sdio_chip.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. /*
  2. * Copyright (c) 2011 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ***** SDIO interface chip backplane handle functions ***** */
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/mmc/card.h>
  20. #include <linux/ssb/ssb_regs.h>
  21. #include <linux/bcma/bcma.h>
  22. #include <chipcommon.h>
  23. #include <brcm_hw_ids.h>
  24. #include <brcmu_wifi.h>
  25. #include <brcmu_utils.h>
  26. #include <soc.h>
  27. #include "dhd_dbg.h"
  28. #include "sdio_host.h"
  29. #include "sdio_chip.h"
  30. /* chip core base & ramsize */
  31. /* bcm4329 */
  32. /* SDIO device core, ID 0x829 */
  33. #define BCM4329_CORE_BUS_BASE 0x18011000
  34. /* internal memory core, ID 0x80e */
  35. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  36. /* ARM Cortex M3 core, ID 0x82a */
  37. #define BCM4329_CORE_ARM_BASE 0x18002000
  38. #define BCM4329_RAMSIZE 0x48000
  39. #define SBCOREREV(sbidh) \
  40. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  41. ((sbidh) & SSB_IDHIGH_RCLO))
  42. /* SOC Interconnect types (aka chip types) */
  43. #define SOCI_SB 0
  44. #define SOCI_AI 1
  45. /* EROM CompIdentB */
  46. #define CIB_REV_MASK 0xff000000
  47. #define CIB_REV_SHIFT 24
  48. /* ARM CR4 core specific control flag bits */
  49. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  50. #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
  51. /* SDIO Pad drive strength to select value mappings */
  52. struct sdiod_drive_str {
  53. u8 strength; /* Pad Drive Strength in mA */
  54. u8 sel; /* Chip-specific select value */
  55. };
  56. /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */
  57. static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = {
  58. {32, 0x6},
  59. {26, 0x7},
  60. {22, 0x4},
  61. {16, 0x5},
  62. {12, 0x2},
  63. {8, 0x3},
  64. {4, 0x0},
  65. {0, 0x1}
  66. };
  67. u8
  68. brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid)
  69. {
  70. u8 idx;
  71. for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++)
  72. if (coreid == ci->c_inf[idx].id)
  73. return idx;
  74. return BRCMF_MAX_CORENUM;
  75. }
  76. static u32
  77. brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev,
  78. struct chip_info *ci, u16 coreid)
  79. {
  80. u32 regdata;
  81. u8 idx;
  82. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  83. regdata = brcmf_sdio_regrl(sdiodev,
  84. CORE_SB(ci->c_inf[idx].base, sbidhigh),
  85. NULL);
  86. return SBCOREREV(regdata);
  87. }
  88. static u32
  89. brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev,
  90. struct chip_info *ci, u16 coreid)
  91. {
  92. u8 idx;
  93. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  94. return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
  95. }
  96. static bool
  97. brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev,
  98. struct chip_info *ci, u16 coreid)
  99. {
  100. u32 regdata;
  101. u8 idx;
  102. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  103. regdata = brcmf_sdio_regrl(sdiodev,
  104. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  105. NULL);
  106. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  107. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  108. return (SSB_TMSLOW_CLOCK == regdata);
  109. }
  110. static bool
  111. brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev,
  112. struct chip_info *ci, u16 coreid)
  113. {
  114. u32 regdata;
  115. u8 idx;
  116. bool ret;
  117. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  118. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  119. NULL);
  120. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  121. regdata = brcmf_sdio_regrl(sdiodev,
  122. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  123. NULL);
  124. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  125. return ret;
  126. }
  127. static void
  128. brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev,
  129. struct chip_info *ci, u16 coreid, u32 core_bits)
  130. {
  131. u32 regdata, base;
  132. u8 idx;
  133. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  134. base = ci->c_inf[idx].base;
  135. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  136. if (regdata & SSB_TMSLOW_RESET)
  137. return;
  138. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  139. if ((regdata & SSB_TMSLOW_CLOCK) != 0) {
  140. /*
  141. * set target reject and spin until busy is clear
  142. * (preserve core-specific bits)
  143. */
  144. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  145. NULL);
  146. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  147. regdata | SSB_TMSLOW_REJECT, NULL);
  148. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  149. NULL);
  150. udelay(1);
  151. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  152. CORE_SB(base, sbtmstatehigh),
  153. NULL) &
  154. SSB_TMSHIGH_BUSY), 100000);
  155. regdata = brcmf_sdio_regrl(sdiodev,
  156. CORE_SB(base, sbtmstatehigh),
  157. NULL);
  158. if (regdata & SSB_TMSHIGH_BUSY)
  159. brcmf_err("core state still busy\n");
  160. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  161. NULL);
  162. if (regdata & SSB_IDLOW_INITIATOR) {
  163. regdata = brcmf_sdio_regrl(sdiodev,
  164. CORE_SB(base, sbimstate),
  165. NULL);
  166. regdata |= SSB_IMSTATE_REJECT;
  167. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  168. regdata, NULL);
  169. regdata = brcmf_sdio_regrl(sdiodev,
  170. CORE_SB(base, sbimstate),
  171. NULL);
  172. udelay(1);
  173. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  174. CORE_SB(base, sbimstate),
  175. NULL) &
  176. SSB_IMSTATE_BUSY), 100000);
  177. }
  178. /* set reset and reject while enabling the clocks */
  179. regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  180. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  181. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  182. regdata, NULL);
  183. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  184. NULL);
  185. udelay(10);
  186. /* clear the initiator reject bit */
  187. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  188. NULL);
  189. if (regdata & SSB_IDLOW_INITIATOR) {
  190. regdata = brcmf_sdio_regrl(sdiodev,
  191. CORE_SB(base, sbimstate),
  192. NULL);
  193. regdata &= ~SSB_IMSTATE_REJECT;
  194. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  195. regdata, NULL);
  196. }
  197. }
  198. /* leave reset and reject asserted */
  199. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  200. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL);
  201. udelay(1);
  202. }
  203. static void
  204. brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev,
  205. struct chip_info *ci, u16 coreid, u32 core_bits)
  206. {
  207. u8 idx;
  208. u32 regdata;
  209. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  210. /* if core is already in reset, just return */
  211. regdata = brcmf_sdio_regrl(sdiodev,
  212. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  213. NULL);
  214. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  215. return;
  216. /* ensure no pending backplane operation
  217. * 300uc should be sufficient for backplane ops to be finish
  218. * extra 10ms is taken into account for firmware load stage
  219. * after 10300us carry on disabling the core anyway
  220. */
  221. SPINWAIT(brcmf_sdio_regrl(sdiodev,
  222. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  223. NULL), 10300);
  224. regdata = brcmf_sdio_regrl(sdiodev,
  225. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  226. NULL);
  227. if (regdata)
  228. brcmf_err("disabling core 0x%x with reset status %x\n",
  229. coreid, regdata);
  230. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  231. BCMA_RESET_CTL_RESET, NULL);
  232. udelay(1);
  233. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  234. core_bits, NULL);
  235. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  236. NULL);
  237. usleep_range(10, 20);
  238. }
  239. static void
  240. brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev,
  241. struct chip_info *ci, u16 coreid, u32 core_bits)
  242. {
  243. u32 regdata;
  244. u8 idx;
  245. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  246. /*
  247. * Must do the disable sequence first to work for
  248. * arbitrary current core state.
  249. */
  250. brcmf_sdio_sb_coredisable(sdiodev, ci, coreid, 0);
  251. /*
  252. * Now do the initialization sequence.
  253. * set reset while enabling the clock and
  254. * forcing them on throughout the core
  255. */
  256. brcmf_sdio_regwl(sdiodev,
  257. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  258. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET,
  259. NULL);
  260. regdata = brcmf_sdio_regrl(sdiodev,
  261. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  262. NULL);
  263. udelay(1);
  264. /* clear any serror */
  265. regdata = brcmf_sdio_regrl(sdiodev,
  266. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  267. NULL);
  268. if (regdata & SSB_TMSHIGH_SERR)
  269. brcmf_sdio_regwl(sdiodev,
  270. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  271. 0, NULL);
  272. regdata = brcmf_sdio_regrl(sdiodev,
  273. CORE_SB(ci->c_inf[idx].base, sbimstate),
  274. NULL);
  275. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO))
  276. brcmf_sdio_regwl(sdiodev,
  277. CORE_SB(ci->c_inf[idx].base, sbimstate),
  278. regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO),
  279. NULL);
  280. /* clear reset and allow it to propagate throughout the core */
  281. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  282. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL);
  283. regdata = brcmf_sdio_regrl(sdiodev,
  284. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  285. NULL);
  286. udelay(1);
  287. /* leave clock enabled */
  288. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  289. SSB_TMSLOW_CLOCK, NULL);
  290. regdata = brcmf_sdio_regrl(sdiodev,
  291. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  292. NULL);
  293. udelay(1);
  294. }
  295. static void
  296. brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev,
  297. struct chip_info *ci, u16 coreid, u32 core_bits)
  298. {
  299. u8 idx;
  300. u32 regdata;
  301. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  302. /* must disable first to work for arbitrary current core state */
  303. brcmf_sdio_ai_coredisable(sdiodev, ci, coreid, core_bits);
  304. /* now do initialization sequence */
  305. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  306. core_bits | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL);
  307. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  308. NULL);
  309. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  310. 0, NULL);
  311. regdata = brcmf_sdio_regrl(sdiodev,
  312. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  313. NULL);
  314. udelay(1);
  315. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  316. core_bits | BCMA_IOCTL_CLK, NULL);
  317. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  318. NULL);
  319. udelay(1);
  320. }
  321. #ifdef DEBUG
  322. /* safety check for chipinfo */
  323. static int brcmf_sdio_chip_cichk(struct chip_info *ci)
  324. {
  325. u8 core_idx;
  326. /* check RAM core presence for ARM CM3 core */
  327. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  328. if (BRCMF_MAX_CORENUM != core_idx) {
  329. core_idx = brcmf_sdio_chip_getinfidx(ci,
  330. BCMA_CORE_INTERNAL_MEM);
  331. if (BRCMF_MAX_CORENUM == core_idx) {
  332. brcmf_err("RAM core not provided with ARM CM3 core\n");
  333. return -ENODEV;
  334. }
  335. }
  336. /* check RAM base for ARM CR4 core */
  337. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CR4);
  338. if (BRCMF_MAX_CORENUM != core_idx) {
  339. if (ci->rambase == 0) {
  340. brcmf_err("RAM base not provided with ARM CR4 core\n");
  341. return -ENOMEM;
  342. }
  343. }
  344. return 0;
  345. }
  346. #else /* DEBUG */
  347. static inline int brcmf_sdio_chip_cichk(struct chip_info *ci)
  348. {
  349. return 0;
  350. }
  351. #endif
  352. static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev,
  353. struct chip_info *ci, u32 regs)
  354. {
  355. u32 regdata;
  356. int ret;
  357. /* Get CC core rev
  358. * Chipid is assume to be at offset 0 from regs arg
  359. * For different chiptypes or old sdio hosts w/o chipcommon,
  360. * other ways of recognition should be added here.
  361. */
  362. ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON;
  363. ci->c_inf[0].base = regs;
  364. regdata = brcmf_sdio_regrl(sdiodev,
  365. CORE_CC_REG(ci->c_inf[0].base, chipid),
  366. NULL);
  367. ci->chip = regdata & CID_ID_MASK;
  368. ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  369. ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  370. brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev);
  371. /* Address of cores for new chips should be added here */
  372. switch (ci->chip) {
  373. case BCM43241_CHIP_ID:
  374. ci->c_inf[0].wrapbase = 0x18100000;
  375. ci->c_inf[0].cib = 0x2a084411;
  376. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  377. ci->c_inf[1].base = 0x18002000;
  378. ci->c_inf[1].wrapbase = 0x18102000;
  379. ci->c_inf[1].cib = 0x0e004211;
  380. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  381. ci->c_inf[2].base = 0x18004000;
  382. ci->c_inf[2].wrapbase = 0x18104000;
  383. ci->c_inf[2].cib = 0x14080401;
  384. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  385. ci->c_inf[3].base = 0x18003000;
  386. ci->c_inf[3].wrapbase = 0x18103000;
  387. ci->c_inf[3].cib = 0x07004211;
  388. ci->ramsize = 0x90000;
  389. break;
  390. case BCM4329_CHIP_ID:
  391. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  392. ci->c_inf[1].base = BCM4329_CORE_BUS_BASE;
  393. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  394. ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE;
  395. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  396. ci->c_inf[3].base = BCM4329_CORE_ARM_BASE;
  397. ci->ramsize = BCM4329_RAMSIZE;
  398. break;
  399. case BCM4330_CHIP_ID:
  400. ci->c_inf[0].wrapbase = 0x18100000;
  401. ci->c_inf[0].cib = 0x27004211;
  402. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  403. ci->c_inf[1].base = 0x18002000;
  404. ci->c_inf[1].wrapbase = 0x18102000;
  405. ci->c_inf[1].cib = 0x07004211;
  406. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  407. ci->c_inf[2].base = 0x18004000;
  408. ci->c_inf[2].wrapbase = 0x18104000;
  409. ci->c_inf[2].cib = 0x0d080401;
  410. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  411. ci->c_inf[3].base = 0x18003000;
  412. ci->c_inf[3].wrapbase = 0x18103000;
  413. ci->c_inf[3].cib = 0x03004211;
  414. ci->ramsize = 0x48000;
  415. break;
  416. case BCM4334_CHIP_ID:
  417. ci->c_inf[0].wrapbase = 0x18100000;
  418. ci->c_inf[0].cib = 0x29004211;
  419. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  420. ci->c_inf[1].base = 0x18002000;
  421. ci->c_inf[1].wrapbase = 0x18102000;
  422. ci->c_inf[1].cib = 0x0d004211;
  423. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  424. ci->c_inf[2].base = 0x18004000;
  425. ci->c_inf[2].wrapbase = 0x18104000;
  426. ci->c_inf[2].cib = 0x13080401;
  427. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  428. ci->c_inf[3].base = 0x18003000;
  429. ci->c_inf[3].wrapbase = 0x18103000;
  430. ci->c_inf[3].cib = 0x07004211;
  431. ci->ramsize = 0x80000;
  432. break;
  433. default:
  434. brcmf_err("chipid 0x%x is not supported\n", ci->chip);
  435. return -ENODEV;
  436. }
  437. ret = brcmf_sdio_chip_cichk(ci);
  438. if (ret)
  439. return ret;
  440. switch (ci->socitype) {
  441. case SOCI_SB:
  442. ci->iscoreup = brcmf_sdio_sb_iscoreup;
  443. ci->corerev = brcmf_sdio_sb_corerev;
  444. ci->coredisable = brcmf_sdio_sb_coredisable;
  445. ci->resetcore = brcmf_sdio_sb_resetcore;
  446. break;
  447. case SOCI_AI:
  448. ci->iscoreup = brcmf_sdio_ai_iscoreup;
  449. ci->corerev = brcmf_sdio_ai_corerev;
  450. ci->coredisable = brcmf_sdio_ai_coredisable;
  451. ci->resetcore = brcmf_sdio_ai_resetcore;
  452. break;
  453. default:
  454. brcmf_err("socitype %u not supported\n", ci->socitype);
  455. return -ENODEV;
  456. }
  457. return 0;
  458. }
  459. static int
  460. brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev)
  461. {
  462. int err = 0;
  463. u8 clkval, clkset;
  464. /* Try forcing SDIO core to do ALPAvail request only */
  465. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
  466. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  467. if (err) {
  468. brcmf_err("error writing for HT off\n");
  469. return err;
  470. }
  471. /* If register supported, wait for ALPAvail and then force ALP */
  472. /* This may take up to 15 milliseconds */
  473. clkval = brcmf_sdio_regrb(sdiodev,
  474. SBSDIO_FUNC1_CHIPCLKCSR, NULL);
  475. if ((clkval & ~SBSDIO_AVBITS) != clkset) {
  476. brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n",
  477. clkset, clkval);
  478. return -EACCES;
  479. }
  480. SPINWAIT(((clkval = brcmf_sdio_regrb(sdiodev,
  481. SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
  482. !SBSDIO_ALPAV(clkval)),
  483. PMU_MAX_TRANSITION_DLY);
  484. if (!SBSDIO_ALPAV(clkval)) {
  485. brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n",
  486. clkval);
  487. return -EBUSY;
  488. }
  489. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
  490. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  491. udelay(65);
  492. /* Also, disable the extra SDIO pull-ups */
  493. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
  494. return 0;
  495. }
  496. static void
  497. brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev,
  498. struct chip_info *ci)
  499. {
  500. u32 base = ci->c_inf[0].base;
  501. /* get chipcommon rev */
  502. ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id);
  503. /* get chipcommon capabilites */
  504. ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev,
  505. CORE_CC_REG(base, capabilities),
  506. NULL);
  507. /* get pmu caps & rev */
  508. if (ci->c_inf[0].caps & CC_CAP_PMU) {
  509. ci->pmucaps =
  510. brcmf_sdio_regrl(sdiodev,
  511. CORE_CC_REG(base, pmucapabilities),
  512. NULL);
  513. ci->pmurev = ci->pmucaps & PCAP_REV_MASK;
  514. }
  515. ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id);
  516. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n",
  517. ci->c_inf[0].rev, ci->pmurev,
  518. ci->c_inf[1].rev, ci->c_inf[1].id);
  519. /*
  520. * Make sure any on-chip ARM is off (in case strapping is wrong),
  521. * or downloaded code was already running.
  522. */
  523. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  524. }
  525. int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev,
  526. struct chip_info **ci_ptr, u32 regs)
  527. {
  528. int ret;
  529. struct chip_info *ci;
  530. brcmf_dbg(TRACE, "Enter\n");
  531. /* alloc chip_info_t */
  532. ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC);
  533. if (!ci)
  534. return -ENOMEM;
  535. ret = brcmf_sdio_chip_buscoreprep(sdiodev);
  536. if (ret != 0)
  537. goto err;
  538. ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs);
  539. if (ret != 0)
  540. goto err;
  541. brcmf_sdio_chip_buscoresetup(sdiodev, ci);
  542. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup),
  543. 0, NULL);
  544. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown),
  545. 0, NULL);
  546. *ci_ptr = ci;
  547. return 0;
  548. err:
  549. kfree(ci);
  550. return ret;
  551. }
  552. void
  553. brcmf_sdio_chip_detach(struct chip_info **ci_ptr)
  554. {
  555. brcmf_dbg(TRACE, "Enter\n");
  556. kfree(*ci_ptr);
  557. *ci_ptr = NULL;
  558. }
  559. static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len)
  560. {
  561. const char *fmt;
  562. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  563. snprintf(buf, len, fmt, chipid);
  564. return buf;
  565. }
  566. void
  567. brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev,
  568. struct chip_info *ci, u32 drivestrength)
  569. {
  570. struct sdiod_drive_str *str_tab = NULL;
  571. u32 str_mask = 0;
  572. u32 str_shift = 0;
  573. char chn[8];
  574. u32 base = ci->c_inf[0].base;
  575. if (!(ci->c_inf[0].caps & CC_CAP_PMU))
  576. return;
  577. switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) {
  578. case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12):
  579. str_tab = (struct sdiod_drive_str *)&sdiod_drvstr_tab1_1v8;
  580. str_mask = 0x00003800;
  581. str_shift = 11;
  582. break;
  583. default:
  584. brcmf_err("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n",
  585. brcmf_sdio_chip_name(ci->chip, chn, 8),
  586. ci->chiprev, ci->pmurev);
  587. break;
  588. }
  589. if (str_tab != NULL) {
  590. u32 drivestrength_sel = 0;
  591. u32 cc_data_temp;
  592. int i;
  593. for (i = 0; str_tab[i].strength != 0; i++) {
  594. if (drivestrength >= str_tab[i].strength) {
  595. drivestrength_sel = str_tab[i].sel;
  596. break;
  597. }
  598. }
  599. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr),
  600. 1, NULL);
  601. cc_data_temp =
  602. brcmf_sdio_regrl(sdiodev,
  603. CORE_CC_REG(base, chipcontrol_addr),
  604. NULL);
  605. cc_data_temp &= ~str_mask;
  606. drivestrength_sel <<= str_shift;
  607. cc_data_temp |= drivestrength_sel;
  608. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr),
  609. cc_data_temp, NULL);
  610. brcmf_dbg(INFO, "SDIO: %dmA drive strength selected, set to 0x%08x\n",
  611. drivestrength, cc_data_temp);
  612. }
  613. }
  614. #ifdef DEBUG
  615. static bool
  616. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  617. char *nvram_dat, uint nvram_sz)
  618. {
  619. char *nvram_ularray;
  620. int err;
  621. bool ret = true;
  622. /* read back and verify */
  623. brcmf_dbg(INFO, "Compare NVRAM dl & ul; size=%d\n", nvram_sz);
  624. nvram_ularray = kmalloc(nvram_sz, GFP_KERNEL);
  625. /* do not proceed while no memory but */
  626. if (!nvram_ularray)
  627. return true;
  628. /* Upload image to verify downloaded contents. */
  629. memset(nvram_ularray, 0xaa, nvram_sz);
  630. /* Read the vars list to temp buffer for comparison */
  631. err = brcmf_sdio_ramrw(sdiodev, false, nvram_addr, nvram_ularray,
  632. nvram_sz);
  633. if (err) {
  634. brcmf_err("error %d on reading %d nvram bytes at 0x%08x\n",
  635. err, nvram_sz, nvram_addr);
  636. } else if (memcmp(nvram_dat, nvram_ularray, nvram_sz)) {
  637. brcmf_err("Downloaded NVRAM image is corrupted\n");
  638. ret = false;
  639. }
  640. kfree(nvram_ularray);
  641. return ret;
  642. }
  643. #else /* DEBUG */
  644. static inline bool
  645. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  646. char *nvram_dat, uint nvram_sz)
  647. {
  648. return true;
  649. }
  650. #endif /* DEBUG */
  651. static bool brcmf_sdio_chip_writenvram(struct brcmf_sdio_dev *sdiodev,
  652. struct chip_info *ci,
  653. char *nvram_dat, uint nvram_sz)
  654. {
  655. int err;
  656. u32 nvram_addr;
  657. u32 token;
  658. __le32 token_le;
  659. nvram_addr = (ci->ramsize - 4) - nvram_sz + ci->rambase;
  660. /* Write the vars list */
  661. err = brcmf_sdio_ramrw(sdiodev, true, nvram_addr, nvram_dat, nvram_sz);
  662. if (err) {
  663. brcmf_err("error %d on writing %d nvram bytes at 0x%08x\n",
  664. err, nvram_sz, nvram_addr);
  665. return false;
  666. }
  667. if (!brcmf_sdio_chip_verifynvram(sdiodev, nvram_addr,
  668. nvram_dat, nvram_sz))
  669. return false;
  670. /* generate token:
  671. * nvram size, converted to words, in lower 16-bits, checksum
  672. * in upper 16-bits.
  673. */
  674. token = nvram_sz / 4;
  675. token = (~token << 16) | (token & 0x0000FFFF);
  676. token_le = cpu_to_le32(token);
  677. brcmf_dbg(INFO, "RAM size: %d\n", ci->ramsize);
  678. brcmf_dbg(INFO, "nvram is placed at %d, size %d, token=0x%08x\n",
  679. nvram_addr, nvram_sz, token);
  680. /* Write the length token to the last word */
  681. if (brcmf_sdio_ramrw(sdiodev, true, (ci->ramsize - 4 + ci->rambase),
  682. (u8 *)&token_le, 4))
  683. return false;
  684. return true;
  685. }
  686. static void
  687. brcmf_sdio_chip_cm3_enterdl(struct brcmf_sdio_dev *sdiodev,
  688. struct chip_info *ci)
  689. {
  690. u32 zeros = 0;
  691. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  692. ci->resetcore(sdiodev, ci, BCMA_CORE_INTERNAL_MEM, 0);
  693. /* clear length token */
  694. brcmf_sdio_ramrw(sdiodev, true, ci->ramsize - 4, (u8 *)&zeros, 4);
  695. }
  696. static bool
  697. brcmf_sdio_chip_cm3_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  698. char *nvram_dat, uint nvram_sz)
  699. {
  700. u8 core_idx;
  701. u32 reg_addr;
  702. if (!ci->iscoreup(sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) {
  703. brcmf_err("SOCRAM core is down after reset?\n");
  704. return false;
  705. }
  706. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  707. return false;
  708. /* clear all interrupts */
  709. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  710. reg_addr = ci->c_inf[core_idx].base;
  711. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  712. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  713. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  714. return true;
  715. }
  716. static inline void
  717. brcmf_sdio_chip_cr4_enterdl(struct brcmf_sdio_dev *sdiodev,
  718. struct chip_info *ci)
  719. {
  720. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4,
  721. ARMCR4_BCMA_IOCTL_CPUHALT);
  722. }
  723. static bool
  724. brcmf_sdio_chip_cr4_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  725. char *nvram_dat, uint nvram_sz)
  726. {
  727. u8 core_idx;
  728. u32 reg_addr;
  729. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  730. return false;
  731. /* clear all interrupts */
  732. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  733. reg_addr = ci->c_inf[core_idx].base;
  734. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  735. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  736. /* Write reset vector to address 0 */
  737. brcmf_sdio_ramrw(sdiodev, true, 0, (void *)&ci->rst_vec,
  738. sizeof(ci->rst_vec));
  739. /* restore ARM */
  740. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4, 0);
  741. return true;
  742. }
  743. void brcmf_sdio_chip_enter_download(struct brcmf_sdio_dev *sdiodev,
  744. struct chip_info *ci)
  745. {
  746. u8 arm_core_idx;
  747. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  748. if (BRCMF_MAX_CORENUM != arm_core_idx) {
  749. brcmf_sdio_chip_cm3_enterdl(sdiodev, ci);
  750. return;
  751. }
  752. brcmf_sdio_chip_cr4_enterdl(sdiodev, ci);
  753. }
  754. bool brcmf_sdio_chip_exit_download(struct brcmf_sdio_dev *sdiodev,
  755. struct chip_info *ci, char *nvram_dat,
  756. uint nvram_sz)
  757. {
  758. u8 arm_core_idx;
  759. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  760. if (BRCMF_MAX_CORENUM != arm_core_idx)
  761. return brcmf_sdio_chip_cm3_exitdl(sdiodev, ci, nvram_dat,
  762. nvram_sz);
  763. return brcmf_sdio_chip_cr4_exitdl(sdiodev, ci, nvram_dat, nvram_sz);
  764. }