sb_edac.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839
  1. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  2. *
  3. * This driver supports the memory controllers found on the Intel
  4. * processor family Sandy Bridge.
  5. *
  6. * This file may be distributed under the terms of the
  7. * GNU General Public License version 2 only.
  8. *
  9. * Copyright (c) 2011 by:
  10. * Mauro Carvalho Chehab <mchehab@redhat.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/pci_ids.h>
  16. #include <linux/slab.h>
  17. #include <linux/delay.h>
  18. #include <linux/edac.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/smp.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/math64.h>
  23. #include <asm/processor.h>
  24. #include <asm/mce.h>
  25. #include "edac_core.h"
  26. /* Static vars */
  27. static LIST_HEAD(sbridge_edac_list);
  28. static DEFINE_MUTEX(sbridge_edac_lock);
  29. static int probed;
  30. /*
  31. * Alter this version for the module when modifications are made
  32. */
  33. #define SBRIDGE_REVISION " Ver: 1.0.0 "
  34. #define EDAC_MOD_STR "sbridge_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define sbridge_printk(level, fmt, arg...) \
  39. edac_printk(level, "sbridge", fmt, ##arg)
  40. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
  47. /*
  48. * sbridge Memory Controller Registers
  49. */
  50. /*
  51. * FIXME: For now, let's order by device function, as it makes
  52. * easier for driver's development process. This table should be
  53. * moved to pci_id.h when submitted upstream
  54. */
  55. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
  56. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
  57. #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
  58. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
  59. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
  60. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
  61. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
  62. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
  63. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
  64. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
  65. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
  66. /*
  67. * Currently, unused, but will be needed in the future
  68. * implementations, as they hold the error counters
  69. */
  70. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
  71. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
  72. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
  73. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
  74. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  75. static const u32 dram_rule[] = {
  76. 0x80, 0x88, 0x90, 0x98, 0xa0,
  77. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  78. };
  79. #define MAX_SAD ARRAY_SIZE(dram_rule)
  80. #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
  81. #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
  82. #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
  83. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  84. static char *get_dram_attr(u32 reg)
  85. {
  86. switch(DRAM_ATTR(reg)) {
  87. case 0:
  88. return "DRAM";
  89. case 1:
  90. return "MMCFG";
  91. case 2:
  92. return "NXM";
  93. default:
  94. return "unknown";
  95. }
  96. }
  97. static const u32 interleave_list[] = {
  98. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  99. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  100. };
  101. #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
  102. #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
  103. #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
  104. #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
  105. #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
  106. #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
  107. #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
  108. #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
  109. #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
  110. static inline int sad_pkg(u32 reg, int interleave)
  111. {
  112. switch (interleave) {
  113. case 0:
  114. return SAD_PKG0(reg);
  115. case 1:
  116. return SAD_PKG1(reg);
  117. case 2:
  118. return SAD_PKG2(reg);
  119. case 3:
  120. return SAD_PKG3(reg);
  121. case 4:
  122. return SAD_PKG4(reg);
  123. case 5:
  124. return SAD_PKG5(reg);
  125. case 6:
  126. return SAD_PKG6(reg);
  127. case 7:
  128. return SAD_PKG7(reg);
  129. default:
  130. return -EINVAL;
  131. }
  132. }
  133. /* Devices 12 Function 7 */
  134. #define TOLM 0x80
  135. #define TOHM 0x84
  136. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  137. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  138. /* Device 13 Function 6 */
  139. #define SAD_TARGET 0xf0
  140. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  141. #define SAD_CONTROL 0xf4
  142. #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
  143. /* Device 14 function 0 */
  144. static const u32 tad_dram_rule[] = {
  145. 0x40, 0x44, 0x48, 0x4c,
  146. 0x50, 0x54, 0x58, 0x5c,
  147. 0x60, 0x64, 0x68, 0x6c,
  148. };
  149. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  150. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  151. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  152. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  153. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  154. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  155. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  156. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  157. /* Device 15, function 0 */
  158. #define MCMTR 0x7c
  159. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  160. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  161. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  162. /* Device 15, function 1 */
  163. #define RASENABLES 0xac
  164. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  165. /* Device 15, functions 2-5 */
  166. static const int mtr_regs[] = {
  167. 0x80, 0x84, 0x88,
  168. };
  169. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  170. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  171. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  172. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  173. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  174. static const u32 tad_ch_nilv_offset[] = {
  175. 0x90, 0x94, 0x98, 0x9c,
  176. 0xa0, 0xa4, 0xa8, 0xac,
  177. 0xb0, 0xb4, 0xb8, 0xbc,
  178. };
  179. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  180. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  181. static const u32 rir_way_limit[] = {
  182. 0x108, 0x10c, 0x110, 0x114, 0x118,
  183. };
  184. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  185. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  186. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  187. #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
  188. #define MAX_RIR_WAY 8
  189. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  190. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  191. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  192. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  193. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  194. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  195. };
  196. #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
  197. #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
  198. /* Device 16, functions 2-7 */
  199. /*
  200. * FIXME: Implement the error count reads directly
  201. */
  202. static const u32 correrrcnt[] = {
  203. 0x104, 0x108, 0x10c, 0x110,
  204. };
  205. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  206. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  207. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  208. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  209. static const u32 correrrthrsld[] = {
  210. 0x11c, 0x120, 0x124, 0x128,
  211. };
  212. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  213. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  214. /* Device 17, function 0 */
  215. #define RANK_CFG_A 0x0328
  216. #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
  217. /*
  218. * sbridge structs
  219. */
  220. #define NUM_CHANNELS 4
  221. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  222. struct sbridge_info {
  223. u32 mcmtr;
  224. };
  225. struct sbridge_channel {
  226. u32 ranks;
  227. u32 dimms;
  228. };
  229. struct pci_id_descr {
  230. int dev;
  231. int func;
  232. int dev_id;
  233. int optional;
  234. };
  235. struct pci_id_table {
  236. const struct pci_id_descr *descr;
  237. int n_devs;
  238. };
  239. struct sbridge_dev {
  240. struct list_head list;
  241. u8 bus, mc;
  242. u8 node_id, source_id;
  243. struct pci_dev **pdev;
  244. int n_devs;
  245. struct mem_ctl_info *mci;
  246. };
  247. struct sbridge_pvt {
  248. struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
  249. struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
  250. struct pci_dev *pci_br;
  251. struct pci_dev *pci_tad[NUM_CHANNELS];
  252. struct sbridge_dev *sbridge_dev;
  253. struct sbridge_info info;
  254. struct sbridge_channel channel[NUM_CHANNELS];
  255. /* Memory type detection */
  256. bool is_mirrored, is_lockstep, is_close_pg;
  257. /* Fifo double buffers */
  258. struct mce mce_entry[MCE_LOG_LEN];
  259. struct mce mce_outentry[MCE_LOG_LEN];
  260. /* Fifo in/out counters */
  261. unsigned mce_in, mce_out;
  262. /* Count indicator to show errors not got */
  263. unsigned mce_overrun;
  264. /* Memory description */
  265. u64 tolm, tohm;
  266. };
  267. #define PCI_DESCR(device, function, device_id) \
  268. .dev = (device), \
  269. .func = (function), \
  270. .dev_id = (device_id)
  271. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  272. /* Processor Home Agent */
  273. { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
  274. /* Memory controller */
  275. { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
  276. { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
  277. { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
  278. { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
  279. { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
  280. { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
  281. { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
  282. /* System Address Decoder */
  283. { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
  284. { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
  285. /* Broadcast Registers */
  286. { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
  287. };
  288. #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
  289. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  290. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
  291. {0,} /* 0 terminated list. */
  292. };
  293. /*
  294. * pci_device_id table for which devices we are looking for
  295. */
  296. static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
  297. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
  298. {0,} /* 0 terminated list. */
  299. };
  300. /****************************************************************************
  301. Ancillary status routines
  302. ****************************************************************************/
  303. static inline int numrank(u32 mtr)
  304. {
  305. int ranks = (1 << RANK_CNT_BITS(mtr));
  306. if (ranks > 4) {
  307. edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
  308. ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  309. return -EINVAL;
  310. }
  311. return ranks;
  312. }
  313. static inline int numrow(u32 mtr)
  314. {
  315. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  316. if (rows < 13 || rows > 18) {
  317. edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
  318. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  319. return -EINVAL;
  320. }
  321. return 1 << rows;
  322. }
  323. static inline int numcol(u32 mtr)
  324. {
  325. int cols = (COL_WIDTH_BITS(mtr) + 10);
  326. if (cols > 12) {
  327. edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
  328. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  329. return -EINVAL;
  330. }
  331. return 1 << cols;
  332. }
  333. static struct sbridge_dev *get_sbridge_dev(u8 bus)
  334. {
  335. struct sbridge_dev *sbridge_dev;
  336. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  337. if (sbridge_dev->bus == bus)
  338. return sbridge_dev;
  339. }
  340. return NULL;
  341. }
  342. static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
  343. const struct pci_id_table *table)
  344. {
  345. struct sbridge_dev *sbridge_dev;
  346. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  347. if (!sbridge_dev)
  348. return NULL;
  349. sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
  350. GFP_KERNEL);
  351. if (!sbridge_dev->pdev) {
  352. kfree(sbridge_dev);
  353. return NULL;
  354. }
  355. sbridge_dev->bus = bus;
  356. sbridge_dev->n_devs = table->n_devs;
  357. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  358. return sbridge_dev;
  359. }
  360. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  361. {
  362. list_del(&sbridge_dev->list);
  363. kfree(sbridge_dev->pdev);
  364. kfree(sbridge_dev);
  365. }
  366. /****************************************************************************
  367. Memory check routines
  368. ****************************************************************************/
  369. static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
  370. unsigned func)
  371. {
  372. struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
  373. int i;
  374. if (!sbridge_dev)
  375. return NULL;
  376. for (i = 0; i < sbridge_dev->n_devs; i++) {
  377. if (!sbridge_dev->pdev[i])
  378. continue;
  379. if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
  380. PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
  381. edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
  382. bus, slot, func, sbridge_dev->pdev[i]);
  383. return sbridge_dev->pdev[i];
  384. }
  385. }
  386. return NULL;
  387. }
  388. /**
  389. * check_if_ecc_is_active() - Checks if ECC is active
  390. * bus: Device bus
  391. */
  392. static int check_if_ecc_is_active(const u8 bus)
  393. {
  394. struct pci_dev *pdev = NULL;
  395. u32 mcmtr;
  396. pdev = get_pdev_slot_func(bus, 15, 0);
  397. if (!pdev) {
  398. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  399. "%2x.%02d.%d!!!\n",
  400. bus, 15, 0);
  401. return -ENODEV;
  402. }
  403. pci_read_config_dword(pdev, MCMTR, &mcmtr);
  404. if (!IS_ECC_ENABLED(mcmtr)) {
  405. sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
  406. return -ENODEV;
  407. }
  408. return 0;
  409. }
  410. static int get_dimm_config(struct mem_ctl_info *mci)
  411. {
  412. struct sbridge_pvt *pvt = mci->pvt_info;
  413. struct dimm_info *dimm;
  414. unsigned i, j, banks, ranks, rows, cols, npages;
  415. u64 size;
  416. u32 reg;
  417. enum edac_type mode;
  418. enum mem_type mtype;
  419. pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
  420. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  421. pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
  422. pvt->sbridge_dev->node_id = NODE_ID(reg);
  423. edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
  424. pvt->sbridge_dev->mc,
  425. pvt->sbridge_dev->node_id,
  426. pvt->sbridge_dev->source_id);
  427. pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
  428. if (IS_MIRROR_ENABLED(reg)) {
  429. edac_dbg(0, "Memory mirror is enabled\n");
  430. pvt->is_mirrored = true;
  431. } else {
  432. edac_dbg(0, "Memory mirror is disabled\n");
  433. pvt->is_mirrored = false;
  434. }
  435. pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
  436. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  437. edac_dbg(0, "Lockstep is enabled\n");
  438. mode = EDAC_S8ECD8ED;
  439. pvt->is_lockstep = true;
  440. } else {
  441. edac_dbg(0, "Lockstep is disabled\n");
  442. mode = EDAC_S4ECD4ED;
  443. pvt->is_lockstep = false;
  444. }
  445. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  446. edac_dbg(0, "address map is on closed page mode\n");
  447. pvt->is_close_pg = true;
  448. } else {
  449. edac_dbg(0, "address map is on open page mode\n");
  450. pvt->is_close_pg = false;
  451. }
  452. pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
  453. if (IS_RDIMM_ENABLED(reg)) {
  454. /* FIXME: Can also be LRDIMM */
  455. edac_dbg(0, "Memory is registered\n");
  456. mtype = MEM_RDDR3;
  457. } else {
  458. edac_dbg(0, "Memory is unregistered\n");
  459. mtype = MEM_DDR3;
  460. }
  461. /* On all supported DDR3 DIMM types, there are 8 banks available */
  462. banks = 8;
  463. for (i = 0; i < NUM_CHANNELS; i++) {
  464. u32 mtr;
  465. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  466. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
  467. i, j, 0);
  468. pci_read_config_dword(pvt->pci_tad[i],
  469. mtr_regs[j], &mtr);
  470. edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
  471. if (IS_DIMM_PRESENT(mtr)) {
  472. pvt->channel[i].dimms++;
  473. ranks = numrank(mtr);
  474. rows = numrow(mtr);
  475. cols = numcol(mtr);
  476. /* DDR3 has 8 I/O banks */
  477. size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
  478. npages = MiB_TO_PAGES(size);
  479. edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  480. pvt->sbridge_dev->mc, i, j,
  481. size, npages,
  482. banks, ranks, rows, cols);
  483. dimm->nr_pages = npages;
  484. dimm->grain = 32;
  485. dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
  486. dimm->mtype = mtype;
  487. dimm->edac_mode = mode;
  488. snprintf(dimm->label, sizeof(dimm->label),
  489. "CPU_SrcID#%u_Channel#%u_DIMM#%u",
  490. pvt->sbridge_dev->source_id, i, j);
  491. }
  492. }
  493. }
  494. return 0;
  495. }
  496. static void get_memory_layout(const struct mem_ctl_info *mci)
  497. {
  498. struct sbridge_pvt *pvt = mci->pvt_info;
  499. int i, j, k, n_sads, n_tads, sad_interl;
  500. u32 reg;
  501. u64 limit, prv = 0;
  502. u64 tmp_mb;
  503. u32 mb, kb;
  504. u32 rir_way;
  505. /*
  506. * Step 1) Get TOLM/TOHM ranges
  507. */
  508. /* Address range is 32:28 */
  509. pci_read_config_dword(pvt->pci_sad1, TOLM,
  510. &reg);
  511. pvt->tolm = GET_TOLM(reg);
  512. tmp_mb = (1 + pvt->tolm) >> 20;
  513. mb = div_u64_rem(tmp_mb, 1000, &kb);
  514. edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
  515. /* Address range is already 45:25 */
  516. pci_read_config_dword(pvt->pci_sad1, TOHM,
  517. &reg);
  518. pvt->tohm = GET_TOHM(reg);
  519. tmp_mb = (1 + pvt->tohm) >> 20;
  520. mb = div_u64_rem(tmp_mb, 1000, &kb);
  521. edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
  522. /*
  523. * Step 2) Get SAD range and SAD Interleave list
  524. * TAD registers contain the interleave wayness. However, it
  525. * seems simpler to just discover it indirectly, with the
  526. * algorithm bellow.
  527. */
  528. prv = 0;
  529. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  530. /* SAD_LIMIT Address range is 45:26 */
  531. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  532. &reg);
  533. limit = SAD_LIMIT(reg);
  534. if (!DRAM_RULE_ENABLE(reg))
  535. continue;
  536. if (limit <= prv)
  537. break;
  538. tmp_mb = (limit + 1) >> 20;
  539. mb = div_u64_rem(tmp_mb, 1000, &kb);
  540. edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
  541. n_sads,
  542. get_dram_attr(reg),
  543. mb, kb,
  544. ((u64)tmp_mb) << 20L,
  545. INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
  546. reg);
  547. prv = limit;
  548. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  549. &reg);
  550. sad_interl = sad_pkg(reg, 0);
  551. for (j = 0; j < 8; j++) {
  552. if (j > 0 && sad_interl == sad_pkg(reg, j))
  553. break;
  554. edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
  555. n_sads, j, sad_pkg(reg, j));
  556. }
  557. }
  558. /*
  559. * Step 3) Get TAD range
  560. */
  561. prv = 0;
  562. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  563. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  564. &reg);
  565. limit = TAD_LIMIT(reg);
  566. if (limit <= prv)
  567. break;
  568. tmp_mb = (limit + 1) >> 20;
  569. mb = div_u64_rem(tmp_mb, 1000, &kb);
  570. edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  571. n_tads, mb, kb,
  572. ((u64)tmp_mb) << 20L,
  573. (u32)TAD_SOCK(reg),
  574. (u32)TAD_CH(reg),
  575. (u32)TAD_TGT0(reg),
  576. (u32)TAD_TGT1(reg),
  577. (u32)TAD_TGT2(reg),
  578. (u32)TAD_TGT3(reg),
  579. reg);
  580. prv = limit;
  581. }
  582. /*
  583. * Step 4) Get TAD offsets, per each channel
  584. */
  585. for (i = 0; i < NUM_CHANNELS; i++) {
  586. if (!pvt->channel[i].dimms)
  587. continue;
  588. for (j = 0; j < n_tads; j++) {
  589. pci_read_config_dword(pvt->pci_tad[i],
  590. tad_ch_nilv_offset[j],
  591. &reg);
  592. tmp_mb = TAD_OFFSET(reg) >> 20;
  593. mb = div_u64_rem(tmp_mb, 1000, &kb);
  594. edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  595. i, j,
  596. mb, kb,
  597. ((u64)tmp_mb) << 20L,
  598. reg);
  599. }
  600. }
  601. /*
  602. * Step 6) Get RIR Wayness/Limit, per each channel
  603. */
  604. for (i = 0; i < NUM_CHANNELS; i++) {
  605. if (!pvt->channel[i].dimms)
  606. continue;
  607. for (j = 0; j < MAX_RIR_RANGES; j++) {
  608. pci_read_config_dword(pvt->pci_tad[i],
  609. rir_way_limit[j],
  610. &reg);
  611. if (!IS_RIR_VALID(reg))
  612. continue;
  613. tmp_mb = RIR_LIMIT(reg) >> 20;
  614. rir_way = 1 << RIR_WAY(reg);
  615. mb = div_u64_rem(tmp_mb, 1000, &kb);
  616. edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  617. i, j,
  618. mb, kb,
  619. ((u64)tmp_mb) << 20L,
  620. rir_way,
  621. reg);
  622. for (k = 0; k < rir_way; k++) {
  623. pci_read_config_dword(pvt->pci_tad[i],
  624. rir_offset[j][k],
  625. &reg);
  626. tmp_mb = RIR_OFFSET(reg) << 6;
  627. mb = div_u64_rem(tmp_mb, 1000, &kb);
  628. edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  629. i, j, k,
  630. mb, kb,
  631. ((u64)tmp_mb) << 20L,
  632. (u32)RIR_RNK_TGT(reg),
  633. reg);
  634. }
  635. }
  636. }
  637. }
  638. struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
  639. {
  640. struct sbridge_dev *sbridge_dev;
  641. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  642. if (sbridge_dev->node_id == node_id)
  643. return sbridge_dev->mci;
  644. }
  645. return NULL;
  646. }
  647. static int get_memory_error_data(struct mem_ctl_info *mci,
  648. u64 addr,
  649. u8 *socket,
  650. long *channel_mask,
  651. u8 *rank,
  652. char **area_type, char *msg)
  653. {
  654. struct mem_ctl_info *new_mci;
  655. struct sbridge_pvt *pvt = mci->pvt_info;
  656. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  657. int sad_interl, idx, base_ch;
  658. int interleave_mode;
  659. unsigned sad_interleave[MAX_INTERLEAVE];
  660. u32 reg;
  661. u8 ch_way,sck_way;
  662. u32 tad_offset;
  663. u32 rir_way;
  664. u32 mb, kb;
  665. u64 ch_addr, offset, limit, prv = 0;
  666. /*
  667. * Step 0) Check if the address is at special memory ranges
  668. * The check bellow is probably enough to fill all cases where
  669. * the error is not inside a memory, except for the legacy
  670. * range (e. g. VGA addresses). It is unlikely, however, that the
  671. * memory controller would generate an error on that range.
  672. */
  673. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  674. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  675. return -EINVAL;
  676. }
  677. if (addr >= (u64)pvt->tohm) {
  678. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  679. return -EINVAL;
  680. }
  681. /*
  682. * Step 1) Get socket
  683. */
  684. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  685. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  686. &reg);
  687. if (!DRAM_RULE_ENABLE(reg))
  688. continue;
  689. limit = SAD_LIMIT(reg);
  690. if (limit <= prv) {
  691. sprintf(msg, "Can't discover the memory socket");
  692. return -EINVAL;
  693. }
  694. if (addr <= limit)
  695. break;
  696. prv = limit;
  697. }
  698. if (n_sads == MAX_SAD) {
  699. sprintf(msg, "Can't discover the memory socket");
  700. return -EINVAL;
  701. }
  702. *area_type = get_dram_attr(reg);
  703. interleave_mode = INTERLEAVE_MODE(reg);
  704. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  705. &reg);
  706. sad_interl = sad_pkg(reg, 0);
  707. for (sad_way = 0; sad_way < 8; sad_way++) {
  708. if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
  709. break;
  710. sad_interleave[sad_way] = sad_pkg(reg, sad_way);
  711. edac_dbg(0, "SAD interleave #%d: %d\n",
  712. sad_way, sad_interleave[sad_way]);
  713. }
  714. edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  715. pvt->sbridge_dev->mc,
  716. n_sads,
  717. addr,
  718. limit,
  719. sad_way + 7,
  720. interleave_mode ? "" : "XOR[18:16]");
  721. if (interleave_mode)
  722. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  723. else
  724. idx = (addr >> 6) & 7;
  725. switch (sad_way) {
  726. case 1:
  727. idx = 0;
  728. break;
  729. case 2:
  730. idx = idx & 1;
  731. break;
  732. case 4:
  733. idx = idx & 3;
  734. break;
  735. case 8:
  736. break;
  737. default:
  738. sprintf(msg, "Can't discover socket interleave");
  739. return -EINVAL;
  740. }
  741. *socket = sad_interleave[idx];
  742. edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  743. idx, sad_way, *socket);
  744. /*
  745. * Move to the proper node structure, in order to access the
  746. * right PCI registers
  747. */
  748. new_mci = get_mci_for_node_id(*socket);
  749. if (!new_mci) {
  750. sprintf(msg, "Struct for socket #%u wasn't initialized",
  751. *socket);
  752. return -EINVAL;
  753. }
  754. mci = new_mci;
  755. pvt = mci->pvt_info;
  756. /*
  757. * Step 2) Get memory channel
  758. */
  759. prv = 0;
  760. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  761. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  762. &reg);
  763. limit = TAD_LIMIT(reg);
  764. if (limit <= prv) {
  765. sprintf(msg, "Can't discover the memory channel");
  766. return -EINVAL;
  767. }
  768. if (addr <= limit)
  769. break;
  770. prv = limit;
  771. }
  772. ch_way = TAD_CH(reg) + 1;
  773. sck_way = TAD_SOCK(reg) + 1;
  774. /*
  775. * FIXME: Is it right to always use channel 0 for offsets?
  776. */
  777. pci_read_config_dword(pvt->pci_tad[0],
  778. tad_ch_nilv_offset[n_tads],
  779. &tad_offset);
  780. if (ch_way == 3)
  781. idx = addr >> 6;
  782. else
  783. idx = addr >> (6 + sck_way);
  784. idx = idx % ch_way;
  785. /*
  786. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  787. */
  788. switch (idx) {
  789. case 0:
  790. base_ch = TAD_TGT0(reg);
  791. break;
  792. case 1:
  793. base_ch = TAD_TGT1(reg);
  794. break;
  795. case 2:
  796. base_ch = TAD_TGT2(reg);
  797. break;
  798. case 3:
  799. base_ch = TAD_TGT3(reg);
  800. break;
  801. default:
  802. sprintf(msg, "Can't discover the TAD target");
  803. return -EINVAL;
  804. }
  805. *channel_mask = 1 << base_ch;
  806. if (pvt->is_mirrored) {
  807. *channel_mask |= 1 << ((base_ch + 2) % 4);
  808. switch(ch_way) {
  809. case 2:
  810. case 4:
  811. sck_xch = 1 << sck_way * (ch_way >> 1);
  812. break;
  813. default:
  814. sprintf(msg, "Invalid mirror set. Can't decode addr");
  815. return -EINVAL;
  816. }
  817. } else
  818. sck_xch = (1 << sck_way) * ch_way;
  819. if (pvt->is_lockstep)
  820. *channel_mask |= 1 << ((base_ch + 1) % 4);
  821. offset = TAD_OFFSET(tad_offset);
  822. edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  823. n_tads,
  824. addr,
  825. limit,
  826. (u32)TAD_SOCK(reg),
  827. ch_way,
  828. offset,
  829. idx,
  830. base_ch,
  831. *channel_mask);
  832. /* Calculate channel address */
  833. /* Remove the TAD offset */
  834. if (offset > addr) {
  835. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  836. offset, addr);
  837. return -EINVAL;
  838. }
  839. addr -= offset;
  840. /* Store the low bits [0:6] of the addr */
  841. ch_addr = addr & 0x7f;
  842. /* Remove socket wayness and remove 6 bits */
  843. addr >>= 6;
  844. addr = div_u64(addr, sck_xch);
  845. #if 0
  846. /* Divide by channel way */
  847. addr = addr / ch_way;
  848. #endif
  849. /* Recover the last 6 bits */
  850. ch_addr |= addr << 6;
  851. /*
  852. * Step 3) Decode rank
  853. */
  854. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  855. pci_read_config_dword(pvt->pci_tad[base_ch],
  856. rir_way_limit[n_rir],
  857. &reg);
  858. if (!IS_RIR_VALID(reg))
  859. continue;
  860. limit = RIR_LIMIT(reg);
  861. mb = div_u64_rem(limit >> 20, 1000, &kb);
  862. edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  863. n_rir,
  864. mb, kb,
  865. limit,
  866. 1 << RIR_WAY(reg));
  867. if (ch_addr <= limit)
  868. break;
  869. }
  870. if (n_rir == MAX_RIR_RANGES) {
  871. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  872. ch_addr);
  873. return -EINVAL;
  874. }
  875. rir_way = RIR_WAY(reg);
  876. if (pvt->is_close_pg)
  877. idx = (ch_addr >> 6);
  878. else
  879. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  880. idx %= 1 << rir_way;
  881. pci_read_config_dword(pvt->pci_tad[base_ch],
  882. rir_offset[n_rir][idx],
  883. &reg);
  884. *rank = RIR_RNK_TGT(reg);
  885. edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  886. n_rir,
  887. ch_addr,
  888. limit,
  889. rir_way,
  890. idx);
  891. return 0;
  892. }
  893. /****************************************************************************
  894. Device initialization routines: put/get, init/exit
  895. ****************************************************************************/
  896. /*
  897. * sbridge_put_all_devices 'put' all the devices that we have
  898. * reserved via 'get'
  899. */
  900. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  901. {
  902. int i;
  903. edac_dbg(0, "\n");
  904. for (i = 0; i < sbridge_dev->n_devs; i++) {
  905. struct pci_dev *pdev = sbridge_dev->pdev[i];
  906. if (!pdev)
  907. continue;
  908. edac_dbg(0, "Removing dev %02x:%02x.%d\n",
  909. pdev->bus->number,
  910. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  911. pci_dev_put(pdev);
  912. }
  913. }
  914. static void sbridge_put_all_devices(void)
  915. {
  916. struct sbridge_dev *sbridge_dev, *tmp;
  917. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  918. sbridge_put_devices(sbridge_dev);
  919. free_sbridge_dev(sbridge_dev);
  920. }
  921. }
  922. /*
  923. * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
  924. * device/functions we want to reference for this driver
  925. *
  926. * Need to 'get' device 16 func 1 and func 2
  927. */
  928. static int sbridge_get_onedevice(struct pci_dev **prev,
  929. u8 *num_mc,
  930. const struct pci_id_table *table,
  931. const unsigned devno)
  932. {
  933. struct sbridge_dev *sbridge_dev;
  934. const struct pci_id_descr *dev_descr = &table->descr[devno];
  935. struct pci_dev *pdev = NULL;
  936. u8 bus = 0;
  937. sbridge_printk(KERN_INFO,
  938. "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
  939. dev_descr->dev, dev_descr->func,
  940. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  941. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  942. dev_descr->dev_id, *prev);
  943. if (!pdev) {
  944. if (*prev) {
  945. *prev = pdev;
  946. return 0;
  947. }
  948. if (dev_descr->optional)
  949. return 0;
  950. if (devno == 0)
  951. return -ENODEV;
  952. sbridge_printk(KERN_INFO,
  953. "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
  954. dev_descr->dev, dev_descr->func,
  955. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  956. /* End of list, leave */
  957. return -ENODEV;
  958. }
  959. bus = pdev->bus->number;
  960. sbridge_dev = get_sbridge_dev(bus);
  961. if (!sbridge_dev) {
  962. sbridge_dev = alloc_sbridge_dev(bus, table);
  963. if (!sbridge_dev) {
  964. pci_dev_put(pdev);
  965. return -ENOMEM;
  966. }
  967. (*num_mc)++;
  968. }
  969. if (sbridge_dev->pdev[devno]) {
  970. sbridge_printk(KERN_ERR,
  971. "Duplicated device for "
  972. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  973. bus, dev_descr->dev, dev_descr->func,
  974. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  975. pci_dev_put(pdev);
  976. return -ENODEV;
  977. }
  978. sbridge_dev->pdev[devno] = pdev;
  979. /* Sanity check */
  980. if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
  981. PCI_FUNC(pdev->devfn) != dev_descr->func)) {
  982. sbridge_printk(KERN_ERR,
  983. "Device PCI ID %04x:%04x "
  984. "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
  985. PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
  986. bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  987. bus, dev_descr->dev, dev_descr->func);
  988. return -ENODEV;
  989. }
  990. /* Be sure that the device is enabled */
  991. if (unlikely(pci_enable_device(pdev) < 0)) {
  992. sbridge_printk(KERN_ERR,
  993. "Couldn't enable "
  994. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  995. bus, dev_descr->dev, dev_descr->func,
  996. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  997. return -ENODEV;
  998. }
  999. edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
  1000. bus, dev_descr->dev, dev_descr->func,
  1001. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1002. /*
  1003. * As stated on drivers/pci/search.c, the reference count for
  1004. * @from is always decremented if it is not %NULL. So, as we need
  1005. * to get all devices up to null, we need to do a get for the device
  1006. */
  1007. pci_dev_get(pdev);
  1008. *prev = pdev;
  1009. return 0;
  1010. }
  1011. static int sbridge_get_all_devices(u8 *num_mc)
  1012. {
  1013. int i, rc;
  1014. struct pci_dev *pdev = NULL;
  1015. const struct pci_id_table *table = pci_dev_descr_sbridge_table;
  1016. while (table && table->descr) {
  1017. for (i = 0; i < table->n_devs; i++) {
  1018. pdev = NULL;
  1019. do {
  1020. rc = sbridge_get_onedevice(&pdev, num_mc,
  1021. table, i);
  1022. if (rc < 0) {
  1023. if (i == 0) {
  1024. i = table->n_devs;
  1025. break;
  1026. }
  1027. sbridge_put_all_devices();
  1028. return -ENODEV;
  1029. }
  1030. } while (pdev);
  1031. }
  1032. table++;
  1033. }
  1034. return 0;
  1035. }
  1036. static int mci_bind_devs(struct mem_ctl_info *mci,
  1037. struct sbridge_dev *sbridge_dev)
  1038. {
  1039. struct sbridge_pvt *pvt = mci->pvt_info;
  1040. struct pci_dev *pdev;
  1041. int i, func, slot;
  1042. for (i = 0; i < sbridge_dev->n_devs; i++) {
  1043. pdev = sbridge_dev->pdev[i];
  1044. if (!pdev)
  1045. continue;
  1046. slot = PCI_SLOT(pdev->devfn);
  1047. func = PCI_FUNC(pdev->devfn);
  1048. switch (slot) {
  1049. case 12:
  1050. switch (func) {
  1051. case 6:
  1052. pvt->pci_sad0 = pdev;
  1053. break;
  1054. case 7:
  1055. pvt->pci_sad1 = pdev;
  1056. break;
  1057. default:
  1058. goto error;
  1059. }
  1060. break;
  1061. case 13:
  1062. switch (func) {
  1063. case 6:
  1064. pvt->pci_br = pdev;
  1065. break;
  1066. default:
  1067. goto error;
  1068. }
  1069. break;
  1070. case 14:
  1071. switch (func) {
  1072. case 0:
  1073. pvt->pci_ha0 = pdev;
  1074. break;
  1075. default:
  1076. goto error;
  1077. }
  1078. break;
  1079. case 15:
  1080. switch (func) {
  1081. case 0:
  1082. pvt->pci_ta = pdev;
  1083. break;
  1084. case 1:
  1085. pvt->pci_ras = pdev;
  1086. break;
  1087. case 2:
  1088. case 3:
  1089. case 4:
  1090. case 5:
  1091. pvt->pci_tad[func - 2] = pdev;
  1092. break;
  1093. default:
  1094. goto error;
  1095. }
  1096. break;
  1097. case 17:
  1098. switch (func) {
  1099. case 0:
  1100. pvt->pci_ddrio = pdev;
  1101. break;
  1102. default:
  1103. goto error;
  1104. }
  1105. break;
  1106. default:
  1107. goto error;
  1108. }
  1109. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  1110. sbridge_dev->bus,
  1111. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1112. pdev);
  1113. }
  1114. /* Check if everything were registered */
  1115. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
  1116. !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
  1117. !pvt->pci_ddrio)
  1118. goto enodev;
  1119. for (i = 0; i < NUM_CHANNELS; i++) {
  1120. if (!pvt->pci_tad[i])
  1121. goto enodev;
  1122. }
  1123. return 0;
  1124. enodev:
  1125. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  1126. return -ENODEV;
  1127. error:
  1128. sbridge_printk(KERN_ERR, "Device %d, function %d "
  1129. "is out of the expected range\n",
  1130. slot, func);
  1131. return -EINVAL;
  1132. }
  1133. /****************************************************************************
  1134. Error check routines
  1135. ****************************************************************************/
  1136. /*
  1137. * While Sandy Bridge has error count registers, SMI BIOS read values from
  1138. * and resets the counters. So, they are not reliable for the OS to read
  1139. * from them. So, we have no option but to just trust on whatever MCE is
  1140. * telling us about the errors.
  1141. */
  1142. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  1143. const struct mce *m)
  1144. {
  1145. struct mem_ctl_info *new_mci;
  1146. struct sbridge_pvt *pvt = mci->pvt_info;
  1147. enum hw_event_mc_err_type tp_event;
  1148. char *type, *optype, msg[256];
  1149. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  1150. bool overflow = GET_BITFIELD(m->status, 62, 62);
  1151. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  1152. bool recoverable = GET_BITFIELD(m->status, 56, 56);
  1153. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  1154. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  1155. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  1156. u32 channel = GET_BITFIELD(m->status, 0, 3);
  1157. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  1158. long channel_mask, first_channel;
  1159. u8 rank, socket;
  1160. int rc, dimm;
  1161. char *area_type = NULL;
  1162. if (uncorrected_error) {
  1163. if (ripv) {
  1164. type = "FATAL";
  1165. tp_event = HW_EVENT_ERR_FATAL;
  1166. } else {
  1167. type = "NON_FATAL";
  1168. tp_event = HW_EVENT_ERR_UNCORRECTED;
  1169. }
  1170. } else {
  1171. type = "CORRECTED";
  1172. tp_event = HW_EVENT_ERR_CORRECTED;
  1173. }
  1174. /*
  1175. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  1176. * memory errors should fit in this mask:
  1177. * 000f 0000 1mmm cccc (binary)
  1178. * where:
  1179. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1180. * won't be shown
  1181. * mmm = error type
  1182. * cccc = channel
  1183. * If the mask doesn't match, report an error to the parsing logic
  1184. */
  1185. if (! ((errcode & 0xef80) == 0x80)) {
  1186. optype = "Can't parse: it is not a mem";
  1187. } else {
  1188. switch (optypenum) {
  1189. case 0:
  1190. optype = "generic undef request error";
  1191. break;
  1192. case 1:
  1193. optype = "memory read error";
  1194. break;
  1195. case 2:
  1196. optype = "memory write error";
  1197. break;
  1198. case 3:
  1199. optype = "addr/cmd error";
  1200. break;
  1201. case 4:
  1202. optype = "memory scrubbing error";
  1203. break;
  1204. default:
  1205. optype = "reserved";
  1206. break;
  1207. }
  1208. }
  1209. rc = get_memory_error_data(mci, m->addr, &socket,
  1210. &channel_mask, &rank, &area_type, msg);
  1211. if (rc < 0)
  1212. goto err_parsing;
  1213. new_mci = get_mci_for_node_id(socket);
  1214. if (!new_mci) {
  1215. strcpy(msg, "Error: socket got corrupted!");
  1216. goto err_parsing;
  1217. }
  1218. mci = new_mci;
  1219. pvt = mci->pvt_info;
  1220. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  1221. if (rank < 4)
  1222. dimm = 0;
  1223. else if (rank < 8)
  1224. dimm = 1;
  1225. else
  1226. dimm = 2;
  1227. /*
  1228. * FIXME: On some memory configurations (mirror, lockstep), the
  1229. * Memory Controller can't point the error to a single DIMM. The
  1230. * EDAC core should be handling the channel mask, in order to point
  1231. * to the group of dimm's where the error may be happening.
  1232. */
  1233. snprintf(msg, sizeof(msg),
  1234. "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
  1235. overflow ? " OVERFLOW" : "",
  1236. (uncorrected_error && recoverable) ? " recoverable" : "",
  1237. area_type,
  1238. mscod, errcode,
  1239. socket,
  1240. channel_mask,
  1241. rank);
  1242. edac_dbg(0, "%s\n", msg);
  1243. /* FIXME: need support for channel mask */
  1244. /* Call the helper to output message */
  1245. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  1246. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  1247. channel, dimm, -1,
  1248. optype, msg);
  1249. return;
  1250. err_parsing:
  1251. edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
  1252. -1, -1, -1,
  1253. msg, "");
  1254. }
  1255. /*
  1256. * sbridge_check_error Retrieve and process errors reported by the
  1257. * hardware. Called by the Core module.
  1258. */
  1259. static void sbridge_check_error(struct mem_ctl_info *mci)
  1260. {
  1261. struct sbridge_pvt *pvt = mci->pvt_info;
  1262. int i;
  1263. unsigned count = 0;
  1264. struct mce *m;
  1265. /*
  1266. * MCE first step: Copy all mce errors into a temporary buffer
  1267. * We use a double buffering here, to reduce the risk of
  1268. * loosing an error.
  1269. */
  1270. smp_rmb();
  1271. count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
  1272. % MCE_LOG_LEN;
  1273. if (!count)
  1274. return;
  1275. m = pvt->mce_outentry;
  1276. if (pvt->mce_in + count > MCE_LOG_LEN) {
  1277. unsigned l = MCE_LOG_LEN - pvt->mce_in;
  1278. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
  1279. smp_wmb();
  1280. pvt->mce_in = 0;
  1281. count -= l;
  1282. m += l;
  1283. }
  1284. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
  1285. smp_wmb();
  1286. pvt->mce_in += count;
  1287. smp_rmb();
  1288. if (pvt->mce_overrun) {
  1289. sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
  1290. pvt->mce_overrun);
  1291. smp_wmb();
  1292. pvt->mce_overrun = 0;
  1293. }
  1294. /*
  1295. * MCE second step: parse errors and display
  1296. */
  1297. for (i = 0; i < count; i++)
  1298. sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
  1299. }
  1300. /*
  1301. * sbridge_mce_check_error Replicates mcelog routine to get errors
  1302. * This routine simply queues mcelog errors, and
  1303. * return. The error itself should be handled later
  1304. * by sbridge_check_error.
  1305. * WARNING: As this routine should be called at NMI time, extra care should
  1306. * be taken to avoid deadlocks, and to be as fast as possible.
  1307. */
  1308. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  1309. void *data)
  1310. {
  1311. struct mce *mce = (struct mce *)data;
  1312. struct mem_ctl_info *mci;
  1313. struct sbridge_pvt *pvt;
  1314. mci = get_mci_for_node_id(mce->socketid);
  1315. if (!mci)
  1316. return NOTIFY_BAD;
  1317. pvt = mci->pvt_info;
  1318. /*
  1319. * Just let mcelog handle it if the error is
  1320. * outside the memory controller. A memory error
  1321. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1322. * bit 12 has an special meaning.
  1323. */
  1324. if ((mce->status & 0xefff) >> 7 != 1)
  1325. return NOTIFY_DONE;
  1326. printk("sbridge: HANDLING MCE MEMORY ERROR\n");
  1327. printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
  1328. mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
  1329. printk("TSC %llx ", mce->tsc);
  1330. printk("ADDR %llx ", mce->addr);
  1331. printk("MISC %llx ", mce->misc);
  1332. printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1333. mce->cpuvendor, mce->cpuid, mce->time,
  1334. mce->socketid, mce->apicid);
  1335. /* Only handle if it is the right mc controller */
  1336. if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
  1337. return NOTIFY_DONE;
  1338. smp_rmb();
  1339. if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
  1340. smp_wmb();
  1341. pvt->mce_overrun++;
  1342. return NOTIFY_DONE;
  1343. }
  1344. /* Copy memory error at the ringbuffer */
  1345. memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
  1346. smp_wmb();
  1347. pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
  1348. /* Handle fatal errors immediately */
  1349. if (mce->mcgstatus & 1)
  1350. sbridge_check_error(mci);
  1351. /* Advice mcelog that the error were handled */
  1352. return NOTIFY_STOP;
  1353. }
  1354. static struct notifier_block sbridge_mce_dec = {
  1355. .notifier_call = sbridge_mce_check_error,
  1356. };
  1357. /****************************************************************************
  1358. EDAC register/unregister logic
  1359. ****************************************************************************/
  1360. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  1361. {
  1362. struct mem_ctl_info *mci = sbridge_dev->mci;
  1363. struct sbridge_pvt *pvt;
  1364. if (unlikely(!mci || !mci->pvt_info)) {
  1365. edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
  1366. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  1367. return;
  1368. }
  1369. pvt = mci->pvt_info;
  1370. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  1371. mci, &sbridge_dev->pdev[0]->dev);
  1372. /* Remove MC sysfs nodes */
  1373. edac_mc_del_mc(mci->pdev);
  1374. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  1375. kfree(mci->ctl_name);
  1376. edac_mc_free(mci);
  1377. sbridge_dev->mci = NULL;
  1378. }
  1379. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
  1380. {
  1381. struct mem_ctl_info *mci;
  1382. struct edac_mc_layer layers[2];
  1383. struct sbridge_pvt *pvt;
  1384. int rc;
  1385. /* Check the number of active and not disabled channels */
  1386. rc = check_if_ecc_is_active(sbridge_dev->bus);
  1387. if (unlikely(rc < 0))
  1388. return rc;
  1389. /* allocate a new MC control structure */
  1390. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  1391. layers[0].size = NUM_CHANNELS;
  1392. layers[0].is_virt_csrow = false;
  1393. layers[1].type = EDAC_MC_LAYER_SLOT;
  1394. layers[1].size = MAX_DIMMS;
  1395. layers[1].is_virt_csrow = true;
  1396. mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
  1397. sizeof(*pvt));
  1398. if (unlikely(!mci))
  1399. return -ENOMEM;
  1400. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  1401. mci, &sbridge_dev->pdev[0]->dev);
  1402. pvt = mci->pvt_info;
  1403. memset(pvt, 0, sizeof(*pvt));
  1404. /* Associate sbridge_dev and mci for future usage */
  1405. pvt->sbridge_dev = sbridge_dev;
  1406. sbridge_dev->mci = mci;
  1407. mci->mtype_cap = MEM_FLAG_DDR3;
  1408. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1409. mci->edac_cap = EDAC_FLAG_NONE;
  1410. mci->mod_name = "sbridge_edac.c";
  1411. mci->mod_ver = SBRIDGE_REVISION;
  1412. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
  1413. mci->dev_name = pci_name(sbridge_dev->pdev[0]);
  1414. mci->ctl_page_to_phys = NULL;
  1415. /* Set the function pointer to an actual operation function */
  1416. mci->edac_check = sbridge_check_error;
  1417. /* Store pci devices at mci for faster access */
  1418. rc = mci_bind_devs(mci, sbridge_dev);
  1419. if (unlikely(rc < 0))
  1420. goto fail0;
  1421. /* Get dimm basic config and the memory layout */
  1422. get_dimm_config(mci);
  1423. get_memory_layout(mci);
  1424. /* record ptr to the generic device */
  1425. mci->pdev = &sbridge_dev->pdev[0]->dev;
  1426. /* add this new MC control structure to EDAC's list of MCs */
  1427. if (unlikely(edac_mc_add_mc(mci))) {
  1428. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  1429. rc = -EINVAL;
  1430. goto fail0;
  1431. }
  1432. return 0;
  1433. fail0:
  1434. kfree(mci->ctl_name);
  1435. edac_mc_free(mci);
  1436. sbridge_dev->mci = NULL;
  1437. return rc;
  1438. }
  1439. /*
  1440. * sbridge_probe Probe for ONE instance of device to see if it is
  1441. * present.
  1442. * return:
  1443. * 0 for FOUND a device
  1444. * < 0 for error code
  1445. */
  1446. static int __devinit sbridge_probe(struct pci_dev *pdev,
  1447. const struct pci_device_id *id)
  1448. {
  1449. int rc;
  1450. u8 mc, num_mc = 0;
  1451. struct sbridge_dev *sbridge_dev;
  1452. /* get the pci devices we want to reserve for our use */
  1453. mutex_lock(&sbridge_edac_lock);
  1454. /*
  1455. * All memory controllers are allocated at the first pass.
  1456. */
  1457. if (unlikely(probed >= 1)) {
  1458. mutex_unlock(&sbridge_edac_lock);
  1459. return -ENODEV;
  1460. }
  1461. probed++;
  1462. rc = sbridge_get_all_devices(&num_mc);
  1463. if (unlikely(rc < 0))
  1464. goto fail0;
  1465. mc = 0;
  1466. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1467. edac_dbg(0, "Registering MC#%d (%d of %d)\n",
  1468. mc, mc + 1, num_mc);
  1469. sbridge_dev->mc = mc++;
  1470. rc = sbridge_register_mci(sbridge_dev);
  1471. if (unlikely(rc < 0))
  1472. goto fail1;
  1473. }
  1474. sbridge_printk(KERN_INFO, "Driver loaded.\n");
  1475. mutex_unlock(&sbridge_edac_lock);
  1476. return 0;
  1477. fail1:
  1478. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1479. sbridge_unregister_mci(sbridge_dev);
  1480. sbridge_put_all_devices();
  1481. fail0:
  1482. mutex_unlock(&sbridge_edac_lock);
  1483. return rc;
  1484. }
  1485. /*
  1486. * sbridge_remove destructor for one instance of device
  1487. *
  1488. */
  1489. static void __devexit sbridge_remove(struct pci_dev *pdev)
  1490. {
  1491. struct sbridge_dev *sbridge_dev;
  1492. edac_dbg(0, "\n");
  1493. /*
  1494. * we have a trouble here: pdev value for removal will be wrong, since
  1495. * it will point to the X58 register used to detect that the machine
  1496. * is a Nehalem or upper design. However, due to the way several PCI
  1497. * devices are grouped together to provide MC functionality, we need
  1498. * to use a different method for releasing the devices
  1499. */
  1500. mutex_lock(&sbridge_edac_lock);
  1501. if (unlikely(!probed)) {
  1502. mutex_unlock(&sbridge_edac_lock);
  1503. return;
  1504. }
  1505. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1506. sbridge_unregister_mci(sbridge_dev);
  1507. /* Release PCI resources */
  1508. sbridge_put_all_devices();
  1509. probed--;
  1510. mutex_unlock(&sbridge_edac_lock);
  1511. }
  1512. MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
  1513. /*
  1514. * sbridge_driver pci_driver structure for this module
  1515. *
  1516. */
  1517. static struct pci_driver sbridge_driver = {
  1518. .name = "sbridge_edac",
  1519. .probe = sbridge_probe,
  1520. .remove = __devexit_p(sbridge_remove),
  1521. .id_table = sbridge_pci_tbl,
  1522. };
  1523. /*
  1524. * sbridge_init Module entry function
  1525. * Try to initialize this module for its devices
  1526. */
  1527. static int __init sbridge_init(void)
  1528. {
  1529. int pci_rc;
  1530. edac_dbg(2, "\n");
  1531. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1532. opstate_init();
  1533. pci_rc = pci_register_driver(&sbridge_driver);
  1534. if (pci_rc >= 0) {
  1535. mce_register_decode_chain(&sbridge_mce_dec);
  1536. return 0;
  1537. }
  1538. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  1539. pci_rc);
  1540. return pci_rc;
  1541. }
  1542. /*
  1543. * sbridge_exit() Module exit function
  1544. * Unregister the driver
  1545. */
  1546. static void __exit sbridge_exit(void)
  1547. {
  1548. edac_dbg(2, "\n");
  1549. pci_unregister_driver(&sbridge_driver);
  1550. mce_unregister_decode_chain(&sbridge_mce_dec);
  1551. }
  1552. module_init(sbridge_init);
  1553. module_exit(sbridge_exit);
  1554. module_param(edac_op_state, int, 0444);
  1555. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1556. MODULE_LICENSE("GPL");
  1557. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1558. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1559. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
  1560. SBRIDGE_REVISION);