - clears write_mostly
  2339. * blocked - sets the Blocked flags
  2340. * -blocked - clears the Blocked and possibly simulates an error
  2341. * insync - sets Insync providing device isn't active
  2342. * write_error - sets WriteErrorSeen
  2343. * -write_error - clears WriteErrorSeen
  2344. */
  2345. int err = -EINVAL;
  2346. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2347. md_error(rdev->mddev, rdev);
  2348. if (test_bit(Faulty, &rdev->flags))
  2349. err = 0;
  2350. else
  2351. err = -EBUSY;
  2352. } else if (cmd_match(buf, "remove")) {
  2353. if (rdev->raid_disk >= 0)
  2354. err = -EBUSY;
  2355. else {
  2356. struct mddev *mddev = rdev->mddev;
  2357. kick_rdev_from_array(rdev);
  2358. if (mddev->pers)
  2359. md_update_sb(mddev, 1);
  2360. md_new_event(mddev);
  2361. err = 0;
  2362. }
  2363. } else if (cmd_match(buf, "writemostly")) {
  2364. set_bit(WriteMostly, &rdev->flags);
  2365. err = 0;
  2366. } else if (cmd_match(buf, "-writemostly")) {
  2367. clear_bit(WriteMostly, &rdev->flags);
  2368. err = 0;
  2369. } else if (cmd_match(buf, "blocked")) {
  2370. set_bit(Blocked, &rdev->flags);
  2371. err = 0;
  2372. } else if (cmd_match(buf, "-blocked")) {
  2373. if (!test_bit(Faulty, &rdev->flags) &&
  2374. rdev->badblocks.unacked_exist) {
  2375. /* metadata handler doesn't understand badblocks,
  2376. * so we need to fail the device
  2377. */
  2378. md_error(rdev->mddev, rdev);
  2379. }
  2380. clear_bit(Blocked, &rdev->flags);
  2381. clear_bit(BlockedBadBlocks, &rdev->flags);
  2382. wake_up(&rdev->blocked_wait);
  2383. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2384. md_wakeup_thread(rdev->mddev->thread);
  2385. err = 0;
  2386. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2387. set_bit(In_sync, &rdev->flags);
  2388. err = 0;
  2389. } else if (cmd_match(buf, "write_error")) {
  2390. set_bit(WriteErrorSeen, &rdev->flags);
  2391. err = 0;
  2392. } else if (cmd_match(buf, "-write_error")) {
  2393. clear_bit(WriteErrorSeen, &rdev->flags);
  2394. err = 0;
  2395. } else if (cmd_match(buf, "want_replacement")) {
  2396. /* Any non-spare device that is not a replacement can
  2397. * become want_replacement at any time, but we then need to
  2398. * check if recovery is needed.
  2399. */
  2400. if (rdev->raid_disk >= 0 &&
  2401. !test_bit(Replacement, &rdev->flags))
  2402. set_bit(WantReplacement, &rdev->flags);
  2403. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2404. md_wakeup_thread(rdev->mddev->thread);
  2405. err = 0;
  2406. } else if (cmd_match(buf, "-want_replacement")) {
  2407. /* Clearing 'want_replacement' is always allowed.
  2408. * Once replacements starts it is too late though.
  2409. */
  2410. err = 0;
  2411. clear_bit(WantReplacement, &rdev->flags);
  2412. } else if (cmd_match(buf, "replacement")) {
  2413. /* Can only set a device as a replacement when array has not
  2414. * yet been started. Once running, replacement is automatic
  2415. * from spares, or by assigning 'slot'.
  2416. */
  2417. if (rdev->mddev->pers)
  2418. err = -EBUSY;
  2419. else {
  2420. set_bit(Replacement, &rdev->flags);
  2421. err = 0;
  2422. }
  2423. } else if (cmd_match(buf, "-replacement")) {
  2424. /* Similarly, can only clear Replacement before start */
  2425. if (rdev->mddev->pers)
  2426. err = -EBUSY;
  2427. else {
  2428. clear_bit(Replacement, &rdev->flags);
  2429. err = 0;
  2430. }
  2431. }
  2432. if (!err)
  2433. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2434. return err ? err : len;
  2435. }
  2436. static struct rdev_sysfs_entry rdev_state =
  2437. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2438. static ssize_t
  2439. errors_show(struct md_rdev *rdev, char *page)
  2440. {
  2441. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2442. }
  2443. static ssize_t
  2444. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2445. {
  2446. char *e;
  2447. unsigned long n = simple_strtoul(buf, &e, 10);
  2448. if (*buf && (*e == 0 || *e == '\n')) {
  2449. atomic_set(&rdev->corrected_errors, n);
  2450. return len;
  2451. }
  2452. return -EINVAL;
  2453. }
  2454. static struct rdev_sysfs_entry rdev_errors =
  2455. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2456. static ssize_t
  2457. slot_show(struct md_rdev *rdev, char *page)
  2458. {
  2459. if (rdev->raid_disk < 0)
  2460. return sprintf(page, "none\n");
  2461. else
  2462. return sprintf(page, "%d\n", rdev->raid_disk);
  2463. }
  2464. static ssize_t
  2465. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2466. {
  2467. char *e;
  2468. int err;
  2469. int slot = simple_strtoul(buf, &e, 10);
  2470. if (strncmp(buf, "none", 4)==0)
  2471. slot = -1;
  2472. else if (e==buf || (*e && *e!= '\n'))
  2473. return -EINVAL;
  2474. if (rdev->mddev->pers && slot == -1) {
  2475. /* Setting 'slot' on an active array requires also
  2476. * updating the 'rd%d' link, and communicating
  2477. * with the personality with ->hot_*_disk.
  2478. * For now we only support removing
  2479. * failed/spare devices. This normally happens automatically,
  2480. * but not when the metadata is externally managed.
  2481. */
  2482. if (rdev->raid_disk == -1)
  2483. return -EEXIST;
  2484. /* personality does all needed checks */
  2485. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2486. return -EINVAL;
  2487. err = rdev->mddev->pers->
  2488. hot_remove_disk(rdev->mddev, rdev);
  2489. if (err)
  2490. return err;
  2491. sysfs_unlink_rdev(rdev->mddev, rdev);
  2492. rdev->raid_disk = -1;
  2493. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2494. md_wakeup_thread(rdev->mddev->thread);
  2495. } else if (rdev->mddev->pers) {
  2496. /* Activating a spare .. or possibly reactivating
  2497. * if we ever get bitmaps working here.
  2498. */
  2499. if (rdev->raid_disk != -1)
  2500. return -EBUSY;
  2501. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2502. return -EBUSY;
  2503. if (rdev->mddev->pers->hot_add_disk == NULL)
  2504. return -EINVAL;
  2505. if (slot >= rdev->mddev->raid_disks &&
  2506. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2507. return -ENOSPC;
  2508. rdev->raid_disk = slot;
  2509. if (test_bit(In_sync, &rdev->flags))
  2510. rdev->saved_raid_disk = slot;
  2511. else
  2512. rdev->saved_raid_disk = -1;
  2513. clear_bit(In_sync, &rdev->flags);
  2514. err = rdev->mddev->pers->
  2515. hot_add_disk(rdev->mddev, rdev);
  2516. if (err) {
  2517. rdev->raid_disk = -1;
  2518. return err;
  2519. } else
  2520. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2521. if (sysfs_link_rdev(rdev->mddev, rdev))
  2522. /* failure here is OK */;
  2523. /* don't wakeup anyone, leave that to userspace. */
  2524. } else {
  2525. if (slot >= rdev->mddev->raid_disks &&
  2526. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2527. return -ENOSPC;
  2528. rdev->raid_disk = slot;
  2529. /* assume it is working */
  2530. clear_bit(Faulty, &rdev->flags);
  2531. clear_bit(WriteMostly, &rdev->flags);
  2532. set_bit(In_sync, &rdev->flags);
  2533. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2534. }
  2535. return len;
  2536. }
  2537. static struct rdev_sysfs_entry rdev_slot =
  2538. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2539. static ssize_t
  2540. offset_show(struct md_rdev *rdev, char *page)
  2541. {
  2542. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2543. }
  2544. static ssize_t
  2545. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2546. {
  2547. unsigned long long offset;
  2548. if (strict_strtoull(buf, 10, &offset) < 0)
  2549. return -EINVAL;
  2550. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2551. return -EBUSY;
  2552. if (rdev->sectors && rdev->mddev->external)
  2553. /* Must set offset before size, so overlap checks
  2554. * can be sane */
  2555. return -EBUSY;
  2556. rdev->data_offset = offset;
  2557. rdev->new_data_offset = offset;
  2558. return len;
  2559. }
  2560. static struct rdev_sysfs_entry rdev_offset =
  2561. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2562. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2563. {
  2564. return sprintf(page, "%llu\n",
  2565. (unsigned long long)rdev->new_data_offset);
  2566. }
  2567. static ssize_t new_offset_store(struct md_rdev *rdev,
  2568. const char *buf, size_t len)
  2569. {
  2570. unsigned long long new_offset;
  2571. struct mddev *mddev = rdev->mddev;
  2572. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2573. return -EINVAL;
  2574. if (mddev->sync_thread)
  2575. return -EBUSY;
  2576. if (new_offset == rdev->data_offset)
  2577. /* reset is always permitted */
  2578. ;
  2579. else if (new_offset > rdev->data_offset) {
  2580. /* must not push array size beyond rdev_sectors */
  2581. if (new_offset - rdev->data_offset
  2582. + mddev->dev_sectors > rdev->sectors)
  2583. return -E2BIG;
  2584. }
  2585. /* Metadata worries about other space details. */
  2586. /* decreasing the offset is inconsistent with a backwards
  2587. * reshape.
  2588. */
  2589. if (new_offset < rdev->data_offset &&
  2590. mddev->reshape_backwards)
  2591. return -EINVAL;
  2592. /* Increasing offset is inconsistent with forwards
  2593. * reshape. reshape_direction should be set to
  2594. * 'backwards' first.
  2595. */
  2596. if (new_offset > rdev->data_offset &&
  2597. !mddev->reshape_backwards)
  2598. return -EINVAL;
  2599. if (mddev->pers && mddev->persistent &&
  2600. !super_types[mddev->major_version]
  2601. .allow_new_offset(rdev, new_offset))
  2602. return -E2BIG;
  2603. rdev->new_data_offset = new_offset;
  2604. if (new_offset > rdev->data_offset)
  2605. mddev->reshape_backwards = 1;
  2606. else if (new_offset < rdev->data_offset)
  2607. mddev->reshape_backwards = 0;
  2608. return len;
  2609. }
  2610. static struct rdev_sysfs_entry rdev_new_offset =
  2611. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2612. static ssize_t
  2613. rdev_size_show(struct md_rdev *rdev, char *page)
  2614. {
  2615. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2616. }
  2617. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2618. {
  2619. /* check if two start/length pairs overlap */
  2620. if (s1+l1 <= s2)
  2621. return 0;
  2622. if (s2+l2 <= s1)
  2623. return 0;
  2624. return 1;
  2625. }
  2626. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2627. {
  2628. unsigned long long blocks;
  2629. sector_t new;
  2630. if (strict_strtoull(buf, 10, &blocks) < 0)
  2631. return -EINVAL;
  2632. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2633. return -EINVAL; /* sector conversion overflow */
  2634. new = blocks * 2;
  2635. if (new != blocks * 2)
  2636. return -EINVAL; /* unsigned long long to sector_t overflow */
  2637. *sectors = new;
  2638. return 0;
  2639. }
  2640. static ssize_t
  2641. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2642. {
  2643. struct mddev *my_mddev = rdev->mddev;
  2644. sector_t oldsectors = rdev->sectors;
  2645. sector_t sectors;
  2646. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2647. return -EINVAL;
  2648. if (rdev->data_offset != rdev->new_data_offset)
  2649. return -EINVAL; /* too confusing */
  2650. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2651. if (my_mddev->persistent) {
  2652. sectors = super_types[my_mddev->major_version].
  2653. rdev_size_change(rdev, sectors);
  2654. if (!sectors)
  2655. return -EBUSY;
  2656. } else if (!sectors)
  2657. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2658. rdev->data_offset;
  2659. }
  2660. if (sectors < my_mddev->dev_sectors)
  2661. return -EINVAL; /* component must fit device */
  2662. rdev->sectors = sectors;
  2663. if (sectors > oldsectors && my_mddev->external) {
  2664. /* need to check that all other rdevs with the same ->bdev
  2665. * do not overlap. We need to unlock the mddev to avoid
  2666. * a deadlock. We have already changed rdev->sectors, and if
  2667. * we have to change it back, we will have the lock again.
  2668. */
  2669. struct mddev *mddev;
  2670. int overlap = 0;
  2671. struct list_head *tmp;
  2672. mddev_unlock(my_mddev);
  2673. for_each_mddev(mddev, tmp) {
  2674. struct md_rdev *rdev2;
  2675. mddev_lock(mddev);
  2676. rdev_for_each(rdev2, mddev)
  2677. if (rdev->bdev == rdev2->bdev &&
  2678. rdev != rdev2 &&
  2679. overlaps(rdev->data_offset, rdev->sectors,
  2680. rdev2->data_offset,
  2681. rdev2->sectors)) {
  2682. overlap = 1;
  2683. break;
  2684. }
  2685. mddev_unlock(mddev);
  2686. if (overlap) {
  2687. mddev_put(mddev);
  2688. break;
  2689. }
  2690. }
  2691. mddev_lock(my_mddev);
  2692. if (overlap) {
  2693. /* Someone else could have slipped in a size
  2694. * change here, but doing so is just silly.
  2695. * We put oldsectors back because we *know* it is
  2696. * safe, and trust userspace not to race with
  2697. * itself
  2698. */
  2699. rdev->sectors = oldsectors;
  2700. return -EBUSY;
  2701. }
  2702. }
  2703. return len;
  2704. }
  2705. static struct rdev_sysfs_entry rdev_size =
  2706. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2707. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2708. {
  2709. unsigned long long recovery_start = rdev->recovery_offset;
  2710. if (test_bit(In_sync, &rdev->flags) ||
  2711. recovery_start == MaxSector)
  2712. return sprintf(page, "none\n");
  2713. return sprintf(page, "%llu\n", recovery_start);
  2714. }
  2715. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2716. {
  2717. unsigned long long recovery_start;
  2718. if (cmd_match(buf, "none"))
  2719. recovery_start = MaxSector;
  2720. else if (strict_strtoull(buf, 10, &recovery_start))
  2721. return -EINVAL;
  2722. if (rdev->mddev->pers &&
  2723. rdev->raid_disk >= 0)
  2724. return -EBUSY;
  2725. rdev->recovery_offset = recovery_start;
  2726. if (recovery_start == MaxSector)
  2727. set_bit(In_sync, &rdev->flags);
  2728. else
  2729. clear_bit(In_sync, &rdev->flags);
  2730. return len;
  2731. }
  2732. static struct rdev_sysfs_entry rdev_recovery_start =
  2733. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2734. static ssize_t
  2735. badblocks_show(struct badblocks *bb, char *page, int unack);
  2736. static ssize_t
  2737. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2738. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2739. {
  2740. return badblocks_show(&rdev->badblocks, page, 0);
  2741. }
  2742. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2743. {
  2744. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2745. /* Maybe that ack was all we needed */
  2746. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2747. wake_up(&rdev->blocked_wait);
  2748. return rv;
  2749. }
  2750. static struct rdev_sysfs_entry rdev_bad_blocks =
  2751. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2752. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2753. {
  2754. return badblocks_show(&rdev->badblocks, page, 1);
  2755. }
  2756. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2757. {
  2758. return badblocks_store(&rdev->badblocks, page, len, 1);
  2759. }
  2760. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2761. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2762. static struct attribute *rdev_default_attrs[] = {
  2763. &rdev_state.attr,
  2764. &rdev_errors.attr,
  2765. &rdev_slot.attr,
  2766. &rdev_offset.attr,
  2767. &rdev_new_offset.attr,
  2768. &rdev_size.attr,
  2769. &rdev_recovery_start.attr,
  2770. &rdev_bad_blocks.attr,
  2771. &rdev_unack_bad_blocks.attr,
  2772. NULL,
  2773. };
  2774. static ssize_t
  2775. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2776. {
  2777. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2778. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2779. struct mddev *mddev = rdev->mddev;
  2780. ssize_t rv;
  2781. if (!entry->show)
  2782. return -EIO;
  2783. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2784. if (!rv) {
  2785. if (rdev->mddev == NULL)
  2786. rv = -EBUSY;
  2787. else
  2788. rv = entry->show(rdev, page);
  2789. mddev_unlock(mddev);
  2790. }
  2791. return rv;
  2792. }
  2793. static ssize_t
  2794. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2795. const char *page, size_t length)
  2796. {
  2797. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2798. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2799. ssize_t rv;
  2800. struct mddev *mddev = rdev->mddev;
  2801. if (!entry->store)
  2802. return -EIO;
  2803. if (!capable(CAP_SYS_ADMIN))
  2804. return -EACCES;
  2805. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2806. if (!rv) {
  2807. if (rdev->mddev == NULL)
  2808. rv = -EBUSY;
  2809. else
  2810. rv = entry->store(rdev, page, length);
  2811. mddev_unlock(mddev);
  2812. }
  2813. return rv;
  2814. }
  2815. static void rdev_free(struct kobject *ko)
  2816. {
  2817. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2818. kfree(rdev);
  2819. }
  2820. static const struct sysfs_ops rdev_sysfs_ops = {
  2821. .show = rdev_attr_show,
  2822. .store = rdev_attr_store,
  2823. };
  2824. static struct kobj_type rdev_ktype = {
  2825. .release = rdev_free,
  2826. .sysfs_ops = &rdev_sysfs_ops,
  2827. .default_attrs = rdev_default_attrs,
  2828. };
  2829. int md_rdev_init(struct md_rdev *rdev)
  2830. {
  2831. rdev->desc_nr = -1;
  2832. rdev->saved_raid_disk = -1;
  2833. rdev->raid_disk = -1;
  2834. rdev->flags = 0;
  2835. rdev->data_offset = 0;
  2836. rdev->new_data_offset = 0;
  2837. rdev->sb_events = 0;
  2838. rdev->last_read_error.tv_sec = 0;
  2839. rdev->last_read_error.tv_nsec = 0;
  2840. rdev->sb_loaded = 0;
  2841. rdev->bb_page = NULL;
  2842. atomic_set(&rdev->nr_pending, 0);
  2843. atomic_set(&rdev->read_errors, 0);
  2844. atomic_set(&rdev->corrected_errors, 0);
  2845. INIT_LIST_HEAD(&rdev->same_set);
  2846. init_waitqueue_head(&rdev->blocked_wait);
  2847. /* Add space to store bad block list.
  2848. * This reserves the space even on arrays where it cannot
  2849. * be used - I wonder if that matters
  2850. */
  2851. rdev->badblocks.count = 0;
  2852. rdev->badblocks.shift = 0;
  2853. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2854. seqlock_init(&rdev->badblocks.lock);
  2855. if (rdev->badblocks.page == NULL)
  2856. return -ENOMEM;
  2857. return 0;
  2858. }
  2859. EXPORT_SYMBOL_GPL(md_rdev_init);
  2860. /*
  2861. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2862. *
  2863. * mark the device faulty if:
  2864. *
  2865. * - the device is nonexistent (zero size)
  2866. * - the device has no valid superblock
  2867. *
  2868. * a faulty rdev _never_ has rdev->sb set.
  2869. */
  2870. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2871. {
  2872. char b[BDEVNAME_SIZE];
  2873. int err;
  2874. struct md_rdev *rdev;
  2875. sector_t size;
  2876. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2877. if (!rdev) {
  2878. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2879. return ERR_PTR(-ENOMEM);
  2880. }
  2881. err = md_rdev_init(rdev);
  2882. if (err)
  2883. goto abort_free;
  2884. err = alloc_disk_sb(rdev);
  2885. if (err)
  2886. goto abort_free;
  2887. err = lock_rdev(rdev, newdev, super_format == -2);
  2888. if (err)
  2889. goto abort_free;
  2890. kobject_init(&rdev->kobj, &rdev_ktype);
  2891. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2892. if (!size) {
  2893. printk(KERN_WARNING
  2894. "md: %s has zero or unknown size, marking faulty!\n",
  2895. bdevname(rdev->bdev,b));
  2896. err = -EINVAL;
  2897. goto abort_free;
  2898. }
  2899. if (super_format >= 0) {
  2900. err = super_types[super_format].
  2901. load_super(rdev, NULL, super_minor);
  2902. if (err == -EINVAL) {
  2903. printk(KERN_WARNING
  2904. "md: %s does not have a valid v%d.%d "
  2905. "superblock, not importing!\n",
  2906. bdevname(rdev->bdev,b),
  2907. super_format, super_minor);
  2908. goto abort_free;
  2909. }
  2910. if (err < 0) {
  2911. printk(KERN_WARNING
  2912. "md: could not read %s's sb, not importing!\n",
  2913. bdevname(rdev->bdev,b));
  2914. goto abort_free;
  2915. }
  2916. }
  2917. if (super_format == -1)
  2918. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2919. rdev->badblocks.shift = -1;
  2920. return rdev;
  2921. abort_free:
  2922. if (rdev->bdev)
  2923. unlock_rdev(rdev);
  2924. md_rdev_clear(rdev);
  2925. kfree(rdev);
  2926. return ERR_PTR(err);
  2927. }
  2928. /*
  2929. * Check a full RAID array for plausibility
  2930. */
  2931. static void analyze_sbs(struct mddev * mddev)
  2932. {
  2933. int i;
  2934. struct md_rdev *rdev, *freshest, *tmp;
  2935. char b[BDEVNAME_SIZE];
  2936. freshest = NULL;
  2937. rdev_for_each_safe(rdev, tmp, mddev)
  2938. switch (super_types[mddev->major_version].
  2939. load_super(rdev, freshest, mddev->minor_version)) {
  2940. case 1:
  2941. freshest = rdev;
  2942. break;
  2943. case 0:
  2944. break;
  2945. default:
  2946. printk( KERN_ERR \
  2947. "md: fatal superblock inconsistency in %s"
  2948. " -- removing from array\n",
  2949. bdevname(rdev->bdev,b));
  2950. kick_rdev_from_array(rdev);
  2951. }
  2952. super_types[mddev->major_version].
  2953. validate_super(mddev, freshest);
  2954. i = 0;
  2955. rdev_for_each_safe(rdev, tmp, mddev) {
  2956. if (mddev->max_disks &&
  2957. (rdev->desc_nr >= mddev->max_disks ||
  2958. i > mddev->max_disks)) {
  2959. printk(KERN_WARNING
  2960. "md: %s: %s: only %d devices permitted\n",
  2961. mdname(mddev), bdevname(rdev->bdev, b),
  2962. mddev->max_disks);
  2963. kick_rdev_from_array(rdev);
  2964. continue;
  2965. }
  2966. if (rdev != freshest)
  2967. if (super_types[mddev->major_version].
  2968. validate_super(mddev, rdev)) {
  2969. printk(KERN_WARNING "md: kicking non-fresh %s"
  2970. " from array!\n",
  2971. bdevname(rdev->bdev,b));
  2972. kick_rdev_from_array(rdev);
  2973. continue;
  2974. }
  2975. if (mddev->level == LEVEL_MULTIPATH) {
  2976. rdev->desc_nr = i++;
  2977. rdev->raid_disk = rdev->desc_nr;
  2978. set_bit(In_sync, &rdev->flags);
  2979. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2980. rdev->raid_disk = -1;
  2981. clear_bit(In_sync, &rdev->flags);
  2982. }
  2983. }
  2984. }
  2985. /* Read a fixed-point number.
  2986. * Numbers in sysfs attributes should be in "standard" units where
  2987. * possible, so time should be in seconds.
  2988. * However we internally use a a much smaller unit such as
  2989. * milliseconds or jiffies.
  2990. * This function takes a decimal number with a possible fractional
  2991. * component, and produces an integer which is the result of
  2992. * multiplying that number by 10^'scale'.
  2993. * all without any floating-point arithmetic.
  2994. */
  2995. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2996. {
  2997. unsigned long result = 0;
  2998. long decimals = -1;
  2999. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3000. if (*cp == '.')
  3001. decimals = 0;
  3002. else if (decimals < scale) {
  3003. unsigned int value;
  3004. value = *cp - '0';
  3005. result = result * 10 + value;
  3006. if (decimals >= 0)
  3007. decimals++;
  3008. }
  3009. cp++;
  3010. }
  3011. if (*cp == '\n')
  3012. cp++;
  3013. if (*cp)
  3014. return -EINVAL;
  3015. if (decimals < 0)
  3016. decimals = 0;
  3017. while (decimals < scale) {
  3018. result *= 10;
  3019. decimals ++;
  3020. }
  3021. *res = result;
  3022. return 0;
  3023. }
  3024. static void md_safemode_timeout(unsigned long data);
  3025. static ssize_t
  3026. safe_delay_show(struct mddev *mddev, char *page)
  3027. {
  3028. int msec = (mddev->safemode_delay*1000)/HZ;
  3029. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3030. }
  3031. static ssize_t
  3032. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3033. {
  3034. unsigned long msec;
  3035. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3036. return -EINVAL;
  3037. if (msec == 0)
  3038. mddev->safemode_delay = 0;
  3039. else {
  3040. unsigned long old_delay = mddev->safemode_delay;
  3041. mddev->safemode_delay = (msec*HZ)/1000;
  3042. if (mddev->safemode_delay == 0)
  3043. mddev->safemode_delay = 1;
  3044. if (mddev->safemode_delay < old_delay)
  3045. md_safemode_timeout((unsigned long)mddev);
  3046. }
  3047. return len;
  3048. }
  3049. static struct md_sysfs_entry md_safe_delay =
  3050. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3051. static ssize_t
  3052. level_show(struct mddev *mddev, char *page)
  3053. {
  3054. struct md_personality *p = mddev->pers;
  3055. if (p)
  3056. return sprintf(page, "%s\n", p->name);
  3057. else if (mddev->clevel[0])
  3058. return sprintf(page, "%s\n", mddev->clevel);
  3059. else if (mddev->level != LEVEL_NONE)
  3060. return sprintf(page, "%d\n", mddev->level);
  3061. else
  3062. return 0;
  3063. }
  3064. static ssize_t
  3065. level_store(struct mddev *mddev, const char *buf, size_t len)
  3066. {
  3067. char clevel[16];
  3068. ssize_t rv = len;
  3069. struct md_personality *pers;
  3070. long level;
  3071. void *priv;
  3072. struct md_rdev *rdev;
  3073. if (mddev->pers == NULL) {
  3074. if (len == 0)
  3075. return 0;
  3076. if (len >= sizeof(mddev->clevel))
  3077. return -ENOSPC;
  3078. strncpy(mddev->clevel, buf, len);
  3079. if (mddev->clevel[len-1] == '\n')
  3080. len--;
  3081. mddev->clevel[len] = 0;
  3082. mddev->level = LEVEL_NONE;
  3083. return rv;
  3084. }
  3085. /* request to change the personality. Need to ensure:
  3086. * - array is not engaged in resync/recovery/reshape
  3087. * - old personality can be suspended
  3088. * - new personality will access other array.
  3089. */
  3090. if (mddev->sync_thread ||
  3091. mddev->reshape_position != MaxSector ||
  3092. mddev->sysfs_active)
  3093. return -EBUSY;
  3094. if (!mddev->pers->quiesce) {
  3095. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3096. mdname(mddev), mddev->pers->name);
  3097. return -EINVAL;
  3098. }
  3099. /* Now find the new personality */
  3100. if (len == 0 || len >= sizeof(clevel))
  3101. return -EINVAL;
  3102. strncpy(clevel, buf, len);
  3103. if (clevel[len-1] == '\n')
  3104. len--;
  3105. clevel[len] = 0;
  3106. if (strict_strtol(clevel, 10, &level))
  3107. level = LEVEL_NONE;
  3108. if (request_module("md-%s", clevel) != 0)
  3109. request_module("md-level-%s", clevel);
  3110. spin_lock(&pers_lock);
  3111. pers = find_pers(level, clevel);
  3112. if (!pers || !try_module_get(pers->owner)) {
  3113. spin_unlock(&pers_lock);
  3114. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3115. return -EINVAL;
  3116. }
  3117. spin_unlock(&pers_lock);
  3118. if (pers == mddev->pers) {
  3119. /* Nothing to do! */
  3120. module_put(pers->owner);
  3121. return rv;
  3122. }
  3123. if (!pers->takeover) {
  3124. module_put(pers->owner);
  3125. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3126. mdname(mddev), clevel);
  3127. return -EINVAL;
  3128. }
  3129. rdev_for_each(rdev, mddev)
  3130. rdev->new_raid_disk = rdev->raid_disk;
  3131. /* ->takeover must set new_* and/or delta_disks
  3132. * if it succeeds, and may set them when it fails.
  3133. */
  3134. priv = pers->takeover(mddev);
  3135. if (IS_ERR(priv)) {
  3136. mddev->new_level = mddev->level;
  3137. mddev->new_layout = mddev->layout;
  3138. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3139. mddev->raid_disks -= mddev->delta_disks;
  3140. mddev->delta_disks = 0;
  3141. mddev->reshape_backwards = 0;
  3142. module_put(pers->owner);
  3143. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3144. mdname(mddev), clevel);
  3145. return PTR_ERR(priv);
  3146. }
  3147. /* Looks like we have a winner */
  3148. mddev_suspend(mddev);
  3149. mddev->pers->stop(mddev);
  3150. if (mddev->pers->sync_request == NULL &&
  3151. pers->sync_request != NULL) {
  3152. /* need to add the md_redundancy_group */
  3153. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3154. printk(KERN_WARNING
  3155. "md: cannot register extra attributes for %s\n",
  3156. mdname(mddev));
  3157. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3158. }
  3159. if (mddev->pers->sync_request != NULL &&
  3160. pers->sync_request == NULL) {
  3161. /* need to remove the md_redundancy_group */
  3162. if (mddev->to_remove == NULL)
  3163. mddev->to_remove = &md_redundancy_group;
  3164. }
  3165. if (mddev->pers->sync_request == NULL &&
  3166. mddev->external) {
  3167. /* We are converting from a no-redundancy array
  3168. * to a redundancy array and metadata is managed
  3169. * externally so we need to be sure that writes
  3170. * won't block due to a need to transition
  3171. * clean->dirty
  3172. * until external management is started.
  3173. */
  3174. mddev->in_sync = 0;
  3175. mddev->safemode_delay = 0;
  3176. mddev->safemode = 0;
  3177. }
  3178. rdev_for_each(rdev, mddev) {
  3179. if (rdev->raid_disk < 0)
  3180. continue;
  3181. if (rdev->new_raid_disk >= mddev->raid_disks)
  3182. rdev->new_raid_disk = -1;
  3183. if (rdev->new_raid_disk == rdev->raid_disk)
  3184. continue;
  3185. sysfs_unlink_rdev(mddev, rdev);
  3186. }
  3187. rdev_for_each(rdev, mddev) {
  3188. if (rdev->raid_disk < 0)
  3189. continue;
  3190. if (rdev->new_raid_disk == rdev->raid_disk)
  3191. continue;
  3192. rdev->raid_disk = rdev->new_raid_disk;
  3193. if (rdev->raid_disk < 0)
  3194. clear_bit(In_sync, &rdev->flags);
  3195. else {
  3196. if (sysfs_link_rdev(mddev, rdev))
  3197. printk(KERN_WARNING "md: cannot register rd%d"
  3198. " for %s after level change\n",
  3199. rdev->raid_disk, mdname(mddev));
  3200. }
  3201. }
  3202. module_put(mddev->pers->owner);
  3203. mddev->pers = pers;
  3204. mddev->private = priv;
  3205. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3206. mddev->level = mddev->new_level;
  3207. mddev->layout = mddev->new_layout;
  3208. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3209. mddev->delta_disks = 0;
  3210. mddev->reshape_backwards = 0;
  3211. mddev->degraded = 0;
  3212. if (mddev->pers->sync_request == NULL) {
  3213. /* this is now an array without redundancy, so
  3214. * it must always be in_sync
  3215. */
  3216. mddev->in_sync = 1;
  3217. del_timer_sync(&mddev->safemode_timer);
  3218. }
  3219. pers->run(mddev);
  3220. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3221. mddev_resume(mddev);
  3222. sysfs_notify(&mddev->kobj, NULL, "level");
  3223. md_new_event(mddev);
  3224. return rv;
  3225. }
  3226. static struct md_sysfs_entry md_level =
  3227. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3228. static ssize_t
  3229. layout_show(struct mddev *mddev, char *page)
  3230. {
  3231. /* just a number, not meaningful for all levels */
  3232. if (mddev->reshape_position != MaxSector &&
  3233. mddev->layout != mddev->new_layout)
  3234. return sprintf(page, "%d (%d)\n",
  3235. mddev->new_layout, mddev->layout);
  3236. return sprintf(page, "%d\n", mddev->layout);
  3237. }
  3238. static ssize_t
  3239. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3240. {
  3241. char *e;
  3242. unsigned long n = simple_strtoul(buf, &e, 10);
  3243. if (!*buf || (*e && *e != '\n'))
  3244. return -EINVAL;
  3245. if (mddev->pers) {
  3246. int err;
  3247. if (mddev->pers->check_reshape == NULL)
  3248. return -EBUSY;
  3249. mddev->new_layout = n;
  3250. err = mddev->pers->check_reshape(mddev);
  3251. if (err) {
  3252. mddev->new_layout = mddev->layout;
  3253. return err;
  3254. }
  3255. } else {
  3256. mddev->new_layout = n;
  3257. if (mddev->reshape_position == MaxSector)
  3258. mddev->layout = n;
  3259. }
  3260. return len;
  3261. }
  3262. static struct md_sysfs_entry md_layout =
  3263. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3264. static ssize_t
  3265. raid_disks_show(struct mddev *mddev, char *page)
  3266. {
  3267. if (mddev->raid_disks == 0)
  3268. return 0;
  3269. if (mddev->reshape_position != MaxSector &&
  3270. mddev->delta_disks != 0)
  3271. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3272. mddev->raid_disks - mddev->delta_disks);
  3273. return sprintf(page, "%d\n", mddev->raid_disks);
  3274. }
  3275. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3276. static ssize_t
  3277. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3278. {
  3279. char *e;
  3280. int rv = 0;
  3281. unsigned long n = simple_strtoul(buf, &e, 10);
  3282. if (!*buf || (*e && *e != '\n'))
  3283. return -EINVAL;
  3284. if (mddev->pers)
  3285. rv = update_raid_disks(mddev, n);
  3286. else if (mddev->reshape_position != MaxSector) {
  3287. struct md_rdev *rdev;
  3288. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3289. rdev_for_each(rdev, mddev) {
  3290. if (olddisks < n &&
  3291. rdev->data_offset < rdev->new_data_offset)
  3292. return -EINVAL;
  3293. if (olddisks > n &&
  3294. rdev->data_offset > rdev->new_data_offset)
  3295. return -EINVAL;
  3296. }
  3297. mddev->delta_disks = n - olddisks;
  3298. mddev->raid_disks = n;
  3299. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3300. } else
  3301. mddev->raid_disks = n;
  3302. return rv ? rv : len;
  3303. }
  3304. static struct md_sysfs_entry md_raid_disks =
  3305. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3306. static ssize_t
  3307. chunk_size_show(struct mddev *mddev, char *page)
  3308. {
  3309. if (mddev->reshape_position != MaxSector &&
  3310. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3311. return sprintf(page, "%d (%d)\n",
  3312. mddev->new_chunk_sectors << 9,
  3313. mddev->chunk_sectors << 9);
  3314. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3315. }
  3316. static ssize_t
  3317. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3318. {
  3319. char *e;
  3320. unsigned long n = simple_strtoul(buf, &e, 10);
  3321. if (!*buf || (*e && *e != '\n'))
  3322. return -EINVAL;
  3323. if (mddev->pers) {
  3324. int err;
  3325. if (mddev->pers->check_reshape == NULL)
  3326. return -EBUSY;
  3327. mddev->new_chunk_sectors = n >> 9;
  3328. err = mddev->pers->check_reshape(mddev);
  3329. if (err) {
  3330. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3331. return err;
  3332. }
  3333. } else {
  3334. mddev->new_chunk_sectors = n >> 9;
  3335. if (mddev->reshape_position == MaxSector)
  3336. mddev->chunk_sectors = n >> 9;
  3337. }
  3338. return len;
  3339. }
  3340. static struct md_sysfs_entry md_chunk_size =
  3341. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3342. static ssize_t
  3343. resync_start_show(struct mddev *mddev, char *page)
  3344. {
  3345. if (mddev->recovery_cp == MaxSector)
  3346. return sprintf(page, "none\n");
  3347. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3348. }
  3349. static ssize_t
  3350. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3351. {
  3352. char *e;
  3353. unsigned long long n = simple_strtoull(buf, &e, 10);
  3354. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3355. return -EBUSY;
  3356. if (cmd_match(buf, "none"))
  3357. n = MaxSector;
  3358. else if (!*buf || (*e && *e != '\n'))
  3359. return -EINVAL;
  3360. mddev->recovery_cp = n;
  3361. if (mddev->pers)
  3362. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3363. return len;
  3364. }
  3365. static struct md_sysfs_entry md_resync_start =
  3366. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3367. /*
  3368. * The array state can be:
  3369. *
  3370. * clear
  3371. * No devices, no size, no level
  3372. * Equivalent to STOP_ARRAY ioctl
  3373. * inactive
  3374. * May have some settings, but array is not active
  3375. * all IO results in error
  3376. * When written, doesn't tear down array, but just stops it
  3377. * suspended (not supported yet)
  3378. * All IO requests will block. The array can be reconfigured.
  3379. * Writing this, if accepted, will block until array is quiescent
  3380. * readonly
  3381. * no resync can happen. no superblocks get written.
  3382. * write requests fail
  3383. * read-auto
  3384. * like readonly, but behaves like 'clean' on a write request.
  3385. *
  3386. * clean - no pending writes, but otherwise active.
  3387. * When written to inactive array, starts without resync
  3388. * If a write request arrives then
  3389. * if metadata is known, mark 'dirty' and switch to 'active'.
  3390. * if not known, block and switch to write-pending
  3391. * If written to an active array that has pending writes, then fails.
  3392. * active
  3393. * fully active: IO and resync can be happening.
  3394. * When written to inactive array, starts with resync
  3395. *
  3396. * write-pending
  3397. * clean, but writes are blocked waiting for 'active' to be written.
  3398. *
  3399. * active-idle
  3400. * like active, but no writes have been seen for a while (100msec).
  3401. *
  3402. */
  3403. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3404. write_pending, active_idle, bad_word};
  3405. static char *array_states[] = {
  3406. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3407. "write-pending", "active-idle", NULL };
  3408. static int match_word(const char *word, char **list)
  3409. {
  3410. int n;
  3411. for (n=0; list[n]; n++)
  3412. if (cmd_match(word, list[n]))
  3413. break;
  3414. return n;
  3415. }
  3416. static ssize_t
  3417. array_state_show(struct mddev *mddev, char *page)
  3418. {
  3419. enum array_state st = inactive;
  3420. if (mddev->pers)
  3421. switch(mddev->ro) {
  3422. case 1:
  3423. st = readonly;
  3424. break;
  3425. case 2:
  3426. st = read_auto;
  3427. break;
  3428. case 0:
  3429. if (mddev->in_sync)
  3430. st = clean;
  3431. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3432. st = write_pending;
  3433. else if (mddev->safemode)
  3434. st = active_idle;
  3435. else
  3436. st = active;
  3437. }
  3438. else {
  3439. if (list_empty(&mddev->disks) &&
  3440. mddev->raid_disks == 0 &&
  3441. mddev->dev_sectors == 0)
  3442. st = clear;
  3443. else
  3444. st = inactive;
  3445. }
  3446. return sprintf(page, "%s\n", array_states[st]);
  3447. }
  3448. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3449. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3450. static int do_md_run(struct mddev * mddev);
  3451. static int restart_array(struct mddev *mddev);
  3452. static ssize_t
  3453. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3454. {
  3455. int err = -EINVAL;
  3456. enum array_state st = match_word(buf, array_states);
  3457. switch(st) {
  3458. case bad_word:
  3459. break;
  3460. case clear:
  3461. /* stopping an active array */
  3462. err = do_md_stop(mddev, 0, NULL);
  3463. break;
  3464. case inactive:
  3465. /* stopping an active array */
  3466. if (mddev->pers)
  3467. err = do_md_stop(mddev, 2, NULL);
  3468. else
  3469. err = 0; /* already inactive */
  3470. break;
  3471. case suspended:
  3472. break; /* not supported yet */
  3473. case readonly:
  3474. if (mddev->pers)
  3475. err = md_set_readonly(mddev, NULL);
  3476. else {
  3477. mddev->ro = 1;
  3478. set_disk_ro(mddev->gendisk, 1);
  3479. err = do_md_run(mddev);
  3480. }
  3481. break;
  3482. case read_auto:
  3483. if (mddev->pers) {
  3484. if (mddev->ro == 0)
  3485. err = md_set_readonly(mddev, NULL);
  3486. else if (mddev->ro == 1)
  3487. err = restart_array(mddev);
  3488. if (err == 0) {
  3489. mddev->ro = 2;
  3490. set_disk_ro(mddev->gendisk, 0);
  3491. }
  3492. } else {
  3493. mddev->ro = 2;
  3494. err = do_md_run(mddev);
  3495. }
  3496. break;
  3497. case clean:
  3498. if (mddev->pers) {
  3499. restart_array(mddev);
  3500. spin_lock_irq(&mddev->write_lock);
  3501. if (atomic_read(&mddev->writes_pending) == 0) {
  3502. if (mddev->in_sync == 0) {
  3503. mddev->in_sync = 1;
  3504. if (mddev->safemode == 1)
  3505. mddev->safemode = 0;
  3506. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3507. }
  3508. err = 0;
  3509. } else
  3510. err = -EBUSY;
  3511. spin_unlock_irq(&mddev->write_lock);
  3512. } else
  3513. err = -EINVAL;
  3514. break;
  3515. case active:
  3516. if (mddev->pers) {
  3517. restart_array(mddev);
  3518. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3519. wake_up(&mddev->sb_wait);
  3520. err = 0;
  3521. } else {
  3522. mddev->ro = 0;
  3523. set_disk_ro(mddev->gendisk, 0);
  3524. err = do_md_run(mddev);
  3525. }
  3526. break;
  3527. case write_pending:
  3528. case active_idle:
  3529. /* these cannot be set */
  3530. break;
  3531. }
  3532. if (err)
  3533. return err;
  3534. else {
  3535. if (mddev->hold_active == UNTIL_IOCTL)
  3536. mddev->hold_active = 0;
  3537. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3538. return len;
  3539. }
  3540. }
  3541. static struct md_sysfs_entry md_array_state =
  3542. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3543. static ssize_t
  3544. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3545. return sprintf(page, "%d\n",
  3546. atomic_read(&mddev->max_corr_read_errors));
  3547. }
  3548. static ssize_t
  3549. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3550. {
  3551. char *e;
  3552. unsigned long n = simple_strtoul(buf, &e, 10);
  3553. if (*buf && (*e == 0 || *e == '\n')) {
  3554. atomic_set(&mddev->max_corr_read_errors, n);
  3555. return len;
  3556. }
  3557. return -EINVAL;
  3558. }
  3559. static struct md_sysfs_entry max_corr_read_errors =
  3560. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3561. max_corrected_read_errors_store);
  3562. static ssize_t
  3563. null_show(struct mddev *mddev, char *page)
  3564. {
  3565. return -EINVAL;
  3566. }
  3567. static ssize_t
  3568. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3569. {
  3570. /* buf must be %d:%d\n? giving major and minor numbers */
  3571. /* The new device is added to the array.
  3572. * If the array has a persistent superblock, we read the
  3573. * superblock to initialise info and check validity.
  3574. * Otherwise, only checking done is that in bind_rdev_to_array,
  3575. * which mainly checks size.
  3576. */
  3577. char *e;
  3578. int major = simple_strtoul(buf, &e, 10);
  3579. int minor;
  3580. dev_t dev;
  3581. struct md_rdev *rdev;
  3582. int err;
  3583. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3584. return -EINVAL;
  3585. minor = simple_strtoul(e+1, &e, 10);
  3586. if (*e && *e != '\n')
  3587. return -EINVAL;
  3588. dev = MKDEV(major, minor);
  3589. if (major != MAJOR(dev) ||
  3590. minor != MINOR(dev))
  3591. return -EOVERFLOW;
  3592. if (mddev->persistent) {
  3593. rdev = md_import_device(dev, mddev->major_version,
  3594. mddev->minor_version);
  3595. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3596. struct md_rdev *rdev0
  3597. = list_entry(mddev->disks.next,
  3598. struct md_rdev, same_set);
  3599. err = super_types[mddev->major_version]
  3600. .load_super(rdev, rdev0, mddev->minor_version);
  3601. if (err < 0)
  3602. goto out;
  3603. }
  3604. } else if (mddev->external)
  3605. rdev = md_import_device(dev, -2, -1);
  3606. else
  3607. rdev = md_import_device(dev, -1, -1);
  3608. if (IS_ERR(rdev))
  3609. return PTR_ERR(rdev);
  3610. err = bind_rdev_to_array(rdev, mddev);
  3611. out:
  3612. if (err)
  3613. export_rdev(rdev);
  3614. return err ? err : len;
  3615. }
  3616. static struct md_sysfs_entry md_new_device =
  3617. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3618. static ssize_t
  3619. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3620. {
  3621. char *end;
  3622. unsigned long chunk, end_chunk;
  3623. if (!mddev->bitmap)
  3624. goto out;
  3625. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3626. while (*buf) {
  3627. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3628. if (buf == end) break;
  3629. if (*end == '-') { /* range */
  3630. buf = end + 1;
  3631. end_chunk = simple_strtoul(buf, &end, 0);
  3632. if (buf == end) break;
  3633. }
  3634. if (*end && !isspace(*end)) break;
  3635. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3636. buf = skip_spaces(end);
  3637. }
  3638. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3639. out:
  3640. return len;
  3641. }
  3642. static struct md_sysfs_entry md_bitmap =
  3643. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3644. static ssize_t
  3645. size_show(struct mddev *mddev, char *page)
  3646. {
  3647. return sprintf(page, "%llu\n",
  3648. (unsigned long long)mddev->dev_sectors / 2);
  3649. }
  3650. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3651. static ssize_t
  3652. size_store(struct mddev *mddev, const char *buf, size_t len)
  3653. {
  3654. /* If array is inactive, we can reduce the component size, but
  3655. * not increase it (except from 0).
  3656. * If array is active, we can try an on-line resize
  3657. */
  3658. sector_t sectors;
  3659. int err = strict_blocks_to_sectors(buf, &sectors);
  3660. if (err < 0)
  3661. return err;
  3662. if (mddev->pers) {
  3663. err = update_size(mddev, sectors);
  3664. md_update_sb(mddev, 1);
  3665. } else {
  3666. if (mddev->dev_sectors == 0 ||
  3667. mddev->dev_sectors > sectors)
  3668. mddev->dev_sectors = sectors;
  3669. else
  3670. err = -ENOSPC;
  3671. }
  3672. return err ? err : len;
  3673. }
  3674. static struct md_sysfs_entry md_size =
  3675. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3676. /* Metdata version.
  3677. * This is one of
  3678. * 'none' for arrays with no metadata (good luck...)
  3679. * 'external' for arrays with externally managed metadata,
  3680. * or N.M for internally known formats
  3681. */
  3682. static ssize_t
  3683. metadata_show(struct mddev *mddev, char *page)
  3684. {
  3685. if (mddev->persistent)
  3686. return sprintf(page, "%d.%d\n",
  3687. mddev->major_version, mddev->minor_version);
  3688. else if (mddev->external)
  3689. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3690. else
  3691. return sprintf(page, "none\n");
  3692. }
  3693. static ssize_t
  3694. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3695. {
  3696. int major, minor;
  3697. char *e;
  3698. /* Changing the details of 'external' metadata is
  3699. * always permitted. Otherwise there must be
  3700. * no devices attached to the array.
  3701. */
  3702. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3703. ;
  3704. else if (!list_empty(&mddev->disks))
  3705. return -EBUSY;
  3706. if (cmd_match(buf, "none")) {
  3707. mddev->persistent = 0;
  3708. mddev->external = 0;
  3709. mddev->major_version = 0;
  3710. mddev->minor_version = 90;
  3711. return len;
  3712. }
  3713. if (strncmp(buf, "external:", 9) == 0) {
  3714. size_t namelen = len-9;
  3715. if (namelen >= sizeof(mddev->metadata_type))
  3716. namelen = sizeof(mddev->metadata_type)-1;
  3717. strncpy(mddev->metadata_type, buf+9, namelen);
  3718. mddev->metadata_type[namelen] = 0;
  3719. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3720. mddev->metadata_type[--namelen] = 0;
  3721. mddev->persistent = 0;
  3722. mddev->external = 1;
  3723. mddev->major_version = 0;
  3724. mddev->minor_version = 90;
  3725. return len;
  3726. }
  3727. major = simple_strtoul(buf, &e, 10);
  3728. if (e==buf || *e != '.')
  3729. return -EINVAL;
  3730. buf = e+1;
  3731. minor = simple_strtoul(buf, &e, 10);
  3732. if (e==buf || (*e && *e != '\n') )
  3733. return -EINVAL;
  3734. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3735. return -ENOENT;
  3736. mddev->major_version = major;
  3737. mddev->minor_version = minor;
  3738. mddev->persistent = 1;
  3739. mddev->external = 0;
  3740. return len;
  3741. }
  3742. static struct md_sysfs_entry md_metadata =
  3743. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3744. static ssize_t
  3745. action_show(struct mddev *mddev, char *page)
  3746. {
  3747. char *type = "idle";
  3748. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3749. type = "frozen";
  3750. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3751. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3752. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3753. type = "reshape";
  3754. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3755. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3756. type = "resync";
  3757. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3758. type = "check";
  3759. else
  3760. type = "repair";
  3761. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3762. type = "recover";
  3763. }
  3764. return sprintf(page, "%s\n", type);
  3765. }
  3766. static void reap_sync_thread(struct mddev *mddev);
  3767. static ssize_t
  3768. action_store(struct mddev *mddev, const char *page, size_t len)
  3769. {
  3770. if (!mddev->pers || !mddev->pers->sync_request)
  3771. return -EINVAL;
  3772. if (cmd_match(page, "frozen"))
  3773. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3774. else
  3775. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3776. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3777. if (mddev->sync_thread) {
  3778. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3779. reap_sync_thread(mddev);
  3780. }
  3781. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3782. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3783. return -EBUSY;
  3784. else if (cmd_match(page, "resync"))
  3785. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3786. else if (cmd_match(page, "recover")) {
  3787. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3788. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3789. } else if (cmd_match(page, "reshape")) {
  3790. int err;
  3791. if (mddev->pers->start_reshape == NULL)
  3792. return -EINVAL;
  3793. err = mddev->pers->start_reshape(mddev);
  3794. if (err)
  3795. return err;
  3796. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3797. } else {
  3798. if (cmd_match(page, "check"))
  3799. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3800. else if (!cmd_match(page, "repair"))
  3801. return -EINVAL;
  3802. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3803. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3804. }
  3805. if (mddev->ro == 2) {
  3806. /* A write to sync_action is enough to justify
  3807. * canceling read-auto mode
  3808. */
  3809. mddev->ro = 0;
  3810. md_wakeup_thread(mddev->sync_thread);
  3811. }
  3812. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3813. md_wakeup_thread(mddev->thread);
  3814. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3815. return len;
  3816. }
  3817. static ssize_t
  3818. mismatch_cnt_show(struct mddev *mddev, char *page)
  3819. {
  3820. return sprintf(page, "%llu\n",
  3821. (unsigned long long)
  3822. atomic64_read(&mddev->resync_mismatches));
  3823. }
  3824. static struct md_sysfs_entry md_scan_mode =
  3825. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3826. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3827. static ssize_t
  3828. sync_min_show(struct mddev *mddev, char *page)
  3829. {
  3830. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3831. mddev->sync_speed_min ? "local": "system");
  3832. }
  3833. static ssize_t
  3834. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3835. {
  3836. int min;
  3837. char *e;
  3838. if (strncmp(buf, "system", 6)==0) {
  3839. mddev->sync_speed_min = 0;
  3840. return len;
  3841. }
  3842. min = simple_strtoul(buf, &e, 10);
  3843. if (buf == e || (*e && *e != '\n') || min <= 0)
  3844. return -EINVAL;
  3845. mddev->sync_speed_min = min;
  3846. return len;
  3847. }
  3848. static struct md_sysfs_entry md_sync_min =
  3849. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3850. static ssize_t
  3851. sync_max_show(struct mddev *mddev, char *page)
  3852. {
  3853. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3854. mddev->sync_speed_max ? "local": "system");
  3855. }
  3856. static ssize_t
  3857. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3858. {
  3859. int max;
  3860. char *e;
  3861. if (strncmp(buf, "system", 6)==0) {
  3862. mddev->sync_speed_max = 0;
  3863. return len;
  3864. }
  3865. max = simple_strtoul(buf, &e, 10);
  3866. if (buf == e || (*e && *e != '\n') || max <= 0)
  3867. return -EINVAL;
  3868. mddev->sync_speed_max = max;
  3869. return len;
  3870. }
  3871. static struct md_sysfs_entry md_sync_max =
  3872. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3873. static ssize_t
  3874. degraded_show(struct mddev *mddev, char *page)
  3875. {
  3876. return sprintf(page, "%d\n", mddev->degraded);
  3877. }
  3878. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3879. static ssize_t
  3880. sync_force_parallel_show(struct mddev *mddev, char *page)
  3881. {
  3882. return sprintf(page, "%d\n", mddev->parallel_resync);
  3883. }
  3884. static ssize_t
  3885. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3886. {
  3887. long n;
  3888. if (strict_strtol(buf, 10, &n))
  3889. return -EINVAL;
  3890. if (n != 0 && n != 1)
  3891. return -EINVAL;
  3892. mddev->parallel_resync = n;
  3893. if (mddev->sync_thread)
  3894. wake_up(&resync_wait);
  3895. return len;
  3896. }
  3897. /* force parallel resync, even with shared block devices */
  3898. static struct md_sysfs_entry md_sync_force_parallel =
  3899. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3900. sync_force_parallel_show, sync_force_parallel_store);
  3901. static ssize_t
  3902. sync_speed_show(struct mddev *mddev, char *page)
  3903. {
  3904. unsigned long resync, dt, db;
  3905. if (mddev->curr_resync == 0)
  3906. return sprintf(page, "none\n");
  3907. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3908. dt = (jiffies - mddev->resync_mark) / HZ;
  3909. if (!dt) dt++;
  3910. db = resync - mddev->resync_mark_cnt;
  3911. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3912. }
  3913. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3914. static ssize_t
  3915. sync_completed_show(struct mddev *mddev, char *page)
  3916. {
  3917. unsigned long long max_sectors, resync;
  3918. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3919. return sprintf(page, "none\n");
  3920. if (mddev->curr_resync == 1 ||
  3921. mddev->curr_resync == 2)
  3922. return sprintf(page, "delayed\n");
  3923. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3924. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3925. max_sectors = mddev->resync_max_sectors;
  3926. else
  3927. max_sectors = mddev->dev_sectors;
  3928. resync = mddev->curr_resync_completed;
  3929. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3930. }
  3931. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3932. static ssize_t
  3933. min_sync_show(struct mddev *mddev, char *page)
  3934. {
  3935. return sprintf(page, "%llu\n",
  3936. (unsigned long long)mddev->resync_min);
  3937. }
  3938. static ssize_t
  3939. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3940. {
  3941. unsigned long long min;
  3942. if (strict_strtoull(buf, 10, &min))
  3943. return -EINVAL;
  3944. if (min > mddev->resync_max)
  3945. return -EINVAL;
  3946. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3947. return -EBUSY;
  3948. /* Must be a multiple of chunk_size */
  3949. if (mddev->chunk_sectors) {
  3950. sector_t temp = min;
  3951. if (sector_div(temp, mddev->chunk_sectors))
  3952. return -EINVAL;
  3953. }
  3954. mddev->resync_min = min;
  3955. return len;
  3956. }
  3957. static struct md_sysfs_entry md_min_sync =
  3958. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3959. static ssize_t
  3960. max_sync_show(struct mddev *mddev, char *page)
  3961. {
  3962. if (mddev->resync_max == MaxSector)
  3963. return sprintf(page, "max\n");
  3964. else
  3965. return sprintf(page, "%llu\n",
  3966. (unsigned long long)mddev->resync_max);
  3967. }
  3968. static ssize_t
  3969. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3970. {
  3971. if (strncmp(buf, "max", 3) == 0)
  3972. mddev->resync_max = MaxSector;
  3973. else {
  3974. unsigned long long max;
  3975. if (strict_strtoull(buf, 10, &max))
  3976. return -EINVAL;
  3977. if (max < mddev->resync_min)
  3978. return -EINVAL;
  3979. if (max < mddev->resync_max &&
  3980. mddev->ro == 0 &&
  3981. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3982. return -EBUSY;
  3983. /* Must be a multiple of chunk_size */
  3984. if (mddev->chunk_sectors) {
  3985. sector_t temp = max;
  3986. if (sector_div(temp, mddev->chunk_sectors))
  3987. return -EINVAL;
  3988. }
  3989. mddev->resync_max = max;
  3990. }
  3991. wake_up(&mddev->recovery_wait);
  3992. return len;
  3993. }
  3994. static struct md_sysfs_entry md_max_sync =
  3995. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3996. static ssize_t
  3997. suspend_lo_show(struct mddev *mddev, char *page)
  3998. {
  3999. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4000. }
  4001. static ssize_t
  4002. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4003. {
  4004. char *e;
  4005. unsigned long long new = simple_strtoull(buf, &e, 10);
  4006. unsigned long long old = mddev->suspend_lo;
  4007. if (mddev->pers == NULL ||
  4008. mddev->pers->quiesce == NULL)
  4009. return -EINVAL;
  4010. if (buf == e || (*e && *e != '\n'))
  4011. return -EINVAL;
  4012. mddev->suspend_lo = new;
  4013. if (new >= old)
  4014. /* Shrinking suspended region */
  4015. mddev->pers->quiesce(mddev, 2);
  4016. else {
  4017. /* Expanding suspended region - need to wait */
  4018. mddev->pers->quiesce(mddev, 1);
  4019. mddev->pers->quiesce(mddev, 0);
  4020. }
  4021. return len;
  4022. }
  4023. static struct md_sysfs_entry md_suspend_lo =
  4024. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4025. static ssize_t
  4026. suspend_hi_show(struct mddev *mddev, char *page)
  4027. {
  4028. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4029. }
  4030. static ssize_t
  4031. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4032. {
  4033. char *e;
  4034. unsigned long long new = simple_strtoull(buf, &e, 10);
  4035. unsigned long long old = mddev->suspend_hi;
  4036. if (mddev->pers == NULL ||
  4037. mddev->pers->quiesce == NULL)
  4038. return -EINVAL;
  4039. if (buf == e || (*e && *e != '\n'))
  4040. return -EINVAL;
  4041. mddev->suspend_hi = new;
  4042. if (new <= old)
  4043. /* Shrinking suspended region */
  4044. mddev->pers->quiesce(mddev, 2);
  4045. else {
  4046. /* Expanding suspended region - need to wait */
  4047. mddev->pers->quiesce(mddev, 1);
  4048. mddev->pers->quiesce(mddev, 0);
  4049. }
  4050. return len;
  4051. }
  4052. static struct md_sysfs_entry md_suspend_hi =
  4053. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4054. static ssize_t
  4055. reshape_position_show(struct mddev *mddev, char *page)
  4056. {
  4057. if (mddev->reshape_position != MaxSector)
  4058. return sprintf(page, "%llu\n",
  4059. (unsigned long long)mddev->reshape_position);
  4060. strcpy(page, "none\n");
  4061. return 5;
  4062. }
  4063. static ssize_t
  4064. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4065. {
  4066. struct md_rdev *rdev;
  4067. char *e;
  4068. unsigned long long new = simple_strtoull(buf, &e, 10);
  4069. if (mddev->pers)
  4070. return -EBUSY;
  4071. if (buf == e || (*e && *e != '\n'))
  4072. return -EINVAL;
  4073. mddev->reshape_position = new;
  4074. mddev->delta_disks = 0;
  4075. mddev->reshape_backwards = 0;
  4076. mddev->new_level = mddev->level;
  4077. mddev->new_layout = mddev->layout;
  4078. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4079. rdev_for_each(rdev, mddev)
  4080. rdev->new_data_offset = rdev->data_offset;
  4081. return len;
  4082. }
  4083. static struct md_sysfs_entry md_reshape_position =
  4084. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4085. reshape_position_store);
  4086. static ssize_t
  4087. reshape_direction_show(struct mddev *mddev, char *page)
  4088. {
  4089. return sprintf(page, "%s\n",
  4090. mddev->reshape_backwards ? "backwards" : "forwards");
  4091. }
  4092. static ssize_t
  4093. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4094. {
  4095. int backwards = 0;
  4096. if (cmd_match(buf, "forwards"))
  4097. backwards = 0;
  4098. else if (cmd_match(buf, "backwards"))
  4099. backwards = 1;
  4100. else
  4101. return -EINVAL;
  4102. if (mddev->reshape_backwards == backwards)
  4103. return len;
  4104. /* check if we are allowed to change */
  4105. if (mddev->delta_disks)
  4106. return -EBUSY;
  4107. if (mddev->persistent &&
  4108. mddev->major_version == 0)
  4109. return -EINVAL;
  4110. mddev->reshape_backwards = backwards;
  4111. return len;
  4112. }
  4113. static struct md_sysfs_entry md_reshape_direction =
  4114. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4115. reshape_direction_store);
  4116. static ssize_t
  4117. array_size_show(struct mddev *mddev, char *page)
  4118. {
  4119. if (mddev->external_size)
  4120. return sprintf(page, "%llu\n",
  4121. (unsigned long long)mddev->array_sectors/2);
  4122. else
  4123. return sprintf(page, "default\n");
  4124. }
  4125. static ssize_t
  4126. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4127. {
  4128. sector_t sectors;
  4129. if (strncmp(buf, "default", 7) == 0) {
  4130. if (mddev->pers)
  4131. sectors = mddev->pers->size(mddev, 0, 0);
  4132. else
  4133. sectors = mddev->array_sectors;
  4134. mddev->external_size = 0;
  4135. } else {
  4136. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4137. return -EINVAL;
  4138. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4139. return -E2BIG;
  4140. mddev->external_size = 1;
  4141. }
  4142. mddev->array_sectors = sectors;
  4143. if (mddev->pers) {
  4144. set_capacity(mddev->gendisk, mddev->array_sectors);
  4145. revalidate_disk(mddev->gendisk);
  4146. }
  4147. return len;
  4148. }
  4149. static struct md_sysfs_entry md_array_size =
  4150. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4151. array_size_store);
  4152. static struct attribute *md_default_attrs[] = {
  4153. &md_level.attr,
  4154. &md_layout.attr,
  4155. &md_raid_disks.attr,
  4156. &md_chunk_size.attr,
  4157. &md_size.attr,
  4158. &md_resync_start.attr,
  4159. &md_metadata.attr,
  4160. &md_new_device.attr,
  4161. &md_safe_delay.attr,
  4162. &md_array_state.attr,
  4163. &md_reshape_position.attr,
  4164. &md_reshape_direction.attr,
  4165. &md_array_size.attr,
  4166. &max_corr_read_errors.attr,
  4167. NULL,
  4168. };
  4169. static struct attribute *md_redundancy_attrs[] = {
  4170. &md_scan_mode.attr,
  4171. &md_mismatches.attr,
  4172. &md_sync_min.attr,
  4173. &md_sync_max.attr,
  4174. &md_sync_speed.attr,
  4175. &md_sync_force_parallel.attr,
  4176. &md_sync_completed.attr,
  4177. &md_min_sync.attr,
  4178. &md_max_sync.attr,
  4179. &md_suspend_lo.attr,
  4180. &md_suspend_hi.attr,
  4181. &md_bitmap.attr,
  4182. &md_degraded.attr,
  4183. NULL,
  4184. };
  4185. static struct attribute_group md_redundancy_group = {
  4186. .name = NULL,
  4187. .attrs = md_redundancy_attrs,
  4188. };
  4189. static ssize_t
  4190. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4191. {
  4192. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4193. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4194. ssize_t rv;
  4195. if (!entry->show)
  4196. return -EIO;
  4197. spin_lock(&all_mddevs_lock);
  4198. if (list_empty(&mddev->all_mddevs)) {
  4199. spin_unlock(&all_mddevs_lock);
  4200. return -EBUSY;
  4201. }
  4202. mddev_get(mddev);
  4203. spin_unlock(&all_mddevs_lock);
  4204. rv = mddev_lock(mddev);
  4205. if (!rv) {
  4206. rv = entry->show(mddev, page);
  4207. mddev_unlock(mddev);
  4208. }
  4209. mddev_put(mddev);
  4210. return rv;
  4211. }
  4212. static ssize_t
  4213. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4214. const char *page, size_t length)
  4215. {
  4216. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4217. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4218. ssize_t rv;
  4219. if (!entry->store)
  4220. return -EIO;
  4221. if (!capable(CAP_SYS_ADMIN))
  4222. return -EACCES;
  4223. spin_lock(&all_mddevs_lock);
  4224. if (list_empty(&mddev->all_mddevs)) {
  4225. spin_unlock(&all_mddevs_lock);
  4226. return -EBUSY;
  4227. }
  4228. mddev_get(mddev);
  4229. spin_unlock(&all_mddevs_lock);
  4230. rv = mddev_lock(mddev);
  4231. if (!rv) {
  4232. rv = entry->store(mddev, page, length);
  4233. mddev_unlock(mddev);
  4234. }
  4235. mddev_put(mddev);
  4236. return rv;
  4237. }
  4238. static void md_free(struct kobject *ko)
  4239. {
  4240. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4241. if (mddev->sysfs_state)
  4242. sysfs_put(mddev->sysfs_state);
  4243. if (mddev->gendisk) {
  4244. del_gendisk(mddev->gendisk);
  4245. put_disk(mddev->gendisk);
  4246. }
  4247. if (mddev->queue)
  4248. blk_cleanup_queue(mddev->queue);
  4249. kfree(mddev);
  4250. }
  4251. static const struct sysfs_ops md_sysfs_ops = {
  4252. .show = md_attr_show,
  4253. .store = md_attr_store,
  4254. };
  4255. static struct kobj_type md_ktype = {
  4256. .release = md_free,
  4257. .sysfs_ops = &md_sysfs_ops,
  4258. .default_attrs = md_default_attrs,
  4259. };
  4260. int mdp_major = 0;
  4261. static void mddev_delayed_delete(struct work_struct *ws)
  4262. {
  4263. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4264. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4265. kobject_del(&mddev->kobj);
  4266. kobject_put(&mddev->kobj);
  4267. }
  4268. static int md_alloc(dev_t dev, char *name)
  4269. {
  4270. static DEFINE_MUTEX(disks_mutex);
  4271. struct mddev *mddev = mddev_find(dev);
  4272. struct gendisk *disk;
  4273. int partitioned;
  4274. int shift;
  4275. int unit;
  4276. int error;
  4277. if (!mddev)
  4278. return -ENODEV;
  4279. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4280. shift = partitioned ? MdpMinorShift : 0;
  4281. unit = MINOR(mddev->unit) >> shift;
  4282. /* wait for any previous instance of this device to be
  4283. * completely removed (mddev_delayed_delete).
  4284. */
  4285. flush_workqueue(md_misc_wq);
  4286. mutex_lock(&disks_mutex);
  4287. error = -EEXIST;
  4288. if (mddev->gendisk)
  4289. goto abort;
  4290. if (name) {
  4291. /* Need to ensure that 'name' is not a duplicate.
  4292. */
  4293. struct mddev *mddev2;
  4294. spin_lock(&all_mddevs_lock);
  4295. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4296. if (mddev2->gendisk &&
  4297. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4298. spin_unlock(&all_mddevs_lock);
  4299. goto abort;
  4300. }
  4301. spin_unlock(&all_mddevs_lock);
  4302. }
  4303. error = -ENOMEM;
  4304. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4305. if (!mddev->queue)
  4306. goto abort;
  4307. mddev->queue->queuedata = mddev;
  4308. blk_queue_make_request(mddev->queue, md_make_request);
  4309. blk_set_stacking_limits(&mddev->queue->limits);
  4310. disk = alloc_disk(1 << shift);
  4311. if (!disk) {
  4312. blk_cleanup_queue(mddev->queue);
  4313. mddev->queue = NULL;
  4314. goto abort;
  4315. }
  4316. disk->major = MAJOR(mddev->unit);
  4317. disk->first_minor = unit << shift;
  4318. if (name)
  4319. strcpy(disk->disk_name, name);
  4320. else if (partitioned)
  4321. sprintf(disk->disk_name, "md_d%d", unit);
  4322. else
  4323. sprintf(disk->disk_name, "md%d", unit);
  4324. disk->fops = &md_fops;
  4325. disk->private_data = mddev;
  4326. disk->queue = mddev->queue;
  4327. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4328. /* Allow extended partitions. This makes the
  4329. * 'mdp' device redundant, but we can't really
  4330. * remove it now.
  4331. */
  4332. disk->flags |= GENHD_FL_EXT_DEVT;
  4333. mddev->gendisk = disk;
  4334. /* As soon as we call add_disk(), another thread could get
  4335. * through to md_open, so make sure it doesn't get too far
  4336. */
  4337. mutex_lock(&mddev->open_mutex);
  4338. add_disk(disk);
  4339. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4340. &disk_to_dev(disk)->kobj, "%s", "md");
  4341. if (error) {
  4342. /* This isn't possible, but as kobject_init_and_add is marked
  4343. * __must_check, we must do something with the result
  4344. */
  4345. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4346. disk->disk_name);
  4347. error = 0;
  4348. }
  4349. if (mddev->kobj.sd &&
  4350. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4351. printk(KERN_DEBUG "pointless warning\n");
  4352. mutex_unlock(&mddev->open_mutex);
  4353. abort:
  4354. mutex_unlock(&disks_mutex);
  4355. if (!error && mddev->kobj.sd) {
  4356. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4357. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4358. }
  4359. mddev_put(mddev);
  4360. return error;
  4361. }
  4362. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4363. {
  4364. md_alloc(dev, NULL);
  4365. return NULL;
  4366. }
  4367. static int add_named_array(const char *val, struct kernel_param *kp)
  4368. {
  4369. /* val must be "md_*" where * is not all digits.
  4370. * We allocate an array with a large free minor number, and
  4371. * set the name to val. val must not already be an active name.
  4372. */
  4373. int len = strlen(val);
  4374. char buf[DISK_NAME_LEN];
  4375. while (len && val[len-1] == '\n')
  4376. len--;
  4377. if (len >= DISK_NAME_LEN)
  4378. return -E2BIG;
  4379. strlcpy(buf, val, len+1);
  4380. if (strncmp(buf, "md_", 3) != 0)
  4381. return -EINVAL;
  4382. return md_alloc(0, buf);
  4383. }
  4384. static void md_safemode_timeout(unsigned long data)
  4385. {
  4386. struct mddev *mddev = (struct mddev *) data;
  4387. if (!atomic_read(&mddev->writes_pending)) {
  4388. mddev->safemode = 1;
  4389. if (mddev->external)
  4390. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4391. }
  4392. md_wakeup_thread(mddev->thread);
  4393. }
  4394. static int start_dirty_degraded;
  4395. int md_run(struct mddev *mddev)
  4396. {
  4397. int err;
  4398. struct md_rdev *rdev;
  4399. struct md_personality *pers;
  4400. if (list_empty(&mddev->disks))
  4401. /* cannot run an array with no devices.. */
  4402. return -EINVAL;
  4403. if (mddev->pers)
  4404. return -EBUSY;
  4405. /* Cannot run until previous stop completes properly */
  4406. if (mddev->sysfs_active)
  4407. return -EBUSY;
  4408. /*
  4409. * Analyze all RAID superblock(s)
  4410. */
  4411. if (!mddev->raid_disks) {
  4412. if (!mddev->persistent)
  4413. return -EINVAL;
  4414. analyze_sbs(mddev);
  4415. }
  4416. if (mddev->level != LEVEL_NONE)
  4417. request_module("md-level-%d", mddev->level);
  4418. else if (mddev->clevel[0])
  4419. request_module("md-%s", mddev->clevel);
  4420. /*
  4421. * Drop all container device buffers, from now on
  4422. * the only valid external interface is through the md
  4423. * device.
  4424. */
  4425. rdev_for_each(rdev, mddev) {
  4426. if (test_bit(Faulty, &rdev->flags))
  4427. continue;
  4428. sync_blockdev(rdev->bdev);
  4429. invalidate_bdev(rdev->bdev);
  4430. /* perform some consistency tests on the device.
  4431. * We don't want the data to overlap the metadata,
  4432. * Internal Bitmap issues have been handled elsewhere.
  4433. */
  4434. if (rdev->meta_bdev) {
  4435. /* Nothing to check */;
  4436. } else if (rdev->data_offset < rdev->sb_start) {
  4437. if (mddev->dev_sectors &&
  4438. rdev->data_offset + mddev->dev_sectors
  4439. > rdev->sb_start) {
  4440. printk("md: %s: data overlaps metadata\n",
  4441. mdname(mddev));
  4442. return -EINVAL;
  4443. }
  4444. } else {
  4445. if (rdev->sb_start + rdev->sb_size/512
  4446. > rdev->data_offset) {
  4447. printk("md: %s: metadata overlaps data\n",
  4448. mdname(mddev));
  4449. return -EINVAL;
  4450. }
  4451. }
  4452. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4453. }
  4454. if (mddev->bio_set == NULL)
  4455. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4456. spin_lock(&pers_lock);
  4457. pers = find_pers(mddev->level, mddev->clevel);
  4458. if (!pers || !try_module_get(pers->owner)) {
  4459. spin_unlock(&pers_lock);
  4460. if (mddev->level != LEVEL_NONE)
  4461. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4462. mddev->level);
  4463. else
  4464. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4465. mddev->clevel);
  4466. return -EINVAL;
  4467. }
  4468. mddev->pers = pers;
  4469. spin_unlock(&pers_lock);
  4470. if (mddev->level != pers->level) {
  4471. mddev->level = pers->level;
  4472. mddev->new_level = pers->level;
  4473. }
  4474. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4475. if (mddev->reshape_position != MaxSector &&
  4476. pers->start_reshape == NULL) {
  4477. /* This personality cannot handle reshaping... */
  4478. mddev->pers = NULL;
  4479. module_put(pers->owner);
  4480. return -EINVAL;
  4481. }
  4482. if (pers->sync_request) {
  4483. /* Warn if this is a potentially silly
  4484. * configuration.
  4485. */
  4486. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4487. struct md_rdev *rdev2;
  4488. int warned = 0;
  4489. rdev_for_each(rdev, mddev)
  4490. rdev_for_each(rdev2, mddev) {
  4491. if (rdev < rdev2 &&
  4492. rdev->bdev->bd_contains ==
  4493. rdev2->bdev->bd_contains) {
  4494. printk(KERN_WARNING
  4495. "%s: WARNING: %s appears to be"
  4496. " on the same physical disk as"
  4497. " %s.\n",
  4498. mdname(mddev),
  4499. bdevname(rdev->bdev,b),
  4500. bdevname(rdev2->bdev,b2));
  4501. warned = 1;
  4502. }
  4503. }
  4504. if (warned)
  4505. printk(KERN_WARNING
  4506. "True protection against single-disk"
  4507. " failure might be compromised.\n");
  4508. }
  4509. mddev->recovery = 0;
  4510. /* may be over-ridden by personality */
  4511. mddev->resync_max_sectors = mddev->dev_sectors;
  4512. mddev->ok_start_degraded = start_dirty_degraded;
  4513. if (start_readonly && mddev->ro == 0)
  4514. mddev->ro = 2; /* read-only, but switch on first write */
  4515. err = mddev->pers->run(mddev);
  4516. if (err)
  4517. printk(KERN_ERR "md: pers->run() failed ...\n");
  4518. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4519. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4520. " but 'external_size' not in effect?\n", __func__);
  4521. printk(KERN_ERR
  4522. "md: invalid array_size %llu > default size %llu\n",
  4523. (unsigned long long)mddev->array_sectors / 2,
  4524. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4525. err = -EINVAL;
  4526. mddev->pers->stop(mddev);
  4527. }
  4528. if (err == 0 && mddev->pers->sync_request &&
  4529. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4530. err = bitmap_create(mddev);
  4531. if (err) {
  4532. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4533. mdname(mddev), err);
  4534. mddev->pers->stop(mddev);
  4535. }
  4536. }
  4537. if (err) {
  4538. module_put(mddev->pers->owner);
  4539. mddev->pers = NULL;
  4540. bitmap_destroy(mddev);
  4541. return err;
  4542. }
  4543. if (mddev->pers->sync_request) {
  4544. if (mddev->kobj.sd &&
  4545. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4546. printk(KERN_WARNING
  4547. "md: cannot register extra attributes for %s\n",
  4548. mdname(mddev));
  4549. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4550. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4551. mddev->ro = 0;
  4552. atomic_set(&mddev->writes_pending,0);
  4553. atomic_set(&mddev->max_corr_read_errors,
  4554. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4555. mddev->safemode = 0;
  4556. mddev->safemode_timer.function = md_safemode_timeout;
  4557. mddev->safemode_timer.data = (unsigned long) mddev;
  4558. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4559. mddev->in_sync = 1;
  4560. smp_wmb();
  4561. mddev->ready = 1;
  4562. rdev_for_each(rdev, mddev)
  4563. if (rdev->raid_disk >= 0)
  4564. if (sysfs_link_rdev(mddev, rdev))
  4565. /* failure here is OK */;
  4566. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4567. if (mddev->flags)
  4568. md_update_sb(mddev, 0);
  4569. md_new_event(mddev);
  4570. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4571. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4572. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4573. return 0;
  4574. }
  4575. EXPORT_SYMBOL_GPL(md_run);
  4576. static int do_md_run(struct mddev *mddev)
  4577. {
  4578. int err;
  4579. err = md_run(mddev);
  4580. if (err)
  4581. goto out;
  4582. err = bitmap_load(mddev);
  4583. if (err) {
  4584. bitmap_destroy(mddev);
  4585. goto out;
  4586. }
  4587. md_wakeup_thread(mddev->thread);
  4588. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4589. set_capacity(mddev->gendisk, mddev->array_sectors);
  4590. revalidate_disk(mddev->gendisk);
  4591. mddev->changed = 1;
  4592. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4593. out:
  4594. return err;
  4595. }
  4596. static int restart_array(struct mddev *mddev)
  4597. {
  4598. struct gendisk *disk = mddev->gendisk;
  4599. /* Complain if it has no devices */
  4600. if (list_empty(&mddev->disks))
  4601. return -ENXIO;
  4602. if (!mddev->pers)
  4603. return -EINVAL;
  4604. if (!mddev->ro)
  4605. return -EBUSY;
  4606. mddev->safemode = 0;
  4607. mddev->ro = 0;
  4608. set_disk_ro(disk, 0);
  4609. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4610. mdname(mddev));
  4611. /* Kick recovery or resync if necessary */
  4612. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4613. md_wakeup_thread(mddev->thread);
  4614. md_wakeup_thread(mddev->sync_thread);
  4615. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4616. return 0;
  4617. }
  4618. /* similar to deny_write_access, but accounts for our holding a reference
  4619. * to the file ourselves */
  4620. static int deny_bitmap_write_access(struct file * file)
  4621. {
  4622. struct inode *inode = file->f_mapping->host;
  4623. spin_lock(&inode->i_lock);
  4624. if (atomic_read(&inode->i_writecount) > 1) {
  4625. spin_unlock(&inode->i_lock);
  4626. return -ETXTBSY;
  4627. }
  4628. atomic_set(&inode->i_writecount, -1);
  4629. spin_unlock(&inode->i_lock);
  4630. return 0;
  4631. }
  4632. void restore_bitmap_write_access(struct file *file)
  4633. {
  4634. struct inode *inode = file->f_mapping->host;
  4635. spin_lock(&inode->i_lock);
  4636. atomic_set(&inode->i_writecount, 1);
  4637. spin_unlock(&inode->i_lock);
  4638. }
  4639. static void md_clean(struct mddev *mddev)
  4640. {
  4641. mddev->array_sectors = 0;
  4642. mddev->external_size = 0;
  4643. mddev->dev_sectors = 0;
  4644. mddev->raid_disks = 0;
  4645. mddev->recovery_cp = 0;
  4646. mddev->resync_min = 0;
  4647. mddev->resync_max = MaxSector;
  4648. mddev->reshape_position = MaxSector;
  4649. mddev->external = 0;
  4650. mddev->persistent = 0;
  4651. mddev->level = LEVEL_NONE;
  4652. mddev->clevel[0] = 0;
  4653. mddev->flags = 0;
  4654. mddev->ro = 0;
  4655. mddev->metadata_type[0] = 0;
  4656. mddev->chunk_sectors = 0;
  4657. mddev->ctime = mddev->utime = 0;
  4658. mddev->layout = 0;
  4659. mddev->max_disks = 0;
  4660. mddev->events = 0;
  4661. mddev->can_decrease_events = 0;
  4662. mddev->delta_disks = 0;
  4663. mddev->reshape_backwards = 0;
  4664. mddev->new_level = LEVEL_NONE;
  4665. mddev->new_layout = 0;
  4666. mddev->new_chunk_sectors = 0;
  4667. mddev->curr_resync = 0;
  4668. atomic64_set(&mddev->resync_mismatches, 0);
  4669. mddev->suspend_lo = mddev->suspend_hi = 0;
  4670. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4671. mddev->recovery = 0;
  4672. mddev->in_sync = 0;
  4673. mddev->changed = 0;
  4674. mddev->degraded = 0;
  4675. mddev->safemode = 0;
  4676. mddev->merge_check_needed = 0;
  4677. mddev->bitmap_info.offset = 0;
  4678. mddev->bitmap_info.default_offset = 0;
  4679. mddev->bitmap_info.default_space = 0;
  4680. mddev->bitmap_info.chunksize = 0;
  4681. mddev->bitmap_info.daemon_sleep = 0;
  4682. mddev->bitmap_info.max_write_behind = 0;
  4683. }
  4684. static void __md_stop_writes(struct mddev *mddev)
  4685. {
  4686. if (mddev->sync_thread) {
  4687. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4688. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4689. reap_sync_thread(mddev);
  4690. }
  4691. del_timer_sync(&mddev->safemode_timer);
  4692. bitmap_flush(mddev);
  4693. md_super_wait(mddev);
  4694. if (!mddev->in_sync || mddev->flags) {
  4695. /* mark array as shutdown cleanly */
  4696. mddev->in_sync = 1;
  4697. md_update_sb(mddev, 1);
  4698. }
  4699. }
  4700. void md_stop_writes(struct mddev *mddev)
  4701. {
  4702. mddev_lock(mddev);
  4703. __md_stop_writes(mddev);
  4704. mddev_unlock(mddev);
  4705. }
  4706. EXPORT_SYMBOL_GPL(md_stop_writes);
  4707. static void __md_stop(struct mddev *mddev)
  4708. {
  4709. mddev->ready = 0;
  4710. mddev->pers->stop(mddev);
  4711. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4712. mddev->to_remove = &md_redundancy_group;
  4713. module_put(mddev->pers->owner);
  4714. mddev->pers = NULL;
  4715. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4716. }
  4717. void md_stop(struct mddev *mddev)
  4718. {
  4719. /* stop the array and free an attached data structures.
  4720. * This is called from dm-raid
  4721. */
  4722. __md_stop(mddev);
  4723. bitmap_destroy(mddev);
  4724. if (mddev->bio_set)
  4725. bioset_free(mddev->bio_set);
  4726. }
  4727. EXPORT_SYMBOL_GPL(md_stop);
  4728. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4729. {
  4730. int err = 0;
  4731. mutex_lock(&mddev->open_mutex);
  4732. if (atomic_read(&mddev->openers) > !!bdev) {
  4733. printk("md: %s still in use.\n",mdname(mddev));
  4734. err = -EBUSY;
  4735. goto out;
  4736. }
  4737. if (bdev)
  4738. sync_blockdev(bdev);
  4739. if (mddev->pers) {
  4740. __md_stop_writes(mddev);
  4741. err = -ENXIO;
  4742. if (mddev->ro==1)
  4743. goto out;
  4744. mddev->ro = 1;
  4745. set_disk_ro(mddev->gendisk, 1);
  4746. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4747. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4748. err = 0;
  4749. }
  4750. out:
  4751. mutex_unlock(&mddev->open_mutex);
  4752. return err;
  4753. }
  4754. /* mode:
  4755. * 0 - completely stop and dis-assemble array
  4756. * 2 - stop but do not disassemble array
  4757. */
  4758. static int do_md_stop(struct mddev * mddev, int mode,
  4759. struct block_device *bdev)
  4760. {
  4761. struct gendisk *disk = mddev->gendisk;
  4762. struct md_rdev *rdev;
  4763. mutex_lock(&mddev->open_mutex);
  4764. if (atomic_read(&mddev->openers) > !!bdev ||
  4765. mddev->sysfs_active) {
  4766. printk("md: %s still in use.\n",mdname(mddev));
  4767. mutex_unlock(&mddev->open_mutex);
  4768. return -EBUSY;
  4769. }
  4770. if (bdev)
  4771. /* It is possible IO was issued on some other
  4772. * open file which was closed before we took ->open_mutex.
  4773. * As that was not the last close __blkdev_put will not
  4774. * have called sync_blockdev, so we must.
  4775. */
  4776. sync_blockdev(bdev);
  4777. if (mddev->pers) {
  4778. if (mddev->ro)
  4779. set_disk_ro(disk, 0);
  4780. __md_stop_writes(mddev);
  4781. __md_stop(mddev);
  4782. mddev->queue->merge_bvec_fn = NULL;
  4783. mddev->queue->backing_dev_info.congested_fn = NULL;
  4784. /* tell userspace to handle 'inactive' */
  4785. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4786. rdev_for_each(rdev, mddev)
  4787. if (rdev->raid_disk >= 0)
  4788. sysfs_unlink_rdev(mddev, rdev);
  4789. set_capacity(disk, 0);
  4790. mutex_unlock(&mddev->open_mutex);
  4791. mddev->changed = 1;
  4792. revalidate_disk(disk);
  4793. if (mddev->ro)
  4794. mddev->ro = 0;
  4795. } else
  4796. mutex_unlock(&mddev->open_mutex);
  4797. /*
  4798. * Free resources if final stop
  4799. */
  4800. if (mode == 0) {
  4801. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4802. bitmap_destroy(mddev);
  4803. if (mddev->bitmap_info.file) {
  4804. restore_bitmap_write_access(mddev->bitmap_info.file);
  4805. fput(mddev->bitmap_info.file);
  4806. mddev->bitmap_info.file = NULL;
  4807. }
  4808. mddev->bitmap_info.offset = 0;
  4809. export_array(mddev);
  4810. md_clean(mddev);
  4811. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4812. if (mddev->hold_active == UNTIL_STOP)
  4813. mddev->hold_active = 0;
  4814. }
  4815. blk_integrity_unregister(disk);
  4816. md_new_event(mddev);
  4817. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4818. return 0;
  4819. }
  4820. #ifndef MODULE
  4821. static void autorun_array(struct mddev *mddev)
  4822. {
  4823. struct md_rdev *rdev;
  4824. int err;
  4825. if (list_empty(&mddev->disks))
  4826. return;
  4827. printk(KERN_INFO "md: running: ");
  4828. rdev_for_each(rdev, mddev) {
  4829. char b[BDEVNAME_SIZE];
  4830. printk("<%s>", bdevname(rdev->bdev,b));
  4831. }
  4832. printk("\n");
  4833. err = do_md_run(mddev);
  4834. if (err) {
  4835. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4836. do_md_stop(mddev, 0, NULL);
  4837. }
  4838. }
  4839. /*
  4840. * lets try to run arrays based on all disks that have arrived
  4841. * until now. (those are in pending_raid_disks)
  4842. *
  4843. * the method: pick the first pending disk, collect all disks with
  4844. * the same UUID, remove all from the pending list and put them into
  4845. * the 'same_array' list. Then order this list based on superblock
  4846. * update time (freshest comes first), kick out 'old' disks and
  4847. * compare superblocks. If everything's fine then run it.
  4848. *
  4849. * If "unit" is allocated, then bump its reference count
  4850. */
  4851. static void autorun_devices(int part)
  4852. {
  4853. struct md_rdev *rdev0, *rdev, *tmp;
  4854. struct mddev *mddev;
  4855. char b[BDEVNAME_SIZE];
  4856. printk(KERN_INFO "md: autorun ...\n");
  4857. while (!list_empty(&pending_raid_disks)) {
  4858. int unit;
  4859. dev_t dev;
  4860. LIST_HEAD(candidates);
  4861. rdev0 = list_entry(pending_raid_disks.next,
  4862. struct md_rdev, same_set);
  4863. printk(KERN_INFO "md: considering %s ...\n",
  4864. bdevname(rdev0->bdev,b));
  4865. INIT_LIST_HEAD(&candidates);
  4866. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4867. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4868. printk(KERN_INFO "md: adding %s ...\n",
  4869. bdevname(rdev->bdev,b));
  4870. list_move(&rdev->same_set, &candidates);
  4871. }
  4872. /*
  4873. * now we have a set of devices, with all of them having
  4874. * mostly sane superblocks. It's time to allocate the
  4875. * mddev.
  4876. */
  4877. if (part) {
  4878. dev = MKDEV(mdp_major,
  4879. rdev0->preferred_minor << MdpMinorShift);
  4880. unit = MINOR(dev) >> MdpMinorShift;
  4881. } else {
  4882. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4883. unit = MINOR(dev);
  4884. }
  4885. if (rdev0->preferred_minor != unit) {
  4886. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4887. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4888. break;
  4889. }
  4890. md_probe(dev, NULL, NULL);
  4891. mddev = mddev_find(dev);
  4892. if (!mddev || !mddev->gendisk) {
  4893. if (mddev)
  4894. mddev_put(mddev);
  4895. printk(KERN_ERR
  4896. "md: cannot allocate memory for md drive.\n");
  4897. break;
  4898. }
  4899. if (mddev_lock(mddev))
  4900. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4901. mdname(mddev));
  4902. else if (mddev->raid_disks || mddev->major_version
  4903. || !list_empty(&mddev->disks)) {
  4904. printk(KERN_WARNING
  4905. "md: %s already running, cannot run %s\n",
  4906. mdname(mddev), bdevname(rdev0->bdev,b));
  4907. mddev_unlock(mddev);
  4908. } else {
  4909. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4910. mddev->persistent = 1;
  4911. rdev_for_each_list(rdev, tmp, &candidates) {
  4912. list_del_init(&rdev->same_set);
  4913. if (bind_rdev_to_array(rdev, mddev))
  4914. export_rdev(rdev);
  4915. }
  4916. autorun_array(mddev);
  4917. mddev_unlock(mddev);
  4918. }
  4919. /* on success, candidates will be empty, on error
  4920. * it won't...
  4921. */
  4922. rdev_for_each_list(rdev, tmp, &candidates) {
  4923. list_del_init(&rdev->same_set);
  4924. export_rdev(rdev);
  4925. }
  4926. mddev_put(mddev);
  4927. }
  4928. printk(KERN_INFO "md: ... autorun DONE.\n");
  4929. }
  4930. #endif /* !MODULE */
  4931. static int get_version(void __user * arg)
  4932. {
  4933. mdu_version_t ver;
  4934. ver.major = MD_MAJOR_VERSION;
  4935. ver.minor = MD_MINOR_VERSION;
  4936. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4937. if (copy_to_user(arg, &ver, sizeof(ver)))
  4938. return -EFAULT;
  4939. return 0;
  4940. }
  4941. static int get_array_info(struct mddev * mddev, void __user * arg)
  4942. {
  4943. mdu_array_info_t info;
  4944. int nr,working,insync,failed,spare;
  4945. struct md_rdev *rdev;
  4946. nr = working = insync = failed = spare = 0;
  4947. rcu_read_lock();
  4948. rdev_for_each_rcu(rdev, mddev) {
  4949. nr++;
  4950. if (test_bit(Faulty, &rdev->flags))
  4951. failed++;
  4952. else {
  4953. working++;
  4954. if (test_bit(In_sync, &rdev->flags))
  4955. insync++;
  4956. else
  4957. spare++;
  4958. }
  4959. }
  4960. rcu_read_unlock();
  4961. info.major_version = mddev->major_version;
  4962. info.minor_version = mddev->minor_version;
  4963. info.patch_version = MD_PATCHLEVEL_VERSION;
  4964. info.ctime = mddev->ctime;
  4965. info.level = mddev->level;
  4966. info.size = mddev->dev_sectors / 2;
  4967. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4968. info.size = -1;
  4969. info.nr_disks = nr;
  4970. info.raid_disks = mddev->raid_disks;
  4971. info.md_minor = mddev->md_minor;
  4972. info.not_persistent= !mddev->persistent;
  4973. info.utime = mddev->utime;
  4974. info.state = 0;
  4975. if (mddev->in_sync)
  4976. info.state = (1<<MD_SB_CLEAN);
  4977. if (mddev->bitmap && mddev->bitmap_info.offset)
  4978. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4979. info.active_disks = insync;
  4980. info.working_disks = working;
  4981. info.failed_disks = failed;
  4982. info.spare_disks = spare;
  4983. info.layout = mddev->layout;
  4984. info.chunk_size = mddev->chunk_sectors << 9;
  4985. if (copy_to_user(arg, &info, sizeof(info)))
  4986. return -EFAULT;
  4987. return 0;
  4988. }
  4989. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4990. {
  4991. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4992. char *ptr, *buf = NULL;
  4993. int err = -ENOMEM;
  4994. if (md_allow_write(mddev))
  4995. file = kmalloc(sizeof(*file), GFP_NOIO);
  4996. else
  4997. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4998. if (!file)
  4999. goto out;
  5000. /* bitmap disabled, zero the first byte and copy out */
  5001. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5002. file->pathname[0] = '\0';
  5003. goto copy_out;
  5004. }
  5005. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5006. if (!buf)
  5007. goto out;
  5008. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5009. buf, sizeof(file->pathname));
  5010. if (IS_ERR(ptr))
  5011. goto out;
  5012. strcpy(file->pathname, ptr);
  5013. copy_out:
  5014. err = 0;
  5015. if (copy_to_user(arg, file, sizeof(*file)))
  5016. err = -EFAULT;
  5017. out:
  5018. kfree(buf);
  5019. kfree(file);
  5020. return err;
  5021. }
  5022. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5023. {
  5024. mdu_disk_info_t info;
  5025. struct md_rdev *rdev;
  5026. if (copy_from_user(&info, arg, sizeof(info)))
  5027. return -EFAULT;
  5028. rcu_read_lock();
  5029. rdev = find_rdev_nr_rcu(mddev, info.number);
  5030. if (rdev) {
  5031. info.major = MAJOR(rdev->bdev->bd_dev);
  5032. info.minor = MINOR(rdev->bdev->bd_dev);
  5033. info.raid_disk = rdev->raid_disk;
  5034. info.state = 0;
  5035. if (test_bit(Faulty, &rdev->flags))
  5036. info.state |= (1<<MD_DISK_FAULTY);
  5037. else if (test_bit(In_sync, &rdev->flags)) {
  5038. info.state |= (1<<MD_DISK_ACTIVE);
  5039. info.state |= (1<<MD_DISK_SYNC);
  5040. }
  5041. if (test_bit(WriteMostly, &rdev->flags))
  5042. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5043. } else {
  5044. info.major = info.minor = 0;
  5045. info.raid_disk = -1;
  5046. info.state = (1<<MD_DISK_REMOVED);
  5047. }
  5048. rcu_read_unlock();
  5049. if (copy_to_user(arg, &info, sizeof(info)))
  5050. return -EFAULT;
  5051. return 0;
  5052. }
  5053. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5054. {
  5055. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5056. struct md_rdev *rdev;
  5057. dev_t dev = MKDEV(info->major,info->minor);
  5058. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5059. return -EOVERFLOW;
  5060. if (!mddev->raid_disks) {
  5061. int err;
  5062. /* expecting a device which has a superblock */
  5063. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5064. if (IS_ERR(rdev)) {
  5065. printk(KERN_WARNING
  5066. "md: md_import_device returned %ld\n",
  5067. PTR_ERR(rdev));
  5068. return PTR_ERR(rdev);
  5069. }
  5070. if (!list_empty(&mddev->disks)) {
  5071. struct md_rdev *rdev0
  5072. = list_entry(mddev->disks.next,
  5073. struct md_rdev, same_set);
  5074. err = super_types[mddev->major_version]
  5075. .load_super(rdev, rdev0, mddev->minor_version);
  5076. if (err < 0) {
  5077. printk(KERN_WARNING
  5078. "md: %s has different UUID to %s\n",
  5079. bdevname(rdev->bdev,b),
  5080. bdevname(rdev0->bdev,b2));
  5081. export_rdev(rdev);
  5082. return -EINVAL;
  5083. }
  5084. }
  5085. err = bind_rdev_to_array(rdev, mddev);
  5086. if (err)
  5087. export_rdev(rdev);
  5088. return err;
  5089. }
  5090. /*
  5091. * add_new_disk can be used once the array is assembled
  5092. * to add "hot spares". They must already have a superblock
  5093. * written
  5094. */
  5095. if (mddev->pers) {
  5096. int err;
  5097. if (!mddev->pers->hot_add_disk) {
  5098. printk(KERN_WARNING
  5099. "%s: personality does not support diskops!\n",
  5100. mdname(mddev));
  5101. return -EINVAL;
  5102. }
  5103. if (mddev->persistent)
  5104. rdev = md_import_device(dev, mddev->major_version,
  5105. mddev->minor_version);
  5106. else
  5107. rdev = md_import_device(dev, -1, -1);
  5108. if (IS_ERR(rdev)) {
  5109. printk(KERN_WARNING
  5110. "md: md_import_device returned %ld\n",
  5111. PTR_ERR(rdev));
  5112. return PTR_ERR(rdev);
  5113. }
  5114. /* set saved_raid_disk if appropriate */
  5115. if (!mddev->persistent) {
  5116. if (info->state & (1<<MD_DISK_SYNC) &&
  5117. info->raid_disk < mddev->raid_disks) {
  5118. rdev->raid_disk = info->raid_disk;
  5119. set_bit(In_sync, &rdev->flags);
  5120. } else
  5121. rdev->raid_disk = -1;
  5122. } else
  5123. super_types[mddev->major_version].
  5124. validate_super(mddev, rdev);
  5125. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5126. rdev->raid_disk != info->raid_disk) {
  5127. /* This was a hot-add request, but events doesn't
  5128. * match, so reject it.
  5129. */
  5130. export_rdev(rdev);
  5131. return -EINVAL;
  5132. }
  5133. if (test_bit(In_sync, &rdev->flags))
  5134. rdev->saved_raid_disk = rdev->raid_disk;
  5135. else
  5136. rdev->saved_raid_disk = -1;
  5137. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5138. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5139. set_bit(WriteMostly, &rdev->flags);
  5140. else
  5141. clear_bit(WriteMostly, &rdev->flags);
  5142. rdev->raid_disk = -1;
  5143. err = bind_rdev_to_array(rdev, mddev);
  5144. if (!err && !mddev->pers->hot_remove_disk) {
  5145. /* If there is hot_add_disk but no hot_remove_disk
  5146. * then added disks for geometry changes,
  5147. * and should be added immediately.
  5148. */
  5149. super_types[mddev->major_version].
  5150. validate_super(mddev, rdev);
  5151. err = mddev->pers->hot_add_disk(mddev, rdev);
  5152. if (err)
  5153. unbind_rdev_from_array(rdev);
  5154. }
  5155. if (err)
  5156. export_rdev(rdev);
  5157. else
  5158. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5159. md_update_sb(mddev, 1);
  5160. if (mddev->degraded)
  5161. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5162. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5163. if (!err)
  5164. md_new_event(mddev);
  5165. md_wakeup_thread(mddev->thread);
  5166. return err;
  5167. }
  5168. /* otherwise, add_new_disk is only allowed
  5169. * for major_version==0 superblocks
  5170. */
  5171. if (mddev->major_version != 0) {
  5172. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5173. mdname(mddev));
  5174. return -EINVAL;
  5175. }
  5176. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5177. int err;
  5178. rdev = md_import_device(dev, -1, 0);
  5179. if (IS_ERR(rdev)) {
  5180. printk(KERN_WARNING
  5181. "md: error, md_import_device() returned %ld\n",
  5182. PTR_ERR(rdev));
  5183. return PTR_ERR(rdev);
  5184. }
  5185. rdev->desc_nr = info->number;
  5186. if (info->raid_disk < mddev->raid_disks)
  5187. rdev->raid_disk = info->raid_disk;
  5188. else
  5189. rdev->raid_disk = -1;
  5190. if (rdev->raid_disk < mddev->raid_disks)
  5191. if (info->state & (1<<MD_DISK_SYNC))
  5192. set_bit(In_sync, &rdev->flags);
  5193. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5194. set_bit(WriteMostly, &rdev->flags);
  5195. if (!mddev->persistent) {
  5196. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5197. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5198. } else
  5199. rdev->sb_start = calc_dev_sboffset(rdev);
  5200. rdev->sectors = rdev->sb_start;
  5201. err = bind_rdev_to_array(rdev, mddev);
  5202. if (err) {
  5203. export_rdev(rdev);
  5204. return err;
  5205. }
  5206. }
  5207. return 0;
  5208. }
  5209. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5210. {
  5211. char b[BDEVNAME_SIZE];
  5212. struct md_rdev *rdev;
  5213. rdev = find_rdev(mddev, dev);
  5214. if (!rdev)
  5215. return -ENXIO;
  5216. if (rdev->raid_disk >= 0)
  5217. goto busy;
  5218. kick_rdev_from_array(rdev);
  5219. md_update_sb(mddev, 1);
  5220. md_new_event(mddev);
  5221. return 0;
  5222. busy:
  5223. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5224. bdevname(rdev->bdev,b), mdname(mddev));
  5225. return -EBUSY;
  5226. }
  5227. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5228. {
  5229. char b[BDEVNAME_SIZE];
  5230. int err;
  5231. struct md_rdev *rdev;
  5232. if (!mddev->pers)
  5233. return -ENODEV;
  5234. if (mddev->major_version != 0) {
  5235. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5236. " version-0 superblocks.\n",
  5237. mdname(mddev));
  5238. return -EINVAL;
  5239. }
  5240. if (!mddev->pers->hot_add_disk) {
  5241. printk(KERN_WARNING
  5242. "%s: personality does not support diskops!\n",
  5243. mdname(mddev));
  5244. return -EINVAL;
  5245. }
  5246. rdev = md_import_device(dev, -1, 0);
  5247. if (IS_ERR(rdev)) {
  5248. printk(KERN_WARNING
  5249. "md: error, md_import_device() returned %ld\n",
  5250. PTR_ERR(rdev));
  5251. return -EINVAL;
  5252. }
  5253. if (mddev->persistent)
  5254. rdev->sb_start = calc_dev_sboffset(rdev);
  5255. else
  5256. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5257. rdev->sectors = rdev->sb_start;
  5258. if (test_bit(Faulty, &rdev->flags)) {
  5259. printk(KERN_WARNING
  5260. "md: can not hot-add faulty %s disk to %s!\n",
  5261. bdevname(rdev->bdev,b), mdname(mddev));
  5262. err = -EINVAL;
  5263. goto abort_export;
  5264. }
  5265. clear_bit(In_sync, &rdev->flags);
  5266. rdev->desc_nr = -1;
  5267. rdev->saved_raid_disk = -1;
  5268. err = bind_rdev_to_array(rdev, mddev);
  5269. if (err)
  5270. goto abort_export;
  5271. /*
  5272. * The rest should better be atomic, we can have disk failures
  5273. * noticed in interrupt contexts ...
  5274. */
  5275. rdev->raid_disk = -1;
  5276. md_update_sb(mddev, 1);
  5277. /*
  5278. * Kick recovery, maybe this spare has to be added to the
  5279. * array immediately.
  5280. */
  5281. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5282. md_wakeup_thread(mddev->thread);
  5283. md_new_event(mddev);
  5284. return 0;
  5285. abort_export:
  5286. export_rdev(rdev);
  5287. return err;
  5288. }
  5289. static int set_bitmap_file(struct mddev *mddev, int fd)
  5290. {
  5291. int err;
  5292. if (mddev->pers) {
  5293. if (!mddev->pers->quiesce)
  5294. return -EBUSY;
  5295. if (mddev->recovery || mddev->sync_thread)
  5296. return -EBUSY;
  5297. /* we should be able to change the bitmap.. */
  5298. }
  5299. if (fd >= 0) {
  5300. if (mddev->bitmap)
  5301. return -EEXIST; /* cannot add when bitmap is present */
  5302. mddev->bitmap_info.file = fget(fd);
  5303. if (mddev->bitmap_info.file == NULL) {
  5304. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5305. mdname(mddev));
  5306. return -EBADF;
  5307. }
  5308. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5309. if (err) {
  5310. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5311. mdname(mddev));
  5312. fput(mddev->bitmap_info.file);
  5313. mddev->bitmap_info.file = NULL;
  5314. return err;
  5315. }
  5316. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5317. } else if (mddev->bitmap == NULL)
  5318. return -ENOENT; /* cannot remove what isn't there */
  5319. err = 0;
  5320. if (mddev->pers) {
  5321. mddev->pers->quiesce(mddev, 1);
  5322. if (fd >= 0) {
  5323. err = bitmap_create(mddev);
  5324. if (!err)
  5325. err = bitmap_load(mddev);
  5326. }
  5327. if (fd < 0 || err) {
  5328. bitmap_destroy(mddev);
  5329. fd = -1; /* make sure to put the file */
  5330. }
  5331. mddev->pers->quiesce(mddev, 0);
  5332. }
  5333. if (fd < 0) {
  5334. if (mddev->bitmap_info.file) {
  5335. restore_bitmap_write_access(mddev->bitmap_info.file);
  5336. fput(mddev->bitmap_info.file);
  5337. }
  5338. mddev->bitmap_info.file = NULL;
  5339. }
  5340. return err;
  5341. }
  5342. /*
  5343. * set_array_info is used two different ways
  5344. * The original usage is when creating a new array.
  5345. * In this usage, raid_disks is > 0 and it together with
  5346. * level, size, not_persistent,layout,chunksize determine the
  5347. * shape of the array.
  5348. * This will always create an array with a type-0.90.0 superblock.
  5349. * The newer usage is when assembling an array.
  5350. * In this case raid_disks will be 0, and the major_version field is
  5351. * use to determine which style super-blocks are to be found on the devices.
  5352. * The minor and patch _version numbers are also kept incase the
  5353. * super_block handler wishes to interpret them.
  5354. */
  5355. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5356. {
  5357. if (info->raid_disks == 0) {
  5358. /* just setting version number for superblock loading */
  5359. if (info->major_version < 0 ||
  5360. info->major_version >= ARRAY_SIZE(super_types) ||
  5361. super_types[info->major_version].name == NULL) {
  5362. /* maybe try to auto-load a module? */
  5363. printk(KERN_INFO
  5364. "md: superblock version %d not known\n",
  5365. info->major_version);
  5366. return -EINVAL;
  5367. }
  5368. mddev->major_version = info->major_version;
  5369. mddev->minor_version = info->minor_version;
  5370. mddev->patch_version = info->patch_version;
  5371. mddev->persistent = !info->not_persistent;
  5372. /* ensure mddev_put doesn't delete this now that there
  5373. * is some minimal configuration.
  5374. */
  5375. mddev->ctime = get_seconds();
  5376. return 0;
  5377. }
  5378. mddev->major_version = MD_MAJOR_VERSION;
  5379. mddev->minor_version = MD_MINOR_VERSION;
  5380. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5381. mddev->ctime = get_seconds();
  5382. mddev->level = info->level;
  5383. mddev->clevel[0] = 0;
  5384. mddev->dev_sectors = 2 * (sector_t)info->size;
  5385. mddev->raid_disks = info->raid_disks;
  5386. /* don't set md_minor, it is determined by which /dev/md* was
  5387. * openned
  5388. */
  5389. if (info->state & (1<<MD_SB_CLEAN))
  5390. mddev->recovery_cp = MaxSector;
  5391. else
  5392. mddev->recovery_cp = 0;
  5393. mddev->persistent = ! info->not_persistent;
  5394. mddev->external = 0;
  5395. mddev->layout = info->layout;
  5396. mddev->chunk_sectors = info->chunk_size >> 9;
  5397. mddev->max_disks = MD_SB_DISKS;
  5398. if (mddev->persistent)
  5399. mddev->flags = 0;
  5400. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5401. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5402. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5403. mddev->bitmap_info.offset = 0;
  5404. mddev->reshape_position = MaxSector;
  5405. /*
  5406. * Generate a 128 bit UUID
  5407. */
  5408. get_random_bytes(mddev->uuid, 16);
  5409. mddev->new_level = mddev->level;
  5410. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5411. mddev->new_layout = mddev->layout;
  5412. mddev->delta_disks = 0;
  5413. mddev->reshape_backwards = 0;
  5414. return 0;
  5415. }
  5416. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5417. {
  5418. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5419. if (mddev->external_size)
  5420. return;
  5421. mddev->array_sectors = array_sectors;
  5422. }
  5423. EXPORT_SYMBOL(md_set_array_sectors);
  5424. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5425. {
  5426. struct md_rdev *rdev;
  5427. int rv;
  5428. int fit = (num_sectors == 0);
  5429. if (mddev->pers->resize == NULL)
  5430. return -EINVAL;
  5431. /* The "num_sectors" is the number of sectors of each device that
  5432. * is used. This can only make sense for arrays with redundancy.
  5433. * linear and raid0 always use whatever space is available. We can only
  5434. * consider changing this number if no resync or reconstruction is
  5435. * happening, and if the new size is acceptable. It must fit before the
  5436. * sb_start or, if that is <data_offset, it must fit before the size
  5437. * of each device. If num_sectors is zero, we find the largest size
  5438. * that fits.
  5439. */
  5440. if (mddev->sync_thread)
  5441. return -EBUSY;
  5442. rdev_for_each(rdev, mddev) {
  5443. sector_t avail = rdev->sectors;
  5444. if (fit && (num_sectors == 0 || num_sectors > avail))
  5445. num_sectors = avail;
  5446. if (avail < num_sectors)
  5447. return -ENOSPC;
  5448. }
  5449. rv = mddev->pers->resize(mddev, num_sectors);
  5450. if (!rv)
  5451. revalidate_disk(mddev->gendisk);
  5452. return rv;
  5453. }
  5454. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5455. {
  5456. int rv;
  5457. struct md_rdev *rdev;
  5458. /* change the number of raid disks */
  5459. if (mddev->pers->check_reshape == NULL)
  5460. return -EINVAL;
  5461. if (raid_disks <= 0 ||
  5462. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5463. return -EINVAL;
  5464. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5465. return -EBUSY;
  5466. rdev_for_each(rdev, mddev) {
  5467. if (mddev->raid_disks < raid_disks &&
  5468. rdev->data_offset < rdev->new_data_offset)
  5469. return -EINVAL;
  5470. if (mddev->raid_disks > raid_disks &&
  5471. rdev->data_offset > rdev->new_data_offset)
  5472. return -EINVAL;
  5473. }
  5474. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5475. if (mddev->delta_disks < 0)
  5476. mddev->reshape_backwards = 1;
  5477. else if (mddev->delta_disks > 0)
  5478. mddev->reshape_backwards = 0;
  5479. rv = mddev->pers->check_reshape(mddev);
  5480. if (rv < 0) {
  5481. mddev->delta_disks = 0;
  5482. mddev->reshape_backwards = 0;
  5483. }
  5484. return rv;
  5485. }
  5486. /*
  5487. * update_array_info is used to change the configuration of an
  5488. * on-line array.
  5489. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5490. * fields in the info are checked against the array.
  5491. * Any differences that cannot be handled will cause an error.
  5492. * Normally, only one change can be managed at a time.
  5493. */
  5494. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5495. {
  5496. int rv = 0;
  5497. int cnt = 0;
  5498. int state = 0;
  5499. /* calculate expected state,ignoring low bits */
  5500. if (mddev->bitmap && mddev->bitmap_info.offset)
  5501. state |= (1 << MD_SB_BITMAP_PRESENT);
  5502. if (mddev->major_version != info->major_version ||
  5503. mddev->minor_version != info->minor_version ||
  5504. /* mddev->patch_version != info->patch_version || */
  5505. mddev->ctime != info->ctime ||
  5506. mddev->level != info->level ||
  5507. /* mddev->layout != info->layout || */
  5508. !mddev->persistent != info->not_persistent||
  5509. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5510. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5511. ((state^info->state) & 0xfffffe00)
  5512. )
  5513. return -EINVAL;
  5514. /* Check there is only one change */
  5515. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5516. cnt++;
  5517. if (mddev->raid_disks != info->raid_disks)
  5518. cnt++;
  5519. if (mddev->layout != info->layout)
  5520. cnt++;
  5521. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5522. cnt++;
  5523. if (cnt == 0)
  5524. return 0;
  5525. if (cnt > 1)
  5526. return -EINVAL;
  5527. if (mddev->layout != info->layout) {
  5528. /* Change layout
  5529. * we don't need to do anything at the md level, the
  5530. * personality will take care of it all.
  5531. */
  5532. if (mddev->pers->check_reshape == NULL)
  5533. return -EINVAL;
  5534. else {
  5535. mddev->new_layout = info->layout;
  5536. rv = mddev->pers->check_reshape(mddev);
  5537. if (rv)
  5538. mddev->new_layout = mddev->layout;
  5539. return rv;
  5540. }
  5541. }
  5542. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5543. rv = update_size(mddev, (sector_t)info->size * 2);
  5544. if (mddev->raid_disks != info->raid_disks)
  5545. rv = update_raid_disks(mddev, info->raid_disks);
  5546. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5547. if (mddev->pers->quiesce == NULL)
  5548. return -EINVAL;
  5549. if (mddev->recovery || mddev->sync_thread)
  5550. return -EBUSY;
  5551. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5552. /* add the bitmap */
  5553. if (mddev->bitmap)
  5554. return -EEXIST;
  5555. if (mddev->bitmap_info.default_offset == 0)
  5556. return -EINVAL;
  5557. mddev->bitmap_info.offset =
  5558. mddev->bitmap_info.default_offset;
  5559. mddev->bitmap_info.space =
  5560. mddev->bitmap_info.default_space;
  5561. mddev->pers->quiesce(mddev, 1);
  5562. rv = bitmap_create(mddev);
  5563. if (!rv)
  5564. rv = bitmap_load(mddev);
  5565. if (rv)
  5566. bitmap_destroy(mddev);
  5567. mddev->pers->quiesce(mddev, 0);
  5568. } else {
  5569. /* remove the bitmap */
  5570. if (!mddev->bitmap)
  5571. return -ENOENT;
  5572. if (mddev->bitmap->storage.file)
  5573. return -EINVAL;
  5574. mddev->pers->quiesce(mddev, 1);
  5575. bitmap_destroy(mddev);
  5576. mddev->pers->quiesce(mddev, 0);
  5577. mddev->bitmap_info.offset = 0;
  5578. }
  5579. }
  5580. md_update_sb(mddev, 1);
  5581. return rv;
  5582. }
  5583. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5584. {
  5585. struct md_rdev *rdev;
  5586. int err = 0;
  5587. if (mddev->pers == NULL)
  5588. return -ENODEV;
  5589. rcu_read_lock();
  5590. rdev = find_rdev_rcu(mddev, dev);
  5591. if (!rdev)
  5592. err = -ENODEV;
  5593. else {
  5594. md_error(mddev, rdev);
  5595. if (!test_bit(Faulty, &rdev->flags))
  5596. err = -EBUSY;
  5597. }
  5598. rcu_read_unlock();
  5599. return err;
  5600. }
  5601. /*
  5602. * We have a problem here : there is no easy way to give a CHS
  5603. * virtual geometry. We currently pretend that we have a 2 heads
  5604. * 4 sectors (with a BIG number of cylinders...). This drives
  5605. * dosfs just mad... ;-)
  5606. */
  5607. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5608. {
  5609. struct mddev *mddev = bdev->bd_disk->private_data;
  5610. geo->heads = 2;
  5611. geo->sectors = 4;
  5612. geo->cylinders = mddev->array_sectors / 8;
  5613. return 0;
  5614. }
  5615. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5616. unsigned int cmd, unsigned long arg)
  5617. {
  5618. int err = 0;
  5619. void __user *argp = (void __user *)arg;
  5620. struct mddev *mddev = NULL;
  5621. int ro;
  5622. switch (cmd) {
  5623. case RAID_VERSION:
  5624. case GET_ARRAY_INFO:
  5625. case GET_DISK_INFO:
  5626. break;
  5627. default:
  5628. if (!capable(CAP_SYS_ADMIN))
  5629. return -EACCES;
  5630. }
  5631. /*
  5632. * Commands dealing with the RAID driver but not any
  5633. * particular array:
  5634. */
  5635. switch (cmd)
  5636. {
  5637. case RAID_VERSION:
  5638. err = get_version(argp);
  5639. goto done;
  5640. case PRINT_RAID_DEBUG:
  5641. err = 0;
  5642. md_print_devices();
  5643. goto done;
  5644. #ifndef MODULE
  5645. case RAID_AUTORUN:
  5646. err = 0;
  5647. autostart_arrays(arg);
  5648. goto done;
  5649. #endif
  5650. default:;
  5651. }
  5652. /*
  5653. * Commands creating/starting a new array:
  5654. */
  5655. mddev = bdev->bd_disk->private_data;
  5656. if (!mddev) {
  5657. BUG();
  5658. goto abort;
  5659. }
  5660. /* Some actions do not requires the mutex */
  5661. switch (cmd) {
  5662. case GET_ARRAY_INFO:
  5663. if (!mddev->raid_disks && !mddev->external)
  5664. err = -ENODEV;
  5665. else
  5666. err = get_array_info(mddev, argp);
  5667. goto abort;
  5668. case GET_DISK_INFO:
  5669. if (!mddev->raid_disks && !mddev->external)
  5670. err = -ENODEV;
  5671. else
  5672. err = get_disk_info(mddev, argp);
  5673. goto abort;
  5674. case SET_DISK_FAULTY:
  5675. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5676. goto abort;
  5677. }
  5678. err = mddev_lock(mddev);
  5679. if (err) {
  5680. printk(KERN_INFO
  5681. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5682. err, cmd);
  5683. goto abort;
  5684. }
  5685. switch (cmd)
  5686. {
  5687. case SET_ARRAY_INFO:
  5688. {
  5689. mdu_array_info_t info;
  5690. if (!arg)
  5691. memset(&info, 0, sizeof(info));
  5692. else if (copy_from_user(&info, argp, sizeof(info))) {
  5693. err = -EFAULT;
  5694. goto abort_unlock;
  5695. }
  5696. if (mddev->pers) {
  5697. err = update_array_info(mddev, &info);
  5698. if (err) {
  5699. printk(KERN_WARNING "md: couldn't update"
  5700. " array info. %d\n", err);
  5701. goto abort_unlock;
  5702. }
  5703. goto done_unlock;
  5704. }
  5705. if (!list_empty(&mddev->disks)) {
  5706. printk(KERN_WARNING
  5707. "md: array %s already has disks!\n",
  5708. mdname(mddev));
  5709. err = -EBUSY;
  5710. goto abort_unlock;
  5711. }
  5712. if (mddev->raid_disks) {
  5713. printk(KERN_WARNING
  5714. "md: array %s already initialised!\n",
  5715. mdname(mddev));
  5716. err = -EBUSY;
  5717. goto abort_unlock;
  5718. }
  5719. err = set_array_info(mddev, &info);
  5720. if (err) {
  5721. printk(KERN_WARNING "md: couldn't set"
  5722. " array info. %d\n", err);
  5723. goto abort_unlock;
  5724. }
  5725. }
  5726. goto done_unlock;
  5727. default:;
  5728. }
  5729. /*
  5730. * Commands querying/configuring an existing array:
  5731. */
  5732. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5733. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5734. if ((!mddev->raid_disks && !mddev->external)
  5735. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5736. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5737. && cmd != GET_BITMAP_FILE) {
  5738. err = -ENODEV;
  5739. goto abort_unlock;
  5740. }
  5741. /*
  5742. * Commands even a read-only array can execute:
  5743. */
  5744. switch (cmd)
  5745. {
  5746. case GET_BITMAP_FILE:
  5747. err = get_bitmap_file(mddev, argp);
  5748. goto done_unlock;
  5749. case RESTART_ARRAY_RW:
  5750. err = restart_array(mddev);
  5751. goto done_unlock;
  5752. case STOP_ARRAY:
  5753. err = do_md_stop(mddev, 0, bdev);
  5754. goto done_unlock;
  5755. case STOP_ARRAY_RO:
  5756. err = md_set_readonly(mddev, bdev);
  5757. goto done_unlock;
  5758. case BLKROSET:
  5759. if (get_user(ro, (int __user *)(arg))) {
  5760. err = -EFAULT;
  5761. goto done_unlock;
  5762. }
  5763. err = -EINVAL;
  5764. /* if the bdev is going readonly the value of mddev->ro
  5765. * does not matter, no writes are coming
  5766. */
  5767. if (ro)
  5768. goto done_unlock;
  5769. /* are we are already prepared for writes? */
  5770. if (mddev->ro != 1)
  5771. goto done_unlock;
  5772. /* transitioning to readauto need only happen for
  5773. * arrays that call md_write_start
  5774. */
  5775. if (mddev->pers) {
  5776. err = restart_array(mddev);
  5777. if (err == 0) {
  5778. mddev->ro = 2;
  5779. set_disk_ro(mddev->gendisk, 0);
  5780. }
  5781. }
  5782. goto done_unlock;
  5783. }
  5784. /*
  5785. * The remaining ioctls are changing the state of the
  5786. * superblock, so we do not allow them on read-only arrays.
  5787. * However non-MD ioctls (e.g. get-size) will still come through
  5788. * here and hit the 'default' below, so only disallow
  5789. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5790. */
  5791. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5792. if (mddev->ro == 2) {
  5793. mddev->ro = 0;
  5794. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5795. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5796. md_wakeup_thread(mddev->thread);
  5797. } else {
  5798. err = -EROFS;
  5799. goto abort_unlock;
  5800. }
  5801. }
  5802. switch (cmd)
  5803. {
  5804. case ADD_NEW_DISK:
  5805. {
  5806. mdu_disk_info_t info;
  5807. if (copy_from_user(&info, argp, sizeof(info)))
  5808. err = -EFAULT;
  5809. else
  5810. err = add_new_disk(mddev, &info);
  5811. goto done_unlock;
  5812. }
  5813. case HOT_REMOVE_DISK:
  5814. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5815. goto done_unlock;
  5816. case HOT_ADD_DISK:
  5817. err = hot_add_disk(mddev, new_decode_dev(arg));
  5818. goto done_unlock;
  5819. case RUN_ARRAY:
  5820. err = do_md_run(mddev);
  5821. goto done_unlock;
  5822. case SET_BITMAP_FILE:
  5823. err = set_bitmap_file(mddev, (int)arg);
  5824. goto done_unlock;
  5825. default:
  5826. err = -EINVAL;
  5827. goto abort_unlock;
  5828. }
  5829. done_unlock:
  5830. abort_unlock:
  5831. if (mddev->hold_active == UNTIL_IOCTL &&
  5832. err != -EINVAL)
  5833. mddev->hold_active = 0;
  5834. mddev_unlock(mddev);
  5835. return err;
  5836. done:
  5837. if (err)
  5838. MD_BUG();
  5839. abort:
  5840. return err;
  5841. }
  5842. #ifdef CONFIG_COMPAT
  5843. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5844. unsigned int cmd, unsigned long arg)
  5845. {
  5846. switch (cmd) {
  5847. case HOT_REMOVE_DISK:
  5848. case HOT_ADD_DISK:
  5849. case SET_DISK_FAULTY:
  5850. case SET_BITMAP_FILE:
  5851. /* These take in integer arg, do not convert */
  5852. break;
  5853. default:
  5854. arg = (unsigned long)compat_ptr(arg);
  5855. break;
  5856. }
  5857. return md_ioctl(bdev, mode, cmd, arg);
  5858. }
  5859. #endif /* CONFIG_COMPAT */
  5860. static int md_open(struct block_device *bdev, fmode_t mode)
  5861. {
  5862. /*
  5863. * Succeed if we can lock the mddev, which confirms that
  5864. * it isn't being stopped right now.
  5865. */
  5866. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5867. int err;
  5868. if (!mddev)
  5869. return -ENODEV;
  5870. if (mddev->gendisk != bdev->bd_disk) {
  5871. /* we are racing with mddev_put which is discarding this
  5872. * bd_disk.
  5873. */
  5874. mddev_put(mddev);
  5875. /* Wait until bdev->bd_disk is definitely gone */
  5876. flush_workqueue(md_misc_wq);
  5877. /* Then retry the open from the top */
  5878. return -ERESTARTSYS;
  5879. }
  5880. BUG_ON(mddev != bdev->bd_disk->private_data);
  5881. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5882. goto out;
  5883. err = 0;
  5884. atomic_inc(&mddev->openers);
  5885. mutex_unlock(&mddev->open_mutex);
  5886. check_disk_change(bdev);
  5887. out:
  5888. return err;
  5889. }
  5890. static int md_release(struct gendisk *disk, fmode_t mode)
  5891. {
  5892. struct mddev *mddev = disk->private_data;
  5893. BUG_ON(!mddev);
  5894. atomic_dec(&mddev->openers);
  5895. mddev_put(mddev);
  5896. return 0;
  5897. }
  5898. static int md_media_changed(struct gendisk *disk)
  5899. {
  5900. struct mddev *mddev = disk->private_data;
  5901. return mddev->changed;
  5902. }
  5903. static int md_revalidate(struct gendisk *disk)
  5904. {
  5905. struct mddev *mddev = disk->private_data;
  5906. mddev->changed = 0;
  5907. return 0;
  5908. }
  5909. static const struct block_device_operations md_fops =
  5910. {
  5911. .owner = THIS_MODULE,
  5912. .open = md_open,
  5913. .release = md_release,
  5914. .ioctl = md_ioctl,
  5915. #ifdef CONFIG_COMPAT
  5916. .compat_ioctl = md_compat_ioctl,
  5917. #endif
  5918. .getgeo = md_getgeo,
  5919. .media_changed = md_media_changed,
  5920. .revalidate_disk= md_revalidate,
  5921. };
  5922. static int md_thread(void * arg)
  5923. {
  5924. struct md_thread *thread = arg;
  5925. /*
  5926. * md_thread is a 'system-thread', it's priority should be very
  5927. * high. We avoid resource deadlocks individually in each
  5928. * raid personality. (RAID5 does preallocation) We also use RR and
  5929. * the very same RT priority as kswapd, thus we will never get
  5930. * into a priority inversion deadlock.
  5931. *
  5932. * we definitely have to have equal or higher priority than
  5933. * bdflush, otherwise bdflush will deadlock if there are too
  5934. * many dirty RAID5 blocks.
  5935. */
  5936. allow_signal(SIGKILL);
  5937. while (!kthread_should_stop()) {
  5938. /* We need to wait INTERRUPTIBLE so that
  5939. * we don't add to the load-average.
  5940. * That means we need to be sure no signals are
  5941. * pending
  5942. */
  5943. if (signal_pending(current))
  5944. flush_signals(current);
  5945. wait_event_interruptible_timeout
  5946. (thread->wqueue,
  5947. test_bit(THREAD_WAKEUP, &thread->flags)
  5948. || kthread_should_stop(),
  5949. thread->timeout);
  5950. clear_bit(THREAD_WAKEUP, &thread->flags);
  5951. if (!kthread_should_stop())
  5952. thread->run(thread);
  5953. }
  5954. return 0;
  5955. }
  5956. void md_wakeup_thread(struct md_thread *thread)
  5957. {
  5958. if (thread) {
  5959. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5960. set_bit(THREAD_WAKEUP, &thread->flags);
  5961. wake_up(&thread->wqueue);
  5962. }
  5963. }
  5964. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5965. struct mddev *mddev, const char *name)
  5966. {
  5967. struct md_thread *thread;
  5968. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5969. if (!thread)
  5970. return NULL;
  5971. init_waitqueue_head(&thread->wqueue);
  5972. thread->run = run;
  5973. thread->mddev = mddev;
  5974. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5975. thread->tsk = kthread_run(md_thread, thread,
  5976. "%s_%s",
  5977. mdname(thread->mddev),
  5978. name);
  5979. if (IS_ERR(thread->tsk)) {
  5980. kfree(thread);
  5981. return NULL;
  5982. }
  5983. return thread;
  5984. }
  5985. void md_unregister_thread(struct md_thread **threadp)
  5986. {
  5987. struct md_thread *thread = *threadp;
  5988. if (!thread)
  5989. return;
  5990. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5991. /* Locking ensures that mddev_unlock does not wake_up a
  5992. * non-existent thread
  5993. */
  5994. spin_lock(&pers_lock);
  5995. *threadp = NULL;
  5996. spin_unlock(&pers_lock);
  5997. kthread_stop(thread->tsk);
  5998. kfree(thread);
  5999. }
  6000. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6001. {
  6002. if (!mddev) {
  6003. MD_BUG();
  6004. return;
  6005. }
  6006. if (!rdev || test_bit(Faulty, &rdev->flags))
  6007. return;
  6008. if (!mddev->pers || !mddev->pers->error_handler)
  6009. return;
  6010. mddev->pers->error_handler(mddev,rdev);
  6011. if (mddev->degraded)
  6012. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6013. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6014. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6015. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6016. md_wakeup_thread(mddev->thread);
  6017. if (mddev->event_work.func)
  6018. queue_work(md_misc_wq, &mddev->event_work);
  6019. md_new_event_inintr(mddev);
  6020. }
  6021. /* seq_file implementation /proc/mdstat */
  6022. static void status_unused(struct seq_file *seq)
  6023. {
  6024. int i = 0;
  6025. struct md_rdev *rdev;
  6026. seq_printf(seq, "unused devices: ");
  6027. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6028. char b[BDEVNAME_SIZE];
  6029. i++;
  6030. seq_printf(seq, "%s ",
  6031. bdevname(rdev->bdev,b));
  6032. }
  6033. if (!i)
  6034. seq_printf(seq, "<none>");
  6035. seq_printf(seq, "\n");
  6036. }
  6037. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6038. {
  6039. sector_t max_sectors, resync, res;
  6040. unsigned long dt, db;
  6041. sector_t rt;
  6042. int scale;
  6043. unsigned int per_milli;
  6044. if (mddev->curr_resync <= 3)
  6045. resync = 0;
  6046. else
  6047. resync = mddev->curr_resync
  6048. - atomic_read(&mddev->recovery_active);
  6049. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6050. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6051. max_sectors = mddev->resync_max_sectors;
  6052. else
  6053. max_sectors = mddev->dev_sectors;
  6054. /*
  6055. * Should not happen.
  6056. */
  6057. if (!max_sectors) {
  6058. MD_BUG();
  6059. return;
  6060. }
  6061. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6062. * in a sector_t, and (max_sectors>>scale) will fit in a
  6063. * u32, as those are the requirements for sector_div.
  6064. * Thus 'scale' must be at least 10
  6065. */
  6066. scale = 10;
  6067. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6068. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6069. scale++;
  6070. }
  6071. res = (resync>>scale)*1000;
  6072. sector_div(res, (u32)((max_sectors>>scale)+1));
  6073. per_milli = res;
  6074. {
  6075. int i, x = per_milli/50, y = 20-x;
  6076. seq_printf(seq, "[");
  6077. for (i = 0; i < x; i++)
  6078. seq_printf(seq, "=");
  6079. seq_printf(seq, ">");
  6080. for (i = 0; i < y; i++)
  6081. seq_printf(seq, ".");
  6082. seq_printf(seq, "] ");
  6083. }
  6084. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6085. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6086. "reshape" :
  6087. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6088. "check" :
  6089. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6090. "resync" : "recovery"))),
  6091. per_milli/10, per_milli % 10,
  6092. (unsigned long long) resync/2,
  6093. (unsigned long long) max_sectors/2);
  6094. /*
  6095. * dt: time from mark until now
  6096. * db: blocks written from mark until now
  6097. * rt: remaining time
  6098. *
  6099. * rt is a sector_t, so could be 32bit or 64bit.
  6100. * So we divide before multiply in case it is 32bit and close
  6101. * to the limit.
  6102. * We scale the divisor (db) by 32 to avoid losing precision
  6103. * near the end of resync when the number of remaining sectors
  6104. * is close to 'db'.
  6105. * We then divide rt by 32 after multiplying by db to compensate.
  6106. * The '+1' avoids division by zero if db is very small.
  6107. */
  6108. dt = ((jiffies - mddev->resync_mark) / HZ);
  6109. if (!dt) dt++;
  6110. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6111. - mddev->resync_mark_cnt;
  6112. rt = max_sectors - resync; /* number of remaining sectors */
  6113. sector_div(rt, db/32+1);
  6114. rt *= dt;
  6115. rt >>= 5;
  6116. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6117. ((unsigned long)rt % 60)/6);
  6118. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6119. }
  6120. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6121. {
  6122. struct list_head *tmp;
  6123. loff_t l = *pos;
  6124. struct mddev *mddev;
  6125. if (l >= 0x10000)
  6126. return NULL;
  6127. if (!l--)
  6128. /* header */
  6129. return (void*)1;
  6130. spin_lock(&all_mddevs_lock);
  6131. list_for_each(tmp,&all_mddevs)
  6132. if (!l--) {
  6133. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6134. mddev_get(mddev);
  6135. spin_unlock(&all_mddevs_lock);
  6136. return mddev;
  6137. }
  6138. spin_unlock(&all_mddevs_lock);
  6139. if (!l--)
  6140. return (void*)2;/* tail */
  6141. return NULL;
  6142. }
  6143. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6144. {
  6145. struct list_head *tmp;
  6146. struct mddev *next_mddev, *mddev = v;
  6147. ++*pos;
  6148. if (v == (void*)2)
  6149. return NULL;
  6150. spin_lock(&all_mddevs_lock);
  6151. if (v == (void*)1)
  6152. tmp = all_mddevs.next;
  6153. else
  6154. tmp = mddev->all_mddevs.next;
  6155. if (tmp != &all_mddevs)
  6156. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6157. else {
  6158. next_mddev = (void*)2;
  6159. *pos = 0x10000;
  6160. }
  6161. spin_unlock(&all_mddevs_lock);
  6162. if (v != (void*)1)
  6163. mddev_put(mddev);
  6164. return next_mddev;
  6165. }
  6166. static void md_seq_stop(struct seq_file *seq, void *v)
  6167. {
  6168. struct mddev *mddev = v;
  6169. if (mddev && v != (void*)1 && v != (void*)2)
  6170. mddev_put(mddev);
  6171. }
  6172. static int md_seq_show(struct seq_file *seq, void *v)
  6173. {
  6174. struct mddev *mddev = v;
  6175. sector_t sectors;
  6176. struct md_rdev *rdev;
  6177. if (v == (void*)1) {
  6178. struct md_personality *pers;
  6179. seq_printf(seq, "Personalities : ");
  6180. spin_lock(&pers_lock);
  6181. list_for_each_entry(pers, &pers_list, list)
  6182. seq_printf(seq, "[%s] ", pers->name);
  6183. spin_unlock(&pers_lock);
  6184. seq_printf(seq, "\n");
  6185. seq->poll_event = atomic_read(&md_event_count);
  6186. return 0;
  6187. }
  6188. if (v == (void*)2) {
  6189. status_unused(seq);
  6190. return 0;
  6191. }
  6192. if (mddev_lock(mddev) < 0)
  6193. return -EINTR;
  6194. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6195. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6196. mddev->pers ? "" : "in");
  6197. if (mddev->pers) {
  6198. if (mddev->ro==1)
  6199. seq_printf(seq, " (read-only)");
  6200. if (mddev->ro==2)
  6201. seq_printf(seq, " (auto-read-only)");
  6202. seq_printf(seq, " %s", mddev->pers->name);
  6203. }
  6204. sectors = 0;
  6205. rdev_for_each(rdev, mddev) {
  6206. char b[BDEVNAME_SIZE];
  6207. seq_printf(seq, " %s[%d]",
  6208. bdevname(rdev->bdev,b), rdev->desc_nr);
  6209. if (test_bit(WriteMostly, &rdev->flags))
  6210. seq_printf(seq, "(W)");
  6211. if (test_bit(Faulty, &rdev->flags)) {
  6212. seq_printf(seq, "(F)");
  6213. continue;
  6214. }
  6215. if (rdev->raid_disk < 0)
  6216. seq_printf(seq, "(S)"); /* spare */
  6217. if (test_bit(Replacement, &rdev->flags))
  6218. seq_printf(seq, "(R)");
  6219. sectors += rdev->sectors;
  6220. }
  6221. if (!list_empty(&mddev->disks)) {
  6222. if (mddev->pers)
  6223. seq_printf(seq, "\n %llu blocks",
  6224. (unsigned long long)
  6225. mddev->array_sectors / 2);
  6226. else
  6227. seq_printf(seq, "\n %llu blocks",
  6228. (unsigned long long)sectors / 2);
  6229. }
  6230. if (mddev->persistent) {
  6231. if (mddev->major_version != 0 ||
  6232. mddev->minor_version != 90) {
  6233. seq_printf(seq," super %d.%d",
  6234. mddev->major_version,
  6235. mddev->minor_version);
  6236. }
  6237. } else if (mddev->external)
  6238. seq_printf(seq, " super external:%s",
  6239. mddev->metadata_type);
  6240. else
  6241. seq_printf(seq, " super non-persistent");
  6242. if (mddev->pers) {
  6243. mddev->pers->status(seq, mddev);
  6244. seq_printf(seq, "\n ");
  6245. if (mddev->pers->sync_request) {
  6246. if (mddev->curr_resync > 2) {
  6247. status_resync(seq, mddev);
  6248. seq_printf(seq, "\n ");
  6249. } else if (mddev->curr_resync >= 1)
  6250. seq_printf(seq, "\tresync=DELAYED\n ");
  6251. else if (mddev->recovery_cp < MaxSector)
  6252. seq_printf(seq, "\tresync=PENDING\n ");
  6253. }
  6254. } else
  6255. seq_printf(seq, "\n ");
  6256. bitmap_status(seq, mddev->bitmap);
  6257. seq_printf(seq, "\n");
  6258. }
  6259. mddev_unlock(mddev);
  6260. return 0;
  6261. }
  6262. static const struct seq_operations md_seq_ops = {
  6263. .start = md_seq_start,
  6264. .next = md_seq_next,
  6265. .stop = md_seq_stop,
  6266. .show = md_seq_show,
  6267. };
  6268. static int md_seq_open(struct inode *inode, struct file *file)
  6269. {
  6270. struct seq_file *seq;
  6271. int error;
  6272. error = seq_open(file, &md_seq_ops);
  6273. if (error)
  6274. return error;
  6275. seq = file->private_data;
  6276. seq->poll_event = atomic_read(&md_event_count);
  6277. return error;
  6278. }
  6279. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6280. {
  6281. struct seq_file *seq = filp->private_data;
  6282. int mask;
  6283. poll_wait(filp, &md_event_waiters, wait);
  6284. /* always allow read */
  6285. mask = POLLIN | POLLRDNORM;
  6286. if (seq->poll_event != atomic_read(&md_event_count))
  6287. mask |= POLLERR | POLLPRI;
  6288. return mask;
  6289. }
  6290. static const struct file_operations md_seq_fops = {
  6291. .owner = THIS_MODULE,
  6292. .open = md_seq_open,
  6293. .read = seq_read,
  6294. .llseek = seq_lseek,
  6295. .release = seq_release_private,
  6296. .poll = mdstat_poll,
  6297. };
  6298. int register_md_personality(struct md_personality *p)
  6299. {
  6300. spin_lock(&pers_lock);
  6301. list_add_tail(&p->list, &pers_list);
  6302. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6303. spin_unlock(&pers_lock);
  6304. return 0;
  6305. }
  6306. int unregister_md_personality(struct md_personality *p)
  6307. {
  6308. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6309. spin_lock(&pers_lock);
  6310. list_del_init(&p->list);
  6311. spin_unlock(&pers_lock);
  6312. return 0;
  6313. }
  6314. static int is_mddev_idle(struct mddev *mddev, int init)
  6315. {
  6316. struct md_rdev * rdev;
  6317. int idle;
  6318. int curr_events;
  6319. idle = 1;
  6320. rcu_read_lock();
  6321. rdev_for_each_rcu(rdev, mddev) {
  6322. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6323. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6324. (int)part_stat_read(&disk->part0, sectors[1]) -
  6325. atomic_read(&disk->sync_io);
  6326. /* sync IO will cause sync_io to increase before the disk_stats
  6327. * as sync_io is counted when a request starts, and
  6328. * disk_stats is counted when it completes.
  6329. * So resync activity will cause curr_events to be smaller than
  6330. * when there was no such activity.
  6331. * non-sync IO will cause disk_stat to increase without
  6332. * increasing sync_io so curr_events will (eventually)
  6333. * be larger than it was before. Once it becomes
  6334. * substantially larger, the test below will cause
  6335. * the array to appear non-idle, and resync will slow
  6336. * down.
  6337. * If there is a lot of outstanding resync activity when
  6338. * we set last_event to curr_events, then all that activity
  6339. * completing might cause the array to appear non-idle
  6340. * and resync will be slowed down even though there might
  6341. * not have been non-resync activity. This will only
  6342. * happen once though. 'last_events' will soon reflect
  6343. * the state where there is little or no outstanding
  6344. * resync requests, and further resync activity will
  6345. * always make curr_events less than last_events.
  6346. *
  6347. */
  6348. if (init || curr_events - rdev->last_events > 64) {
  6349. rdev->last_events = curr_events;
  6350. idle = 0;
  6351. }
  6352. }
  6353. rcu_read_unlock();
  6354. return idle;
  6355. }
  6356. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6357. {
  6358. /* another "blocks" (512byte) blocks have been synced */
  6359. atomic_sub(blocks, &mddev->recovery_active);
  6360. wake_up(&mddev->recovery_wait);
  6361. if (!ok) {
  6362. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6363. md_wakeup_thread(mddev->thread);
  6364. // stop recovery, signal do_sync ....
  6365. }
  6366. }
  6367. /* md_write_start(mddev, bi)
  6368. * If we need to update some array metadata (e.g. 'active' flag
  6369. * in superblock) before writing, schedule a superblock update
  6370. * and wait for it to complete.
  6371. */
  6372. void md_write_start(struct mddev *mddev, struct bio *bi)
  6373. {
  6374. int did_change = 0;
  6375. if (bio_data_dir(bi) != WRITE)
  6376. return;
  6377. BUG_ON(mddev->ro == 1);
  6378. if (mddev->ro == 2) {
  6379. /* need to switch to read/write */
  6380. mddev->ro = 0;
  6381. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6382. md_wakeup_thread(mddev->thread);
  6383. md_wakeup_thread(mddev->sync_thread);
  6384. did_change = 1;
  6385. }
  6386. atomic_inc(&mddev->writes_pending);
  6387. if (mddev->safemode == 1)
  6388. mddev->safemode = 0;
  6389. if (mddev->in_sync) {
  6390. spin_lock_irq(&mddev->write_lock);
  6391. if (mddev->in_sync) {
  6392. mddev->in_sync = 0;
  6393. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6394. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6395. md_wakeup_thread(mddev->thread);
  6396. did_change = 1;
  6397. }
  6398. spin_unlock_irq(&mddev->write_lock);
  6399. }
  6400. if (did_change)
  6401. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6402. wait_event(mddev->sb_wait,
  6403. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6404. }
  6405. void md_write_end(struct mddev *mddev)
  6406. {
  6407. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6408. if (mddev->safemode == 2)
  6409. md_wakeup_thread(mddev->thread);
  6410. else if (mddev->safemode_delay)
  6411. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6412. }
  6413. }
  6414. /* md_allow_write(mddev)
  6415. * Calling this ensures that the array is marked 'active' so that writes
  6416. * may proceed without blocking. It is important to call this before
  6417. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6418. * Must be called with mddev_lock held.
  6419. *
  6420. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6421. * is dropped, so return -EAGAIN after notifying userspace.
  6422. */
  6423. int md_allow_write(struct mddev *mddev)
  6424. {
  6425. if (!mddev->pers)
  6426. return 0;
  6427. if (mddev->ro)
  6428. return 0;
  6429. if (!mddev->pers->sync_request)
  6430. return 0;
  6431. spin_lock_irq(&mddev->write_lock);
  6432. if (mddev->in_sync) {
  6433. mddev->in_sync = 0;
  6434. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6435. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6436. if (mddev->safemode_delay &&
  6437. mddev->safemode == 0)
  6438. mddev->safemode = 1;
  6439. spin_unlock_irq(&mddev->write_lock);
  6440. md_update_sb(mddev, 0);
  6441. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6442. } else
  6443. spin_unlock_irq(&mddev->write_lock);
  6444. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6445. return -EAGAIN;
  6446. else
  6447. return 0;
  6448. }
  6449. EXPORT_SYMBOL_GPL(md_allow_write);
  6450. #define SYNC_MARKS 10
  6451. #define SYNC_MARK_STEP (3*HZ)
  6452. void md_do_sync(struct md_thread *thread)
  6453. {
  6454. struct mddev *mddev = thread->mddev;
  6455. struct mddev *mddev2;
  6456. unsigned int currspeed = 0,
  6457. window;
  6458. sector_t max_sectors,j, io_sectors;
  6459. unsigned long mark[SYNC_MARKS];
  6460. sector_t mark_cnt[SYNC_MARKS];
  6461. int last_mark,m;
  6462. struct list_head *tmp;
  6463. sector_t last_check;
  6464. int skipped = 0;
  6465. struct md_rdev *rdev;
  6466. char *desc;
  6467. struct blk_plug plug;
  6468. /* just incase thread restarts... */
  6469. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6470. return;
  6471. if (mddev->ro) /* never try to sync a read-only array */
  6472. return;
  6473. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6474. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6475. desc = "data-check";
  6476. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6477. desc = "requested-resync";
  6478. else
  6479. desc = "resync";
  6480. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6481. desc = "reshape";
  6482. else
  6483. desc = "recovery";
  6484. /* we overload curr_resync somewhat here.
  6485. * 0 == not engaged in resync at all
  6486. * 2 == checking that there is no conflict with another sync
  6487. * 1 == like 2, but have yielded to allow conflicting resync to
  6488. * commense
  6489. * other == active in resync - this many blocks
  6490. *
  6491. * Before starting a resync we must have set curr_resync to
  6492. * 2, and then checked that every "conflicting" array has curr_resync
  6493. * less than ours. When we find one that is the same or higher
  6494. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6495. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6496. * This will mean we have to start checking from the beginning again.
  6497. *
  6498. */
  6499. do {
  6500. mddev->curr_resync = 2;
  6501. try_again:
  6502. if (kthread_should_stop())
  6503. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6504. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6505. goto skip;
  6506. for_each_mddev(mddev2, tmp) {
  6507. if (mddev2 == mddev)
  6508. continue;
  6509. if (!mddev->parallel_resync
  6510. && mddev2->curr_resync
  6511. && match_mddev_units(mddev, mddev2)) {
  6512. DEFINE_WAIT(wq);
  6513. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6514. /* arbitrarily yield */
  6515. mddev->curr_resync = 1;
  6516. wake_up(&resync_wait);
  6517. }
  6518. if (mddev > mddev2 && mddev->curr_resync == 1)
  6519. /* no need to wait here, we can wait the next
  6520. * time 'round when curr_resync == 2
  6521. */
  6522. continue;
  6523. /* We need to wait 'interruptible' so as not to
  6524. * contribute to the load average, and not to
  6525. * be caught by 'softlockup'
  6526. */
  6527. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6528. if (!kthread_should_stop() &&
  6529. mddev2->curr_resync >= mddev->curr_resync) {
  6530. printk(KERN_INFO "md: delaying %s of %s"
  6531. " until %s has finished (they"
  6532. " share one or more physical units)\n",
  6533. desc, mdname(mddev), mdname(mddev2));
  6534. mddev_put(mddev2);
  6535. if (signal_pending(current))
  6536. flush_signals(current);
  6537. schedule();
  6538. finish_wait(&resync_wait, &wq);
  6539. goto try_again;
  6540. }
  6541. finish_wait(&resync_wait, &wq);
  6542. }
  6543. }
  6544. } while (mddev->curr_resync < 2);
  6545. j = 0;
  6546. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6547. /* resync follows the size requested by the personality,
  6548. * which defaults to physical size, but can be virtual size
  6549. */
  6550. max_sectors = mddev->resync_max_sectors;
  6551. atomic64_set(&mddev->resync_mismatches, 0);
  6552. /* we don't use the checkpoint if there's a bitmap */
  6553. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6554. j = mddev->resync_min;
  6555. else if (!mddev->bitmap)
  6556. j = mddev->recovery_cp;
  6557. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6558. max_sectors = mddev->resync_max_sectors;
  6559. else {
  6560. /* recovery follows the physical size of devices */
  6561. max_sectors = mddev->dev_sectors;
  6562. j = MaxSector;
  6563. rcu_read_lock();
  6564. rdev_for_each_rcu(rdev, mddev)
  6565. if (rdev->raid_disk >= 0 &&
  6566. !test_bit(Faulty, &rdev->flags) &&
  6567. !test_bit(In_sync, &rdev->flags) &&
  6568. rdev->recovery_offset < j)
  6569. j = rdev->recovery_offset;
  6570. rcu_read_unlock();
  6571. }
  6572. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6573. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6574. " %d KB/sec/disk.\n", speed_min(mddev));
  6575. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6576. "(but not more than %d KB/sec) for %s.\n",
  6577. speed_max(mddev), desc);
  6578. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6579. io_sectors = 0;
  6580. for (m = 0; m < SYNC_MARKS; m++) {
  6581. mark[m] = jiffies;
  6582. mark_cnt[m] = io_sectors;
  6583. }
  6584. last_mark = 0;
  6585. mddev->resync_mark = mark[last_mark];
  6586. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6587. /*
  6588. * Tune reconstruction:
  6589. */
  6590. window = 32*(PAGE_SIZE/512);
  6591. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6592. window/2, (unsigned long long)max_sectors/2);
  6593. atomic_set(&mddev->recovery_active, 0);
  6594. last_check = 0;
  6595. if (j>2) {
  6596. printk(KERN_INFO
  6597. "md: resuming %s of %s from checkpoint.\n",
  6598. desc, mdname(mddev));
  6599. mddev->curr_resync = j;
  6600. } else
  6601. mddev->curr_resync = 3; /* no longer delayed */
  6602. mddev->curr_resync_completed = j;
  6603. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6604. md_new_event(mddev);
  6605. blk_start_plug(&plug);
  6606. while (j < max_sectors) {
  6607. sector_t sectors;
  6608. skipped = 0;
  6609. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6610. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6611. (mddev->curr_resync - mddev->curr_resync_completed)
  6612. > (max_sectors >> 4)) ||
  6613. (j - mddev->curr_resync_completed)*2
  6614. >= mddev->resync_max - mddev->curr_resync_completed
  6615. )) {
  6616. /* time to update curr_resync_completed */
  6617. wait_event(mddev->recovery_wait,
  6618. atomic_read(&mddev->recovery_active) == 0);
  6619. mddev->curr_resync_completed = j;
  6620. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6621. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6622. }
  6623. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6624. /* As this condition is controlled by user-space,
  6625. * we can block indefinitely, so use '_interruptible'
  6626. * to avoid triggering warnings.
  6627. */
  6628. flush_signals(current); /* just in case */
  6629. wait_event_interruptible(mddev->recovery_wait,
  6630. mddev->resync_max > j
  6631. || kthread_should_stop());
  6632. }
  6633. if (kthread_should_stop())
  6634. goto interrupted;
  6635. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6636. currspeed < speed_min(mddev));
  6637. if (sectors == 0) {
  6638. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6639. goto out;
  6640. }
  6641. if (!skipped) { /* actual IO requested */
  6642. io_sectors += sectors;
  6643. atomic_add(sectors, &mddev->recovery_active);
  6644. }
  6645. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6646. break;
  6647. j += sectors;
  6648. if (j > 2)
  6649. mddev->curr_resync = j;
  6650. mddev->curr_mark_cnt = io_sectors;
  6651. if (last_check == 0)
  6652. /* this is the earliest that rebuild will be
  6653. * visible in /proc/mdstat
  6654. */
  6655. md_new_event(mddev);
  6656. if (last_check + window > io_sectors || j == max_sectors)
  6657. continue;
  6658. last_check = io_sectors;
  6659. repeat:
  6660. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6661. /* step marks */
  6662. int next = (last_mark+1) % SYNC_MARKS;
  6663. mddev->resync_mark = mark[next];
  6664. mddev->resync_mark_cnt = mark_cnt[next];
  6665. mark[next] = jiffies;
  6666. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6667. last_mark = next;
  6668. }
  6669. if (kthread_should_stop())
  6670. goto interrupted;
  6671. /*
  6672. * this loop exits only if either when we are slower than
  6673. * the 'hard' speed limit, or the system was IO-idle for
  6674. * a jiffy.
  6675. * the system might be non-idle CPU-wise, but we only care
  6676. * about not overloading the IO subsystem. (things like an
  6677. * e2fsck being done on the RAID array should execute fast)
  6678. */
  6679. cond_resched();
  6680. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6681. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6682. if (currspeed > speed_min(mddev)) {
  6683. if ((currspeed > speed_max(mddev)) ||
  6684. !is_mddev_idle(mddev, 0)) {
  6685. msleep(500);
  6686. goto repeat;
  6687. }
  6688. }
  6689. }
  6690. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6691. /*
  6692. * this also signals 'finished resyncing' to md_stop
  6693. */
  6694. out:
  6695. blk_finish_plug(&plug);
  6696. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6697. /* tell personality that we are finished */
  6698. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6699. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6700. mddev->curr_resync > 2) {
  6701. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6702. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6703. if (mddev->curr_resync >= mddev->recovery_cp) {
  6704. printk(KERN_INFO
  6705. "md: checkpointing %s of %s.\n",
  6706. desc, mdname(mddev));
  6707. mddev->recovery_cp =
  6708. mddev->curr_resync_completed;
  6709. }
  6710. } else
  6711. mddev->recovery_cp = MaxSector;
  6712. } else {
  6713. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6714. mddev->curr_resync = MaxSector;
  6715. rcu_read_lock();
  6716. rdev_for_each_rcu(rdev, mddev)
  6717. if (rdev->raid_disk >= 0 &&
  6718. mddev->delta_disks >= 0 &&
  6719. !test_bit(Faulty, &rdev->flags) &&
  6720. !test_bit(In_sync, &rdev->flags) &&
  6721. rdev->recovery_offset < mddev->curr_resync)
  6722. rdev->recovery_offset = mddev->curr_resync;
  6723. rcu_read_unlock();
  6724. }
  6725. }
  6726. skip:
  6727. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6728. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6729. /* We completed so min/max setting can be forgotten if used. */
  6730. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6731. mddev->resync_min = 0;
  6732. mddev->resync_max = MaxSector;
  6733. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6734. mddev->resync_min = mddev->curr_resync_completed;
  6735. mddev->curr_resync = 0;
  6736. wake_up(&resync_wait);
  6737. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6738. md_wakeup_thread(mddev->thread);
  6739. return;
  6740. interrupted:
  6741. /*
  6742. * got a signal, exit.
  6743. */
  6744. printk(KERN_INFO
  6745. "md: md_do_sync() got signal ... exiting\n");
  6746. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6747. goto out;
  6748. }
  6749. EXPORT_SYMBOL_GPL(md_do_sync);
  6750. static int remove_and_add_spares(struct mddev *mddev)
  6751. {
  6752. struct md_rdev *rdev;
  6753. int spares = 0;
  6754. int removed = 0;
  6755. rdev_for_each(rdev, mddev)
  6756. if (rdev->raid_disk >= 0 &&
  6757. !test_bit(Blocked, &rdev->flags) &&
  6758. (test_bit(Faulty, &rdev->flags) ||
  6759. ! test_bit(In_sync, &rdev->flags)) &&
  6760. atomic_read(&rdev->nr_pending)==0) {
  6761. if (mddev->pers->hot_remove_disk(
  6762. mddev, rdev) == 0) {
  6763. sysfs_unlink_rdev(mddev, rdev);
  6764. rdev->raid_disk = -1;
  6765. removed++;
  6766. }
  6767. }
  6768. if (removed)
  6769. sysfs_notify(&mddev->kobj, NULL,
  6770. "degraded");
  6771. rdev_for_each(rdev, mddev) {
  6772. if (rdev->raid_disk >= 0 &&
  6773. !test_bit(In_sync, &rdev->flags) &&
  6774. !test_bit(Faulty, &rdev->flags))
  6775. spares++;
  6776. if (rdev->raid_disk < 0
  6777. && !test_bit(Faulty, &rdev->flags)) {
  6778. rdev->recovery_offset = 0;
  6779. if (mddev->pers->
  6780. hot_add_disk(mddev, rdev) == 0) {
  6781. if (sysfs_link_rdev(mddev, rdev))
  6782. /* failure here is OK */;
  6783. spares++;
  6784. md_new_event(mddev);
  6785. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6786. }
  6787. }
  6788. }
  6789. if (removed)
  6790. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6791. return spares;
  6792. }
  6793. static void reap_sync_thread(struct mddev *mddev)
  6794. {
  6795. struct md_rdev *rdev;
  6796. /* resync has finished, collect result */
  6797. md_unregister_thread(&mddev->sync_thread);
  6798. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6799. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6800. /* success...*/
  6801. /* activate any spares */
  6802. if (mddev->pers->spare_active(mddev)) {
  6803. sysfs_notify(&mddev->kobj, NULL,
  6804. "degraded");
  6805. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6806. }
  6807. }
  6808. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6809. mddev->pers->finish_reshape)
  6810. mddev->pers->finish_reshape(mddev);
  6811. /* If array is no-longer degraded, then any saved_raid_disk
  6812. * information must be scrapped. Also if any device is now
  6813. * In_sync we must scrape the saved_raid_disk for that device
  6814. * do the superblock for an incrementally recovered device
  6815. * written out.
  6816. */
  6817. rdev_for_each(rdev, mddev)
  6818. if (!mddev->degraded ||
  6819. test_bit(In_sync, &rdev->flags))
  6820. rdev->saved_raid_disk = -1;
  6821. md_update_sb(mddev, 1);
  6822. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6823. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6824. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6825. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6826. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6827. /* flag recovery needed just to double check */
  6828. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6829. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6830. md_new_event(mddev);
  6831. if (mddev->event_work.func)
  6832. queue_work(md_misc_wq, &mddev->event_work);
  6833. }
  6834. /*
  6835. * This routine is regularly called by all per-raid-array threads to
  6836. * deal with generic issues like resync and super-block update.
  6837. * Raid personalities that don't have a thread (linear/raid0) do not
  6838. * need this as they never do any recovery or update the superblock.
  6839. *
  6840. * It does not do any resync itself, but rather "forks" off other threads
  6841. * to do that as needed.
  6842. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6843. * "->recovery" and create a thread at ->sync_thread.
  6844. * When the thread finishes it sets MD_RECOVERY_DONE
  6845. * and wakeups up this thread which will reap the thread and finish up.
  6846. * This thread also removes any faulty devices (with nr_pending == 0).
  6847. *
  6848. * The overall approach is:
  6849. * 1/ if the superblock needs updating, update it.
  6850. * 2/ If a recovery thread is running, don't do anything else.
  6851. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6852. * 4/ If there are any faulty devices, remove them.
  6853. * 5/ If array is degraded, try to add spares devices
  6854. * 6/ If array has spares or is not in-sync, start a resync thread.
  6855. */
  6856. void md_check_recovery(struct mddev *mddev)
  6857. {
  6858. if (mddev->suspended)
  6859. return;
  6860. if (mddev->bitmap)
  6861. bitmap_daemon_work(mddev);
  6862. if (signal_pending(current)) {
  6863. if (mddev->pers->sync_request && !mddev->external) {
  6864. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6865. mdname(mddev));
  6866. mddev->safemode = 2;
  6867. }
  6868. flush_signals(current);
  6869. }
  6870. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6871. return;
  6872. if ( ! (
  6873. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6874. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6875. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6876. (mddev->external == 0 && mddev->safemode == 1) ||
  6877. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6878. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6879. ))
  6880. return;
  6881. if (mddev_trylock(mddev)) {
  6882. int spares = 0;
  6883. if (mddev->ro) {
  6884. /* Only thing we do on a ro array is remove
  6885. * failed devices.
  6886. */
  6887. struct md_rdev *rdev;
  6888. rdev_for_each(rdev, mddev)
  6889. if (rdev->raid_disk >= 0 &&
  6890. !test_bit(Blocked, &rdev->flags) &&
  6891. test_bit(Faulty, &rdev->flags) &&
  6892. atomic_read(&rdev->nr_pending)==0) {
  6893. if (mddev->pers->hot_remove_disk(
  6894. mddev, rdev) == 0) {
  6895. sysfs_unlink_rdev(mddev, rdev);
  6896. rdev->raid_disk = -1;
  6897. }
  6898. }
  6899. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6900. goto unlock;
  6901. }
  6902. if (!mddev->external) {
  6903. int did_change = 0;
  6904. spin_lock_irq(&mddev->write_lock);
  6905. if (mddev->safemode &&
  6906. !atomic_read(&mddev->writes_pending) &&
  6907. !mddev->in_sync &&
  6908. mddev->recovery_cp == MaxSector) {
  6909. mddev->in_sync = 1;
  6910. did_change = 1;
  6911. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6912. }
  6913. if (mddev->safemode == 1)
  6914. mddev->safemode = 0;
  6915. spin_unlock_irq(&mddev->write_lock);
  6916. if (did_change)
  6917. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6918. }
  6919. if (mddev->flags)
  6920. md_update_sb(mddev, 0);
  6921. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6922. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6923. /* resync/recovery still happening */
  6924. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6925. goto unlock;
  6926. }
  6927. if (mddev->sync_thread) {
  6928. reap_sync_thread(mddev);
  6929. goto unlock;
  6930. }
  6931. /* Set RUNNING before clearing NEEDED to avoid
  6932. * any transients in the value of "sync_action".
  6933. */
  6934. mddev->curr_resync_completed = 0;
  6935. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6936. /* Clear some bits that don't mean anything, but
  6937. * might be left set
  6938. */
  6939. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6940. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6941. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6942. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6943. goto unlock;
  6944. /* no recovery is running.
  6945. * remove any failed drives, then
  6946. * add spares if possible.
  6947. * Spares are also removed and re-added, to allow
  6948. * the personality to fail the re-add.
  6949. */
  6950. if (mddev->reshape_position != MaxSector) {
  6951. if (mddev->pers->check_reshape == NULL ||
  6952. mddev->pers->check_reshape(mddev) != 0)
  6953. /* Cannot proceed */
  6954. goto unlock;
  6955. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6956. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6957. } else if ((spares = remove_and_add_spares(mddev))) {
  6958. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6959. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6960. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6961. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6962. } else if (mddev->recovery_cp < MaxSector) {
  6963. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6964. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6965. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6966. /* nothing to be done ... */
  6967. goto unlock;
  6968. if (mddev->pers->sync_request) {
  6969. if (spares) {
  6970. /* We are adding a device or devices to an array
  6971. * which has the bitmap stored on all devices.
  6972. * So make sure all bitmap pages get written
  6973. */
  6974. bitmap_write_all(mddev->bitmap);
  6975. }
  6976. mddev->sync_thread = md_register_thread(md_do_sync,
  6977. mddev,
  6978. "resync");
  6979. if (!mddev->sync_thread) {
  6980. printk(KERN_ERR "%s: could not start resync"
  6981. " thread...\n",
  6982. mdname(mddev));
  6983. /* leave the spares where they are, it shouldn't hurt */
  6984. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6985. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6986. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6987. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6988. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6989. } else
  6990. md_wakeup_thread(mddev->sync_thread);
  6991. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6992. md_new_event(mddev);
  6993. }
  6994. unlock:
  6995. if (!mddev->sync_thread) {
  6996. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6997. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6998. &mddev->recovery))
  6999. if (mddev->sysfs_action)
  7000. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7001. }
  7002. mddev_unlock(mddev);
  7003. }
  7004. }
  7005. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7006. {
  7007. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7008. wait_event_timeout(rdev->blocked_wait,
  7009. !test_bit(Blocked, &rdev->flags) &&
  7010. !test_bit(BlockedBadBlocks, &rdev->flags),
  7011. msecs_to_jiffies(5000));
  7012. rdev_dec_pending(rdev, mddev);
  7013. }
  7014. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7015. void md_finish_reshape(struct mddev *mddev)
  7016. {
  7017. /* called be personality module when reshape completes. */
  7018. struct md_rdev *rdev;
  7019. rdev_for_each(rdev, mddev) {
  7020. if (rdev->data_offset > rdev->new_data_offset)
  7021. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7022. else
  7023. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7024. rdev->data_offset = rdev->new_data_offset;
  7025. }
  7026. }
  7027. EXPORT_SYMBOL(md_finish_reshape);
  7028. /* Bad block management.
  7029. * We can record which blocks on each device are 'bad' and so just
  7030. * fail those blocks, or that stripe, rather than the whole device.
  7031. * Entries in the bad-block table are 64bits wide. This comprises:
  7032. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7033. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7034. * A 'shift' can be set so that larger blocks are tracked and
  7035. * consequently larger devices can be covered.
  7036. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7037. *
  7038. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7039. * might need to retry if it is very unlucky.
  7040. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7041. * so we use the write_seqlock_irq variant.
  7042. *
  7043. * When looking for a bad block we specify a range and want to
  7044. * know if any block in the range is bad. So we binary-search
  7045. * to the last range that starts at-or-before the given endpoint,
  7046. * (or "before the sector after the target range")
  7047. * then see if it ends after the given start.
  7048. * We return
  7049. * 0 if there are no known bad blocks in the range
  7050. * 1 if there are known bad block which are all acknowledged
  7051. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7052. * plus the start/length of the first bad section we overlap.
  7053. */
  7054. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7055. sector_t *first_bad, int *bad_sectors)
  7056. {
  7057. int hi;
  7058. int lo;
  7059. u64 *p = bb->page;
  7060. int rv;
  7061. sector_t target = s + sectors;
  7062. unsigned seq;
  7063. if (bb->shift > 0) {
  7064. /* round the start down, and the end up */
  7065. s >>= bb->shift;
  7066. target += (1<<bb->shift) - 1;
  7067. target >>= bb->shift;
  7068. sectors = target - s;
  7069. }
  7070. /* 'target' is now the first block after the bad range */
  7071. retry:
  7072. seq = read_seqbegin(&bb->lock);
  7073. lo = 0;
  7074. rv = 0;
  7075. hi = bb->count;
  7076. /* Binary search between lo and hi for 'target'
  7077. * i.e. for the last range that starts before 'target'
  7078. */
  7079. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7080. * are known not to be the last range before target.
  7081. * VARIANT: hi-lo is the number of possible
  7082. * ranges, and decreases until it reaches 1
  7083. */
  7084. while (hi - lo > 1) {
  7085. int mid = (lo + hi) / 2;
  7086. sector_t a = BB_OFFSET(p[mid]);
  7087. if (a < target)
  7088. /* This could still be the one, earlier ranges
  7089. * could not. */
  7090. lo = mid;
  7091. else
  7092. /* This and later ranges are definitely out. */
  7093. hi = mid;
  7094. }
  7095. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7096. if (hi > lo) {
  7097. /* need to check all range that end after 's' to see if
  7098. * any are unacknowledged.
  7099. */
  7100. while (lo >= 0 &&
  7101. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7102. if (BB_OFFSET(p[lo]) < target) {
  7103. /* starts before the end, and finishes after
  7104. * the start, so they must overlap
  7105. */
  7106. if (rv != -1 && BB_ACK(p[lo]))
  7107. rv = 1;
  7108. else
  7109. rv = -1;
  7110. *first_bad = BB_OFFSET(p[lo]);
  7111. *bad_sectors = BB_LEN(p[lo]);
  7112. }
  7113. lo--;
  7114. }
  7115. }
  7116. if (read_seqretry(&bb->lock, seq))
  7117. goto retry;
  7118. return rv;
  7119. }
  7120. EXPORT_SYMBOL_GPL(md_is_badblock);
  7121. /*
  7122. * Add a range of bad blocks to the table.
  7123. * This might extend the table, or might contract it
  7124. * if two adjacent ranges can be merged.
  7125. * We binary-search to find the 'insertion' point, then
  7126. * decide how best to handle it.
  7127. */
  7128. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7129. int acknowledged)
  7130. {
  7131. u64 *p;
  7132. int lo, hi;
  7133. int rv = 1;
  7134. if (bb->shift < 0)
  7135. /* badblocks are disabled */
  7136. return 0;
  7137. if (bb->shift) {
  7138. /* round the start down, and the end up */
  7139. sector_t next = s + sectors;
  7140. s >>= bb->shift;
  7141. next += (1<<bb->shift) - 1;
  7142. next >>= bb->shift;
  7143. sectors = next - s;
  7144. }
  7145. write_seqlock_irq(&bb->lock);
  7146. p = bb->page;
  7147. lo = 0;
  7148. hi = bb->count;
  7149. /* Find the last range that starts at-or-before 's' */
  7150. while (hi - lo > 1) {
  7151. int mid = (lo + hi) / 2;
  7152. sector_t a = BB_OFFSET(p[mid]);
  7153. if (a <= s)
  7154. lo = mid;
  7155. else
  7156. hi = mid;
  7157. }
  7158. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7159. hi = lo;
  7160. if (hi > lo) {
  7161. /* we found a range that might merge with the start
  7162. * of our new range
  7163. */
  7164. sector_t a = BB_OFFSET(p[lo]);
  7165. sector_t e = a + BB_LEN(p[lo]);
  7166. int ack = BB_ACK(p[lo]);
  7167. if (e >= s) {
  7168. /* Yes, we can merge with a previous range */
  7169. if (s == a && s + sectors >= e)
  7170. /* new range covers old */
  7171. ack = acknowledged;
  7172. else
  7173. ack = ack && acknowledged;
  7174. if (e < s + sectors)
  7175. e = s + sectors;
  7176. if (e - a <= BB_MAX_LEN) {
  7177. p[lo] = BB_MAKE(a, e-a, ack);
  7178. s = e;
  7179. } else {
  7180. /* does not all fit in one range,
  7181. * make p[lo] maximal
  7182. */
  7183. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7184. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7185. s = a + BB_MAX_LEN;
  7186. }
  7187. sectors = e - s;
  7188. }
  7189. }
  7190. if (sectors && hi < bb->count) {
  7191. /* 'hi' points to the first range that starts after 's'.
  7192. * Maybe we can merge with the start of that range */
  7193. sector_t a = BB_OFFSET(p[hi]);
  7194. sector_t e = a + BB_LEN(p[hi]);
  7195. int ack = BB_ACK(p[hi]);
  7196. if (a <= s + sectors) {
  7197. /* merging is possible */
  7198. if (e <= s + sectors) {
  7199. /* full overlap */
  7200. e = s + sectors;
  7201. ack = acknowledged;
  7202. } else
  7203. ack = ack && acknowledged;
  7204. a = s;
  7205. if (e - a <= BB_MAX_LEN) {
  7206. p[hi] = BB_MAKE(a, e-a, ack);
  7207. s = e;
  7208. } else {
  7209. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7210. s = a + BB_MAX_LEN;
  7211. }
  7212. sectors = e - s;
  7213. lo = hi;
  7214. hi++;
  7215. }
  7216. }
  7217. if (sectors == 0 && hi < bb->count) {
  7218. /* we might be able to combine lo and hi */
  7219. /* Note: 's' is at the end of 'lo' */
  7220. sector_t a = BB_OFFSET(p[hi]);
  7221. int lolen = BB_LEN(p[lo]);
  7222. int hilen = BB_LEN(p[hi]);
  7223. int newlen = lolen + hilen - (s - a);
  7224. if (s >= a && newlen < BB_MAX_LEN) {
  7225. /* yes, we can combine them */
  7226. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7227. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7228. memmove(p + hi, p + hi + 1,
  7229. (bb->count - hi - 1) * 8);
  7230. bb->count--;
  7231. }
  7232. }
  7233. while (sectors) {
  7234. /* didn't merge (it all).
  7235. * Need to add a range just before 'hi' */
  7236. if (bb->count >= MD_MAX_BADBLOCKS) {
  7237. /* No room for more */
  7238. rv = 0;
  7239. break;
  7240. } else {
  7241. int this_sectors = sectors;
  7242. memmove(p + hi + 1, p + hi,
  7243. (bb->count - hi) * 8);
  7244. bb->count++;
  7245. if (this_sectors > BB_MAX_LEN)
  7246. this_sectors = BB_MAX_LEN;
  7247. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7248. sectors -= this_sectors;
  7249. s += this_sectors;
  7250. }
  7251. }
  7252. bb->changed = 1;
  7253. if (!acknowledged)
  7254. bb->unacked_exist = 1;
  7255. write_sequnlock_irq(&bb->lock);
  7256. return rv;
  7257. }
  7258. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7259. int is_new)
  7260. {
  7261. int rv;
  7262. if (is_new)
  7263. s += rdev->new_data_offset;
  7264. else
  7265. s += rdev->data_offset;
  7266. rv = md_set_badblocks(&rdev->badblocks,
  7267. s, sectors, 0);
  7268. if (rv) {
  7269. /* Make sure they get written out promptly */
  7270. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7271. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7272. md_wakeup_thread(rdev->mddev->thread);
  7273. }
  7274. return rv;
  7275. }
  7276. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7277. /*
  7278. * Remove a range of bad blocks from the table.
  7279. * This may involve extending the table if we spilt a region,
  7280. * but it must not fail. So if the table becomes full, we just
  7281. * drop the remove request.
  7282. */
  7283. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7284. {
  7285. u64 *p;
  7286. int lo, hi;
  7287. sector_t target = s + sectors;
  7288. int rv = 0;
  7289. if (bb->shift > 0) {
  7290. /* When clearing we round the start up and the end down.
  7291. * This should not matter as the shift should align with
  7292. * the block size and no rounding should ever be needed.
  7293. * However it is better the think a block is bad when it
  7294. * isn't than to think a block is not bad when it is.
  7295. */
  7296. s += (1<<bb->shift) - 1;
  7297. s >>= bb->shift;
  7298. target >>= bb->shift;
  7299. sectors = target - s;
  7300. }
  7301. write_seqlock_irq(&bb->lock);
  7302. p = bb->page;
  7303. lo = 0;
  7304. hi = bb->count;
  7305. /* Find the last range that starts before 'target' */
  7306. while (hi - lo > 1) {
  7307. int mid = (lo + hi) / 2;
  7308. sector_t a = BB_OFFSET(p[mid]);
  7309. if (a < target)
  7310. lo = mid;
  7311. else
  7312. hi = mid;
  7313. }
  7314. if (hi > lo) {
  7315. /* p[lo] is the last range that could overlap the
  7316. * current range. Earlier ranges could also overlap,
  7317. * but only this one can overlap the end of the range.
  7318. */
  7319. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7320. /* Partial overlap, leave the tail of this range */
  7321. int ack = BB_ACK(p[lo]);
  7322. sector_t a = BB_OFFSET(p[lo]);
  7323. sector_t end = a + BB_LEN(p[lo]);
  7324. if (a < s) {
  7325. /* we need to split this range */
  7326. if (bb->count >= MD_MAX_BADBLOCKS) {
  7327. rv = 0;
  7328. goto out;
  7329. }
  7330. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7331. bb->count++;
  7332. p[lo] = BB_MAKE(a, s-a, ack);
  7333. lo++;
  7334. }
  7335. p[lo] = BB_MAKE(target, end - target, ack);
  7336. /* there is no longer an overlap */
  7337. hi = lo;
  7338. lo--;
  7339. }
  7340. while (lo >= 0 &&
  7341. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7342. /* This range does overlap */
  7343. if (BB_OFFSET(p[lo]) < s) {
  7344. /* Keep the early parts of this range. */
  7345. int ack = BB_ACK(p[lo]);
  7346. sector_t start = BB_OFFSET(p[lo]);
  7347. p[lo] = BB_MAKE(start, s - start, ack);
  7348. /* now low doesn't overlap, so.. */
  7349. break;
  7350. }
  7351. lo--;
  7352. }
  7353. /* 'lo' is strictly before, 'hi' is strictly after,
  7354. * anything between needs to be discarded
  7355. */
  7356. if (hi - lo > 1) {
  7357. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7358. bb->count -= (hi - lo - 1);
  7359. }
  7360. }
  7361. bb->changed = 1;
  7362. out:
  7363. write_sequnlock_irq(&bb->lock);
  7364. return rv;
  7365. }
  7366. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7367. int is_new)
  7368. {
  7369. if (is_new)
  7370. s += rdev->new_data_offset;
  7371. else
  7372. s += rdev->data_offset;
  7373. return md_clear_badblocks(&rdev->badblocks,
  7374. s, sectors);
  7375. }
  7376. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7377. /*
  7378. * Acknowledge all bad blocks in a list.
  7379. * This only succeeds if ->changed is clear. It is used by
  7380. * in-kernel metadata updates
  7381. */
  7382. void md_ack_all_badblocks(struct badblocks *bb)
  7383. {
  7384. if (bb->page == NULL || bb->changed)
  7385. /* no point even trying */
  7386. return;
  7387. write_seqlock_irq(&bb->lock);
  7388. if (bb->changed == 0 && bb->unacked_exist) {
  7389. u64 *p = bb->page;
  7390. int i;
  7391. for (i = 0; i < bb->count ; i++) {
  7392. if (!BB_ACK(p[i])) {
  7393. sector_t start = BB_OFFSET(p[i]);
  7394. int len = BB_LEN(p[i]);
  7395. p[i] = BB_MAKE(start, len, 1);
  7396. }
  7397. }
  7398. bb->unacked_exist = 0;
  7399. }
  7400. write_sequnlock_irq(&bb->lock);
  7401. }
  7402. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7403. /* sysfs access to bad-blocks list.
  7404. * We present two files.
  7405. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7406. * are recorded as bad. The list is truncated to fit within
  7407. * the one-page limit of sysfs.
  7408. * Writing "sector length" to this file adds an acknowledged
  7409. * bad block list.
  7410. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7411. * been acknowledged. Writing to this file adds bad blocks
  7412. * without acknowledging them. This is largely for testing.
  7413. */
  7414. static ssize_t
  7415. badblocks_show(struct badblocks *bb, char *page, int unack)
  7416. {
  7417. size_t len;
  7418. int i;
  7419. u64 *p = bb->page;
  7420. unsigned seq;
  7421. if (bb->shift < 0)
  7422. return 0;
  7423. retry:
  7424. seq = read_seqbegin(&bb->lock);
  7425. len = 0;
  7426. i = 0;
  7427. while (len < PAGE_SIZE && i < bb->count) {
  7428. sector_t s = BB_OFFSET(p[i]);
  7429. unsigned int length = BB_LEN(p[i]);
  7430. int ack = BB_ACK(p[i]);
  7431. i++;
  7432. if (unack && ack)
  7433. continue;
  7434. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7435. (unsigned long long)s << bb->shift,
  7436. length << bb->shift);
  7437. }
  7438. if (unack && len == 0)
  7439. bb->unacked_exist = 0;
  7440. if (read_seqretry(&bb->lock, seq))
  7441. goto retry;
  7442. return len;
  7443. }
  7444. #define DO_DEBUG 1
  7445. static ssize_t
  7446. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7447. {
  7448. unsigned long long sector;
  7449. int length;
  7450. char newline;
  7451. #ifdef DO_DEBUG
  7452. /* Allow clearing via sysfs *only* for testing/debugging.
  7453. * Normally only a successful write may clear a badblock
  7454. */
  7455. int clear = 0;
  7456. if (page[0] == '-') {
  7457. clear = 1;
  7458. page++;
  7459. }
  7460. #endif /* DO_DEBUG */
  7461. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7462. case 3:
  7463. if (newline != '\n')
  7464. return -EINVAL;
  7465. case 2:
  7466. if (length <= 0)
  7467. return -EINVAL;
  7468. break;
  7469. default:
  7470. return -EINVAL;
  7471. }
  7472. #ifdef DO_DEBUG
  7473. if (clear) {
  7474. md_clear_badblocks(bb, sector, length);
  7475. return len;
  7476. }
  7477. #endif /* DO_DEBUG */
  7478. if (md_set_badblocks(bb, sector, length, !unack))
  7479. return len;
  7480. else
  7481. return -ENOSPC;
  7482. }
  7483. static int md_notify_reboot(struct notifier_block *this,
  7484. unsigned long code, void *x)
  7485. {
  7486. struct list_head *tmp;
  7487. struct mddev *mddev;
  7488. int need_delay = 0;
  7489. for_each_mddev(mddev, tmp) {
  7490. if (mddev_trylock(mddev)) {
  7491. if (mddev->pers)
  7492. __md_stop_writes(mddev);
  7493. mddev->safemode = 2;
  7494. mddev_unlock(mddev);
  7495. }
  7496. need_delay = 1;
  7497. }
  7498. /*
  7499. * certain more exotic SCSI devices are known to be
  7500. * volatile wrt too early system reboots. While the
  7501. * right place to handle this issue is the given
  7502. * driver, we do want to have a safe RAID driver ...
  7503. */
  7504. if (need_delay)
  7505. mdelay(1000*1);
  7506. return NOTIFY_DONE;
  7507. }
  7508. static struct notifier_block md_notifier = {
  7509. .notifier_call = md_notify_reboot,
  7510. .next = NULL,
  7511. .priority = INT_MAX, /* before any real devices */
  7512. };
  7513. static void md_geninit(void)
  7514. {
  7515. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7516. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7517. }
  7518. static int __init md_init(void)
  7519. {
  7520. int ret = -ENOMEM;
  7521. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7522. if (!md_wq)
  7523. goto err_wq;
  7524. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7525. if (!md_misc_wq)
  7526. goto err_misc_wq;
  7527. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7528. goto err_md;
  7529. if ((ret = register_blkdev(0, "mdp")) < 0)
  7530. goto err_mdp;
  7531. mdp_major = ret;
  7532. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7533. md_probe, NULL, NULL);
  7534. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7535. md_probe, NULL, NULL);
  7536. register_reboot_notifier(&md_notifier);
  7537. raid_table_header = register_sysctl_table(raid_root_table);
  7538. md_geninit();
  7539. return 0;
  7540. err_mdp:
  7541. unregister_blkdev(MD_MAJOR, "md");
  7542. err_md:
  7543. destroy_workqueue(md_misc_wq);
  7544. err_misc_wq:
  7545. destroy_workqueue(md_wq);
  7546. err_wq:
  7547. return ret;
  7548. }
  7549. #ifndef MODULE
  7550. /*
  7551. * Searches all registered partitions for autorun RAID arrays
  7552. * at boot time.
  7553. */
  7554. static LIST_HEAD(all_detected_devices);
  7555. struct detected_devices_node {
  7556. struct list_head list;
  7557. dev_t dev;
  7558. };
  7559. void md_autodetect_dev(dev_t dev)
  7560. {
  7561. struct detected_devices_node *node_detected_dev;
  7562. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7563. if (node_detected_dev) {
  7564. node_detected_dev->dev = dev;
  7565. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7566. } else {
  7567. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7568. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7569. }
  7570. }
  7571. static void autostart_arrays(int part)
  7572. {
  7573. struct md_rdev *rdev;
  7574. struct detected_devices_node *node_detected_dev;
  7575. dev_t dev;
  7576. int i_scanned, i_passed;
  7577. i_scanned = 0;
  7578. i_passed = 0;
  7579. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7580. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7581. i_scanned++;
  7582. node_detected_dev = list_entry(all_detected_devices.next,
  7583. struct detected_devices_node, list);
  7584. list_del(&node_detected_dev->list);
  7585. dev = node_detected_dev->dev;
  7586. kfree(node_detected_dev);
  7587. rdev = md_import_device(dev,0, 90);
  7588. if (IS_ERR(rdev))
  7589. continue;
  7590. if (test_bit(Faulty, &rdev->flags)) {
  7591. MD_BUG();
  7592. continue;
  7593. }
  7594. set_bit(AutoDetected, &rdev->flags);
  7595. list_add(&rdev->same_set, &pending_raid_disks);
  7596. i_passed++;
  7597. }
  7598. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7599. i_scanned, i_passed);
  7600. autorun_devices(part);
  7601. }
  7602. #endif /* !MODULE */
  7603. static __exit void md_exit(void)
  7604. {
  7605. struct mddev *mddev;
  7606. struct list_head *tmp;
  7607. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7608. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7609. unregister_blkdev(MD_MAJOR,"md");
  7610. unregister_blkdev(mdp_major, "mdp");
  7611. unregister_reboot_notifier(&md_notifier);
  7612. unregister_sysctl_table(raid_table_header);
  7613. remove_proc_entry("mdstat", NULL);
  7614. for_each_mddev(mddev, tmp) {
  7615. export_array(mddev);
  7616. mddev->hold_active = 0;
  7617. }
  7618. destroy_workqueue(md_misc_wq);
  7619. destroy_workqueue(md_wq);
  7620. }
  7621. subsys_initcall(md_init);
  7622. module_exit(md_exit)
  7623. static int get_ro(char *buffer, struct kernel_param *kp)
  7624. {
  7625. return sprintf(buffer, "%d", start_readonly);
  7626. }
  7627. static int set_ro(const char *val, struct kernel_param *kp)
  7628. {
  7629. char *e;
  7630. int num = simple_strtoul(val, &e, 10);
  7631. if (*val && (*e == '\0' || *e == '\n')) {
  7632. start_readonly = num;
  7633. return 0;
  7634. }
  7635. return -EINVAL;
  7636. }
  7637. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7638. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7639. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7640. EXPORT_SYMBOL(register_md_personality);
  7641. EXPORT_SYMBOL(unregister_md_personality);
  7642. EXPORT_SYMBOL(md_error);
  7643. EXPORT_SYMBOL(md_done_sync);
  7644. EXPORT_SYMBOL(md_write_start);
  7645. EXPORT_SYMBOL(md_write_end);
  7646. EXPORT_SYMBOL(md_register_thread);
  7647. EXPORT_SYMBOL(md_unregister_thread);
  7648. EXPORT_SYMBOL(md_wakeup_thread);
  7649. EXPORT_SYMBOL(md_check_recovery);
  7650. MODULE_LICENSE("GPL");
  7651. MODULE_DESCRIPTION("MD RAID framework");
  7652. MODULE_ALIAS("md");
  7653. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);