sh_eth.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/sh_eth.h>
  41. #include "sh_eth.h"
  42. #define SH_ETH_DEF_MSG_ENABLE \
  43. (NETIF_MSG_LINK | \
  44. NETIF_MSG_TIMER | \
  45. NETIF_MSG_RX_ERR| \
  46. NETIF_MSG_TX_ERR)
  47. /* There is CPU dependent code */
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  49. #define SH_ETH_RESET_DEFAULT 1
  50. static void sh_eth_set_duplex(struct net_device *ndev)
  51. {
  52. struct sh_eth_private *mdp = netdev_priv(ndev);
  53. if (mdp->duplex) /* Full */
  54. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  55. else /* Half */
  56. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  57. }
  58. static void sh_eth_set_rate(struct net_device *ndev)
  59. {
  60. struct sh_eth_private *mdp = netdev_priv(ndev);
  61. switch (mdp->speed) {
  62. case 10: /* 10BASE */
  63. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  64. break;
  65. case 100:/* 100BASE */
  66. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  67. break;
  68. default:
  69. break;
  70. }
  71. }
  72. /* SH7724 */
  73. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  74. .set_duplex = sh_eth_set_duplex,
  75. .set_rate = sh_eth_set_rate,
  76. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  77. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  78. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  79. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  80. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  81. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  82. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  83. .apr = 1,
  84. .mpr = 1,
  85. .tpauser = 1,
  86. .hw_swap = 1,
  87. .rpadir = 1,
  88. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  89. };
  90. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  91. #define SH_ETH_HAS_BOTH_MODULES 1
  92. #define SH_ETH_HAS_TSU 1
  93. static void sh_eth_set_duplex(struct net_device *ndev)
  94. {
  95. struct sh_eth_private *mdp = netdev_priv(ndev);
  96. if (mdp->duplex) /* Full */
  97. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  98. else /* Half */
  99. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  100. }
  101. static void sh_eth_set_rate(struct net_device *ndev)
  102. {
  103. struct sh_eth_private *mdp = netdev_priv(ndev);
  104. switch (mdp->speed) {
  105. case 10: /* 10BASE */
  106. sh_eth_write(ndev, 0, RTRATE);
  107. break;
  108. case 100:/* 100BASE */
  109. sh_eth_write(ndev, 1, RTRATE);
  110. break;
  111. default:
  112. break;
  113. }
  114. }
  115. /* SH7757 */
  116. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  117. .set_duplex = sh_eth_set_duplex,
  118. .set_rate = sh_eth_set_rate,
  119. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  120. .rmcr_value = 0x00000001,
  121. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  122. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  123. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  124. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  125. .apr = 1,
  126. .mpr = 1,
  127. .tpauser = 1,
  128. .hw_swap = 1,
  129. .no_ade = 1,
  130. .rpadir = 1,
  131. .rpadir_value = 2 << 16,
  132. };
  133. #define SH_GIGA_ETH_BASE 0xfee00000
  134. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  135. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  136. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  137. {
  138. int i;
  139. unsigned long mahr[2], malr[2];
  140. /* save MAHR and MALR */
  141. for (i = 0; i < 2; i++) {
  142. malr[i] = ioread32((void *)GIGA_MALR(i));
  143. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  144. }
  145. /* reset device */
  146. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  147. mdelay(1);
  148. /* restore MAHR and MALR */
  149. for (i = 0; i < 2; i++) {
  150. iowrite32(malr[i], (void *)GIGA_MALR(i));
  151. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  152. }
  153. }
  154. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  155. static void sh_eth_reset(struct net_device *ndev)
  156. {
  157. struct sh_eth_private *mdp = netdev_priv(ndev);
  158. int cnt = 100;
  159. if (sh_eth_is_gether(mdp)) {
  160. sh_eth_write(ndev, 0x03, EDSR);
  161. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  162. EDMR);
  163. while (cnt > 0) {
  164. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  165. break;
  166. mdelay(1);
  167. cnt--;
  168. }
  169. if (cnt < 0)
  170. printk(KERN_ERR "Device reset fail\n");
  171. /* Table Init */
  172. sh_eth_write(ndev, 0x0, TDLAR);
  173. sh_eth_write(ndev, 0x0, TDFAR);
  174. sh_eth_write(ndev, 0x0, TDFXR);
  175. sh_eth_write(ndev, 0x0, TDFFR);
  176. sh_eth_write(ndev, 0x0, RDLAR);
  177. sh_eth_write(ndev, 0x0, RDFAR);
  178. sh_eth_write(ndev, 0x0, RDFXR);
  179. sh_eth_write(ndev, 0x0, RDFFR);
  180. } else {
  181. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  182. EDMR);
  183. mdelay(3);
  184. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  185. EDMR);
  186. }
  187. }
  188. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  189. {
  190. struct sh_eth_private *mdp = netdev_priv(ndev);
  191. if (mdp->duplex) /* Full */
  192. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  193. else /* Half */
  194. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  195. }
  196. static void sh_eth_set_rate_giga(struct net_device *ndev)
  197. {
  198. struct sh_eth_private *mdp = netdev_priv(ndev);
  199. switch (mdp->speed) {
  200. case 10: /* 10BASE */
  201. sh_eth_write(ndev, 0x00000000, GECMR);
  202. break;
  203. case 100:/* 100BASE */
  204. sh_eth_write(ndev, 0x00000010, GECMR);
  205. break;
  206. case 1000: /* 1000BASE */
  207. sh_eth_write(ndev, 0x00000020, GECMR);
  208. break;
  209. default:
  210. break;
  211. }
  212. }
  213. /* SH7757(GETHERC) */
  214. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  215. .chip_reset = sh_eth_chip_reset_giga,
  216. .set_duplex = sh_eth_set_duplex_giga,
  217. .set_rate = sh_eth_set_rate_giga,
  218. .ecsr_value = ECSR_ICD | ECSR_MPD,
  219. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  220. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  221. .tx_check = EESR_TC1 | EESR_FTC,
  222. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  223. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  224. EESR_ECI,
  225. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  226. EESR_TFE,
  227. .fdr_value = 0x0000072f,
  228. .rmcr_value = 0x00000001,
  229. .apr = 1,
  230. .mpr = 1,
  231. .tpauser = 1,
  232. .bculr = 1,
  233. .hw_swap = 1,
  234. .rpadir = 1,
  235. .rpadir_value = 2 << 16,
  236. .no_trimd = 1,
  237. .no_ade = 1,
  238. };
  239. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  240. {
  241. if (sh_eth_is_gether(mdp))
  242. return &sh_eth_my_cpu_data_giga;
  243. else
  244. return &sh_eth_my_cpu_data;
  245. }
  246. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  247. #define SH_ETH_HAS_TSU 1
  248. static void sh_eth_chip_reset(struct net_device *ndev)
  249. {
  250. struct sh_eth_private *mdp = netdev_priv(ndev);
  251. /* reset device */
  252. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  253. mdelay(1);
  254. }
  255. static void sh_eth_reset(struct net_device *ndev)
  256. {
  257. int cnt = 100;
  258. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  259. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  260. while (cnt > 0) {
  261. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  262. break;
  263. mdelay(1);
  264. cnt--;
  265. }
  266. if (cnt == 0)
  267. printk(KERN_ERR "Device reset fail\n");
  268. /* Table Init */
  269. sh_eth_write(ndev, 0x0, TDLAR);
  270. sh_eth_write(ndev, 0x0, TDFAR);
  271. sh_eth_write(ndev, 0x0, TDFXR);
  272. sh_eth_write(ndev, 0x0, TDFFR);
  273. sh_eth_write(ndev, 0x0, RDLAR);
  274. sh_eth_write(ndev, 0x0, RDFAR);
  275. sh_eth_write(ndev, 0x0, RDFXR);
  276. sh_eth_write(ndev, 0x0, RDFFR);
  277. }
  278. static void sh_eth_set_duplex(struct net_device *ndev)
  279. {
  280. struct sh_eth_private *mdp = netdev_priv(ndev);
  281. if (mdp->duplex) /* Full */
  282. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  283. else /* Half */
  284. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  285. }
  286. static void sh_eth_set_rate(struct net_device *ndev)
  287. {
  288. struct sh_eth_private *mdp = netdev_priv(ndev);
  289. switch (mdp->speed) {
  290. case 10: /* 10BASE */
  291. sh_eth_write(ndev, GECMR_10, GECMR);
  292. break;
  293. case 100:/* 100BASE */
  294. sh_eth_write(ndev, GECMR_100, GECMR);
  295. break;
  296. case 1000: /* 1000BASE */
  297. sh_eth_write(ndev, GECMR_1000, GECMR);
  298. break;
  299. default:
  300. break;
  301. }
  302. }
  303. /* sh7763 */
  304. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  305. .chip_reset = sh_eth_chip_reset,
  306. .set_duplex = sh_eth_set_duplex,
  307. .set_rate = sh_eth_set_rate,
  308. .ecsr_value = ECSR_ICD | ECSR_MPD,
  309. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  310. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  311. .tx_check = EESR_TC1 | EESR_FTC,
  312. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  313. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  314. EESR_ECI,
  315. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  316. EESR_TFE,
  317. .apr = 1,
  318. .mpr = 1,
  319. .tpauser = 1,
  320. .bculr = 1,
  321. .hw_swap = 1,
  322. .no_trimd = 1,
  323. .no_ade = 1,
  324. .tsu = 1,
  325. };
  326. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  327. #define SH_ETH_RESET_DEFAULT 1
  328. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  329. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  330. .apr = 1,
  331. .mpr = 1,
  332. .tpauser = 1,
  333. .hw_swap = 1,
  334. };
  335. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  336. #define SH_ETH_RESET_DEFAULT 1
  337. #define SH_ETH_HAS_TSU 1
  338. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  339. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  340. .tsu = 1,
  341. };
  342. #endif
  343. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  344. {
  345. if (!cd->ecsr_value)
  346. cd->ecsr_value = DEFAULT_ECSR_INIT;
  347. if (!cd->ecsipr_value)
  348. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  349. if (!cd->fcftr_value)
  350. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  351. DEFAULT_FIFO_F_D_RFD;
  352. if (!cd->fdr_value)
  353. cd->fdr_value = DEFAULT_FDR_INIT;
  354. if (!cd->rmcr_value)
  355. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  356. if (!cd->tx_check)
  357. cd->tx_check = DEFAULT_TX_CHECK;
  358. if (!cd->eesr_err_check)
  359. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  360. if (!cd->tx_error_check)
  361. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  362. }
  363. #if defined(SH_ETH_RESET_DEFAULT)
  364. /* Chip Reset */
  365. static void sh_eth_reset(struct net_device *ndev)
  366. {
  367. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  368. mdelay(3);
  369. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  370. }
  371. #endif
  372. #if defined(CONFIG_CPU_SH4)
  373. static void sh_eth_set_receive_align(struct sk_buff *skb)
  374. {
  375. int reserve;
  376. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  377. if (reserve)
  378. skb_reserve(skb, reserve);
  379. }
  380. #else
  381. static void sh_eth_set_receive_align(struct sk_buff *skb)
  382. {
  383. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  384. }
  385. #endif
  386. /* CPU <-> EDMAC endian convert */
  387. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  388. {
  389. switch (mdp->edmac_endian) {
  390. case EDMAC_LITTLE_ENDIAN:
  391. return cpu_to_le32(x);
  392. case EDMAC_BIG_ENDIAN:
  393. return cpu_to_be32(x);
  394. }
  395. return x;
  396. }
  397. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  398. {
  399. switch (mdp->edmac_endian) {
  400. case EDMAC_LITTLE_ENDIAN:
  401. return le32_to_cpu(x);
  402. case EDMAC_BIG_ENDIAN:
  403. return be32_to_cpu(x);
  404. }
  405. return x;
  406. }
  407. /*
  408. * Program the hardware MAC address from dev->dev_addr.
  409. */
  410. static void update_mac_address(struct net_device *ndev)
  411. {
  412. sh_eth_write(ndev,
  413. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  414. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  415. sh_eth_write(ndev,
  416. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  417. }
  418. /*
  419. * Get MAC address from SuperH MAC address register
  420. *
  421. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  422. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  423. * When you want use this device, you must set MAC address in bootloader.
  424. *
  425. */
  426. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  427. {
  428. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  429. memcpy(ndev->dev_addr, mac, 6);
  430. } else {
  431. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  432. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  433. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  434. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  435. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  436. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  437. }
  438. }
  439. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  440. {
  441. if (mdp->reg_offset == sh_eth_offset_gigabit)
  442. return 1;
  443. else
  444. return 0;
  445. }
  446. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  447. {
  448. if (sh_eth_is_gether(mdp))
  449. return EDTRR_TRNS_GETHER;
  450. else
  451. return EDTRR_TRNS_ETHER;
  452. }
  453. struct bb_info {
  454. void (*set_gate)(void *addr);
  455. struct mdiobb_ctrl ctrl;
  456. void *addr;
  457. u32 mmd_msk;/* MMD */
  458. u32 mdo_msk;
  459. u32 mdi_msk;
  460. u32 mdc_msk;
  461. };
  462. /* PHY bit set */
  463. static void bb_set(void *addr, u32 msk)
  464. {
  465. iowrite32(ioread32(addr) | msk, addr);
  466. }
  467. /* PHY bit clear */
  468. static void bb_clr(void *addr, u32 msk)
  469. {
  470. iowrite32((ioread32(addr) & ~msk), addr);
  471. }
  472. /* PHY bit read */
  473. static int bb_read(void *addr, u32 msk)
  474. {
  475. return (ioread32(addr) & msk) != 0;
  476. }
  477. /* Data I/O pin control */
  478. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  479. {
  480. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  481. if (bitbang->set_gate)
  482. bitbang->set_gate(bitbang->addr);
  483. if (bit)
  484. bb_set(bitbang->addr, bitbang->mmd_msk);
  485. else
  486. bb_clr(bitbang->addr, bitbang->mmd_msk);
  487. }
  488. /* Set bit data*/
  489. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  490. {
  491. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  492. if (bitbang->set_gate)
  493. bitbang->set_gate(bitbang->addr);
  494. if (bit)
  495. bb_set(bitbang->addr, bitbang->mdo_msk);
  496. else
  497. bb_clr(bitbang->addr, bitbang->mdo_msk);
  498. }
  499. /* Get bit data*/
  500. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  501. {
  502. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  503. if (bitbang->set_gate)
  504. bitbang->set_gate(bitbang->addr);
  505. return bb_read(bitbang->addr, bitbang->mdi_msk);
  506. }
  507. /* MDC pin control */
  508. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  509. {
  510. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  511. if (bitbang->set_gate)
  512. bitbang->set_gate(bitbang->addr);
  513. if (bit)
  514. bb_set(bitbang->addr, bitbang->mdc_msk);
  515. else
  516. bb_clr(bitbang->addr, bitbang->mdc_msk);
  517. }
  518. /* mdio bus control struct */
  519. static struct mdiobb_ops bb_ops = {
  520. .owner = THIS_MODULE,
  521. .set_mdc = sh_mdc_ctrl,
  522. .set_mdio_dir = sh_mmd_ctrl,
  523. .set_mdio_data = sh_set_mdio,
  524. .get_mdio_data = sh_get_mdio,
  525. };
  526. /* free skb and descriptor buffer */
  527. static void sh_eth_ring_free(struct net_device *ndev)
  528. {
  529. struct sh_eth_private *mdp = netdev_priv(ndev);
  530. int i;
  531. /* Free Rx skb ringbuffer */
  532. if (mdp->rx_skbuff) {
  533. for (i = 0; i < RX_RING_SIZE; i++) {
  534. if (mdp->rx_skbuff[i])
  535. dev_kfree_skb(mdp->rx_skbuff[i]);
  536. }
  537. }
  538. kfree(mdp->rx_skbuff);
  539. /* Free Tx skb ringbuffer */
  540. if (mdp->tx_skbuff) {
  541. for (i = 0; i < TX_RING_SIZE; i++) {
  542. if (mdp->tx_skbuff[i])
  543. dev_kfree_skb(mdp->tx_skbuff[i]);
  544. }
  545. }
  546. kfree(mdp->tx_skbuff);
  547. }
  548. /* format skb and descriptor buffer */
  549. static void sh_eth_ring_format(struct net_device *ndev)
  550. {
  551. struct sh_eth_private *mdp = netdev_priv(ndev);
  552. int i;
  553. struct sk_buff *skb;
  554. struct sh_eth_rxdesc *rxdesc = NULL;
  555. struct sh_eth_txdesc *txdesc = NULL;
  556. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  557. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  558. mdp->cur_rx = mdp->cur_tx = 0;
  559. mdp->dirty_rx = mdp->dirty_tx = 0;
  560. memset(mdp->rx_ring, 0, rx_ringsize);
  561. /* build Rx ring buffer */
  562. for (i = 0; i < RX_RING_SIZE; i++) {
  563. /* skb */
  564. mdp->rx_skbuff[i] = NULL;
  565. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  566. mdp->rx_skbuff[i] = skb;
  567. if (skb == NULL)
  568. break;
  569. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  570. DMA_FROM_DEVICE);
  571. sh_eth_set_receive_align(skb);
  572. /* RX descriptor */
  573. rxdesc = &mdp->rx_ring[i];
  574. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  575. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  576. /* The size of the buffer is 16 byte boundary. */
  577. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  578. /* Rx descriptor address set */
  579. if (i == 0) {
  580. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  581. if (sh_eth_is_gether(mdp))
  582. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  583. }
  584. }
  585. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  586. /* Mark the last entry as wrapping the ring. */
  587. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  588. memset(mdp->tx_ring, 0, tx_ringsize);
  589. /* build Tx ring buffer */
  590. for (i = 0; i < TX_RING_SIZE; i++) {
  591. mdp->tx_skbuff[i] = NULL;
  592. txdesc = &mdp->tx_ring[i];
  593. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  594. txdesc->buffer_length = 0;
  595. if (i == 0) {
  596. /* Tx descriptor address set */
  597. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  598. if (sh_eth_is_gether(mdp))
  599. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  600. }
  601. }
  602. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  603. }
  604. /* Get skb and descriptor buffer */
  605. static int sh_eth_ring_init(struct net_device *ndev)
  606. {
  607. struct sh_eth_private *mdp = netdev_priv(ndev);
  608. int rx_ringsize, tx_ringsize, ret = 0;
  609. /*
  610. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  611. * card needs room to do 8 byte alignment, +2 so we can reserve
  612. * the first 2 bytes, and +16 gets room for the status word from the
  613. * card.
  614. */
  615. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  616. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  617. if (mdp->cd->rpadir)
  618. mdp->rx_buf_sz += NET_IP_ALIGN;
  619. /* Allocate RX and TX skb rings */
  620. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  621. GFP_KERNEL);
  622. if (!mdp->rx_skbuff) {
  623. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  624. ret = -ENOMEM;
  625. return ret;
  626. }
  627. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  628. GFP_KERNEL);
  629. if (!mdp->tx_skbuff) {
  630. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  631. ret = -ENOMEM;
  632. goto skb_ring_free;
  633. }
  634. /* Allocate all Rx descriptors. */
  635. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  636. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  637. GFP_KERNEL);
  638. if (!mdp->rx_ring) {
  639. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  640. rx_ringsize);
  641. ret = -ENOMEM;
  642. goto desc_ring_free;
  643. }
  644. mdp->dirty_rx = 0;
  645. /* Allocate all Tx descriptors. */
  646. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  647. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  648. GFP_KERNEL);
  649. if (!mdp->tx_ring) {
  650. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  651. tx_ringsize);
  652. ret = -ENOMEM;
  653. goto desc_ring_free;
  654. }
  655. return ret;
  656. desc_ring_free:
  657. /* free DMA buffer */
  658. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  659. skb_ring_free:
  660. /* Free Rx and Tx skb ring buffer */
  661. sh_eth_ring_free(ndev);
  662. return ret;
  663. }
  664. static int sh_eth_dev_init(struct net_device *ndev)
  665. {
  666. int ret = 0;
  667. struct sh_eth_private *mdp = netdev_priv(ndev);
  668. u_int32_t rx_int_var, tx_int_var;
  669. u32 val;
  670. /* Soft Reset */
  671. sh_eth_reset(ndev);
  672. /* Descriptor format */
  673. sh_eth_ring_format(ndev);
  674. if (mdp->cd->rpadir)
  675. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  676. /* all sh_eth int mask */
  677. sh_eth_write(ndev, 0, EESIPR);
  678. #if defined(__LITTLE_ENDIAN__)
  679. if (mdp->cd->hw_swap)
  680. sh_eth_write(ndev, EDMR_EL, EDMR);
  681. else
  682. #endif
  683. sh_eth_write(ndev, 0, EDMR);
  684. /* FIFO size set */
  685. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  686. sh_eth_write(ndev, 0, TFTR);
  687. /* Frame recv control */
  688. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  689. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  690. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  691. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  692. if (mdp->cd->bculr)
  693. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  694. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  695. if (!mdp->cd->no_trimd)
  696. sh_eth_write(ndev, 0, TRIMD);
  697. /* Recv frame limit set register */
  698. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  699. RFLR);
  700. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  701. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  702. /* PAUSE Prohibition */
  703. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  704. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  705. sh_eth_write(ndev, val, ECMR);
  706. if (mdp->cd->set_rate)
  707. mdp->cd->set_rate(ndev);
  708. /* E-MAC Status Register clear */
  709. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  710. /* E-MAC Interrupt Enable register */
  711. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  712. /* Set MAC address */
  713. update_mac_address(ndev);
  714. /* mask reset */
  715. if (mdp->cd->apr)
  716. sh_eth_write(ndev, APR_AP, APR);
  717. if (mdp->cd->mpr)
  718. sh_eth_write(ndev, MPR_MP, MPR);
  719. if (mdp->cd->tpauser)
  720. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  721. /* Setting the Rx mode will start the Rx process. */
  722. sh_eth_write(ndev, EDRRR_R, EDRRR);
  723. netif_start_queue(ndev);
  724. return ret;
  725. }
  726. /* free Tx skb function */
  727. static int sh_eth_txfree(struct net_device *ndev)
  728. {
  729. struct sh_eth_private *mdp = netdev_priv(ndev);
  730. struct sh_eth_txdesc *txdesc;
  731. int freeNum = 0;
  732. int entry = 0;
  733. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  734. entry = mdp->dirty_tx % TX_RING_SIZE;
  735. txdesc = &mdp->tx_ring[entry];
  736. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  737. break;
  738. /* Free the original skb. */
  739. if (mdp->tx_skbuff[entry]) {
  740. dma_unmap_single(&ndev->dev, txdesc->addr,
  741. txdesc->buffer_length, DMA_TO_DEVICE);
  742. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  743. mdp->tx_skbuff[entry] = NULL;
  744. freeNum++;
  745. }
  746. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  747. if (entry >= TX_RING_SIZE - 1)
  748. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  749. ndev->stats.tx_packets++;
  750. ndev->stats.tx_bytes += txdesc->buffer_length;
  751. }
  752. return freeNum;
  753. }
  754. /* Packet receive function */
  755. static int sh_eth_rx(struct net_device *ndev)
  756. {
  757. struct sh_eth_private *mdp = netdev_priv(ndev);
  758. struct sh_eth_rxdesc *rxdesc;
  759. int entry = mdp->cur_rx % RX_RING_SIZE;
  760. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  761. struct sk_buff *skb;
  762. u16 pkt_len = 0;
  763. u32 desc_status;
  764. rxdesc = &mdp->rx_ring[entry];
  765. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  766. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  767. pkt_len = rxdesc->frame_length;
  768. if (--boguscnt < 0)
  769. break;
  770. if (!(desc_status & RDFEND))
  771. ndev->stats.rx_length_errors++;
  772. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  773. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  774. ndev->stats.rx_errors++;
  775. if (desc_status & RD_RFS1)
  776. ndev->stats.rx_crc_errors++;
  777. if (desc_status & RD_RFS2)
  778. ndev->stats.rx_frame_errors++;
  779. if (desc_status & RD_RFS3)
  780. ndev->stats.rx_length_errors++;
  781. if (desc_status & RD_RFS4)
  782. ndev->stats.rx_length_errors++;
  783. if (desc_status & RD_RFS6)
  784. ndev->stats.rx_missed_errors++;
  785. if (desc_status & RD_RFS10)
  786. ndev->stats.rx_over_errors++;
  787. } else {
  788. if (!mdp->cd->hw_swap)
  789. sh_eth_soft_swap(
  790. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  791. pkt_len + 2);
  792. skb = mdp->rx_skbuff[entry];
  793. mdp->rx_skbuff[entry] = NULL;
  794. if (mdp->cd->rpadir)
  795. skb_reserve(skb, NET_IP_ALIGN);
  796. skb_put(skb, pkt_len);
  797. skb->protocol = eth_type_trans(skb, ndev);
  798. netif_rx(skb);
  799. ndev->stats.rx_packets++;
  800. ndev->stats.rx_bytes += pkt_len;
  801. }
  802. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  803. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  804. rxdesc = &mdp->rx_ring[entry];
  805. }
  806. /* Refill the Rx ring buffers. */
  807. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  808. entry = mdp->dirty_rx % RX_RING_SIZE;
  809. rxdesc = &mdp->rx_ring[entry];
  810. /* The size of the buffer is 16 byte boundary. */
  811. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  812. if (mdp->rx_skbuff[entry] == NULL) {
  813. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  814. mdp->rx_skbuff[entry] = skb;
  815. if (skb == NULL)
  816. break; /* Better luck next round. */
  817. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  818. DMA_FROM_DEVICE);
  819. sh_eth_set_receive_align(skb);
  820. skb_checksum_none_assert(skb);
  821. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  822. }
  823. if (entry >= RX_RING_SIZE - 1)
  824. rxdesc->status |=
  825. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  826. else
  827. rxdesc->status |=
  828. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  829. }
  830. /* Restart Rx engine if stopped. */
  831. /* If we don't need to check status, don't. -KDU */
  832. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  833. sh_eth_write(ndev, EDRRR_R, EDRRR);
  834. return 0;
  835. }
  836. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  837. {
  838. /* disable tx and rx */
  839. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  840. ~(ECMR_RE | ECMR_TE), ECMR);
  841. }
  842. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  843. {
  844. /* enable tx and rx */
  845. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  846. (ECMR_RE | ECMR_TE), ECMR);
  847. }
  848. /* error control function */
  849. static void sh_eth_error(struct net_device *ndev, int intr_status)
  850. {
  851. struct sh_eth_private *mdp = netdev_priv(ndev);
  852. u32 felic_stat;
  853. u32 link_stat;
  854. u32 mask;
  855. if (intr_status & EESR_ECI) {
  856. felic_stat = sh_eth_read(ndev, ECSR);
  857. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  858. if (felic_stat & ECSR_ICD)
  859. ndev->stats.tx_carrier_errors++;
  860. if (felic_stat & ECSR_LCHNG) {
  861. /* Link Changed */
  862. if (mdp->cd->no_psr || mdp->no_ether_link) {
  863. if (mdp->link == PHY_DOWN)
  864. link_stat = 0;
  865. else
  866. link_stat = PHY_ST_LINK;
  867. } else {
  868. link_stat = (sh_eth_read(ndev, PSR));
  869. if (mdp->ether_link_active_low)
  870. link_stat = ~link_stat;
  871. }
  872. if (!(link_stat & PHY_ST_LINK))
  873. sh_eth_rcv_snd_disable(ndev);
  874. else {
  875. /* Link Up */
  876. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  877. ~DMAC_M_ECI, EESIPR);
  878. /*clear int */
  879. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  880. ECSR);
  881. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  882. DMAC_M_ECI, EESIPR);
  883. /* enable tx and rx */
  884. sh_eth_rcv_snd_enable(ndev);
  885. }
  886. }
  887. }
  888. if (intr_status & EESR_TWB) {
  889. /* Write buck end. unused write back interrupt */
  890. if (intr_status & EESR_TABT) /* Transmit Abort int */
  891. ndev->stats.tx_aborted_errors++;
  892. if (netif_msg_tx_err(mdp))
  893. dev_err(&ndev->dev, "Transmit Abort\n");
  894. }
  895. if (intr_status & EESR_RABT) {
  896. /* Receive Abort int */
  897. if (intr_status & EESR_RFRMER) {
  898. /* Receive Frame Overflow int */
  899. ndev->stats.rx_frame_errors++;
  900. if (netif_msg_rx_err(mdp))
  901. dev_err(&ndev->dev, "Receive Abort\n");
  902. }
  903. }
  904. if (intr_status & EESR_TDE) {
  905. /* Transmit Descriptor Empty int */
  906. ndev->stats.tx_fifo_errors++;
  907. if (netif_msg_tx_err(mdp))
  908. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  909. }
  910. if (intr_status & EESR_TFE) {
  911. /* FIFO under flow */
  912. ndev->stats.tx_fifo_errors++;
  913. if (netif_msg_tx_err(mdp))
  914. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  915. }
  916. if (intr_status & EESR_RDE) {
  917. /* Receive Descriptor Empty int */
  918. ndev->stats.rx_over_errors++;
  919. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  920. sh_eth_write(ndev, EDRRR_R, EDRRR);
  921. if (netif_msg_rx_err(mdp))
  922. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  923. }
  924. if (intr_status & EESR_RFE) {
  925. /* Receive FIFO Overflow int */
  926. ndev->stats.rx_fifo_errors++;
  927. if (netif_msg_rx_err(mdp))
  928. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  929. }
  930. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  931. /* Address Error */
  932. ndev->stats.tx_fifo_errors++;
  933. if (netif_msg_tx_err(mdp))
  934. dev_err(&ndev->dev, "Address Error\n");
  935. }
  936. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  937. if (mdp->cd->no_ade)
  938. mask &= ~EESR_ADE;
  939. if (intr_status & mask) {
  940. /* Tx error */
  941. u32 edtrr = sh_eth_read(ndev, EDTRR);
  942. /* dmesg */
  943. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  944. intr_status, mdp->cur_tx);
  945. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  946. mdp->dirty_tx, (u32) ndev->state, edtrr);
  947. /* dirty buffer free */
  948. sh_eth_txfree(ndev);
  949. /* SH7712 BUG */
  950. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  951. /* tx dma start */
  952. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  953. }
  954. /* wakeup */
  955. netif_wake_queue(ndev);
  956. }
  957. }
  958. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  959. {
  960. struct net_device *ndev = netdev;
  961. struct sh_eth_private *mdp = netdev_priv(ndev);
  962. struct sh_eth_cpu_data *cd = mdp->cd;
  963. irqreturn_t ret = IRQ_NONE;
  964. u32 intr_status = 0;
  965. spin_lock(&mdp->lock);
  966. /* Get interrpt stat */
  967. intr_status = sh_eth_read(ndev, EESR);
  968. /* Clear interrupt */
  969. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  970. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  971. cd->tx_check | cd->eesr_err_check)) {
  972. sh_eth_write(ndev, intr_status, EESR);
  973. ret = IRQ_HANDLED;
  974. } else
  975. goto other_irq;
  976. if (intr_status & (EESR_FRC | /* Frame recv*/
  977. EESR_RMAF | /* Multi cast address recv*/
  978. EESR_RRF | /* Bit frame recv */
  979. EESR_RTLF | /* Long frame recv*/
  980. EESR_RTSF | /* short frame recv */
  981. EESR_PRE | /* PHY-LSI recv error */
  982. EESR_CERF)){ /* recv frame CRC error */
  983. sh_eth_rx(ndev);
  984. }
  985. /* Tx Check */
  986. if (intr_status & cd->tx_check) {
  987. sh_eth_txfree(ndev);
  988. netif_wake_queue(ndev);
  989. }
  990. if (intr_status & cd->eesr_err_check)
  991. sh_eth_error(ndev, intr_status);
  992. other_irq:
  993. spin_unlock(&mdp->lock);
  994. return ret;
  995. }
  996. static void sh_eth_timer(unsigned long data)
  997. {
  998. struct net_device *ndev = (struct net_device *)data;
  999. struct sh_eth_private *mdp = netdev_priv(ndev);
  1000. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1001. }
  1002. /* PHY state control function */
  1003. static void sh_eth_adjust_link(struct net_device *ndev)
  1004. {
  1005. struct sh_eth_private *mdp = netdev_priv(ndev);
  1006. struct phy_device *phydev = mdp->phydev;
  1007. int new_state = 0;
  1008. if (phydev->link != PHY_DOWN) {
  1009. if (phydev->duplex != mdp->duplex) {
  1010. new_state = 1;
  1011. mdp->duplex = phydev->duplex;
  1012. if (mdp->cd->set_duplex)
  1013. mdp->cd->set_duplex(ndev);
  1014. }
  1015. if (phydev->speed != mdp->speed) {
  1016. new_state = 1;
  1017. mdp->speed = phydev->speed;
  1018. if (mdp->cd->set_rate)
  1019. mdp->cd->set_rate(ndev);
  1020. }
  1021. if (mdp->link == PHY_DOWN) {
  1022. sh_eth_write(ndev,
  1023. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1024. new_state = 1;
  1025. mdp->link = phydev->link;
  1026. }
  1027. } else if (mdp->link) {
  1028. new_state = 1;
  1029. mdp->link = PHY_DOWN;
  1030. mdp->speed = 0;
  1031. mdp->duplex = -1;
  1032. }
  1033. if (new_state && netif_msg_link(mdp))
  1034. phy_print_status(phydev);
  1035. }
  1036. /* PHY init function */
  1037. static int sh_eth_phy_init(struct net_device *ndev)
  1038. {
  1039. struct sh_eth_private *mdp = netdev_priv(ndev);
  1040. char phy_id[MII_BUS_ID_SIZE + 3];
  1041. struct phy_device *phydev = NULL;
  1042. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1043. mdp->mii_bus->id , mdp->phy_id);
  1044. mdp->link = PHY_DOWN;
  1045. mdp->speed = 0;
  1046. mdp->duplex = -1;
  1047. /* Try connect to PHY */
  1048. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1049. 0, mdp->phy_interface);
  1050. if (IS_ERR(phydev)) {
  1051. dev_err(&ndev->dev, "phy_connect failed\n");
  1052. return PTR_ERR(phydev);
  1053. }
  1054. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1055. phydev->addr, phydev->drv->name);
  1056. mdp->phydev = phydev;
  1057. return 0;
  1058. }
  1059. /* PHY control start function */
  1060. static int sh_eth_phy_start(struct net_device *ndev)
  1061. {
  1062. struct sh_eth_private *mdp = netdev_priv(ndev);
  1063. int ret;
  1064. ret = sh_eth_phy_init(ndev);
  1065. if (ret)
  1066. return ret;
  1067. /* reset phy - this also wakes it from PDOWN */
  1068. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1069. phy_start(mdp->phydev);
  1070. return 0;
  1071. }
  1072. static int sh_eth_get_settings(struct net_device *ndev,
  1073. struct ethtool_cmd *ecmd)
  1074. {
  1075. struct sh_eth_private *mdp = netdev_priv(ndev);
  1076. unsigned long flags;
  1077. int ret;
  1078. spin_lock_irqsave(&mdp->lock, flags);
  1079. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1080. spin_unlock_irqrestore(&mdp->lock, flags);
  1081. return ret;
  1082. }
  1083. static int sh_eth_set_settings(struct net_device *ndev,
  1084. struct ethtool_cmd *ecmd)
  1085. {
  1086. struct sh_eth_private *mdp = netdev_priv(ndev);
  1087. unsigned long flags;
  1088. int ret;
  1089. spin_lock_irqsave(&mdp->lock, flags);
  1090. /* disable tx and rx */
  1091. sh_eth_rcv_snd_disable(ndev);
  1092. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1093. if (ret)
  1094. goto error_exit;
  1095. if (ecmd->duplex == DUPLEX_FULL)
  1096. mdp->duplex = 1;
  1097. else
  1098. mdp->duplex = 0;
  1099. if (mdp->cd->set_duplex)
  1100. mdp->cd->set_duplex(ndev);
  1101. error_exit:
  1102. mdelay(1);
  1103. /* enable tx and rx */
  1104. sh_eth_rcv_snd_enable(ndev);
  1105. spin_unlock_irqrestore(&mdp->lock, flags);
  1106. return ret;
  1107. }
  1108. static int sh_eth_nway_reset(struct net_device *ndev)
  1109. {
  1110. struct sh_eth_private *mdp = netdev_priv(ndev);
  1111. unsigned long flags;
  1112. int ret;
  1113. spin_lock_irqsave(&mdp->lock, flags);
  1114. ret = phy_start_aneg(mdp->phydev);
  1115. spin_unlock_irqrestore(&mdp->lock, flags);
  1116. return ret;
  1117. }
  1118. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1119. {
  1120. struct sh_eth_private *mdp = netdev_priv(ndev);
  1121. return mdp->msg_enable;
  1122. }
  1123. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1124. {
  1125. struct sh_eth_private *mdp = netdev_priv(ndev);
  1126. mdp->msg_enable = value;
  1127. }
  1128. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1129. "rx_current", "tx_current",
  1130. "rx_dirty", "tx_dirty",
  1131. };
  1132. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1133. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1134. {
  1135. switch (sset) {
  1136. case ETH_SS_STATS:
  1137. return SH_ETH_STATS_LEN;
  1138. default:
  1139. return -EOPNOTSUPP;
  1140. }
  1141. }
  1142. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1143. struct ethtool_stats *stats, u64 *data)
  1144. {
  1145. struct sh_eth_private *mdp = netdev_priv(ndev);
  1146. int i = 0;
  1147. /* device-specific stats */
  1148. data[i++] = mdp->cur_rx;
  1149. data[i++] = mdp->cur_tx;
  1150. data[i++] = mdp->dirty_rx;
  1151. data[i++] = mdp->dirty_tx;
  1152. }
  1153. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1154. {
  1155. switch (stringset) {
  1156. case ETH_SS_STATS:
  1157. memcpy(data, *sh_eth_gstrings_stats,
  1158. sizeof(sh_eth_gstrings_stats));
  1159. break;
  1160. }
  1161. }
  1162. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1163. .get_settings = sh_eth_get_settings,
  1164. .set_settings = sh_eth_set_settings,
  1165. .nway_reset = sh_eth_nway_reset,
  1166. .get_msglevel = sh_eth_get_msglevel,
  1167. .set_msglevel = sh_eth_set_msglevel,
  1168. .get_link = ethtool_op_get_link,
  1169. .get_strings = sh_eth_get_strings,
  1170. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1171. .get_sset_count = sh_eth_get_sset_count,
  1172. };
  1173. /* network device open function */
  1174. static int sh_eth_open(struct net_device *ndev)
  1175. {
  1176. int ret = 0;
  1177. struct sh_eth_private *mdp = netdev_priv(ndev);
  1178. pm_runtime_get_sync(&mdp->pdev->dev);
  1179. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1180. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1181. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1182. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1183. IRQF_SHARED,
  1184. #else
  1185. 0,
  1186. #endif
  1187. ndev->name, ndev);
  1188. if (ret) {
  1189. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1190. return ret;
  1191. }
  1192. /* Descriptor set */
  1193. ret = sh_eth_ring_init(ndev);
  1194. if (ret)
  1195. goto out_free_irq;
  1196. /* device init */
  1197. ret = sh_eth_dev_init(ndev);
  1198. if (ret)
  1199. goto out_free_irq;
  1200. /* PHY control start*/
  1201. ret = sh_eth_phy_start(ndev);
  1202. if (ret)
  1203. goto out_free_irq;
  1204. /* Set the timer to check for link beat. */
  1205. init_timer(&mdp->timer);
  1206. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1207. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1208. return ret;
  1209. out_free_irq:
  1210. free_irq(ndev->irq, ndev);
  1211. pm_runtime_put_sync(&mdp->pdev->dev);
  1212. return ret;
  1213. }
  1214. /* Timeout function */
  1215. static void sh_eth_tx_timeout(struct net_device *ndev)
  1216. {
  1217. struct sh_eth_private *mdp = netdev_priv(ndev);
  1218. struct sh_eth_rxdesc *rxdesc;
  1219. int i;
  1220. netif_stop_queue(ndev);
  1221. if (netif_msg_timer(mdp))
  1222. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1223. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1224. /* tx_errors count up */
  1225. ndev->stats.tx_errors++;
  1226. /* timer off */
  1227. del_timer_sync(&mdp->timer);
  1228. /* Free all the skbuffs in the Rx queue. */
  1229. for (i = 0; i < RX_RING_SIZE; i++) {
  1230. rxdesc = &mdp->rx_ring[i];
  1231. rxdesc->status = 0;
  1232. rxdesc->addr = 0xBADF00D0;
  1233. if (mdp->rx_skbuff[i])
  1234. dev_kfree_skb(mdp->rx_skbuff[i]);
  1235. mdp->rx_skbuff[i] = NULL;
  1236. }
  1237. for (i = 0; i < TX_RING_SIZE; i++) {
  1238. if (mdp->tx_skbuff[i])
  1239. dev_kfree_skb(mdp->tx_skbuff[i]);
  1240. mdp->tx_skbuff[i] = NULL;
  1241. }
  1242. /* device init */
  1243. sh_eth_dev_init(ndev);
  1244. /* timer on */
  1245. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1246. add_timer(&mdp->timer);
  1247. }
  1248. /* Packet transmit function */
  1249. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1250. {
  1251. struct sh_eth_private *mdp = netdev_priv(ndev);
  1252. struct sh_eth_txdesc *txdesc;
  1253. u32 entry;
  1254. unsigned long flags;
  1255. spin_lock_irqsave(&mdp->lock, flags);
  1256. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1257. if (!sh_eth_txfree(ndev)) {
  1258. if (netif_msg_tx_queued(mdp))
  1259. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1260. netif_stop_queue(ndev);
  1261. spin_unlock_irqrestore(&mdp->lock, flags);
  1262. return NETDEV_TX_BUSY;
  1263. }
  1264. }
  1265. spin_unlock_irqrestore(&mdp->lock, flags);
  1266. entry = mdp->cur_tx % TX_RING_SIZE;
  1267. mdp->tx_skbuff[entry] = skb;
  1268. txdesc = &mdp->tx_ring[entry];
  1269. /* soft swap. */
  1270. if (!mdp->cd->hw_swap)
  1271. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1272. skb->len + 2);
  1273. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1274. DMA_TO_DEVICE);
  1275. if (skb->len < ETHERSMALL)
  1276. txdesc->buffer_length = ETHERSMALL;
  1277. else
  1278. txdesc->buffer_length = skb->len;
  1279. if (entry >= TX_RING_SIZE - 1)
  1280. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1281. else
  1282. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1283. mdp->cur_tx++;
  1284. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1285. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1286. return NETDEV_TX_OK;
  1287. }
  1288. /* device close function */
  1289. static int sh_eth_close(struct net_device *ndev)
  1290. {
  1291. struct sh_eth_private *mdp = netdev_priv(ndev);
  1292. int ringsize;
  1293. netif_stop_queue(ndev);
  1294. /* Disable interrupts by clearing the interrupt mask. */
  1295. sh_eth_write(ndev, 0x0000, EESIPR);
  1296. /* Stop the chip's Tx and Rx processes. */
  1297. sh_eth_write(ndev, 0, EDTRR);
  1298. sh_eth_write(ndev, 0, EDRRR);
  1299. /* PHY Disconnect */
  1300. if (mdp->phydev) {
  1301. phy_stop(mdp->phydev);
  1302. phy_disconnect(mdp->phydev);
  1303. }
  1304. free_irq(ndev->irq, ndev);
  1305. del_timer_sync(&mdp->timer);
  1306. /* Free all the skbuffs in the Rx queue. */
  1307. sh_eth_ring_free(ndev);
  1308. /* free DMA buffer */
  1309. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1310. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1311. /* free DMA buffer */
  1312. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1313. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1314. pm_runtime_put_sync(&mdp->pdev->dev);
  1315. return 0;
  1316. }
  1317. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1318. {
  1319. struct sh_eth_private *mdp = netdev_priv(ndev);
  1320. pm_runtime_get_sync(&mdp->pdev->dev);
  1321. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1322. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1323. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1324. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1325. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1326. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1327. if (sh_eth_is_gether(mdp)) {
  1328. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1329. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1330. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1331. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1332. } else {
  1333. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1334. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1335. }
  1336. pm_runtime_put_sync(&mdp->pdev->dev);
  1337. return &ndev->stats;
  1338. }
  1339. /* ioctl to device function */
  1340. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1341. int cmd)
  1342. {
  1343. struct sh_eth_private *mdp = netdev_priv(ndev);
  1344. struct phy_device *phydev = mdp->phydev;
  1345. if (!netif_running(ndev))
  1346. return -EINVAL;
  1347. if (!phydev)
  1348. return -ENODEV;
  1349. return phy_mii_ioctl(phydev, rq, cmd);
  1350. }
  1351. #if defined(SH_ETH_HAS_TSU)
  1352. /* Multicast reception directions set */
  1353. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1354. {
  1355. if (ndev->flags & IFF_PROMISC) {
  1356. /* Set promiscuous. */
  1357. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
  1358. ECMR_PRM, ECMR);
  1359. } else {
  1360. /* Normal, unicast/broadcast-only mode. */
  1361. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
  1362. ECMR_MCT, ECMR);
  1363. }
  1364. }
  1365. #endif /* SH_ETH_HAS_TSU */
  1366. /* SuperH's TSU register init function */
  1367. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1368. {
  1369. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1370. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1371. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1372. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1373. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1374. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1375. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1376. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1377. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1378. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1379. if (sh_eth_is_gether(mdp)) {
  1380. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1381. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1382. } else {
  1383. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1384. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1385. }
  1386. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1387. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1388. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1389. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1390. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1391. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1392. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1393. }
  1394. /* MDIO bus release function */
  1395. static int sh_mdio_release(struct net_device *ndev)
  1396. {
  1397. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1398. /* unregister mdio bus */
  1399. mdiobus_unregister(bus);
  1400. /* remove mdio bus info from net_device */
  1401. dev_set_drvdata(&ndev->dev, NULL);
  1402. /* free interrupts memory */
  1403. kfree(bus->irq);
  1404. /* free bitbang info */
  1405. free_mdio_bitbang(bus);
  1406. return 0;
  1407. }
  1408. /* MDIO bus init function */
  1409. static int sh_mdio_init(struct net_device *ndev, int id,
  1410. struct sh_eth_plat_data *pd)
  1411. {
  1412. int ret, i;
  1413. struct bb_info *bitbang;
  1414. struct sh_eth_private *mdp = netdev_priv(ndev);
  1415. /* create bit control struct for PHY */
  1416. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1417. if (!bitbang) {
  1418. ret = -ENOMEM;
  1419. goto out;
  1420. }
  1421. /* bitbang init */
  1422. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1423. bitbang->set_gate = pd->set_mdio_gate;
  1424. bitbang->mdi_msk = 0x08;
  1425. bitbang->mdo_msk = 0x04;
  1426. bitbang->mmd_msk = 0x02;/* MMD */
  1427. bitbang->mdc_msk = 0x01;
  1428. bitbang->ctrl.ops = &bb_ops;
  1429. /* MII controller setting */
  1430. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1431. if (!mdp->mii_bus) {
  1432. ret = -ENOMEM;
  1433. goto out_free_bitbang;
  1434. }
  1435. /* Hook up MII support for ethtool */
  1436. mdp->mii_bus->name = "sh_mii";
  1437. mdp->mii_bus->parent = &ndev->dev;
  1438. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1439. mdp->pdev->name, id);
  1440. /* PHY IRQ */
  1441. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1442. if (!mdp->mii_bus->irq) {
  1443. ret = -ENOMEM;
  1444. goto out_free_bus;
  1445. }
  1446. for (i = 0; i < PHY_MAX_ADDR; i++)
  1447. mdp->mii_bus->irq[i] = PHY_POLL;
  1448. /* regist mdio bus */
  1449. ret = mdiobus_register(mdp->mii_bus);
  1450. if (ret)
  1451. goto out_free_irq;
  1452. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1453. return 0;
  1454. out_free_irq:
  1455. kfree(mdp->mii_bus->irq);
  1456. out_free_bus:
  1457. free_mdio_bitbang(mdp->mii_bus);
  1458. out_free_bitbang:
  1459. kfree(bitbang);
  1460. out:
  1461. return ret;
  1462. }
  1463. static const u16 *sh_eth_get_register_offset(int register_type)
  1464. {
  1465. const u16 *reg_offset = NULL;
  1466. switch (register_type) {
  1467. case SH_ETH_REG_GIGABIT:
  1468. reg_offset = sh_eth_offset_gigabit;
  1469. break;
  1470. case SH_ETH_REG_FAST_SH4:
  1471. reg_offset = sh_eth_offset_fast_sh4;
  1472. break;
  1473. case SH_ETH_REG_FAST_SH3_SH2:
  1474. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1475. break;
  1476. default:
  1477. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1478. break;
  1479. }
  1480. return reg_offset;
  1481. }
  1482. static const struct net_device_ops sh_eth_netdev_ops = {
  1483. .ndo_open = sh_eth_open,
  1484. .ndo_stop = sh_eth_close,
  1485. .ndo_start_xmit = sh_eth_start_xmit,
  1486. .ndo_get_stats = sh_eth_get_stats,
  1487. #if defined(SH_ETH_HAS_TSU)
  1488. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1489. #endif
  1490. .ndo_tx_timeout = sh_eth_tx_timeout,
  1491. .ndo_do_ioctl = sh_eth_do_ioctl,
  1492. .ndo_validate_addr = eth_validate_addr,
  1493. .ndo_set_mac_address = eth_mac_addr,
  1494. .ndo_change_mtu = eth_change_mtu,
  1495. };
  1496. static int sh_eth_drv_probe(struct platform_device *pdev)
  1497. {
  1498. int ret, devno = 0;
  1499. struct resource *res;
  1500. struct net_device *ndev = NULL;
  1501. struct sh_eth_private *mdp = NULL;
  1502. struct sh_eth_plat_data *pd;
  1503. /* get base addr */
  1504. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1505. if (unlikely(res == NULL)) {
  1506. dev_err(&pdev->dev, "invalid resource\n");
  1507. ret = -EINVAL;
  1508. goto out;
  1509. }
  1510. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1511. if (!ndev) {
  1512. ret = -ENOMEM;
  1513. goto out;
  1514. }
  1515. /* The sh Ether-specific entries in the device structure. */
  1516. ndev->base_addr = res->start;
  1517. devno = pdev->id;
  1518. if (devno < 0)
  1519. devno = 0;
  1520. ndev->dma = -1;
  1521. ret = platform_get_irq(pdev, 0);
  1522. if (ret < 0) {
  1523. ret = -ENODEV;
  1524. goto out_release;
  1525. }
  1526. ndev->irq = ret;
  1527. SET_NETDEV_DEV(ndev, &pdev->dev);
  1528. /* Fill in the fields of the device structure with ethernet values. */
  1529. ether_setup(ndev);
  1530. mdp = netdev_priv(ndev);
  1531. mdp->addr = ioremap(res->start, resource_size(res));
  1532. if (mdp->addr == NULL) {
  1533. ret = -ENOMEM;
  1534. dev_err(&pdev->dev, "ioremap failed.\n");
  1535. goto out_release;
  1536. }
  1537. spin_lock_init(&mdp->lock);
  1538. mdp->pdev = pdev;
  1539. pm_runtime_enable(&pdev->dev);
  1540. pm_runtime_resume(&pdev->dev);
  1541. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1542. /* get PHY ID */
  1543. mdp->phy_id = pd->phy;
  1544. mdp->phy_interface = pd->phy_interface;
  1545. /* EDMAC endian */
  1546. mdp->edmac_endian = pd->edmac_endian;
  1547. mdp->no_ether_link = pd->no_ether_link;
  1548. mdp->ether_link_active_low = pd->ether_link_active_low;
  1549. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1550. /* set cpu data */
  1551. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1552. mdp->cd = sh_eth_get_cpu_data(mdp);
  1553. #else
  1554. mdp->cd = &sh_eth_my_cpu_data;
  1555. #endif
  1556. sh_eth_set_default_cpu_data(mdp->cd);
  1557. /* set function */
  1558. ndev->netdev_ops = &sh_eth_netdev_ops;
  1559. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1560. ndev->watchdog_timeo = TX_TIMEOUT;
  1561. /* debug message level */
  1562. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1563. mdp->post_rx = POST_RX >> (devno << 1);
  1564. mdp->post_fw = POST_FW >> (devno << 1);
  1565. /* read and set MAC address */
  1566. read_mac_address(ndev, pd->mac_addr);
  1567. /* First device only init */
  1568. if (!devno) {
  1569. if (mdp->cd->tsu) {
  1570. struct resource *rtsu;
  1571. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1572. if (!rtsu) {
  1573. dev_err(&pdev->dev, "Not found TSU resource\n");
  1574. goto out_release;
  1575. }
  1576. mdp->tsu_addr = ioremap(rtsu->start,
  1577. resource_size(rtsu));
  1578. }
  1579. if (mdp->cd->chip_reset)
  1580. mdp->cd->chip_reset(ndev);
  1581. if (mdp->cd->tsu) {
  1582. /* TSU init (Init only)*/
  1583. sh_eth_tsu_init(mdp);
  1584. }
  1585. }
  1586. /* network device register */
  1587. ret = register_netdev(ndev);
  1588. if (ret)
  1589. goto out_release;
  1590. /* mdio bus init */
  1591. ret = sh_mdio_init(ndev, pdev->id, pd);
  1592. if (ret)
  1593. goto out_unregister;
  1594. /* print device information */
  1595. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1596. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1597. platform_set_drvdata(pdev, ndev);
  1598. return ret;
  1599. out_unregister:
  1600. unregister_netdev(ndev);
  1601. out_release:
  1602. /* net_dev free */
  1603. if (mdp && mdp->addr)
  1604. iounmap(mdp->addr);
  1605. if (mdp && mdp->tsu_addr)
  1606. iounmap(mdp->tsu_addr);
  1607. if (ndev)
  1608. free_netdev(ndev);
  1609. out:
  1610. return ret;
  1611. }
  1612. static int sh_eth_drv_remove(struct platform_device *pdev)
  1613. {
  1614. struct net_device *ndev = platform_get_drvdata(pdev);
  1615. struct sh_eth_private *mdp = netdev_priv(ndev);
  1616. iounmap(mdp->tsu_addr);
  1617. sh_mdio_release(ndev);
  1618. unregister_netdev(ndev);
  1619. pm_runtime_disable(&pdev->dev);
  1620. iounmap(mdp->addr);
  1621. free_netdev(ndev);
  1622. platform_set_drvdata(pdev, NULL);
  1623. return 0;
  1624. }
  1625. static int sh_eth_runtime_nop(struct device *dev)
  1626. {
  1627. /*
  1628. * Runtime PM callback shared between ->runtime_suspend()
  1629. * and ->runtime_resume(). Simply returns success.
  1630. *
  1631. * This driver re-initializes all registers after
  1632. * pm_runtime_get_sync() anyway so there is no need
  1633. * to save and restore registers here.
  1634. */
  1635. return 0;
  1636. }
  1637. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1638. .runtime_suspend = sh_eth_runtime_nop,
  1639. .runtime_resume = sh_eth_runtime_nop,
  1640. };
  1641. static struct platform_driver sh_eth_driver = {
  1642. .probe = sh_eth_drv_probe,
  1643. .remove = sh_eth_drv_remove,
  1644. .driver = {
  1645. .name = CARDNAME,
  1646. .pm = &sh_eth_dev_pm_ops,
  1647. },
  1648. };
  1649. module_platform_driver(sh_eth_driver);
  1650. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1651. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1652. MODULE_LICENSE("GPL v2");