paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. unsigned max_level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  66. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  67. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. struct x86_exception fault;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  78. pt_element_t __user *ptep_user, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. int npages;
  82. pt_element_t ret;
  83. pt_element_t *table;
  84. struct page *page;
  85. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  86. /* Check if the user is doing something meaningless. */
  87. if (unlikely(npages != 1))
  88. return -EFAULT;
  89. table = kmap_atomic(page);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  96. struct kvm_mmu *mmu,
  97. struct guest_walker *walker,
  98. int write_fault)
  99. {
  100. unsigned level, index;
  101. pt_element_t pte, orig_pte;
  102. pt_element_t __user *ptep_user;
  103. gfn_t table_gfn;
  104. int ret;
  105. for (level = walker->max_level; level >= walker->level; --level) {
  106. pte = orig_pte = walker->ptes[level - 1];
  107. table_gfn = walker->table_gfn[level - 1];
  108. ptep_user = walker->ptep_user[level - 1];
  109. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  110. if (!(pte & PT_ACCESSED_MASK)) {
  111. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  112. pte |= PT_ACCESSED_MASK;
  113. }
  114. if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
  115. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  116. pte |= PT_DIRTY_MASK;
  117. }
  118. if (pte == orig_pte)
  119. continue;
  120. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  121. if (ret)
  122. return ret;
  123. mark_page_dirty(vcpu->kvm, table_gfn);
  124. walker->ptes[level] = pte;
  125. }
  126. return 0;
  127. }
  128. /*
  129. * Fetch a guest pte for a guest virtual address
  130. */
  131. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  132. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  133. gva_t addr, u32 access)
  134. {
  135. int ret;
  136. pt_element_t pte;
  137. pt_element_t __user *uninitialized_var(ptep_user);
  138. gfn_t table_gfn;
  139. unsigned index, pt_access, pte_access, accessed_dirty, shift;
  140. gpa_t pte_gpa;
  141. int offset;
  142. const int write_fault = access & PFERR_WRITE_MASK;
  143. const int user_fault = access & PFERR_USER_MASK;
  144. const int fetch_fault = access & PFERR_FETCH_MASK;
  145. u16 errcode = 0;
  146. gpa_t real_gpa;
  147. gfn_t gfn;
  148. trace_kvm_mmu_pagetable_walk(addr, access);
  149. retry_walk:
  150. walker->level = mmu->root_level;
  151. pte = mmu->get_cr3(vcpu);
  152. #if PTTYPE == 64
  153. if (walker->level == PT32E_ROOT_LEVEL) {
  154. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  155. trace_kvm_mmu_paging_element(pte, walker->level);
  156. if (!is_present_gpte(pte))
  157. goto error;
  158. --walker->level;
  159. }
  160. #endif
  161. walker->max_level = walker->level;
  162. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  163. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  164. accessed_dirty = PT_ACCESSED_MASK;
  165. pt_access = pte_access = ACC_ALL;
  166. ++walker->level;
  167. do {
  168. gfn_t real_gfn;
  169. unsigned long host_addr;
  170. pt_access &= pte_access;
  171. --walker->level;
  172. index = PT_INDEX(addr, walker->level);
  173. table_gfn = gpte_to_gfn(pte);
  174. offset = index * sizeof(pt_element_t);
  175. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  176. walker->table_gfn[walker->level - 1] = table_gfn;
  177. walker->pte_gpa[walker->level - 1] = pte_gpa;
  178. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  179. PFERR_USER_MASK|PFERR_WRITE_MASK);
  180. if (unlikely(real_gfn == UNMAPPED_GVA))
  181. goto error;
  182. real_gfn = gpa_to_gfn(real_gfn);
  183. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  184. if (unlikely(kvm_is_error_hva(host_addr)))
  185. goto error;
  186. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  187. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  188. goto error;
  189. walker->ptep_user[walker->level - 1] = ptep_user;
  190. trace_kvm_mmu_paging_element(pte, walker->level);
  191. if (unlikely(!is_present_gpte(pte)))
  192. goto error;
  193. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  194. walker->level))) {
  195. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  196. goto error;
  197. }
  198. accessed_dirty &= pte;
  199. pte_access = pt_access & gpte_access(vcpu, pte);
  200. walker->ptes[walker->level - 1] = pte;
  201. } while (!is_last_gpte(mmu, walker->level, pte));
  202. if (unlikely(permission_fault(mmu, pte_access, access))) {
  203. errcode |= PFERR_PRESENT_MASK;
  204. goto error;
  205. }
  206. gfn = gpte_to_gfn_lvl(pte, walker->level);
  207. gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
  208. if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
  209. gfn += pse36_gfn_delta(pte);
  210. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
  211. if (real_gpa == UNMAPPED_GVA)
  212. return 0;
  213. walker->gfn = real_gpa >> PAGE_SHIFT;
  214. if (!write_fault)
  215. protect_clean_gpte(&pte_access, pte);
  216. /*
  217. * On a write fault, fold the dirty bit into accessed_dirty by shifting it one
  218. * place right.
  219. *
  220. * On a read fault, do nothing.
  221. */
  222. shift = write_fault >> ilog2(PFERR_WRITE_MASK);
  223. shift *= PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT;
  224. accessed_dirty &= pte >> shift;
  225. if (unlikely(!accessed_dirty)) {
  226. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  227. if (unlikely(ret < 0))
  228. goto error;
  229. else if (ret)
  230. goto retry_walk;
  231. }
  232. walker->pt_access = pt_access;
  233. walker->pte_access = pte_access;
  234. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  235. __func__, (u64)pte, pte_access, pt_access);
  236. return 1;
  237. error:
  238. errcode |= write_fault | user_fault;
  239. if (fetch_fault && (mmu->nx ||
  240. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  241. errcode |= PFERR_FETCH_MASK;
  242. walker->fault.vector = PF_VECTOR;
  243. walker->fault.error_code_valid = true;
  244. walker->fault.error_code = errcode;
  245. walker->fault.address = addr;
  246. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  247. trace_kvm_mmu_walker_error(walker->fault.error_code);
  248. return 0;
  249. }
  250. static int FNAME(walk_addr)(struct guest_walker *walker,
  251. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  252. {
  253. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  254. access);
  255. }
  256. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  257. struct kvm_vcpu *vcpu, gva_t addr,
  258. u32 access)
  259. {
  260. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  261. addr, access);
  262. }
  263. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  264. struct kvm_mmu_page *sp, u64 *spte,
  265. pt_element_t gpte)
  266. {
  267. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  268. goto no_present;
  269. if (!is_present_gpte(gpte))
  270. goto no_present;
  271. if (!(gpte & PT_ACCESSED_MASK))
  272. goto no_present;
  273. return false;
  274. no_present:
  275. drop_spte(vcpu->kvm, spte);
  276. return true;
  277. }
  278. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  279. u64 *spte, const void *pte)
  280. {
  281. pt_element_t gpte;
  282. unsigned pte_access;
  283. pfn_t pfn;
  284. gpte = *(const pt_element_t *)pte;
  285. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  286. return;
  287. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  288. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  289. protect_clean_gpte(&pte_access, gpte);
  290. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  291. if (mmu_invalid_pfn(pfn))
  292. return;
  293. /*
  294. * we call mmu_set_spte() with host_writable = true because that
  295. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  296. */
  297. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  298. NULL, PT_PAGE_TABLE_LEVEL,
  299. gpte_to_gfn(gpte), pfn, true, true);
  300. }
  301. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  302. struct guest_walker *gw, int level)
  303. {
  304. pt_element_t curr_pte;
  305. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  306. u64 mask;
  307. int r, index;
  308. if (level == PT_PAGE_TABLE_LEVEL) {
  309. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  310. base_gpa = pte_gpa & ~mask;
  311. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  312. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  313. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  314. curr_pte = gw->prefetch_ptes[index];
  315. } else
  316. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  317. &curr_pte, sizeof(curr_pte));
  318. return r || curr_pte != gw->ptes[level - 1];
  319. }
  320. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  321. u64 *sptep)
  322. {
  323. struct kvm_mmu_page *sp;
  324. pt_element_t *gptep = gw->prefetch_ptes;
  325. u64 *spte;
  326. int i;
  327. sp = page_header(__pa(sptep));
  328. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  329. return;
  330. if (sp->role.direct)
  331. return __direct_pte_prefetch(vcpu, sp, sptep);
  332. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  333. spte = sp->spt + i;
  334. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  335. pt_element_t gpte;
  336. unsigned pte_access;
  337. gfn_t gfn;
  338. pfn_t pfn;
  339. if (spte == sptep)
  340. continue;
  341. if (is_shadow_present_pte(*spte))
  342. continue;
  343. gpte = gptep[i];
  344. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  345. continue;
  346. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  347. protect_clean_gpte(&pte_access, gpte);
  348. gfn = gpte_to_gfn(gpte);
  349. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  350. pte_access & ACC_WRITE_MASK);
  351. if (mmu_invalid_pfn(pfn))
  352. break;
  353. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  354. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  355. pfn, true, true);
  356. }
  357. }
  358. /*
  359. * Fetch a shadow pte for a specific level in the paging hierarchy.
  360. */
  361. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  362. struct guest_walker *gw,
  363. int user_fault, int write_fault, int hlevel,
  364. int *emulate, pfn_t pfn, bool map_writable,
  365. bool prefault)
  366. {
  367. unsigned access = gw->pt_access;
  368. struct kvm_mmu_page *sp = NULL;
  369. int top_level;
  370. unsigned direct_access;
  371. struct kvm_shadow_walk_iterator it;
  372. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  373. return NULL;
  374. direct_access = gw->pte_access;
  375. top_level = vcpu->arch.mmu.root_level;
  376. if (top_level == PT32E_ROOT_LEVEL)
  377. top_level = PT32_ROOT_LEVEL;
  378. /*
  379. * Verify that the top-level gpte is still there. Since the page
  380. * is a root page, it is either write protected (and cannot be
  381. * changed from now on) or it is invalid (in which case, we don't
  382. * really care if it changes underneath us after this point).
  383. */
  384. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  385. goto out_gpte_changed;
  386. for (shadow_walk_init(&it, vcpu, addr);
  387. shadow_walk_okay(&it) && it.level > gw->level;
  388. shadow_walk_next(&it)) {
  389. gfn_t table_gfn;
  390. clear_sp_write_flooding_count(it.sptep);
  391. drop_large_spte(vcpu, it.sptep);
  392. sp = NULL;
  393. if (!is_shadow_present_pte(*it.sptep)) {
  394. table_gfn = gw->table_gfn[it.level - 2];
  395. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  396. false, access, it.sptep);
  397. }
  398. /*
  399. * Verify that the gpte in the page we've just write
  400. * protected is still there.
  401. */
  402. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  403. goto out_gpte_changed;
  404. if (sp)
  405. link_shadow_page(it.sptep, sp);
  406. }
  407. for (;
  408. shadow_walk_okay(&it) && it.level > hlevel;
  409. shadow_walk_next(&it)) {
  410. gfn_t direct_gfn;
  411. clear_sp_write_flooding_count(it.sptep);
  412. validate_direct_spte(vcpu, it.sptep, direct_access);
  413. drop_large_spte(vcpu, it.sptep);
  414. if (is_shadow_present_pte(*it.sptep))
  415. continue;
  416. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  417. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  418. true, direct_access, it.sptep);
  419. link_shadow_page(it.sptep, sp);
  420. }
  421. clear_sp_write_flooding_count(it.sptep);
  422. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  423. user_fault, write_fault, emulate, it.level,
  424. gw->gfn, pfn, prefault, map_writable);
  425. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  426. return it.sptep;
  427. out_gpte_changed:
  428. if (sp)
  429. kvm_mmu_put_page(sp, it.sptep);
  430. kvm_release_pfn_clean(pfn);
  431. return NULL;
  432. }
  433. /*
  434. * Page fault handler. There are several causes for a page fault:
  435. * - there is no shadow pte for the guest pte
  436. * - write access through a shadow pte marked read only so that we can set
  437. * the dirty bit
  438. * - write access to a shadow pte marked read only so we can update the page
  439. * dirty bitmap, when userspace requests it
  440. * - mmio access; in this case we will never install a present shadow pte
  441. * - normal guest page fault due to the guest pte marked not present, not
  442. * writable, or not executable
  443. *
  444. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  445. * a negative value on error.
  446. */
  447. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  448. bool prefault)
  449. {
  450. int write_fault = error_code & PFERR_WRITE_MASK;
  451. int user_fault = error_code & PFERR_USER_MASK;
  452. struct guest_walker walker;
  453. u64 *sptep;
  454. int emulate = 0;
  455. int r;
  456. pfn_t pfn;
  457. int level = PT_PAGE_TABLE_LEVEL;
  458. int force_pt_level;
  459. unsigned long mmu_seq;
  460. bool map_writable;
  461. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  462. if (unlikely(error_code & PFERR_RSVD_MASK))
  463. return handle_mmio_page_fault(vcpu, addr, error_code,
  464. mmu_is_nested(vcpu));
  465. r = mmu_topup_memory_caches(vcpu);
  466. if (r)
  467. return r;
  468. /*
  469. * Look up the guest pte for the faulting address.
  470. */
  471. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  472. /*
  473. * The page is not mapped by the guest. Let the guest handle it.
  474. */
  475. if (!r) {
  476. pgprintk("%s: guest page fault\n", __func__);
  477. if (!prefault)
  478. inject_page_fault(vcpu, &walker.fault);
  479. return 0;
  480. }
  481. if (walker.level >= PT_DIRECTORY_LEVEL)
  482. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  483. else
  484. force_pt_level = 1;
  485. if (!force_pt_level) {
  486. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  487. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  488. }
  489. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  490. smp_rmb();
  491. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  492. &map_writable))
  493. return 0;
  494. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  495. walker.gfn, pfn, walker.pte_access, &r))
  496. return r;
  497. spin_lock(&vcpu->kvm->mmu_lock);
  498. if (mmu_notifier_retry(vcpu, mmu_seq))
  499. goto out_unlock;
  500. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  501. kvm_mmu_free_some_pages(vcpu);
  502. if (!force_pt_level)
  503. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  504. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  505. level, &emulate, pfn, map_writable, prefault);
  506. (void)sptep;
  507. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  508. sptep, *sptep, emulate);
  509. ++vcpu->stat.pf_fixed;
  510. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  511. spin_unlock(&vcpu->kvm->mmu_lock);
  512. return emulate;
  513. out_unlock:
  514. spin_unlock(&vcpu->kvm->mmu_lock);
  515. kvm_release_pfn_clean(pfn);
  516. return 0;
  517. }
  518. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  519. {
  520. int offset = 0;
  521. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  522. if (PTTYPE == 32)
  523. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  524. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  525. }
  526. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  527. {
  528. struct kvm_shadow_walk_iterator iterator;
  529. struct kvm_mmu_page *sp;
  530. int level;
  531. u64 *sptep;
  532. vcpu_clear_mmio_info(vcpu, gva);
  533. /*
  534. * No need to check return value here, rmap_can_add() can
  535. * help us to skip pte prefetch later.
  536. */
  537. mmu_topup_memory_caches(vcpu);
  538. spin_lock(&vcpu->kvm->mmu_lock);
  539. for_each_shadow_entry(vcpu, gva, iterator) {
  540. level = iterator.level;
  541. sptep = iterator.sptep;
  542. sp = page_header(__pa(sptep));
  543. if (is_last_spte(*sptep, level)) {
  544. pt_element_t gpte;
  545. gpa_t pte_gpa;
  546. if (!sp->unsync)
  547. break;
  548. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  549. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  550. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  551. kvm_flush_remote_tlbs(vcpu->kvm);
  552. if (!rmap_can_add(vcpu))
  553. break;
  554. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  555. sizeof(pt_element_t)))
  556. break;
  557. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  558. }
  559. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  560. break;
  561. }
  562. spin_unlock(&vcpu->kvm->mmu_lock);
  563. }
  564. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  565. struct x86_exception *exception)
  566. {
  567. struct guest_walker walker;
  568. gpa_t gpa = UNMAPPED_GVA;
  569. int r;
  570. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  571. if (r) {
  572. gpa = gfn_to_gpa(walker.gfn);
  573. gpa |= vaddr & ~PAGE_MASK;
  574. } else if (exception)
  575. *exception = walker.fault;
  576. return gpa;
  577. }
  578. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  579. u32 access,
  580. struct x86_exception *exception)
  581. {
  582. struct guest_walker walker;
  583. gpa_t gpa = UNMAPPED_GVA;
  584. int r;
  585. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  586. if (r) {
  587. gpa = gfn_to_gpa(walker.gfn);
  588. gpa |= vaddr & ~PAGE_MASK;
  589. } else if (exception)
  590. *exception = walker.fault;
  591. return gpa;
  592. }
  593. /*
  594. * Using the cached information from sp->gfns is safe because:
  595. * - The spte has a reference to the struct page, so the pfn for a given gfn
  596. * can't change unless all sptes pointing to it are nuked first.
  597. *
  598. * Note:
  599. * We should flush all tlbs if spte is dropped even though guest is
  600. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  601. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  602. * used by guest then tlbs are not flushed, so guest is allowed to access the
  603. * freed pages.
  604. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  605. */
  606. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  607. {
  608. int i, nr_present = 0;
  609. bool host_writable;
  610. gpa_t first_pte_gpa;
  611. /* direct kvm_mmu_page can not be unsync. */
  612. BUG_ON(sp->role.direct);
  613. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  614. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  615. unsigned pte_access;
  616. pt_element_t gpte;
  617. gpa_t pte_gpa;
  618. gfn_t gfn;
  619. if (!sp->spt[i])
  620. continue;
  621. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  622. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  623. sizeof(pt_element_t)))
  624. return -EINVAL;
  625. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  626. vcpu->kvm->tlbs_dirty++;
  627. continue;
  628. }
  629. gfn = gpte_to_gfn(gpte);
  630. pte_access = sp->role.access;
  631. pte_access &= gpte_access(vcpu, gpte);
  632. protect_clean_gpte(&pte_access, gpte);
  633. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  634. continue;
  635. if (gfn != sp->gfns[i]) {
  636. drop_spte(vcpu->kvm, &sp->spt[i]);
  637. vcpu->kvm->tlbs_dirty++;
  638. continue;
  639. }
  640. nr_present++;
  641. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  642. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  643. PT_PAGE_TABLE_LEVEL, gfn,
  644. spte_to_pfn(sp->spt[i]), true, false,
  645. host_writable);
  646. }
  647. return !nr_present;
  648. }
  649. #undef pt_element_t
  650. #undef guest_walker
  651. #undef FNAME
  652. #undef PT_BASE_ADDR_MASK
  653. #undef PT_INDEX
  654. #undef PT_LVL_ADDR_MASK
  655. #undef PT_LVL_OFFSET_MASK
  656. #undef PT_LEVEL_BITS
  657. #undef PT_MAX_FULL_LEVELS
  658. #undef gpte_to_gfn
  659. #undef gpte_to_gfn_lvl
  660. #undef CMPXCHG