dm-thin.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. /*
  25. * The block size of the device holding pool data must be
  26. * between 64KB and 1GB.
  27. */
  28. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  29. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  30. /*
  31. * Device id is restricted to 24 bits.
  32. */
  33. #define MAX_DEV_ID ((1 << 24) - 1)
  34. /*
  35. * How do we handle breaking sharing of data blocks?
  36. * =================================================
  37. *
  38. * We use a standard copy-on-write btree to store the mappings for the
  39. * devices (note I'm talking about copy-on-write of the metadata here, not
  40. * the data). When you take an internal snapshot you clone the root node
  41. * of the origin btree. After this there is no concept of an origin or a
  42. * snapshot. They are just two device trees that happen to point to the
  43. * same data blocks.
  44. *
  45. * When we get a write in we decide if it's to a shared data block using
  46. * some timestamp magic. If it is, we have to break sharing.
  47. *
  48. * Let's say we write to a shared block in what was the origin. The
  49. * steps are:
  50. *
  51. * i) plug io further to this physical block. (see bio_prison code).
  52. *
  53. * ii) quiesce any read io to that shared data block. Obviously
  54. * including all devices that share this block. (see dm_deferred_set code)
  55. *
  56. * iii) copy the data block to a newly allocate block. This step can be
  57. * missed out if the io covers the block. (schedule_copy).
  58. *
  59. * iv) insert the new mapping into the origin's btree
  60. * (process_prepared_mapping). This act of inserting breaks some
  61. * sharing of btree nodes between the two devices. Breaking sharing only
  62. * effects the btree of that specific device. Btrees for the other
  63. * devices that share the block never change. The btree for the origin
  64. * device as it was after the last commit is untouched, ie. we're using
  65. * persistent data structures in the functional programming sense.
  66. *
  67. * v) unplug io to this physical block, including the io that triggered
  68. * the breaking of sharing.
  69. *
  70. * Steps (ii) and (iii) occur in parallel.
  71. *
  72. * The metadata _doesn't_ need to be committed before the io continues. We
  73. * get away with this because the io is always written to a _new_ block.
  74. * If there's a crash, then:
  75. *
  76. * - The origin mapping will point to the old origin block (the shared
  77. * one). This will contain the data as it was before the io that triggered
  78. * the breaking of sharing came in.
  79. *
  80. * - The snap mapping still points to the old block. As it would after
  81. * the commit.
  82. *
  83. * The downside of this scheme is the timestamp magic isn't perfect, and
  84. * will continue to think that data block in the snapshot device is shared
  85. * even after the write to the origin has broken sharing. I suspect data
  86. * blocks will typically be shared by many different devices, so we're
  87. * breaking sharing n + 1 times, rather than n, where n is the number of
  88. * devices that reference this data block. At the moment I think the
  89. * benefits far, far outweigh the disadvantages.
  90. */
  91. /*----------------------------------------------------------------*/
  92. /*
  93. * Key building.
  94. */
  95. static void build_data_key(struct dm_thin_device *td,
  96. dm_block_t b, struct dm_cell_key *key)
  97. {
  98. key->virtual = 0;
  99. key->dev = dm_thin_dev_id(td);
  100. key->block = b;
  101. }
  102. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  103. struct dm_cell_key *key)
  104. {
  105. key->virtual = 1;
  106. key->dev = dm_thin_dev_id(td);
  107. key->block = b;
  108. }
  109. /*----------------------------------------------------------------*/
  110. /*
  111. * A pool device ties together a metadata device and a data device. It
  112. * also provides the interface for creating and destroying internal
  113. * devices.
  114. */
  115. struct dm_thin_new_mapping;
  116. /*
  117. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  118. */
  119. enum pool_mode {
  120. PM_WRITE, /* metadata may be changed */
  121. PM_READ_ONLY, /* metadata may not be changed */
  122. PM_FAIL, /* all I/O fails */
  123. };
  124. struct pool_features {
  125. enum pool_mode mode;
  126. bool zero_new_blocks:1;
  127. bool discard_enabled:1;
  128. bool discard_passdown:1;
  129. };
  130. struct thin_c;
  131. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  132. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  133. struct pool {
  134. struct list_head list;
  135. struct dm_target *ti; /* Only set if a pool target is bound */
  136. struct mapped_device *pool_md;
  137. struct block_device *md_dev;
  138. struct dm_pool_metadata *pmd;
  139. dm_block_t low_water_blocks;
  140. uint32_t sectors_per_block;
  141. int sectors_per_block_shift;
  142. struct pool_features pf;
  143. unsigned low_water_triggered:1; /* A dm event has been sent */
  144. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  145. struct dm_bio_prison *prison;
  146. struct dm_kcopyd_client *copier;
  147. struct workqueue_struct *wq;
  148. struct work_struct worker;
  149. struct delayed_work waker;
  150. unsigned long last_commit_jiffies;
  151. unsigned ref_count;
  152. spinlock_t lock;
  153. struct bio_list deferred_bios;
  154. struct bio_list deferred_flush_bios;
  155. struct list_head prepared_mappings;
  156. struct list_head prepared_discards;
  157. struct bio_list retry_on_resume_list;
  158. struct dm_deferred_set *shared_read_ds;
  159. struct dm_deferred_set *all_io_ds;
  160. struct dm_thin_new_mapping *next_mapping;
  161. mempool_t *mapping_pool;
  162. mempool_t *endio_hook_pool;
  163. process_bio_fn process_bio;
  164. process_bio_fn process_discard;
  165. process_mapping_fn process_prepared_mapping;
  166. process_mapping_fn process_prepared_discard;
  167. };
  168. static enum pool_mode get_pool_mode(struct pool *pool);
  169. static void set_pool_mode(struct pool *pool, enum pool_mode mode);
  170. /*
  171. * Target context for a pool.
  172. */
  173. struct pool_c {
  174. struct dm_target *ti;
  175. struct pool *pool;
  176. struct dm_dev *data_dev;
  177. struct dm_dev *metadata_dev;
  178. struct dm_target_callbacks callbacks;
  179. dm_block_t low_water_blocks;
  180. struct pool_features requested_pf; /* Features requested during table load */
  181. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  182. };
  183. /*
  184. * Target context for a thin.
  185. */
  186. struct thin_c {
  187. struct dm_dev *pool_dev;
  188. struct dm_dev *origin_dev;
  189. dm_thin_id dev_id;
  190. struct pool *pool;
  191. struct dm_thin_device *td;
  192. };
  193. /*----------------------------------------------------------------*/
  194. /*
  195. * A global list of pools that uses a struct mapped_device as a key.
  196. */
  197. static struct dm_thin_pool_table {
  198. struct mutex mutex;
  199. struct list_head pools;
  200. } dm_thin_pool_table;
  201. static void pool_table_init(void)
  202. {
  203. mutex_init(&dm_thin_pool_table.mutex);
  204. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  205. }
  206. static void __pool_table_insert(struct pool *pool)
  207. {
  208. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  209. list_add(&pool->list, &dm_thin_pool_table.pools);
  210. }
  211. static void __pool_table_remove(struct pool *pool)
  212. {
  213. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  214. list_del(&pool->list);
  215. }
  216. static struct pool *__pool_table_lookup(struct mapped_device *md)
  217. {
  218. struct pool *pool = NULL, *tmp;
  219. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  220. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  221. if (tmp->pool_md == md) {
  222. pool = tmp;
  223. break;
  224. }
  225. }
  226. return pool;
  227. }
  228. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  229. {
  230. struct pool *pool = NULL, *tmp;
  231. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  232. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  233. if (tmp->md_dev == md_dev) {
  234. pool = tmp;
  235. break;
  236. }
  237. }
  238. return pool;
  239. }
  240. /*----------------------------------------------------------------*/
  241. struct dm_thin_endio_hook {
  242. struct thin_c *tc;
  243. struct dm_deferred_entry *shared_read_entry;
  244. struct dm_deferred_entry *all_io_entry;
  245. struct dm_thin_new_mapping *overwrite_mapping;
  246. };
  247. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  248. {
  249. struct bio *bio;
  250. struct bio_list bios;
  251. bio_list_init(&bios);
  252. bio_list_merge(&bios, master);
  253. bio_list_init(master);
  254. while ((bio = bio_list_pop(&bios))) {
  255. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  256. if (h->tc == tc)
  257. bio_endio(bio, DM_ENDIO_REQUEUE);
  258. else
  259. bio_list_add(master, bio);
  260. }
  261. }
  262. static void requeue_io(struct thin_c *tc)
  263. {
  264. struct pool *pool = tc->pool;
  265. unsigned long flags;
  266. spin_lock_irqsave(&pool->lock, flags);
  267. __requeue_bio_list(tc, &pool->deferred_bios);
  268. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  269. spin_unlock_irqrestore(&pool->lock, flags);
  270. }
  271. /*
  272. * This section of code contains the logic for processing a thin device's IO.
  273. * Much of the code depends on pool object resources (lists, workqueues, etc)
  274. * but most is exclusively called from the thin target rather than the thin-pool
  275. * target.
  276. */
  277. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  278. {
  279. sector_t block_nr = bio->bi_sector;
  280. if (tc->pool->sectors_per_block_shift < 0)
  281. (void) sector_div(block_nr, tc->pool->sectors_per_block);
  282. else
  283. block_nr >>= tc->pool->sectors_per_block_shift;
  284. return block_nr;
  285. }
  286. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  287. {
  288. struct pool *pool = tc->pool;
  289. sector_t bi_sector = bio->bi_sector;
  290. bio->bi_bdev = tc->pool_dev->bdev;
  291. if (tc->pool->sectors_per_block_shift < 0)
  292. bio->bi_sector = (block * pool->sectors_per_block) +
  293. sector_div(bi_sector, pool->sectors_per_block);
  294. else
  295. bio->bi_sector = (block << pool->sectors_per_block_shift) |
  296. (bi_sector & (pool->sectors_per_block - 1));
  297. }
  298. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  299. {
  300. bio->bi_bdev = tc->origin_dev->bdev;
  301. }
  302. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  303. {
  304. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  305. dm_thin_changed_this_transaction(tc->td);
  306. }
  307. static void issue(struct thin_c *tc, struct bio *bio)
  308. {
  309. struct pool *pool = tc->pool;
  310. unsigned long flags;
  311. if (!bio_triggers_commit(tc, bio)) {
  312. generic_make_request(bio);
  313. return;
  314. }
  315. /*
  316. * Complete bio with an error if earlier I/O caused changes to
  317. * the metadata that can't be committed e.g, due to I/O errors
  318. * on the metadata device.
  319. */
  320. if (dm_thin_aborted_changes(tc->td)) {
  321. bio_io_error(bio);
  322. return;
  323. }
  324. /*
  325. * Batch together any bios that trigger commits and then issue a
  326. * single commit for them in process_deferred_bios().
  327. */
  328. spin_lock_irqsave(&pool->lock, flags);
  329. bio_list_add(&pool->deferred_flush_bios, bio);
  330. spin_unlock_irqrestore(&pool->lock, flags);
  331. }
  332. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  333. {
  334. remap_to_origin(tc, bio);
  335. issue(tc, bio);
  336. }
  337. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  338. dm_block_t block)
  339. {
  340. remap(tc, bio, block);
  341. issue(tc, bio);
  342. }
  343. /*
  344. * wake_worker() is used when new work is queued and when pool_resume is
  345. * ready to continue deferred IO processing.
  346. */
  347. static void wake_worker(struct pool *pool)
  348. {
  349. queue_work(pool->wq, &pool->worker);
  350. }
  351. /*----------------------------------------------------------------*/
  352. /*
  353. * Bio endio functions.
  354. */
  355. struct dm_thin_new_mapping {
  356. struct list_head list;
  357. unsigned quiesced:1;
  358. unsigned prepared:1;
  359. unsigned pass_discard:1;
  360. struct thin_c *tc;
  361. dm_block_t virt_block;
  362. dm_block_t data_block;
  363. struct dm_bio_prison_cell *cell, *cell2;
  364. int err;
  365. /*
  366. * If the bio covers the whole area of a block then we can avoid
  367. * zeroing or copying. Instead this bio is hooked. The bio will
  368. * still be in the cell, so care has to be taken to avoid issuing
  369. * the bio twice.
  370. */
  371. struct bio *bio;
  372. bio_end_io_t *saved_bi_end_io;
  373. };
  374. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  375. {
  376. struct pool *pool = m->tc->pool;
  377. if (m->quiesced && m->prepared) {
  378. list_add(&m->list, &pool->prepared_mappings);
  379. wake_worker(pool);
  380. }
  381. }
  382. static void copy_complete(int read_err, unsigned long write_err, void *context)
  383. {
  384. unsigned long flags;
  385. struct dm_thin_new_mapping *m = context;
  386. struct pool *pool = m->tc->pool;
  387. m->err = read_err || write_err ? -EIO : 0;
  388. spin_lock_irqsave(&pool->lock, flags);
  389. m->prepared = 1;
  390. __maybe_add_mapping(m);
  391. spin_unlock_irqrestore(&pool->lock, flags);
  392. }
  393. static void overwrite_endio(struct bio *bio, int err)
  394. {
  395. unsigned long flags;
  396. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  397. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  398. struct pool *pool = m->tc->pool;
  399. m->err = err;
  400. spin_lock_irqsave(&pool->lock, flags);
  401. m->prepared = 1;
  402. __maybe_add_mapping(m);
  403. spin_unlock_irqrestore(&pool->lock, flags);
  404. }
  405. /*----------------------------------------------------------------*/
  406. /*
  407. * Workqueue.
  408. */
  409. /*
  410. * Prepared mapping jobs.
  411. */
  412. /*
  413. * This sends the bios in the cell back to the deferred_bios list.
  414. */
  415. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
  416. dm_block_t data_block)
  417. {
  418. struct pool *pool = tc->pool;
  419. unsigned long flags;
  420. spin_lock_irqsave(&pool->lock, flags);
  421. dm_cell_release(cell, &pool->deferred_bios);
  422. spin_unlock_irqrestore(&tc->pool->lock, flags);
  423. wake_worker(pool);
  424. }
  425. /*
  426. * Same as cell_defer above, except it omits one particular detainee,
  427. * a write bio that covers the block and has already been processed.
  428. */
  429. static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  430. {
  431. struct bio_list bios;
  432. struct pool *pool = tc->pool;
  433. unsigned long flags;
  434. bio_list_init(&bios);
  435. spin_lock_irqsave(&pool->lock, flags);
  436. dm_cell_release_no_holder(cell, &pool->deferred_bios);
  437. spin_unlock_irqrestore(&pool->lock, flags);
  438. wake_worker(pool);
  439. }
  440. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  441. {
  442. if (m->bio)
  443. m->bio->bi_end_io = m->saved_bi_end_io;
  444. dm_cell_error(m->cell);
  445. list_del(&m->list);
  446. mempool_free(m, m->tc->pool->mapping_pool);
  447. }
  448. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  449. {
  450. struct thin_c *tc = m->tc;
  451. struct bio *bio;
  452. int r;
  453. bio = m->bio;
  454. if (bio)
  455. bio->bi_end_io = m->saved_bi_end_io;
  456. if (m->err) {
  457. dm_cell_error(m->cell);
  458. goto out;
  459. }
  460. /*
  461. * Commit the prepared block into the mapping btree.
  462. * Any I/O for this block arriving after this point will get
  463. * remapped to it directly.
  464. */
  465. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  466. if (r) {
  467. DMERR("dm_thin_insert_block() failed");
  468. dm_cell_error(m->cell);
  469. goto out;
  470. }
  471. /*
  472. * Release any bios held while the block was being provisioned.
  473. * If we are processing a write bio that completely covers the block,
  474. * we already processed it so can ignore it now when processing
  475. * the bios in the cell.
  476. */
  477. if (bio) {
  478. cell_defer_except(tc, m->cell);
  479. bio_endio(bio, 0);
  480. } else
  481. cell_defer(tc, m->cell, m->data_block);
  482. out:
  483. list_del(&m->list);
  484. mempool_free(m, tc->pool->mapping_pool);
  485. }
  486. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  487. {
  488. struct thin_c *tc = m->tc;
  489. bio_io_error(m->bio);
  490. cell_defer_except(tc, m->cell);
  491. cell_defer_except(tc, m->cell2);
  492. mempool_free(m, tc->pool->mapping_pool);
  493. }
  494. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  495. {
  496. struct thin_c *tc = m->tc;
  497. if (m->pass_discard)
  498. remap_and_issue(tc, m->bio, m->data_block);
  499. else
  500. bio_endio(m->bio, 0);
  501. cell_defer_except(tc, m->cell);
  502. cell_defer_except(tc, m->cell2);
  503. mempool_free(m, tc->pool->mapping_pool);
  504. }
  505. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  506. {
  507. int r;
  508. struct thin_c *tc = m->tc;
  509. r = dm_thin_remove_block(tc->td, m->virt_block);
  510. if (r)
  511. DMERR("dm_thin_remove_block() failed");
  512. process_prepared_discard_passdown(m);
  513. }
  514. static void process_prepared(struct pool *pool, struct list_head *head,
  515. process_mapping_fn *fn)
  516. {
  517. unsigned long flags;
  518. struct list_head maps;
  519. struct dm_thin_new_mapping *m, *tmp;
  520. INIT_LIST_HEAD(&maps);
  521. spin_lock_irqsave(&pool->lock, flags);
  522. list_splice_init(head, &maps);
  523. spin_unlock_irqrestore(&pool->lock, flags);
  524. list_for_each_entry_safe(m, tmp, &maps, list)
  525. (*fn)(m);
  526. }
  527. /*
  528. * Deferred bio jobs.
  529. */
  530. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  531. {
  532. return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
  533. }
  534. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  535. {
  536. return (bio_data_dir(bio) == WRITE) &&
  537. io_overlaps_block(pool, bio);
  538. }
  539. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  540. bio_end_io_t *fn)
  541. {
  542. *save = bio->bi_end_io;
  543. bio->bi_end_io = fn;
  544. }
  545. static int ensure_next_mapping(struct pool *pool)
  546. {
  547. if (pool->next_mapping)
  548. return 0;
  549. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  550. return pool->next_mapping ? 0 : -ENOMEM;
  551. }
  552. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  553. {
  554. struct dm_thin_new_mapping *r = pool->next_mapping;
  555. BUG_ON(!pool->next_mapping);
  556. pool->next_mapping = NULL;
  557. return r;
  558. }
  559. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  560. struct dm_dev *origin, dm_block_t data_origin,
  561. dm_block_t data_dest,
  562. struct dm_bio_prison_cell *cell, struct bio *bio)
  563. {
  564. int r;
  565. struct pool *pool = tc->pool;
  566. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  567. INIT_LIST_HEAD(&m->list);
  568. m->quiesced = 0;
  569. m->prepared = 0;
  570. m->tc = tc;
  571. m->virt_block = virt_block;
  572. m->data_block = data_dest;
  573. m->cell = cell;
  574. m->err = 0;
  575. m->bio = NULL;
  576. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  577. m->quiesced = 1;
  578. /*
  579. * IO to pool_dev remaps to the pool target's data_dev.
  580. *
  581. * If the whole block of data is being overwritten, we can issue the
  582. * bio immediately. Otherwise we use kcopyd to clone the data first.
  583. */
  584. if (io_overwrites_block(pool, bio)) {
  585. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  586. h->overwrite_mapping = m;
  587. m->bio = bio;
  588. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  589. remap_and_issue(tc, bio, data_dest);
  590. } else {
  591. struct dm_io_region from, to;
  592. from.bdev = origin->bdev;
  593. from.sector = data_origin * pool->sectors_per_block;
  594. from.count = pool->sectors_per_block;
  595. to.bdev = tc->pool_dev->bdev;
  596. to.sector = data_dest * pool->sectors_per_block;
  597. to.count = pool->sectors_per_block;
  598. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  599. 0, copy_complete, m);
  600. if (r < 0) {
  601. mempool_free(m, pool->mapping_pool);
  602. DMERR("dm_kcopyd_copy() failed");
  603. dm_cell_error(cell);
  604. }
  605. }
  606. }
  607. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  608. dm_block_t data_origin, dm_block_t data_dest,
  609. struct dm_bio_prison_cell *cell, struct bio *bio)
  610. {
  611. schedule_copy(tc, virt_block, tc->pool_dev,
  612. data_origin, data_dest, cell, bio);
  613. }
  614. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  615. dm_block_t data_dest,
  616. struct dm_bio_prison_cell *cell, struct bio *bio)
  617. {
  618. schedule_copy(tc, virt_block, tc->origin_dev,
  619. virt_block, data_dest, cell, bio);
  620. }
  621. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  622. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  623. struct bio *bio)
  624. {
  625. struct pool *pool = tc->pool;
  626. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  627. INIT_LIST_HEAD(&m->list);
  628. m->quiesced = 1;
  629. m->prepared = 0;
  630. m->tc = tc;
  631. m->virt_block = virt_block;
  632. m->data_block = data_block;
  633. m->cell = cell;
  634. m->err = 0;
  635. m->bio = NULL;
  636. /*
  637. * If the whole block of data is being overwritten or we are not
  638. * zeroing pre-existing data, we can issue the bio immediately.
  639. * Otherwise we use kcopyd to zero the data first.
  640. */
  641. if (!pool->pf.zero_new_blocks)
  642. process_prepared_mapping(m);
  643. else if (io_overwrites_block(pool, bio)) {
  644. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  645. h->overwrite_mapping = m;
  646. m->bio = bio;
  647. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  648. remap_and_issue(tc, bio, data_block);
  649. } else {
  650. int r;
  651. struct dm_io_region to;
  652. to.bdev = tc->pool_dev->bdev;
  653. to.sector = data_block * pool->sectors_per_block;
  654. to.count = pool->sectors_per_block;
  655. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  656. if (r < 0) {
  657. mempool_free(m, pool->mapping_pool);
  658. DMERR("dm_kcopyd_zero() failed");
  659. dm_cell_error(cell);
  660. }
  661. }
  662. }
  663. static int commit(struct pool *pool)
  664. {
  665. int r;
  666. r = dm_pool_commit_metadata(pool->pmd);
  667. if (r)
  668. DMERR("commit failed, error = %d", r);
  669. return r;
  670. }
  671. /*
  672. * A non-zero return indicates read_only or fail_io mode.
  673. * Many callers don't care about the return value.
  674. */
  675. static int commit_or_fallback(struct pool *pool)
  676. {
  677. int r;
  678. if (get_pool_mode(pool) != PM_WRITE)
  679. return -EINVAL;
  680. r = commit(pool);
  681. if (r)
  682. set_pool_mode(pool, PM_READ_ONLY);
  683. return r;
  684. }
  685. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  686. {
  687. int r;
  688. dm_block_t free_blocks;
  689. unsigned long flags;
  690. struct pool *pool = tc->pool;
  691. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  692. if (r)
  693. return r;
  694. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  695. DMWARN("%s: reached low water mark, sending event.",
  696. dm_device_name(pool->pool_md));
  697. spin_lock_irqsave(&pool->lock, flags);
  698. pool->low_water_triggered = 1;
  699. spin_unlock_irqrestore(&pool->lock, flags);
  700. dm_table_event(pool->ti->table);
  701. }
  702. if (!free_blocks) {
  703. if (pool->no_free_space)
  704. return -ENOSPC;
  705. else {
  706. /*
  707. * Try to commit to see if that will free up some
  708. * more space.
  709. */
  710. (void) commit_or_fallback(pool);
  711. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  712. if (r)
  713. return r;
  714. /*
  715. * If we still have no space we set a flag to avoid
  716. * doing all this checking and return -ENOSPC.
  717. */
  718. if (!free_blocks) {
  719. DMWARN("%s: no free space available.",
  720. dm_device_name(pool->pool_md));
  721. spin_lock_irqsave(&pool->lock, flags);
  722. pool->no_free_space = 1;
  723. spin_unlock_irqrestore(&pool->lock, flags);
  724. return -ENOSPC;
  725. }
  726. }
  727. }
  728. r = dm_pool_alloc_data_block(pool->pmd, result);
  729. if (r)
  730. return r;
  731. return 0;
  732. }
  733. /*
  734. * If we have run out of space, queue bios until the device is
  735. * resumed, presumably after having been reloaded with more space.
  736. */
  737. static void retry_on_resume(struct bio *bio)
  738. {
  739. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  740. struct thin_c *tc = h->tc;
  741. struct pool *pool = tc->pool;
  742. unsigned long flags;
  743. spin_lock_irqsave(&pool->lock, flags);
  744. bio_list_add(&pool->retry_on_resume_list, bio);
  745. spin_unlock_irqrestore(&pool->lock, flags);
  746. }
  747. static void no_space(struct dm_bio_prison_cell *cell)
  748. {
  749. struct bio *bio;
  750. struct bio_list bios;
  751. bio_list_init(&bios);
  752. dm_cell_release(cell, &bios);
  753. while ((bio = bio_list_pop(&bios)))
  754. retry_on_resume(bio);
  755. }
  756. static void process_discard(struct thin_c *tc, struct bio *bio)
  757. {
  758. int r;
  759. unsigned long flags;
  760. struct pool *pool = tc->pool;
  761. struct dm_bio_prison_cell *cell, *cell2;
  762. struct dm_cell_key key, key2;
  763. dm_block_t block = get_bio_block(tc, bio);
  764. struct dm_thin_lookup_result lookup_result;
  765. struct dm_thin_new_mapping *m;
  766. build_virtual_key(tc->td, block, &key);
  767. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  768. return;
  769. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  770. switch (r) {
  771. case 0:
  772. /*
  773. * Check nobody is fiddling with this pool block. This can
  774. * happen if someone's in the process of breaking sharing
  775. * on this block.
  776. */
  777. build_data_key(tc->td, lookup_result.block, &key2);
  778. if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  779. dm_cell_release_singleton(cell, bio);
  780. break;
  781. }
  782. if (io_overlaps_block(pool, bio)) {
  783. /*
  784. * IO may still be going to the destination block. We must
  785. * quiesce before we can do the removal.
  786. */
  787. m = get_next_mapping(pool);
  788. m->tc = tc;
  789. m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
  790. m->virt_block = block;
  791. m->data_block = lookup_result.block;
  792. m->cell = cell;
  793. m->cell2 = cell2;
  794. m->err = 0;
  795. m->bio = bio;
  796. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  797. spin_lock_irqsave(&pool->lock, flags);
  798. list_add(&m->list, &pool->prepared_discards);
  799. spin_unlock_irqrestore(&pool->lock, flags);
  800. wake_worker(pool);
  801. }
  802. } else {
  803. /*
  804. * The DM core makes sure that the discard doesn't span
  805. * a block boundary. So we submit the discard of a
  806. * partial block appropriately.
  807. */
  808. dm_cell_release_singleton(cell, bio);
  809. dm_cell_release_singleton(cell2, bio);
  810. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  811. remap_and_issue(tc, bio, lookup_result.block);
  812. else
  813. bio_endio(bio, 0);
  814. }
  815. break;
  816. case -ENODATA:
  817. /*
  818. * It isn't provisioned, just forget it.
  819. */
  820. dm_cell_release_singleton(cell, bio);
  821. bio_endio(bio, 0);
  822. break;
  823. default:
  824. DMERR("discard: find block unexpectedly returned %d", r);
  825. dm_cell_release_singleton(cell, bio);
  826. bio_io_error(bio);
  827. break;
  828. }
  829. }
  830. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  831. struct dm_cell_key *key,
  832. struct dm_thin_lookup_result *lookup_result,
  833. struct dm_bio_prison_cell *cell)
  834. {
  835. int r;
  836. dm_block_t data_block;
  837. r = alloc_data_block(tc, &data_block);
  838. switch (r) {
  839. case 0:
  840. schedule_internal_copy(tc, block, lookup_result->block,
  841. data_block, cell, bio);
  842. break;
  843. case -ENOSPC:
  844. no_space(cell);
  845. break;
  846. default:
  847. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  848. dm_cell_error(cell);
  849. break;
  850. }
  851. }
  852. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  853. dm_block_t block,
  854. struct dm_thin_lookup_result *lookup_result)
  855. {
  856. struct dm_bio_prison_cell *cell;
  857. struct pool *pool = tc->pool;
  858. struct dm_cell_key key;
  859. /*
  860. * If cell is already occupied, then sharing is already in the process
  861. * of being broken so we have nothing further to do here.
  862. */
  863. build_data_key(tc->td, lookup_result->block, &key);
  864. if (dm_bio_detain(pool->prison, &key, bio, &cell))
  865. return;
  866. if (bio_data_dir(bio) == WRITE && bio->bi_size)
  867. break_sharing(tc, bio, block, &key, lookup_result, cell);
  868. else {
  869. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  870. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  871. dm_cell_release_singleton(cell, bio);
  872. remap_and_issue(tc, bio, lookup_result->block);
  873. }
  874. }
  875. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  876. struct dm_bio_prison_cell *cell)
  877. {
  878. int r;
  879. dm_block_t data_block;
  880. /*
  881. * Remap empty bios (flushes) immediately, without provisioning.
  882. */
  883. if (!bio->bi_size) {
  884. dm_cell_release_singleton(cell, bio);
  885. remap_and_issue(tc, bio, 0);
  886. return;
  887. }
  888. /*
  889. * Fill read bios with zeroes and complete them immediately.
  890. */
  891. if (bio_data_dir(bio) == READ) {
  892. zero_fill_bio(bio);
  893. dm_cell_release_singleton(cell, bio);
  894. bio_endio(bio, 0);
  895. return;
  896. }
  897. r = alloc_data_block(tc, &data_block);
  898. switch (r) {
  899. case 0:
  900. if (tc->origin_dev)
  901. schedule_external_copy(tc, block, data_block, cell, bio);
  902. else
  903. schedule_zero(tc, block, data_block, cell, bio);
  904. break;
  905. case -ENOSPC:
  906. no_space(cell);
  907. break;
  908. default:
  909. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  910. set_pool_mode(tc->pool, PM_READ_ONLY);
  911. dm_cell_error(cell);
  912. break;
  913. }
  914. }
  915. static void process_bio(struct thin_c *tc, struct bio *bio)
  916. {
  917. int r;
  918. dm_block_t block = get_bio_block(tc, bio);
  919. struct dm_bio_prison_cell *cell;
  920. struct dm_cell_key key;
  921. struct dm_thin_lookup_result lookup_result;
  922. /*
  923. * If cell is already occupied, then the block is already
  924. * being provisioned so we have nothing further to do here.
  925. */
  926. build_virtual_key(tc->td, block, &key);
  927. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  928. return;
  929. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  930. switch (r) {
  931. case 0:
  932. /*
  933. * We can release this cell now. This thread is the only
  934. * one that puts bios into a cell, and we know there were
  935. * no preceding bios.
  936. */
  937. /*
  938. * TODO: this will probably have to change when discard goes
  939. * back in.
  940. */
  941. dm_cell_release_singleton(cell, bio);
  942. if (lookup_result.shared)
  943. process_shared_bio(tc, bio, block, &lookup_result);
  944. else
  945. remap_and_issue(tc, bio, lookup_result.block);
  946. break;
  947. case -ENODATA:
  948. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  949. dm_cell_release_singleton(cell, bio);
  950. remap_to_origin_and_issue(tc, bio);
  951. } else
  952. provision_block(tc, bio, block, cell);
  953. break;
  954. default:
  955. DMERR("dm_thin_find_block() failed, error = %d", r);
  956. dm_cell_release_singleton(cell, bio);
  957. bio_io_error(bio);
  958. break;
  959. }
  960. }
  961. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  962. {
  963. int r;
  964. int rw = bio_data_dir(bio);
  965. dm_block_t block = get_bio_block(tc, bio);
  966. struct dm_thin_lookup_result lookup_result;
  967. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  968. switch (r) {
  969. case 0:
  970. if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
  971. bio_io_error(bio);
  972. else
  973. remap_and_issue(tc, bio, lookup_result.block);
  974. break;
  975. case -ENODATA:
  976. if (rw != READ) {
  977. bio_io_error(bio);
  978. break;
  979. }
  980. if (tc->origin_dev) {
  981. remap_to_origin_and_issue(tc, bio);
  982. break;
  983. }
  984. zero_fill_bio(bio);
  985. bio_endio(bio, 0);
  986. break;
  987. default:
  988. DMERR("dm_thin_find_block() failed, error = %d", r);
  989. bio_io_error(bio);
  990. break;
  991. }
  992. }
  993. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  994. {
  995. bio_io_error(bio);
  996. }
  997. static int need_commit_due_to_time(struct pool *pool)
  998. {
  999. return jiffies < pool->last_commit_jiffies ||
  1000. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1001. }
  1002. static void process_deferred_bios(struct pool *pool)
  1003. {
  1004. unsigned long flags;
  1005. struct bio *bio;
  1006. struct bio_list bios;
  1007. bio_list_init(&bios);
  1008. spin_lock_irqsave(&pool->lock, flags);
  1009. bio_list_merge(&bios, &pool->deferred_bios);
  1010. bio_list_init(&pool->deferred_bios);
  1011. spin_unlock_irqrestore(&pool->lock, flags);
  1012. while ((bio = bio_list_pop(&bios))) {
  1013. struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1014. struct thin_c *tc = h->tc;
  1015. /*
  1016. * If we've got no free new_mapping structs, and processing
  1017. * this bio might require one, we pause until there are some
  1018. * prepared mappings to process.
  1019. */
  1020. if (ensure_next_mapping(pool)) {
  1021. spin_lock_irqsave(&pool->lock, flags);
  1022. bio_list_merge(&pool->deferred_bios, &bios);
  1023. spin_unlock_irqrestore(&pool->lock, flags);
  1024. break;
  1025. }
  1026. if (bio->bi_rw & REQ_DISCARD)
  1027. pool->process_discard(tc, bio);
  1028. else
  1029. pool->process_bio(tc, bio);
  1030. }
  1031. /*
  1032. * If there are any deferred flush bios, we must commit
  1033. * the metadata before issuing them.
  1034. */
  1035. bio_list_init(&bios);
  1036. spin_lock_irqsave(&pool->lock, flags);
  1037. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1038. bio_list_init(&pool->deferred_flush_bios);
  1039. spin_unlock_irqrestore(&pool->lock, flags);
  1040. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1041. return;
  1042. if (commit_or_fallback(pool)) {
  1043. while ((bio = bio_list_pop(&bios)))
  1044. bio_io_error(bio);
  1045. return;
  1046. }
  1047. pool->last_commit_jiffies = jiffies;
  1048. while ((bio = bio_list_pop(&bios)))
  1049. generic_make_request(bio);
  1050. }
  1051. static void do_worker(struct work_struct *ws)
  1052. {
  1053. struct pool *pool = container_of(ws, struct pool, worker);
  1054. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1055. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1056. process_deferred_bios(pool);
  1057. }
  1058. /*
  1059. * We want to commit periodically so that not too much
  1060. * unwritten data builds up.
  1061. */
  1062. static void do_waker(struct work_struct *ws)
  1063. {
  1064. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1065. wake_worker(pool);
  1066. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1067. }
  1068. /*----------------------------------------------------------------*/
  1069. static enum pool_mode get_pool_mode(struct pool *pool)
  1070. {
  1071. return pool->pf.mode;
  1072. }
  1073. static void set_pool_mode(struct pool *pool, enum pool_mode mode)
  1074. {
  1075. int r;
  1076. pool->pf.mode = mode;
  1077. switch (mode) {
  1078. case PM_FAIL:
  1079. DMERR("switching pool to failure mode");
  1080. pool->process_bio = process_bio_fail;
  1081. pool->process_discard = process_bio_fail;
  1082. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1083. pool->process_prepared_discard = process_prepared_discard_fail;
  1084. break;
  1085. case PM_READ_ONLY:
  1086. DMERR("switching pool to read-only mode");
  1087. r = dm_pool_abort_metadata(pool->pmd);
  1088. if (r) {
  1089. DMERR("aborting transaction failed");
  1090. set_pool_mode(pool, PM_FAIL);
  1091. } else {
  1092. dm_pool_metadata_read_only(pool->pmd);
  1093. pool->process_bio = process_bio_read_only;
  1094. pool->process_discard = process_discard;
  1095. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1096. pool->process_prepared_discard = process_prepared_discard_passdown;
  1097. }
  1098. break;
  1099. case PM_WRITE:
  1100. pool->process_bio = process_bio;
  1101. pool->process_discard = process_discard;
  1102. pool->process_prepared_mapping = process_prepared_mapping;
  1103. pool->process_prepared_discard = process_prepared_discard;
  1104. break;
  1105. }
  1106. }
  1107. /*----------------------------------------------------------------*/
  1108. /*
  1109. * Mapping functions.
  1110. */
  1111. /*
  1112. * Called only while mapping a thin bio to hand it over to the workqueue.
  1113. */
  1114. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1115. {
  1116. unsigned long flags;
  1117. struct pool *pool = tc->pool;
  1118. spin_lock_irqsave(&pool->lock, flags);
  1119. bio_list_add(&pool->deferred_bios, bio);
  1120. spin_unlock_irqrestore(&pool->lock, flags);
  1121. wake_worker(pool);
  1122. }
  1123. static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1124. {
  1125. struct pool *pool = tc->pool;
  1126. struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
  1127. h->tc = tc;
  1128. h->shared_read_entry = NULL;
  1129. h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : dm_deferred_entry_inc(pool->all_io_ds);
  1130. h->overwrite_mapping = NULL;
  1131. return h;
  1132. }
  1133. /*
  1134. * Non-blocking function called from the thin target's map function.
  1135. */
  1136. static int thin_bio_map(struct dm_target *ti, struct bio *bio,
  1137. union map_info *map_context)
  1138. {
  1139. int r;
  1140. struct thin_c *tc = ti->private;
  1141. dm_block_t block = get_bio_block(tc, bio);
  1142. struct dm_thin_device *td = tc->td;
  1143. struct dm_thin_lookup_result result;
  1144. map_context->ptr = thin_hook_bio(tc, bio);
  1145. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1146. bio_io_error(bio);
  1147. return DM_MAPIO_SUBMITTED;
  1148. }
  1149. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1150. thin_defer_bio(tc, bio);
  1151. return DM_MAPIO_SUBMITTED;
  1152. }
  1153. r = dm_thin_find_block(td, block, 0, &result);
  1154. /*
  1155. * Note that we defer readahead too.
  1156. */
  1157. switch (r) {
  1158. case 0:
  1159. if (unlikely(result.shared)) {
  1160. /*
  1161. * We have a race condition here between the
  1162. * result.shared value returned by the lookup and
  1163. * snapshot creation, which may cause new
  1164. * sharing.
  1165. *
  1166. * To avoid this always quiesce the origin before
  1167. * taking the snap. You want to do this anyway to
  1168. * ensure a consistent application view
  1169. * (i.e. lockfs).
  1170. *
  1171. * More distant ancestors are irrelevant. The
  1172. * shared flag will be set in their case.
  1173. */
  1174. thin_defer_bio(tc, bio);
  1175. r = DM_MAPIO_SUBMITTED;
  1176. } else {
  1177. remap(tc, bio, result.block);
  1178. r = DM_MAPIO_REMAPPED;
  1179. }
  1180. break;
  1181. case -ENODATA:
  1182. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1183. /*
  1184. * This block isn't provisioned, and we have no way
  1185. * of doing so. Just error it.
  1186. */
  1187. bio_io_error(bio);
  1188. r = DM_MAPIO_SUBMITTED;
  1189. break;
  1190. }
  1191. /* fall through */
  1192. case -EWOULDBLOCK:
  1193. /*
  1194. * In future, the failed dm_thin_find_block above could
  1195. * provide the hint to load the metadata into cache.
  1196. */
  1197. thin_defer_bio(tc, bio);
  1198. r = DM_MAPIO_SUBMITTED;
  1199. break;
  1200. default:
  1201. /*
  1202. * Must always call bio_io_error on failure.
  1203. * dm_thin_find_block can fail with -EINVAL if the
  1204. * pool is switched to fail-io mode.
  1205. */
  1206. bio_io_error(bio);
  1207. r = DM_MAPIO_SUBMITTED;
  1208. break;
  1209. }
  1210. return r;
  1211. }
  1212. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1213. {
  1214. int r;
  1215. unsigned long flags;
  1216. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1217. spin_lock_irqsave(&pt->pool->lock, flags);
  1218. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1219. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1220. if (!r) {
  1221. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1222. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1223. }
  1224. return r;
  1225. }
  1226. static void __requeue_bios(struct pool *pool)
  1227. {
  1228. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1229. bio_list_init(&pool->retry_on_resume_list);
  1230. }
  1231. /*----------------------------------------------------------------
  1232. * Binding of control targets to a pool object
  1233. *--------------------------------------------------------------*/
  1234. static bool data_dev_supports_discard(struct pool_c *pt)
  1235. {
  1236. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1237. return q && blk_queue_discard(q);
  1238. }
  1239. /*
  1240. * If discard_passdown was enabled verify that the data device
  1241. * supports discards. Disable discard_passdown if not.
  1242. */
  1243. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1244. {
  1245. struct pool *pool = pt->pool;
  1246. struct block_device *data_bdev = pt->data_dev->bdev;
  1247. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1248. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1249. const char *reason = NULL;
  1250. char buf[BDEVNAME_SIZE];
  1251. if (!pt->adjusted_pf.discard_passdown)
  1252. return;
  1253. if (!data_dev_supports_discard(pt))
  1254. reason = "discard unsupported";
  1255. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1256. reason = "max discard sectors smaller than a block";
  1257. else if (data_limits->discard_granularity > block_size)
  1258. reason = "discard granularity larger than a block";
  1259. else if (block_size & (data_limits->discard_granularity - 1))
  1260. reason = "discard granularity not a factor of block size";
  1261. if (reason) {
  1262. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1263. pt->adjusted_pf.discard_passdown = false;
  1264. }
  1265. }
  1266. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1267. {
  1268. struct pool_c *pt = ti->private;
  1269. /*
  1270. * We want to make sure that degraded pools are never upgraded.
  1271. */
  1272. enum pool_mode old_mode = pool->pf.mode;
  1273. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1274. if (old_mode > new_mode)
  1275. new_mode = old_mode;
  1276. pool->ti = ti;
  1277. pool->low_water_blocks = pt->low_water_blocks;
  1278. pool->pf = pt->adjusted_pf;
  1279. set_pool_mode(pool, new_mode);
  1280. return 0;
  1281. }
  1282. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1283. {
  1284. if (pool->ti == ti)
  1285. pool->ti = NULL;
  1286. }
  1287. /*----------------------------------------------------------------
  1288. * Pool creation
  1289. *--------------------------------------------------------------*/
  1290. /* Initialize pool features. */
  1291. static void pool_features_init(struct pool_features *pf)
  1292. {
  1293. pf->mode = PM_WRITE;
  1294. pf->zero_new_blocks = true;
  1295. pf->discard_enabled = true;
  1296. pf->discard_passdown = true;
  1297. }
  1298. static void __pool_destroy(struct pool *pool)
  1299. {
  1300. __pool_table_remove(pool);
  1301. if (dm_pool_metadata_close(pool->pmd) < 0)
  1302. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1303. dm_bio_prison_destroy(pool->prison);
  1304. dm_kcopyd_client_destroy(pool->copier);
  1305. if (pool->wq)
  1306. destroy_workqueue(pool->wq);
  1307. if (pool->next_mapping)
  1308. mempool_free(pool->next_mapping, pool->mapping_pool);
  1309. mempool_destroy(pool->mapping_pool);
  1310. mempool_destroy(pool->endio_hook_pool);
  1311. dm_deferred_set_destroy(pool->shared_read_ds);
  1312. dm_deferred_set_destroy(pool->all_io_ds);
  1313. kfree(pool);
  1314. }
  1315. static struct kmem_cache *_new_mapping_cache;
  1316. static struct kmem_cache *_endio_hook_cache;
  1317. static struct pool *pool_create(struct mapped_device *pool_md,
  1318. struct block_device *metadata_dev,
  1319. unsigned long block_size,
  1320. int read_only, char **error)
  1321. {
  1322. int r;
  1323. void *err_p;
  1324. struct pool *pool;
  1325. struct dm_pool_metadata *pmd;
  1326. bool format_device = read_only ? false : true;
  1327. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1328. if (IS_ERR(pmd)) {
  1329. *error = "Error creating metadata object";
  1330. return (struct pool *)pmd;
  1331. }
  1332. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1333. if (!pool) {
  1334. *error = "Error allocating memory for pool";
  1335. err_p = ERR_PTR(-ENOMEM);
  1336. goto bad_pool;
  1337. }
  1338. pool->pmd = pmd;
  1339. pool->sectors_per_block = block_size;
  1340. if (block_size & (block_size - 1))
  1341. pool->sectors_per_block_shift = -1;
  1342. else
  1343. pool->sectors_per_block_shift = __ffs(block_size);
  1344. pool->low_water_blocks = 0;
  1345. pool_features_init(&pool->pf);
  1346. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1347. if (!pool->prison) {
  1348. *error = "Error creating pool's bio prison";
  1349. err_p = ERR_PTR(-ENOMEM);
  1350. goto bad_prison;
  1351. }
  1352. pool->copier = dm_kcopyd_client_create();
  1353. if (IS_ERR(pool->copier)) {
  1354. r = PTR_ERR(pool->copier);
  1355. *error = "Error creating pool's kcopyd client";
  1356. err_p = ERR_PTR(r);
  1357. goto bad_kcopyd_client;
  1358. }
  1359. /*
  1360. * Create singlethreaded workqueue that will service all devices
  1361. * that use this metadata.
  1362. */
  1363. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1364. if (!pool->wq) {
  1365. *error = "Error creating pool's workqueue";
  1366. err_p = ERR_PTR(-ENOMEM);
  1367. goto bad_wq;
  1368. }
  1369. INIT_WORK(&pool->worker, do_worker);
  1370. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1371. spin_lock_init(&pool->lock);
  1372. bio_list_init(&pool->deferred_bios);
  1373. bio_list_init(&pool->deferred_flush_bios);
  1374. INIT_LIST_HEAD(&pool->prepared_mappings);
  1375. INIT_LIST_HEAD(&pool->prepared_discards);
  1376. pool->low_water_triggered = 0;
  1377. pool->no_free_space = 0;
  1378. bio_list_init(&pool->retry_on_resume_list);
  1379. pool->shared_read_ds = dm_deferred_set_create();
  1380. if (!pool->shared_read_ds) {
  1381. *error = "Error creating pool's shared read deferred set";
  1382. err_p = ERR_PTR(-ENOMEM);
  1383. goto bad_shared_read_ds;
  1384. }
  1385. pool->all_io_ds = dm_deferred_set_create();
  1386. if (!pool->all_io_ds) {
  1387. *error = "Error creating pool's all io deferred set";
  1388. err_p = ERR_PTR(-ENOMEM);
  1389. goto bad_all_io_ds;
  1390. }
  1391. pool->next_mapping = NULL;
  1392. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1393. _new_mapping_cache);
  1394. if (!pool->mapping_pool) {
  1395. *error = "Error creating pool's mapping mempool";
  1396. err_p = ERR_PTR(-ENOMEM);
  1397. goto bad_mapping_pool;
  1398. }
  1399. pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
  1400. _endio_hook_cache);
  1401. if (!pool->endio_hook_pool) {
  1402. *error = "Error creating pool's endio_hook mempool";
  1403. err_p = ERR_PTR(-ENOMEM);
  1404. goto bad_endio_hook_pool;
  1405. }
  1406. pool->ref_count = 1;
  1407. pool->last_commit_jiffies = jiffies;
  1408. pool->pool_md = pool_md;
  1409. pool->md_dev = metadata_dev;
  1410. __pool_table_insert(pool);
  1411. return pool;
  1412. bad_endio_hook_pool:
  1413. mempool_destroy(pool->mapping_pool);
  1414. bad_mapping_pool:
  1415. dm_deferred_set_destroy(pool->all_io_ds);
  1416. bad_all_io_ds:
  1417. dm_deferred_set_destroy(pool->shared_read_ds);
  1418. bad_shared_read_ds:
  1419. destroy_workqueue(pool->wq);
  1420. bad_wq:
  1421. dm_kcopyd_client_destroy(pool->copier);
  1422. bad_kcopyd_client:
  1423. dm_bio_prison_destroy(pool->prison);
  1424. bad_prison:
  1425. kfree(pool);
  1426. bad_pool:
  1427. if (dm_pool_metadata_close(pmd))
  1428. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1429. return err_p;
  1430. }
  1431. static void __pool_inc(struct pool *pool)
  1432. {
  1433. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1434. pool->ref_count++;
  1435. }
  1436. static void __pool_dec(struct pool *pool)
  1437. {
  1438. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1439. BUG_ON(!pool->ref_count);
  1440. if (!--pool->ref_count)
  1441. __pool_destroy(pool);
  1442. }
  1443. static struct pool *__pool_find(struct mapped_device *pool_md,
  1444. struct block_device *metadata_dev,
  1445. unsigned long block_size, int read_only,
  1446. char **error, int *created)
  1447. {
  1448. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1449. if (pool) {
  1450. if (pool->pool_md != pool_md) {
  1451. *error = "metadata device already in use by a pool";
  1452. return ERR_PTR(-EBUSY);
  1453. }
  1454. __pool_inc(pool);
  1455. } else {
  1456. pool = __pool_table_lookup(pool_md);
  1457. if (pool) {
  1458. if (pool->md_dev != metadata_dev) {
  1459. *error = "different pool cannot replace a pool";
  1460. return ERR_PTR(-EINVAL);
  1461. }
  1462. __pool_inc(pool);
  1463. } else {
  1464. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1465. *created = 1;
  1466. }
  1467. }
  1468. return pool;
  1469. }
  1470. /*----------------------------------------------------------------
  1471. * Pool target methods
  1472. *--------------------------------------------------------------*/
  1473. static void pool_dtr(struct dm_target *ti)
  1474. {
  1475. struct pool_c *pt = ti->private;
  1476. mutex_lock(&dm_thin_pool_table.mutex);
  1477. unbind_control_target(pt->pool, ti);
  1478. __pool_dec(pt->pool);
  1479. dm_put_device(ti, pt->metadata_dev);
  1480. dm_put_device(ti, pt->data_dev);
  1481. kfree(pt);
  1482. mutex_unlock(&dm_thin_pool_table.mutex);
  1483. }
  1484. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1485. struct dm_target *ti)
  1486. {
  1487. int r;
  1488. unsigned argc;
  1489. const char *arg_name;
  1490. static struct dm_arg _args[] = {
  1491. {0, 3, "Invalid number of pool feature arguments"},
  1492. };
  1493. /*
  1494. * No feature arguments supplied.
  1495. */
  1496. if (!as->argc)
  1497. return 0;
  1498. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1499. if (r)
  1500. return -EINVAL;
  1501. while (argc && !r) {
  1502. arg_name = dm_shift_arg(as);
  1503. argc--;
  1504. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1505. pf->zero_new_blocks = false;
  1506. else if (!strcasecmp(arg_name, "ignore_discard"))
  1507. pf->discard_enabled = false;
  1508. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1509. pf->discard_passdown = false;
  1510. else if (!strcasecmp(arg_name, "read_only"))
  1511. pf->mode = PM_READ_ONLY;
  1512. else {
  1513. ti->error = "Unrecognised pool feature requested";
  1514. r = -EINVAL;
  1515. break;
  1516. }
  1517. }
  1518. return r;
  1519. }
  1520. /*
  1521. * thin-pool <metadata dev> <data dev>
  1522. * <data block size (sectors)>
  1523. * <low water mark (blocks)>
  1524. * [<#feature args> [<arg>]*]
  1525. *
  1526. * Optional feature arguments are:
  1527. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1528. * ignore_discard: disable discard
  1529. * no_discard_passdown: don't pass discards down to the data device
  1530. */
  1531. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1532. {
  1533. int r, pool_created = 0;
  1534. struct pool_c *pt;
  1535. struct pool *pool;
  1536. struct pool_features pf;
  1537. struct dm_arg_set as;
  1538. struct dm_dev *data_dev;
  1539. unsigned long block_size;
  1540. dm_block_t low_water_blocks;
  1541. struct dm_dev *metadata_dev;
  1542. sector_t metadata_dev_size;
  1543. char b[BDEVNAME_SIZE];
  1544. /*
  1545. * FIXME Remove validation from scope of lock.
  1546. */
  1547. mutex_lock(&dm_thin_pool_table.mutex);
  1548. if (argc < 4) {
  1549. ti->error = "Invalid argument count";
  1550. r = -EINVAL;
  1551. goto out_unlock;
  1552. }
  1553. as.argc = argc;
  1554. as.argv = argv;
  1555. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1556. if (r) {
  1557. ti->error = "Error opening metadata block device";
  1558. goto out_unlock;
  1559. }
  1560. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1561. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1562. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1563. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1564. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1565. if (r) {
  1566. ti->error = "Error getting data device";
  1567. goto out_metadata;
  1568. }
  1569. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1570. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1571. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1572. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1573. ti->error = "Invalid block size";
  1574. r = -EINVAL;
  1575. goto out;
  1576. }
  1577. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1578. ti->error = "Invalid low water mark";
  1579. r = -EINVAL;
  1580. goto out;
  1581. }
  1582. /*
  1583. * Set default pool features.
  1584. */
  1585. pool_features_init(&pf);
  1586. dm_consume_args(&as, 4);
  1587. r = parse_pool_features(&as, &pf, ti);
  1588. if (r)
  1589. goto out;
  1590. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1591. if (!pt) {
  1592. r = -ENOMEM;
  1593. goto out;
  1594. }
  1595. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1596. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1597. if (IS_ERR(pool)) {
  1598. r = PTR_ERR(pool);
  1599. goto out_free_pt;
  1600. }
  1601. /*
  1602. * 'pool_created' reflects whether this is the first table load.
  1603. * Top level discard support is not allowed to be changed after
  1604. * initial load. This would require a pool reload to trigger thin
  1605. * device changes.
  1606. */
  1607. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1608. ti->error = "Discard support cannot be disabled once enabled";
  1609. r = -EINVAL;
  1610. goto out_flags_changed;
  1611. }
  1612. pt->pool = pool;
  1613. pt->ti = ti;
  1614. pt->metadata_dev = metadata_dev;
  1615. pt->data_dev = data_dev;
  1616. pt->low_water_blocks = low_water_blocks;
  1617. pt->adjusted_pf = pt->requested_pf = pf;
  1618. ti->num_flush_requests = 1;
  1619. /*
  1620. * Only need to enable discards if the pool should pass
  1621. * them down to the data device. The thin device's discard
  1622. * processing will cause mappings to be removed from the btree.
  1623. */
  1624. if (pf.discard_enabled && pf.discard_passdown) {
  1625. ti->num_discard_requests = 1;
  1626. /*
  1627. * Setting 'discards_supported' circumvents the normal
  1628. * stacking of discard limits (this keeps the pool and
  1629. * thin devices' discard limits consistent).
  1630. */
  1631. ti->discards_supported = true;
  1632. ti->discard_zeroes_data_unsupported = true;
  1633. }
  1634. ti->private = pt;
  1635. pt->callbacks.congested_fn = pool_is_congested;
  1636. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1637. mutex_unlock(&dm_thin_pool_table.mutex);
  1638. return 0;
  1639. out_flags_changed:
  1640. __pool_dec(pool);
  1641. out_free_pt:
  1642. kfree(pt);
  1643. out:
  1644. dm_put_device(ti, data_dev);
  1645. out_metadata:
  1646. dm_put_device(ti, metadata_dev);
  1647. out_unlock:
  1648. mutex_unlock(&dm_thin_pool_table.mutex);
  1649. return r;
  1650. }
  1651. static int pool_map(struct dm_target *ti, struct bio *bio,
  1652. union map_info *map_context)
  1653. {
  1654. int r;
  1655. struct pool_c *pt = ti->private;
  1656. struct pool *pool = pt->pool;
  1657. unsigned long flags;
  1658. /*
  1659. * As this is a singleton target, ti->begin is always zero.
  1660. */
  1661. spin_lock_irqsave(&pool->lock, flags);
  1662. bio->bi_bdev = pt->data_dev->bdev;
  1663. r = DM_MAPIO_REMAPPED;
  1664. spin_unlock_irqrestore(&pool->lock, flags);
  1665. return r;
  1666. }
  1667. /*
  1668. * Retrieves the number of blocks of the data device from
  1669. * the superblock and compares it to the actual device size,
  1670. * thus resizing the data device in case it has grown.
  1671. *
  1672. * This both copes with opening preallocated data devices in the ctr
  1673. * being followed by a resume
  1674. * -and-
  1675. * calling the resume method individually after userspace has
  1676. * grown the data device in reaction to a table event.
  1677. */
  1678. static int pool_preresume(struct dm_target *ti)
  1679. {
  1680. int r;
  1681. struct pool_c *pt = ti->private;
  1682. struct pool *pool = pt->pool;
  1683. sector_t data_size = ti->len;
  1684. dm_block_t sb_data_size;
  1685. /*
  1686. * Take control of the pool object.
  1687. */
  1688. r = bind_control_target(pool, ti);
  1689. if (r)
  1690. return r;
  1691. (void) sector_div(data_size, pool->sectors_per_block);
  1692. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1693. if (r) {
  1694. DMERR("failed to retrieve data device size");
  1695. return r;
  1696. }
  1697. if (data_size < sb_data_size) {
  1698. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1699. (unsigned long long)data_size, sb_data_size);
  1700. return -EINVAL;
  1701. } else if (data_size > sb_data_size) {
  1702. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1703. if (r) {
  1704. DMERR("failed to resize data device");
  1705. /* FIXME Stricter than necessary: Rollback transaction instead here */
  1706. set_pool_mode(pool, PM_READ_ONLY);
  1707. return r;
  1708. }
  1709. (void) commit_or_fallback(pool);
  1710. }
  1711. return 0;
  1712. }
  1713. static void pool_resume(struct dm_target *ti)
  1714. {
  1715. struct pool_c *pt = ti->private;
  1716. struct pool *pool = pt->pool;
  1717. unsigned long flags;
  1718. spin_lock_irqsave(&pool->lock, flags);
  1719. pool->low_water_triggered = 0;
  1720. pool->no_free_space = 0;
  1721. __requeue_bios(pool);
  1722. spin_unlock_irqrestore(&pool->lock, flags);
  1723. do_waker(&pool->waker.work);
  1724. }
  1725. static void pool_postsuspend(struct dm_target *ti)
  1726. {
  1727. struct pool_c *pt = ti->private;
  1728. struct pool *pool = pt->pool;
  1729. cancel_delayed_work(&pool->waker);
  1730. flush_workqueue(pool->wq);
  1731. (void) commit_or_fallback(pool);
  1732. }
  1733. static int check_arg_count(unsigned argc, unsigned args_required)
  1734. {
  1735. if (argc != args_required) {
  1736. DMWARN("Message received with %u arguments instead of %u.",
  1737. argc, args_required);
  1738. return -EINVAL;
  1739. }
  1740. return 0;
  1741. }
  1742. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1743. {
  1744. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1745. *dev_id <= MAX_DEV_ID)
  1746. return 0;
  1747. if (warning)
  1748. DMWARN("Message received with invalid device id: %s", arg);
  1749. return -EINVAL;
  1750. }
  1751. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1752. {
  1753. dm_thin_id dev_id;
  1754. int r;
  1755. r = check_arg_count(argc, 2);
  1756. if (r)
  1757. return r;
  1758. r = read_dev_id(argv[1], &dev_id, 1);
  1759. if (r)
  1760. return r;
  1761. r = dm_pool_create_thin(pool->pmd, dev_id);
  1762. if (r) {
  1763. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1764. argv[1]);
  1765. return r;
  1766. }
  1767. return 0;
  1768. }
  1769. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1770. {
  1771. dm_thin_id dev_id;
  1772. dm_thin_id origin_dev_id;
  1773. int r;
  1774. r = check_arg_count(argc, 3);
  1775. if (r)
  1776. return r;
  1777. r = read_dev_id(argv[1], &dev_id, 1);
  1778. if (r)
  1779. return r;
  1780. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1781. if (r)
  1782. return r;
  1783. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1784. if (r) {
  1785. DMWARN("Creation of new snapshot %s of device %s failed.",
  1786. argv[1], argv[2]);
  1787. return r;
  1788. }
  1789. return 0;
  1790. }
  1791. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1792. {
  1793. dm_thin_id dev_id;
  1794. int r;
  1795. r = check_arg_count(argc, 2);
  1796. if (r)
  1797. return r;
  1798. r = read_dev_id(argv[1], &dev_id, 1);
  1799. if (r)
  1800. return r;
  1801. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1802. if (r)
  1803. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1804. return r;
  1805. }
  1806. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1807. {
  1808. dm_thin_id old_id, new_id;
  1809. int r;
  1810. r = check_arg_count(argc, 3);
  1811. if (r)
  1812. return r;
  1813. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1814. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1815. return -EINVAL;
  1816. }
  1817. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1818. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1819. return -EINVAL;
  1820. }
  1821. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1822. if (r) {
  1823. DMWARN("Failed to change transaction id from %s to %s.",
  1824. argv[1], argv[2]);
  1825. return r;
  1826. }
  1827. return 0;
  1828. }
  1829. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1830. {
  1831. int r;
  1832. r = check_arg_count(argc, 1);
  1833. if (r)
  1834. return r;
  1835. (void) commit_or_fallback(pool);
  1836. r = dm_pool_reserve_metadata_snap(pool->pmd);
  1837. if (r)
  1838. DMWARN("reserve_metadata_snap message failed.");
  1839. return r;
  1840. }
  1841. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1842. {
  1843. int r;
  1844. r = check_arg_count(argc, 1);
  1845. if (r)
  1846. return r;
  1847. r = dm_pool_release_metadata_snap(pool->pmd);
  1848. if (r)
  1849. DMWARN("release_metadata_snap message failed.");
  1850. return r;
  1851. }
  1852. /*
  1853. * Messages supported:
  1854. * create_thin <dev_id>
  1855. * create_snap <dev_id> <origin_id>
  1856. * delete <dev_id>
  1857. * trim <dev_id> <new_size_in_sectors>
  1858. * set_transaction_id <current_trans_id> <new_trans_id>
  1859. * reserve_metadata_snap
  1860. * release_metadata_snap
  1861. */
  1862. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1863. {
  1864. int r = -EINVAL;
  1865. struct pool_c *pt = ti->private;
  1866. struct pool *pool = pt->pool;
  1867. if (!strcasecmp(argv[0], "create_thin"))
  1868. r = process_create_thin_mesg(argc, argv, pool);
  1869. else if (!strcasecmp(argv[0], "create_snap"))
  1870. r = process_create_snap_mesg(argc, argv, pool);
  1871. else if (!strcasecmp(argv[0], "delete"))
  1872. r = process_delete_mesg(argc, argv, pool);
  1873. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1874. r = process_set_transaction_id_mesg(argc, argv, pool);
  1875. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  1876. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  1877. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  1878. r = process_release_metadata_snap_mesg(argc, argv, pool);
  1879. else
  1880. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1881. if (!r)
  1882. (void) commit_or_fallback(pool);
  1883. return r;
  1884. }
  1885. static void emit_flags(struct pool_features *pf, char *result,
  1886. unsigned sz, unsigned maxlen)
  1887. {
  1888. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  1889. !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
  1890. DMEMIT("%u ", count);
  1891. if (!pf->zero_new_blocks)
  1892. DMEMIT("skip_block_zeroing ");
  1893. if (!pf->discard_enabled)
  1894. DMEMIT("ignore_discard ");
  1895. if (!pf->discard_passdown)
  1896. DMEMIT("no_discard_passdown ");
  1897. if (pf->mode == PM_READ_ONLY)
  1898. DMEMIT("read_only ");
  1899. }
  1900. /*
  1901. * Status line is:
  1902. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1903. * <used data sectors>/<total data sectors> <held metadata root>
  1904. */
  1905. static int pool_status(struct dm_target *ti, status_type_t type,
  1906. unsigned status_flags, char *result, unsigned maxlen)
  1907. {
  1908. int r;
  1909. unsigned sz = 0;
  1910. uint64_t transaction_id;
  1911. dm_block_t nr_free_blocks_data;
  1912. dm_block_t nr_free_blocks_metadata;
  1913. dm_block_t nr_blocks_data;
  1914. dm_block_t nr_blocks_metadata;
  1915. dm_block_t held_root;
  1916. char buf[BDEVNAME_SIZE];
  1917. char buf2[BDEVNAME_SIZE];
  1918. struct pool_c *pt = ti->private;
  1919. struct pool *pool = pt->pool;
  1920. switch (type) {
  1921. case STATUSTYPE_INFO:
  1922. if (get_pool_mode(pool) == PM_FAIL) {
  1923. DMEMIT("Fail");
  1924. break;
  1925. }
  1926. /* Commit to ensure statistics aren't out-of-date */
  1927. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  1928. (void) commit_or_fallback(pool);
  1929. r = dm_pool_get_metadata_transaction_id(pool->pmd,
  1930. &transaction_id);
  1931. if (r)
  1932. return r;
  1933. r = dm_pool_get_free_metadata_block_count(pool->pmd,
  1934. &nr_free_blocks_metadata);
  1935. if (r)
  1936. return r;
  1937. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1938. if (r)
  1939. return r;
  1940. r = dm_pool_get_free_block_count(pool->pmd,
  1941. &nr_free_blocks_data);
  1942. if (r)
  1943. return r;
  1944. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1945. if (r)
  1946. return r;
  1947. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  1948. if (r)
  1949. return r;
  1950. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1951. (unsigned long long)transaction_id,
  1952. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1953. (unsigned long long)nr_blocks_metadata,
  1954. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1955. (unsigned long long)nr_blocks_data);
  1956. if (held_root)
  1957. DMEMIT("%llu ", held_root);
  1958. else
  1959. DMEMIT("- ");
  1960. if (pool->pf.mode == PM_READ_ONLY)
  1961. DMEMIT("ro ");
  1962. else
  1963. DMEMIT("rw ");
  1964. if (pool->pf.discard_enabled && pool->pf.discard_passdown)
  1965. DMEMIT("discard_passdown");
  1966. else
  1967. DMEMIT("no_discard_passdown");
  1968. break;
  1969. case STATUSTYPE_TABLE:
  1970. DMEMIT("%s %s %lu %llu ",
  1971. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1972. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1973. (unsigned long)pool->sectors_per_block,
  1974. (unsigned long long)pt->low_water_blocks);
  1975. emit_flags(&pt->requested_pf, result, sz, maxlen);
  1976. break;
  1977. }
  1978. return 0;
  1979. }
  1980. static int pool_iterate_devices(struct dm_target *ti,
  1981. iterate_devices_callout_fn fn, void *data)
  1982. {
  1983. struct pool_c *pt = ti->private;
  1984. return fn(ti, pt->data_dev, 0, ti->len, data);
  1985. }
  1986. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  1987. struct bio_vec *biovec, int max_size)
  1988. {
  1989. struct pool_c *pt = ti->private;
  1990. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1991. if (!q->merge_bvec_fn)
  1992. return max_size;
  1993. bvm->bi_bdev = pt->data_dev->bdev;
  1994. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  1995. }
  1996. static bool block_size_is_power_of_two(struct pool *pool)
  1997. {
  1998. return pool->sectors_per_block_shift >= 0;
  1999. }
  2000. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2001. {
  2002. struct pool *pool = pt->pool;
  2003. struct queue_limits *data_limits;
  2004. limits->max_discard_sectors = pool->sectors_per_block;
  2005. /*
  2006. * discard_granularity is just a hint, and not enforced.
  2007. */
  2008. if (pt->adjusted_pf.discard_passdown) {
  2009. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2010. limits->discard_granularity = data_limits->discard_granularity;
  2011. } else if (block_size_is_power_of_two(pool))
  2012. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2013. else
  2014. /*
  2015. * Use largest power of 2 that is a factor of sectors_per_block
  2016. * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS.
  2017. */
  2018. limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1),
  2019. DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT;
  2020. }
  2021. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2022. {
  2023. struct pool_c *pt = ti->private;
  2024. struct pool *pool = pt->pool;
  2025. blk_limits_io_min(limits, 0);
  2026. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2027. /*
  2028. * pt->adjusted_pf is a staging area for the actual features to use.
  2029. * They get transferred to the live pool in bind_control_target()
  2030. * called from pool_preresume().
  2031. */
  2032. if (!pt->adjusted_pf.discard_enabled)
  2033. return;
  2034. disable_passdown_if_not_supported(pt);
  2035. set_discard_limits(pt, limits);
  2036. }
  2037. static struct target_type pool_target = {
  2038. .name = "thin-pool",
  2039. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2040. DM_TARGET_IMMUTABLE,
  2041. .version = {1, 5, 0},
  2042. .module = THIS_MODULE,
  2043. .ctr = pool_ctr,
  2044. .dtr = pool_dtr,
  2045. .map = pool_map,
  2046. .postsuspend = pool_postsuspend,
  2047. .preresume = pool_preresume,
  2048. .resume = pool_resume,
  2049. .message = pool_message,
  2050. .status = pool_status,
  2051. .merge = pool_merge,
  2052. .iterate_devices = pool_iterate_devices,
  2053. .io_hints = pool_io_hints,
  2054. };
  2055. /*----------------------------------------------------------------
  2056. * Thin target methods
  2057. *--------------------------------------------------------------*/
  2058. static void thin_dtr(struct dm_target *ti)
  2059. {
  2060. struct thin_c *tc = ti->private;
  2061. mutex_lock(&dm_thin_pool_table.mutex);
  2062. __pool_dec(tc->pool);
  2063. dm_pool_close_thin_device(tc->td);
  2064. dm_put_device(ti, tc->pool_dev);
  2065. if (tc->origin_dev)
  2066. dm_put_device(ti, tc->origin_dev);
  2067. kfree(tc);
  2068. mutex_unlock(&dm_thin_pool_table.mutex);
  2069. }
  2070. /*
  2071. * Thin target parameters:
  2072. *
  2073. * <pool_dev> <dev_id> [origin_dev]
  2074. *
  2075. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2076. * dev_id: the internal device identifier
  2077. * origin_dev: a device external to the pool that should act as the origin
  2078. *
  2079. * If the pool device has discards disabled, they get disabled for the thin
  2080. * device as well.
  2081. */
  2082. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2083. {
  2084. int r;
  2085. struct thin_c *tc;
  2086. struct dm_dev *pool_dev, *origin_dev;
  2087. struct mapped_device *pool_md;
  2088. mutex_lock(&dm_thin_pool_table.mutex);
  2089. if (argc != 2 && argc != 3) {
  2090. ti->error = "Invalid argument count";
  2091. r = -EINVAL;
  2092. goto out_unlock;
  2093. }
  2094. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2095. if (!tc) {
  2096. ti->error = "Out of memory";
  2097. r = -ENOMEM;
  2098. goto out_unlock;
  2099. }
  2100. if (argc == 3) {
  2101. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2102. if (r) {
  2103. ti->error = "Error opening origin device";
  2104. goto bad_origin_dev;
  2105. }
  2106. tc->origin_dev = origin_dev;
  2107. }
  2108. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2109. if (r) {
  2110. ti->error = "Error opening pool device";
  2111. goto bad_pool_dev;
  2112. }
  2113. tc->pool_dev = pool_dev;
  2114. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2115. ti->error = "Invalid device id";
  2116. r = -EINVAL;
  2117. goto bad_common;
  2118. }
  2119. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2120. if (!pool_md) {
  2121. ti->error = "Couldn't get pool mapped device";
  2122. r = -EINVAL;
  2123. goto bad_common;
  2124. }
  2125. tc->pool = __pool_table_lookup(pool_md);
  2126. if (!tc->pool) {
  2127. ti->error = "Couldn't find pool object";
  2128. r = -EINVAL;
  2129. goto bad_pool_lookup;
  2130. }
  2131. __pool_inc(tc->pool);
  2132. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2133. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2134. goto bad_thin_open;
  2135. }
  2136. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2137. if (r) {
  2138. ti->error = "Couldn't open thin internal device";
  2139. goto bad_thin_open;
  2140. }
  2141. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2142. if (r)
  2143. goto bad_thin_open;
  2144. ti->num_flush_requests = 1;
  2145. ti->flush_supported = true;
  2146. /* In case the pool supports discards, pass them on. */
  2147. if (tc->pool->pf.discard_enabled) {
  2148. ti->discards_supported = true;
  2149. ti->num_discard_requests = 1;
  2150. ti->discard_zeroes_data_unsupported = true;
  2151. /* Discard requests must be split on a block boundary */
  2152. ti->split_discard_requests = true;
  2153. }
  2154. dm_put(pool_md);
  2155. mutex_unlock(&dm_thin_pool_table.mutex);
  2156. return 0;
  2157. bad_thin_open:
  2158. __pool_dec(tc->pool);
  2159. bad_pool_lookup:
  2160. dm_put(pool_md);
  2161. bad_common:
  2162. dm_put_device(ti, tc->pool_dev);
  2163. bad_pool_dev:
  2164. if (tc->origin_dev)
  2165. dm_put_device(ti, tc->origin_dev);
  2166. bad_origin_dev:
  2167. kfree(tc);
  2168. out_unlock:
  2169. mutex_unlock(&dm_thin_pool_table.mutex);
  2170. return r;
  2171. }
  2172. static int thin_map(struct dm_target *ti, struct bio *bio,
  2173. union map_info *map_context)
  2174. {
  2175. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2176. return thin_bio_map(ti, bio, map_context);
  2177. }
  2178. static int thin_endio(struct dm_target *ti,
  2179. struct bio *bio, int err,
  2180. union map_info *map_context)
  2181. {
  2182. unsigned long flags;
  2183. struct dm_thin_endio_hook *h = map_context->ptr;
  2184. struct list_head work;
  2185. struct dm_thin_new_mapping *m, *tmp;
  2186. struct pool *pool = h->tc->pool;
  2187. if (h->shared_read_entry) {
  2188. INIT_LIST_HEAD(&work);
  2189. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2190. spin_lock_irqsave(&pool->lock, flags);
  2191. list_for_each_entry_safe(m, tmp, &work, list) {
  2192. list_del(&m->list);
  2193. m->quiesced = 1;
  2194. __maybe_add_mapping(m);
  2195. }
  2196. spin_unlock_irqrestore(&pool->lock, flags);
  2197. }
  2198. if (h->all_io_entry) {
  2199. INIT_LIST_HEAD(&work);
  2200. dm_deferred_entry_dec(h->all_io_entry, &work);
  2201. spin_lock_irqsave(&pool->lock, flags);
  2202. list_for_each_entry_safe(m, tmp, &work, list)
  2203. list_add(&m->list, &pool->prepared_discards);
  2204. spin_unlock_irqrestore(&pool->lock, flags);
  2205. }
  2206. mempool_free(h, pool->endio_hook_pool);
  2207. return 0;
  2208. }
  2209. static void thin_postsuspend(struct dm_target *ti)
  2210. {
  2211. if (dm_noflush_suspending(ti))
  2212. requeue_io((struct thin_c *)ti->private);
  2213. }
  2214. /*
  2215. * <nr mapped sectors> <highest mapped sector>
  2216. */
  2217. static int thin_status(struct dm_target *ti, status_type_t type,
  2218. unsigned status_flags, char *result, unsigned maxlen)
  2219. {
  2220. int r;
  2221. ssize_t sz = 0;
  2222. dm_block_t mapped, highest;
  2223. char buf[BDEVNAME_SIZE];
  2224. struct thin_c *tc = ti->private;
  2225. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2226. DMEMIT("Fail");
  2227. return 0;
  2228. }
  2229. if (!tc->td)
  2230. DMEMIT("-");
  2231. else {
  2232. switch (type) {
  2233. case STATUSTYPE_INFO:
  2234. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2235. if (r)
  2236. return r;
  2237. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2238. if (r < 0)
  2239. return r;
  2240. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2241. if (r)
  2242. DMEMIT("%llu", ((highest + 1) *
  2243. tc->pool->sectors_per_block) - 1);
  2244. else
  2245. DMEMIT("-");
  2246. break;
  2247. case STATUSTYPE_TABLE:
  2248. DMEMIT("%s %lu",
  2249. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2250. (unsigned long) tc->dev_id);
  2251. if (tc->origin_dev)
  2252. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2253. break;
  2254. }
  2255. }
  2256. return 0;
  2257. }
  2258. static int thin_iterate_devices(struct dm_target *ti,
  2259. iterate_devices_callout_fn fn, void *data)
  2260. {
  2261. sector_t blocks;
  2262. struct thin_c *tc = ti->private;
  2263. struct pool *pool = tc->pool;
  2264. /*
  2265. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2266. * we follow a more convoluted path through to the pool's target.
  2267. */
  2268. if (!pool->ti)
  2269. return 0; /* nothing is bound */
  2270. blocks = pool->ti->len;
  2271. (void) sector_div(blocks, pool->sectors_per_block);
  2272. if (blocks)
  2273. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2274. return 0;
  2275. }
  2276. /*
  2277. * A thin device always inherits its queue limits from its pool.
  2278. */
  2279. static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2280. {
  2281. struct thin_c *tc = ti->private;
  2282. *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
  2283. }
  2284. static struct target_type thin_target = {
  2285. .name = "thin",
  2286. .version = {1, 5, 0},
  2287. .module = THIS_MODULE,
  2288. .ctr = thin_ctr,
  2289. .dtr = thin_dtr,
  2290. .map = thin_map,
  2291. .end_io = thin_endio,
  2292. .postsuspend = thin_postsuspend,
  2293. .status = thin_status,
  2294. .iterate_devices = thin_iterate_devices,
  2295. .io_hints = thin_io_hints,
  2296. };
  2297. /*----------------------------------------------------------------*/
  2298. static int __init dm_thin_init(void)
  2299. {
  2300. int r;
  2301. pool_table_init();
  2302. r = dm_register_target(&thin_target);
  2303. if (r)
  2304. return r;
  2305. r = dm_register_target(&pool_target);
  2306. if (r)
  2307. goto bad_pool_target;
  2308. r = -ENOMEM;
  2309. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2310. if (!_new_mapping_cache)
  2311. goto bad_new_mapping_cache;
  2312. _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
  2313. if (!_endio_hook_cache)
  2314. goto bad_endio_hook_cache;
  2315. return 0;
  2316. bad_endio_hook_cache:
  2317. kmem_cache_destroy(_new_mapping_cache);
  2318. bad_new_mapping_cache:
  2319. dm_unregister_target(&pool_target);
  2320. bad_pool_target:
  2321. dm_unregister_target(&thin_target);
  2322. return r;
  2323. }
  2324. static void dm_thin_exit(void)
  2325. {
  2326. dm_unregister_target(&thin_target);
  2327. dm_unregister_target(&pool_target);
  2328. kmem_cache_destroy(_new_mapping_cache);
  2329. kmem_cache_destroy(_endio_hook_cache);
  2330. }
  2331. module_init(dm_thin_init);
  2332. module_exit(dm_thin_exit);
  2333. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2334. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2335. MODULE_LICENSE("GPL");