smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. /*
  48. * as from 2.5, kernels no longer have an init_tasks structure
  49. * so we need some other way of telling a new secondary core
  50. * where to place its SVC stack
  51. */
  52. struct secondary_data secondary_data;
  53. /*
  54. * control for which core is the next to come out of the secondary
  55. * boot "holding pen"
  56. */
  57. volatile int __cpuinitdata pen_release = -1;
  58. enum ipi_msg_type {
  59. IPI_WAKEUP,
  60. IPI_TIMER,
  61. IPI_RESCHEDULE,
  62. IPI_CALL_FUNC,
  63. IPI_CALL_FUNC_SINGLE,
  64. IPI_CPU_STOP,
  65. };
  66. static DECLARE_COMPLETION(cpu_running);
  67. static struct smp_operations smp_ops;
  68. void __init smp_set_ops(struct smp_operations *ops)
  69. {
  70. if (ops)
  71. smp_ops = *ops;
  72. };
  73. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  74. {
  75. int ret;
  76. /*
  77. * We need to tell the secondary core where to find
  78. * its stack and the page tables.
  79. */
  80. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  81. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  82. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  83. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  84. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  85. /*
  86. * Now bring the CPU into our world.
  87. */
  88. ret = boot_secondary(cpu, idle);
  89. if (ret == 0) {
  90. /*
  91. * CPU was successfully started, wait for it
  92. * to come online or time out.
  93. */
  94. wait_for_completion_timeout(&cpu_running,
  95. msecs_to_jiffies(1000));
  96. if (!cpu_online(cpu)) {
  97. pr_crit("CPU%u: failed to come online\n", cpu);
  98. ret = -EIO;
  99. }
  100. } else {
  101. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  102. }
  103. secondary_data.stack = NULL;
  104. secondary_data.pgdir = 0;
  105. return ret;
  106. }
  107. /* platform specific SMP operations */
  108. void __init smp_init_cpus(void)
  109. {
  110. if (smp_ops.smp_init_cpus)
  111. smp_ops.smp_init_cpus();
  112. }
  113. static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
  114. {
  115. if (smp_ops.smp_prepare_cpus)
  116. smp_ops.smp_prepare_cpus(max_cpus);
  117. }
  118. static void __cpuinit platform_secondary_init(unsigned int cpu)
  119. {
  120. if (smp_ops.smp_secondary_init)
  121. smp_ops.smp_secondary_init(cpu);
  122. }
  123. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  124. {
  125. if (smp_ops.smp_boot_secondary)
  126. return smp_ops.smp_boot_secondary(cpu, idle);
  127. return -ENOSYS;
  128. }
  129. #ifdef CONFIG_HOTPLUG_CPU
  130. static void percpu_timer_stop(void);
  131. static int platform_cpu_kill(unsigned int cpu)
  132. {
  133. if (smp_ops.cpu_kill)
  134. return smp_ops.cpu_kill(cpu);
  135. return 1;
  136. }
  137. static void platform_cpu_die(unsigned int cpu)
  138. {
  139. if (smp_ops.cpu_die)
  140. smp_ops.cpu_die(cpu);
  141. }
  142. static int platform_cpu_disable(unsigned int cpu)
  143. {
  144. if (smp_ops.cpu_disable)
  145. return smp_ops.cpu_disable(cpu);
  146. /*
  147. * By default, allow disabling all CPUs except the first one,
  148. * since this is special on a lot of platforms, e.g. because
  149. * of clock tick interrupts.
  150. */
  151. return cpu == 0 ? -EPERM : 0;
  152. }
  153. /*
  154. * __cpu_disable runs on the processor to be shutdown.
  155. */
  156. int __cpuinit __cpu_disable(void)
  157. {
  158. unsigned int cpu = smp_processor_id();
  159. int ret;
  160. ret = platform_cpu_disable(cpu);
  161. if (ret)
  162. return ret;
  163. /*
  164. * Take this CPU offline. Once we clear this, we can't return,
  165. * and we must not schedule until we're ready to give up the cpu.
  166. */
  167. set_cpu_online(cpu, false);
  168. /*
  169. * OK - migrate IRQs away from this CPU
  170. */
  171. migrate_irqs();
  172. /*
  173. * Stop the local timer for this CPU.
  174. */
  175. percpu_timer_stop();
  176. /*
  177. * Flush user cache and TLB mappings, and then remove this CPU
  178. * from the vm mask set of all processes.
  179. *
  180. * Caches are flushed to the Level of Unification Inner Shareable
  181. * to write-back dirty lines to unified caches shared by all CPUs.
  182. */
  183. flush_cache_louis();
  184. local_flush_tlb_all();
  185. clear_tasks_mm_cpumask(cpu);
  186. return 0;
  187. }
  188. static DECLARE_COMPLETION(cpu_died);
  189. /*
  190. * called on the thread which is asking for a CPU to be shutdown -
  191. * waits until shutdown has completed, or it is timed out.
  192. */
  193. void __cpuinit __cpu_die(unsigned int cpu)
  194. {
  195. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  196. pr_err("CPU%u: cpu didn't die\n", cpu);
  197. return;
  198. }
  199. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  200. if (!platform_cpu_kill(cpu))
  201. printk("CPU%u: unable to kill\n", cpu);
  202. }
  203. /*
  204. * Called from the idle thread for the CPU which has been shutdown.
  205. *
  206. * Note that we disable IRQs here, but do not re-enable them
  207. * before returning to the caller. This is also the behaviour
  208. * of the other hotplug-cpu capable cores, so presumably coming
  209. * out of idle fixes this.
  210. */
  211. void __ref cpu_die(void)
  212. {
  213. unsigned int cpu = smp_processor_id();
  214. idle_task_exit();
  215. local_irq_disable();
  216. mb();
  217. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  218. RCU_NONIDLE(complete(&cpu_died));
  219. /*
  220. * actual CPU shutdown procedure is at least platform (if not
  221. * CPU) specific.
  222. */
  223. platform_cpu_die(cpu);
  224. /*
  225. * Do not return to the idle loop - jump back to the secondary
  226. * cpu initialisation. There's some initialisation which needs
  227. * to be repeated to undo the effects of taking the CPU offline.
  228. */
  229. __asm__("mov sp, %0\n"
  230. " mov fp, #0\n"
  231. " b secondary_start_kernel"
  232. :
  233. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  234. }
  235. #endif /* CONFIG_HOTPLUG_CPU */
  236. /*
  237. * Called by both boot and secondaries to move global data into
  238. * per-processor storage.
  239. */
  240. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  241. {
  242. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  243. cpu_info->loops_per_jiffy = loops_per_jiffy;
  244. store_cpu_topology(cpuid);
  245. }
  246. static void percpu_timer_setup(void);
  247. /*
  248. * This is the secondary CPU boot entry. We're using this CPUs
  249. * idle thread stack, but a set of temporary page tables.
  250. */
  251. asmlinkage void __cpuinit secondary_start_kernel(void)
  252. {
  253. struct mm_struct *mm = &init_mm;
  254. unsigned int cpu;
  255. /*
  256. * The identity mapping is uncached (strongly ordered), so
  257. * switch away from it before attempting any exclusive accesses.
  258. */
  259. cpu_switch_mm(mm->pgd, mm);
  260. enter_lazy_tlb(mm, current);
  261. local_flush_tlb_all();
  262. /*
  263. * All kernel threads share the same mm context; grab a
  264. * reference and switch to it.
  265. */
  266. cpu = smp_processor_id();
  267. atomic_inc(&mm->mm_count);
  268. current->active_mm = mm;
  269. cpumask_set_cpu(cpu, mm_cpumask(mm));
  270. printk("CPU%u: Booted secondary processor\n", cpu);
  271. cpu_init();
  272. preempt_disable();
  273. trace_hardirqs_off();
  274. /*
  275. * Give the platform a chance to do its own initialisation.
  276. */
  277. platform_secondary_init(cpu);
  278. notify_cpu_starting(cpu);
  279. calibrate_delay();
  280. smp_store_cpu_info(cpu);
  281. /*
  282. * OK, now it's safe to let the boot CPU continue. Wait for
  283. * the CPU migration code to notice that the CPU is online
  284. * before we continue - which happens after __cpu_up returns.
  285. */
  286. set_cpu_online(cpu, true);
  287. complete(&cpu_running);
  288. /*
  289. * Setup the percpu timer for this CPU.
  290. */
  291. percpu_timer_setup();
  292. local_irq_enable();
  293. local_fiq_enable();
  294. /*
  295. * OK, it's off to the idle thread for us
  296. */
  297. cpu_idle();
  298. }
  299. void __init smp_cpus_done(unsigned int max_cpus)
  300. {
  301. int cpu;
  302. unsigned long bogosum = 0;
  303. for_each_online_cpu(cpu)
  304. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  305. printk(KERN_INFO "SMP: Total of %d processors activated "
  306. "(%lu.%02lu BogoMIPS).\n",
  307. num_online_cpus(),
  308. bogosum / (500000/HZ),
  309. (bogosum / (5000/HZ)) % 100);
  310. hyp_mode_check();
  311. }
  312. void __init smp_prepare_boot_cpu(void)
  313. {
  314. }
  315. void __init smp_prepare_cpus(unsigned int max_cpus)
  316. {
  317. unsigned int ncores = num_possible_cpus();
  318. init_cpu_topology();
  319. smp_store_cpu_info(smp_processor_id());
  320. /*
  321. * are we trying to boot more cores than exist?
  322. */
  323. if (max_cpus > ncores)
  324. max_cpus = ncores;
  325. if (ncores > 1 && max_cpus) {
  326. /*
  327. * Enable the local timer or broadcast device for the
  328. * boot CPU, but only if we have more than one CPU.
  329. */
  330. percpu_timer_setup();
  331. /*
  332. * Initialise the present map, which describes the set of CPUs
  333. * actually populated at the present time. A platform should
  334. * re-initialize the map in platform_smp_prepare_cpus() if
  335. * present != possible (e.g. physical hotplug).
  336. */
  337. init_cpu_present(cpu_possible_mask);
  338. /*
  339. * Initialise the SCU if there are more than one CPU
  340. * and let them know where to start.
  341. */
  342. platform_smp_prepare_cpus(max_cpus);
  343. }
  344. }
  345. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  346. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  347. {
  348. smp_cross_call = fn;
  349. }
  350. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  351. {
  352. smp_cross_call(mask, IPI_CALL_FUNC);
  353. }
  354. void arch_send_call_function_single_ipi(int cpu)
  355. {
  356. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  357. }
  358. static const char *ipi_types[NR_IPI] = {
  359. #define S(x,s) [x] = s
  360. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  361. S(IPI_TIMER, "Timer broadcast interrupts"),
  362. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  363. S(IPI_CALL_FUNC, "Function call interrupts"),
  364. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  365. S(IPI_CPU_STOP, "CPU stop interrupts"),
  366. };
  367. void show_ipi_list(struct seq_file *p, int prec)
  368. {
  369. unsigned int cpu, i;
  370. for (i = 0; i < NR_IPI; i++) {
  371. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  372. for_each_present_cpu(cpu)
  373. seq_printf(p, "%10u ",
  374. __get_irq_stat(cpu, ipi_irqs[i]));
  375. seq_printf(p, " %s\n", ipi_types[i]);
  376. }
  377. }
  378. u64 smp_irq_stat_cpu(unsigned int cpu)
  379. {
  380. u64 sum = 0;
  381. int i;
  382. for (i = 0; i < NR_IPI; i++)
  383. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  384. return sum;
  385. }
  386. /*
  387. * Timer (local or broadcast) support
  388. */
  389. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  390. static void ipi_timer(void)
  391. {
  392. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  393. evt->event_handler(evt);
  394. }
  395. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  396. static void smp_timer_broadcast(const struct cpumask *mask)
  397. {
  398. smp_cross_call(mask, IPI_TIMER);
  399. }
  400. #else
  401. #define smp_timer_broadcast NULL
  402. #endif
  403. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  404. struct clock_event_device *evt)
  405. {
  406. }
  407. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  408. {
  409. evt->name = "dummy_timer";
  410. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  411. CLOCK_EVT_FEAT_PERIODIC |
  412. CLOCK_EVT_FEAT_DUMMY;
  413. evt->rating = 400;
  414. evt->mult = 1;
  415. evt->set_mode = broadcast_timer_set_mode;
  416. clockevents_register_device(evt);
  417. }
  418. static struct local_timer_ops *lt_ops;
  419. #ifdef CONFIG_LOCAL_TIMERS
  420. int local_timer_register(struct local_timer_ops *ops)
  421. {
  422. if (!is_smp() || !setup_max_cpus)
  423. return -ENXIO;
  424. if (lt_ops)
  425. return -EBUSY;
  426. lt_ops = ops;
  427. return 0;
  428. }
  429. #endif
  430. static void __cpuinit percpu_timer_setup(void)
  431. {
  432. unsigned int cpu = smp_processor_id();
  433. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  434. evt->cpumask = cpumask_of(cpu);
  435. evt->broadcast = smp_timer_broadcast;
  436. if (!lt_ops || lt_ops->setup(evt))
  437. broadcast_timer_setup(evt);
  438. }
  439. #ifdef CONFIG_HOTPLUG_CPU
  440. /*
  441. * The generic clock events code purposely does not stop the local timer
  442. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  443. * manually here.
  444. */
  445. static void percpu_timer_stop(void)
  446. {
  447. unsigned int cpu = smp_processor_id();
  448. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  449. if (lt_ops)
  450. lt_ops->stop(evt);
  451. }
  452. #endif
  453. static DEFINE_RAW_SPINLOCK(stop_lock);
  454. /*
  455. * ipi_cpu_stop - handle IPI from smp_send_stop()
  456. */
  457. static void ipi_cpu_stop(unsigned int cpu)
  458. {
  459. if (system_state == SYSTEM_BOOTING ||
  460. system_state == SYSTEM_RUNNING) {
  461. raw_spin_lock(&stop_lock);
  462. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  463. dump_stack();
  464. raw_spin_unlock(&stop_lock);
  465. }
  466. set_cpu_online(cpu, false);
  467. local_fiq_disable();
  468. local_irq_disable();
  469. while (1)
  470. cpu_relax();
  471. }
  472. /*
  473. * Main handler for inter-processor interrupts
  474. */
  475. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  476. {
  477. handle_IPI(ipinr, regs);
  478. }
  479. void handle_IPI(int ipinr, struct pt_regs *regs)
  480. {
  481. unsigned int cpu = smp_processor_id();
  482. struct pt_regs *old_regs = set_irq_regs(regs);
  483. if (ipinr < NR_IPI)
  484. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  485. switch (ipinr) {
  486. case IPI_WAKEUP:
  487. break;
  488. case IPI_TIMER:
  489. irq_enter();
  490. ipi_timer();
  491. irq_exit();
  492. break;
  493. case IPI_RESCHEDULE:
  494. scheduler_ipi();
  495. break;
  496. case IPI_CALL_FUNC:
  497. irq_enter();
  498. generic_smp_call_function_interrupt();
  499. irq_exit();
  500. break;
  501. case IPI_CALL_FUNC_SINGLE:
  502. irq_enter();
  503. generic_smp_call_function_single_interrupt();
  504. irq_exit();
  505. break;
  506. case IPI_CPU_STOP:
  507. irq_enter();
  508. ipi_cpu_stop(cpu);
  509. irq_exit();
  510. break;
  511. default:
  512. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  513. cpu, ipinr);
  514. break;
  515. }
  516. set_irq_regs(old_regs);
  517. }
  518. void smp_send_reschedule(int cpu)
  519. {
  520. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  521. }
  522. #ifdef CONFIG_HOTPLUG_CPU
  523. static void smp_kill_cpus(cpumask_t *mask)
  524. {
  525. unsigned int cpu;
  526. for_each_cpu(cpu, mask)
  527. platform_cpu_kill(cpu);
  528. }
  529. #else
  530. static void smp_kill_cpus(cpumask_t *mask) { }
  531. #endif
  532. void smp_send_stop(void)
  533. {
  534. unsigned long timeout;
  535. struct cpumask mask;
  536. cpumask_copy(&mask, cpu_online_mask);
  537. cpumask_clear_cpu(smp_processor_id(), &mask);
  538. if (!cpumask_empty(&mask))
  539. smp_cross_call(&mask, IPI_CPU_STOP);
  540. /* Wait up to one second for other CPUs to stop */
  541. timeout = USEC_PER_SEC;
  542. while (num_online_cpus() > 1 && timeout--)
  543. udelay(1);
  544. if (num_online_cpus() > 1)
  545. pr_warning("SMP: failed to stop secondary CPUs\n");
  546. smp_kill_cpus(&mask);
  547. }
  548. /*
  549. * not supported here
  550. */
  551. int setup_profiling_timer(unsigned int multiplier)
  552. {
  553. return -EINVAL;
  554. }
  555. #ifdef CONFIG_CPU_FREQ
  556. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  557. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  558. static unsigned long global_l_p_j_ref;
  559. static unsigned long global_l_p_j_ref_freq;
  560. static int cpufreq_callback(struct notifier_block *nb,
  561. unsigned long val, void *data)
  562. {
  563. struct cpufreq_freqs *freq = data;
  564. int cpu = freq->cpu;
  565. if (freq->flags & CPUFREQ_CONST_LOOPS)
  566. return NOTIFY_OK;
  567. if (!per_cpu(l_p_j_ref, cpu)) {
  568. per_cpu(l_p_j_ref, cpu) =
  569. per_cpu(cpu_data, cpu).loops_per_jiffy;
  570. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  571. if (!global_l_p_j_ref) {
  572. global_l_p_j_ref = loops_per_jiffy;
  573. global_l_p_j_ref_freq = freq->old;
  574. }
  575. }
  576. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  577. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  578. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  579. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  580. global_l_p_j_ref_freq,
  581. freq->new);
  582. per_cpu(cpu_data, cpu).loops_per_jiffy =
  583. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  584. per_cpu(l_p_j_ref_freq, cpu),
  585. freq->new);
  586. }
  587. return NOTIFY_OK;
  588. }
  589. static struct notifier_block cpufreq_notifier = {
  590. .notifier_call = cpufreq_callback,
  591. };
  592. static int __init register_cpufreq_notifier(void)
  593. {
  594. return cpufreq_register_notifier(&cpufreq_notifier,
  595. CPUFREQ_TRANSITION_NOTIFIER);
  596. }
  597. core_initcall(register_cpufreq_notifier);
  598. #endif