perf_event.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/uaccess.h>
  17. #include <asm/irq_regs.h>
  18. #include <asm/pmu.h>
  19. #include <asm/stacktrace.h>
  20. static int
  21. armpmu_map_cache_event(const unsigned (*cache_map)
  22. [PERF_COUNT_HW_CACHE_MAX]
  23. [PERF_COUNT_HW_CACHE_OP_MAX]
  24. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  25. u64 config)
  26. {
  27. unsigned int cache_type, cache_op, cache_result, ret;
  28. cache_type = (config >> 0) & 0xff;
  29. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  30. return -EINVAL;
  31. cache_op = (config >> 8) & 0xff;
  32. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  33. return -EINVAL;
  34. cache_result = (config >> 16) & 0xff;
  35. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  36. return -EINVAL;
  37. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  38. if (ret == CACHE_OP_UNSUPPORTED)
  39. return -ENOENT;
  40. return ret;
  41. }
  42. static int
  43. armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  44. {
  45. int mapping = (*event_map)[config];
  46. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  47. }
  48. static int
  49. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  50. {
  51. return (int)(config & raw_event_mask);
  52. }
  53. int
  54. armpmu_map_event(struct perf_event *event,
  55. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  56. const unsigned (*cache_map)
  57. [PERF_COUNT_HW_CACHE_MAX]
  58. [PERF_COUNT_HW_CACHE_OP_MAX]
  59. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  60. u32 raw_event_mask)
  61. {
  62. u64 config = event->attr.config;
  63. switch (event->attr.type) {
  64. case PERF_TYPE_HARDWARE:
  65. return armpmu_map_hw_event(event_map, config);
  66. case PERF_TYPE_HW_CACHE:
  67. return armpmu_map_cache_event(cache_map, config);
  68. case PERF_TYPE_RAW:
  69. return armpmu_map_raw_event(raw_event_mask, config);
  70. }
  71. return -ENOENT;
  72. }
  73. int
  74. armpmu_event_set_period(struct perf_event *event,
  75. struct hw_perf_event *hwc,
  76. int idx)
  77. {
  78. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  79. s64 left = local64_read(&hwc->period_left);
  80. s64 period = hwc->sample_period;
  81. int ret = 0;
  82. /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
  83. if (unlikely(period != hwc->last_period))
  84. left = period - (hwc->last_period - left);
  85. if (unlikely(left <= -period)) {
  86. left = period;
  87. local64_set(&hwc->period_left, left);
  88. hwc->last_period = period;
  89. ret = 1;
  90. }
  91. if (unlikely(left <= 0)) {
  92. left += period;
  93. local64_set(&hwc->period_left, left);
  94. hwc->last_period = period;
  95. ret = 1;
  96. }
  97. if (left > (s64)armpmu->max_period)
  98. left = armpmu->max_period;
  99. local64_set(&hwc->prev_count, (u64)-left);
  100. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  101. perf_event_update_userpage(event);
  102. return ret;
  103. }
  104. u64
  105. armpmu_event_update(struct perf_event *event,
  106. struct hw_perf_event *hwc,
  107. int idx)
  108. {
  109. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  110. u64 delta, prev_raw_count, new_raw_count;
  111. again:
  112. prev_raw_count = local64_read(&hwc->prev_count);
  113. new_raw_count = armpmu->read_counter(idx);
  114. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  115. new_raw_count) != prev_raw_count)
  116. goto again;
  117. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  118. local64_add(delta, &event->count);
  119. local64_sub(delta, &hwc->period_left);
  120. return new_raw_count;
  121. }
  122. static void
  123. armpmu_read(struct perf_event *event)
  124. {
  125. struct hw_perf_event *hwc = &event->hw;
  126. /* Don't read disabled counters! */
  127. if (hwc->idx < 0)
  128. return;
  129. armpmu_event_update(event, hwc, hwc->idx);
  130. }
  131. static void
  132. armpmu_stop(struct perf_event *event, int flags)
  133. {
  134. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  135. struct hw_perf_event *hwc = &event->hw;
  136. /*
  137. * ARM pmu always has to update the counter, so ignore
  138. * PERF_EF_UPDATE, see comments in armpmu_start().
  139. */
  140. if (!(hwc->state & PERF_HES_STOPPED)) {
  141. armpmu->disable(hwc, hwc->idx);
  142. armpmu_event_update(event, hwc, hwc->idx);
  143. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  144. }
  145. }
  146. static void
  147. armpmu_start(struct perf_event *event, int flags)
  148. {
  149. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  150. struct hw_perf_event *hwc = &event->hw;
  151. /*
  152. * ARM pmu always has to reprogram the period, so ignore
  153. * PERF_EF_RELOAD, see the comment below.
  154. */
  155. if (flags & PERF_EF_RELOAD)
  156. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  157. hwc->state = 0;
  158. /*
  159. * Set the period again. Some counters can't be stopped, so when we
  160. * were stopped we simply disabled the IRQ source and the counter
  161. * may have been left counting. If we don't do this step then we may
  162. * get an interrupt too soon or *way* too late if the overflow has
  163. * happened since disabling.
  164. */
  165. armpmu_event_set_period(event, hwc, hwc->idx);
  166. armpmu->enable(hwc, hwc->idx);
  167. }
  168. static void
  169. armpmu_del(struct perf_event *event, int flags)
  170. {
  171. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  172. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  173. struct hw_perf_event *hwc = &event->hw;
  174. int idx = hwc->idx;
  175. WARN_ON(idx < 0);
  176. armpmu_stop(event, PERF_EF_UPDATE);
  177. hw_events->events[idx] = NULL;
  178. clear_bit(idx, hw_events->used_mask);
  179. perf_event_update_userpage(event);
  180. }
  181. static int
  182. armpmu_add(struct perf_event *event, int flags)
  183. {
  184. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  185. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  186. struct hw_perf_event *hwc = &event->hw;
  187. int idx;
  188. int err = 0;
  189. perf_pmu_disable(event->pmu);
  190. /* If we don't have a space for the counter then finish early. */
  191. idx = armpmu->get_event_idx(hw_events, hwc);
  192. if (idx < 0) {
  193. err = idx;
  194. goto out;
  195. }
  196. /*
  197. * If there is an event in the counter we are going to use then make
  198. * sure it is disabled.
  199. */
  200. event->hw.idx = idx;
  201. armpmu->disable(hwc, idx);
  202. hw_events->events[idx] = event;
  203. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  204. if (flags & PERF_EF_START)
  205. armpmu_start(event, PERF_EF_RELOAD);
  206. /* Propagate our changes to the userspace mapping. */
  207. perf_event_update_userpage(event);
  208. out:
  209. perf_pmu_enable(event->pmu);
  210. return err;
  211. }
  212. static int
  213. validate_event(struct pmu_hw_events *hw_events,
  214. struct perf_event *event)
  215. {
  216. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  217. struct hw_perf_event fake_event = event->hw;
  218. struct pmu *leader_pmu = event->group_leader->pmu;
  219. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  220. return 1;
  221. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  222. }
  223. static int
  224. validate_group(struct perf_event *event)
  225. {
  226. struct perf_event *sibling, *leader = event->group_leader;
  227. struct pmu_hw_events fake_pmu;
  228. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  229. /*
  230. * Initialise the fake PMU. We only need to populate the
  231. * used_mask for the purposes of validation.
  232. */
  233. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  234. fake_pmu.used_mask = fake_used_mask;
  235. if (!validate_event(&fake_pmu, leader))
  236. return -EINVAL;
  237. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  238. if (!validate_event(&fake_pmu, sibling))
  239. return -EINVAL;
  240. }
  241. if (!validate_event(&fake_pmu, event))
  242. return -EINVAL;
  243. return 0;
  244. }
  245. static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
  246. {
  247. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  248. struct platform_device *plat_device = armpmu->plat_device;
  249. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  250. if (plat && plat->handle_irq)
  251. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  252. else
  253. return armpmu->handle_irq(irq, dev);
  254. }
  255. static void
  256. armpmu_release_hardware(struct arm_pmu *armpmu)
  257. {
  258. armpmu->free_irq();
  259. pm_runtime_put_sync(&armpmu->plat_device->dev);
  260. }
  261. static int
  262. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  263. {
  264. int err;
  265. struct platform_device *pmu_device = armpmu->plat_device;
  266. if (!pmu_device)
  267. return -ENODEV;
  268. pm_runtime_get_sync(&pmu_device->dev);
  269. err = armpmu->request_irq(armpmu_dispatch_irq);
  270. if (err) {
  271. armpmu_release_hardware(armpmu);
  272. return err;
  273. }
  274. return 0;
  275. }
  276. static void
  277. hw_perf_event_destroy(struct perf_event *event)
  278. {
  279. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  280. atomic_t *active_events = &armpmu->active_events;
  281. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  282. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  283. armpmu_release_hardware(armpmu);
  284. mutex_unlock(pmu_reserve_mutex);
  285. }
  286. }
  287. static int
  288. event_requires_mode_exclusion(struct perf_event_attr *attr)
  289. {
  290. return attr->exclude_idle || attr->exclude_user ||
  291. attr->exclude_kernel || attr->exclude_hv;
  292. }
  293. static int
  294. __hw_perf_event_init(struct perf_event *event)
  295. {
  296. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  297. struct hw_perf_event *hwc = &event->hw;
  298. int mapping, err;
  299. mapping = armpmu->map_event(event);
  300. if (mapping < 0) {
  301. pr_debug("event %x:%llx not supported\n", event->attr.type,
  302. event->attr.config);
  303. return mapping;
  304. }
  305. /*
  306. * We don't assign an index until we actually place the event onto
  307. * hardware. Use -1 to signify that we haven't decided where to put it
  308. * yet. For SMP systems, each core has it's own PMU so we can't do any
  309. * clever allocation or constraints checking at this point.
  310. */
  311. hwc->idx = -1;
  312. hwc->config_base = 0;
  313. hwc->config = 0;
  314. hwc->event_base = 0;
  315. /*
  316. * Check whether we need to exclude the counter from certain modes.
  317. */
  318. if ((!armpmu->set_event_filter ||
  319. armpmu->set_event_filter(hwc, &event->attr)) &&
  320. event_requires_mode_exclusion(&event->attr)) {
  321. pr_debug("ARM performance counters do not support "
  322. "mode exclusion\n");
  323. return -EOPNOTSUPP;
  324. }
  325. /*
  326. * Store the event encoding into the config_base field.
  327. */
  328. hwc->config_base |= (unsigned long)mapping;
  329. if (!hwc->sample_period) {
  330. /*
  331. * For non-sampling runs, limit the sample_period to half
  332. * of the counter width. That way, the new counter value
  333. * is far less likely to overtake the previous one unless
  334. * you have some serious IRQ latency issues.
  335. */
  336. hwc->sample_period = armpmu->max_period >> 1;
  337. hwc->last_period = hwc->sample_period;
  338. local64_set(&hwc->period_left, hwc->sample_period);
  339. }
  340. err = 0;
  341. if (event->group_leader != event) {
  342. err = validate_group(event);
  343. if (err)
  344. return -EINVAL;
  345. }
  346. return err;
  347. }
  348. static int armpmu_event_init(struct perf_event *event)
  349. {
  350. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  351. int err = 0;
  352. atomic_t *active_events = &armpmu->active_events;
  353. /* does not support taken branch sampling */
  354. if (has_branch_stack(event))
  355. return -EOPNOTSUPP;
  356. if (armpmu->map_event(event) == -ENOENT)
  357. return -ENOENT;
  358. event->destroy = hw_perf_event_destroy;
  359. if (!atomic_inc_not_zero(active_events)) {
  360. mutex_lock(&armpmu->reserve_mutex);
  361. if (atomic_read(active_events) == 0)
  362. err = armpmu_reserve_hardware(armpmu);
  363. if (!err)
  364. atomic_inc(active_events);
  365. mutex_unlock(&armpmu->reserve_mutex);
  366. }
  367. if (err)
  368. return err;
  369. err = __hw_perf_event_init(event);
  370. if (err)
  371. hw_perf_event_destroy(event);
  372. return err;
  373. }
  374. static void armpmu_enable(struct pmu *pmu)
  375. {
  376. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  377. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  378. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  379. if (enabled)
  380. armpmu->start();
  381. }
  382. static void armpmu_disable(struct pmu *pmu)
  383. {
  384. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  385. armpmu->stop();
  386. }
  387. #ifdef CONFIG_PM_RUNTIME
  388. static int armpmu_runtime_resume(struct device *dev)
  389. {
  390. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  391. if (plat && plat->runtime_resume)
  392. return plat->runtime_resume(dev);
  393. return 0;
  394. }
  395. static int armpmu_runtime_suspend(struct device *dev)
  396. {
  397. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  398. if (plat && plat->runtime_suspend)
  399. return plat->runtime_suspend(dev);
  400. return 0;
  401. }
  402. #endif
  403. const struct dev_pm_ops armpmu_dev_pm_ops = {
  404. SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
  405. };
  406. static void __init armpmu_init(struct arm_pmu *armpmu)
  407. {
  408. atomic_set(&armpmu->active_events, 0);
  409. mutex_init(&armpmu->reserve_mutex);
  410. armpmu->pmu = (struct pmu) {
  411. .pmu_enable = armpmu_enable,
  412. .pmu_disable = armpmu_disable,
  413. .event_init = armpmu_event_init,
  414. .add = armpmu_add,
  415. .del = armpmu_del,
  416. .start = armpmu_start,
  417. .stop = armpmu_stop,
  418. .read = armpmu_read,
  419. };
  420. }
  421. int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  422. {
  423. armpmu_init(armpmu);
  424. pr_info("enabled with %s PMU driver, %d counters available\n",
  425. armpmu->name, armpmu->num_events);
  426. return perf_pmu_register(&armpmu->pmu, name, type);
  427. }
  428. /*
  429. * Callchain handling code.
  430. */
  431. /*
  432. * The registers we're interested in are at the end of the variable
  433. * length saved register structure. The fp points at the end of this
  434. * structure so the address of this struct is:
  435. * (struct frame_tail *)(xxx->fp)-1
  436. *
  437. * This code has been adapted from the ARM OProfile support.
  438. */
  439. struct frame_tail {
  440. struct frame_tail __user *fp;
  441. unsigned long sp;
  442. unsigned long lr;
  443. } __attribute__((packed));
  444. /*
  445. * Get the return address for a single stackframe and return a pointer to the
  446. * next frame tail.
  447. */
  448. static struct frame_tail __user *
  449. user_backtrace(struct frame_tail __user *tail,
  450. struct perf_callchain_entry *entry)
  451. {
  452. struct frame_tail buftail;
  453. /* Also check accessibility of one struct frame_tail beyond */
  454. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  455. return NULL;
  456. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  457. return NULL;
  458. perf_callchain_store(entry, buftail.lr);
  459. /*
  460. * Frame pointers should strictly progress back up the stack
  461. * (towards higher addresses).
  462. */
  463. if (tail + 1 >= buftail.fp)
  464. return NULL;
  465. return buftail.fp - 1;
  466. }
  467. void
  468. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  469. {
  470. struct frame_tail __user *tail;
  471. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  472. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  473. tail && !((unsigned long)tail & 0x3))
  474. tail = user_backtrace(tail, entry);
  475. }
  476. /*
  477. * Gets called by walk_stackframe() for every stackframe. This will be called
  478. * whist unwinding the stackframe and is like a subroutine return so we use
  479. * the PC.
  480. */
  481. static int
  482. callchain_trace(struct stackframe *fr,
  483. void *data)
  484. {
  485. struct perf_callchain_entry *entry = data;
  486. perf_callchain_store(entry, fr->pc);
  487. return 0;
  488. }
  489. void
  490. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  491. {
  492. struct stackframe fr;
  493. fr.fp = regs->ARM_fp;
  494. fr.sp = regs->ARM_sp;
  495. fr.lr = regs->ARM_lr;
  496. fr.pc = regs->ARM_pc;
  497. walk_stackframe(&fr, callchain_trace, entry);
  498. }